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ABSTRACT

LoRa technology promises to enable Internet of Things applications

over large geographical areas. However, its performance is often

hampered by poor channel quality in urban environments, where

blockage and multipath effects are prevalent. Our study uncovers

that a slight shift in the position or attitude of the receiving an-

tenna can substantially improve the received signal quality. This

phenomenon can be attributed to the rich multipath characteristics

of wireless signal propagation in urban environments, wherein

even small antenna movement can alter the dominant signal path

or reduce the polarization angular difference between transceivers.

Leveraging these key observations, we propose and implement

MoLoRa, an intelligent mobile antenna system designed to enhance

LoRa packet reception. At its core, MoLoRa represents the posi-

tion and attitude of an antenna as a state and employs a statistical

optimization method to search for states that offer optimal signal

quality efficiently. Through extensive evaluation, we demonstrate

that MoLoRa achieves a maximum Signal-to-Noise Ratio (SNR) gain

of 13 dB in a few attempts, enabling formerly problematic blind

spots to reconnect and strengthening links for other nodes.

CCS CONCEPTS

• Computer systems organization → Embedded and cyber-

physical systems.
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1 INTRODUCTION

Low Power Wide Area Networks (LPWANs) have emerged as a

new generation of wireless technology for connecting ubiquitous
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Figure 1: The RF radiance in urban settings can be distorted

by many factors, causing multipath and polarization mis-

match at the receiver. MoLoRa moves an Rx antenna to find

the optimal reception position and overcome polarization

mismatch.

Internet-of-Things (IoT) applications over large areas [5, 22, 29–

31, 40, 44, 50, 51, 56, 59, 61, 71, 78, 79, 82]. LoRa, as a representative

LPWAN technology, utilizes Chirp Spread Spectrum (CSS) to en-

able data transmission over tens of kilometers with low-power

consumption [4, 10, 52, 64].

Recent studies have shown that LoRa devices deployed in open

rural areas achieve the advertised communication range [15, 18, 37].

However, urban environments, characterized by severe blockage

and multipath effects, experience unsatisfactory communication

distances, typically around 1 km or even shorter [28, 35, 58, 63, 81].

Importantly, blind spots may occur often in urban settings, result-

ing in reception and decoding failures even within sub-kilometer

ranges.

Although several efforts have been made to enhance LoRa packet

reception in urban environments, these approaches suffer from prac-

tical issues such as degraded data rates or increased hardware costs.

As summarized in Table. 1, ADR mechanism sacrifices data rate

and increases transmission power to improve reliability. XCopy

[72] conducts sub-sample level synchronization, which is stringent

and challenging for COTS devices, to coherently combine multiple

identical packets received by a single antenna while Charm [8]

and MALoRa [23] require multiple antennas to combine packets.

Demeter [53] requires additional programmable antennas at each

low-end LoRa node to adjust the polarization, which is not prac-

tical and backward compatible. Previous works [45] in WSN also

proposed to use directional antenna and electronically-switched

directional (ESD) antenna to improve signal quality. However, they

are not capable of mitigating polarization misalignment.
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Table 1: Qualitative comparison.

Method

Feature Data

Rate

COTS

Node

Single

Antenna

Coarse

Sync.1
SNR

Gain

ADR ↓ � � � 2-3 dB

Charm[8] − � � � 1-3 dB

MALoRa[23] − � � � 1-6 dB

XCopy[72] ↓ � � � 3-10 dB

Demeter[53] − � � � 3-10 dB

MoLoRa − � � � 6-13 dB

1 Coarse sync refers to a synchronization process with relatively loose time
requirements (resolution equals to or above sample-level).

We conducted in-field experiments to investigate blind spot prob-

lem in urban environments. A network with 30 LoRa nodes and a

gateway is deployed in a dense urban area. Experiments reveal that

many blind spots exist in urban environments even though there is

a gateway nearby.We also observe that while some locations exhibit

poor link quality, nearby areas have relatively good and stable link

quality within certain time periods. These observations align with

small-scale fading [38, 39, 49, 84, 86] of radio signal over a short

distance. The variability can be attributed to the rich multipath in

urban settings, where the creation of new non-line-of-sight paths

can substantially enhance link quality. Therefore, one hypothesis

is that a slight shift in the location of nodes or gateways (channel

reciprocity) may alter the dominant path of the combined signal,

leading to significant improvements in the received signal strength

(RSS).

Another observation is that the physical alignment of antennas in

a transmitter-and-receiver pair does not necessarily guarantee optimal

RSS. Despite the assumption of polarization alignment when anten-

nas are physically aligned, we find that environmental obstacles can

induce angular twisting in the transmitted electromagnetic (EM)

field. Similarly, as illustrated in Figure 1, signal reflections, scatter-

ing, diffraction, and absorption can lead to polarization misalign-

ment at the receiver’s antenna, degrading signal quality. Therefore,

another hypothesis is that adjusting the antenna orientation can

reduce the angular difference (𝜃 ) between the EM fields of transmit

and receive antennas, minimizing polarization loss and thereby

improving signal quality.

These observations inspire us to explore the potential of a smart

antenna by adjusting the position and orientation of a receiver’s

antenna to enhance packet reception. By enabling micro-mobility

(i.e., shifting to nearby positions and/or adopting new orientations),

as illustrated in Figure1, blind spot nodes can seize opportunities to

deliver packets successfully. Additionally, for nodes outside blind

spots, fine-tuning the receiving antenna’s position and orientation

can further boost packet reception. This mechanism can also benefit

downlink transmissions due to channel reciprocity.

Despite the benefits of enabling mobility for a receiving an-

tenna, a crucial question arises: how can we determine the optimal

state of an antenna? Although previous works [38, 39, 84] have dis-

cussed optimal placement of base station for wireless networks, they

mainly focus on theoretical analysis and ray-tracing simulation,

which overlook practical challenges (e.g., polarization mismatch

and real-time reaction) in system research, making them unsuit-

able for long range and complex urban LoRa networks. To find

the optimal state, we cast this problem as an SNR maximization

problem. We use the SNR of received packets as an indicator of sig-

nal quality and leverage a Bayesian optimization (BayesOpt)-based

approach to identify the best state for receiving packets. Bayesian

optimization has demonstrated its ability to effectively approximate

real-world SNR distributions by leveraging previous exploration

results [32]. However, unlike traditional BayesOpt which searches

for a maximum or minimum, our goal is to find a state that provides

satisfactory signal quality with minimal exploration efforts. This

distinction arises due to the dynamic and complex nature of SNR

distribution in space, where instant interference is challenging to

model or predict using long-term historical data. Moreover, exces-

sive exploration may yield diminishing marginal returns, further

complicating the search for an appropriate state. Our design enables

the antenna to reach a satisfactory state within just a few iterations,

allowing the system to continually train the BayesOpt prediction

model using previously received packets. Unlike traditional ma-

chine learning models [57, 68], which generally require extensive

training before testing, our approach supports real-time packet re-

ception and model training. This ensures no packets are wasted and

maintains compatibility with all device classes in LoRa networks

(Class A, B, and C) for gateway access. Besides, LoRa channel is rela-

tively stable compared with other signals such asWiFi [25, 40]. This

character makes our design feasible for real-world LoRa reception.

However, since LoRa nodes are distributed across various lo-

cations and experience distinct propagation paths, adjusting the

position and orientation of a receiving antenna on a node-by-node

basis is impractical and time-consuming. Furthermore, from a net-

work perspective, this approach fails to support concurrent trans-

mission. Fortunately, we note that some nodes may share similar

optimal receiving states, allowing a gateway to group these states

into clusters. Therefore, a gateway can coordinate the transmission

of LoRa nodes by using beacons and ping slots of Class B devices

and receive packets by transitioning between several representative

states. This approach strikes a balance between efficiency and adapt-

ability, offering promising potential for enhancing LoRa network

performance in urban environments. For Class A and C nodes, our

method can help a gateway antenna to select a state that satisfies

the majority of nodes and avoid states with high probabilities of

blind spots.

In this paper, we present MoLoRa, an intelligent mobile antenna

system designed to enhance LoRa communication performance

by dynamically adapting the position and orientation of the re-

ceiving antenna. To achieve this, MoLoRa harnesses a Bayesian

optimization-based method to effectively learn complex environ-

ments between transceivers based on historical measurements,

thereby automating the search for optimal states across multiple

nodes. Additonally, MoLoRa is compatible with three device types

in LoRa networks and it measures the packet SNR as an indicator

of real-time channel condition. Our work complements the state-of-

the-art by offering a solution that does not compromise data rates

and can work with single-antenna COTS LoRa devices.

We build proof-of-concept prototypes of MoLoRa using various

actuation devices, including low-cost and easy-to-setup actuation

machines (e.g., sliding track [83] and gimbal [7]), as well as high-end

robot arms. Other low-cost devices such as Servo motors, stepper

motors, DC motors with Gearbox, Pneumatic actuators, Soleno

can also be used in practical applications. To evaluate MoLoRa’s
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performance, we conduct experiments in real-world urban envi-

ronments using commodity off-the-shelf (COTS) LoRa nodes. Our

experiment involves collecting and evaluating over 10,500 packets

across different times and channel conditions. Results show that

MoLoRa achieves 6 to 13 dB SNR gains on average after a few

rounds of antenna adjustments, enabling most former blind spot

nodes to successfully re-connect to a gateway. Our prototype with

a sliding track and a gimbal also provide excellent performance

enhancement.

In summary, this paper makes the following contributions:

• We investigate the impact of antenna position and orientation

on received signal quality through comprehensive experiments,

identifying a novel opportunity to enhance LoRa packet reception

by enabling antenna mobility—a solution that is orthogonal to

existing approaches in the LoRa literature.

• We design and implement a practical Bayesian optimization based

antenna control algorithm to automate the rapid search for op-

timal antenna states that offer satisfactory signal quality with

minimum exploration efforts.

• We build prototypes of MoLoRa with COTS actuation devices

to facilitate the micro-mobility of the LoRa gateway’s antenna.

Experiment results demonstrate that MoLoRa can achieve up to

a 13 dB increase in Signal-to-Noise Ratio (SNR) and a 50% boost

in network throughput.

2 FEASIBILITY AND MOTIVATION

In this section, we study the feasibility of antenna mobility in im-

proving signal qualities in urban environments.

2.1 Position of receiving antenna

Experiment settings.We conduct experiments in a practical Lo-

RaWAN network deployed on a university campus, located at the

heart of a metropolis representing a typical urban environment.

For the convenience of experiments, we use a more flexible mobile

antenna system as shown in Figure 10 (a). We use a commodity

LoRa node (LoRa shield [9]) as a transmitter to transmit packets

once a second. As for the receiver, we use a COTS gateway antenna

(VERT900) and mount it to the gripper of a robot arm (JAKA Zu

3 [26]) with adjustable position and orientation. The robot arm’s

base remains stationary on a desktop and the arm’s length, with a

gripper of 1 m, allows the antenna to change its position within a

hemisphere centered on the base. We conduct this experiment in an

indoor environment. The distance between the transmitting LoRa

node and the receiving antenna is approximately 50 m, separated

by several walls and doors.

We conduct experiments to quantitatively study the effects of

antenna position on the quality of received signals. In specific, we

keep LoRa nodes’ position and orientation unchanged and only

change the position of the gateway’s antenna while keeping its

polarization direction fixed. We randomly select 16 positions within

the ranges of the robot arm (i.e., < 3𝑚2). We collect 20 packets at

each position and calculate the average signal-to-noise ratio (SNR)

of received packets. Figure 2 (a) represents the result. We observe

that antenna positions greatly affect the receiving performance.

For example, the medium SNR is as low as 8.4 dB at position #9,

while it increases to 14.5 dB when the receiving antenna moves
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Figure 2: Impact of different (a) positions and (b) orientations.

Tx Rx

Figure 3: Illustration of antenna polarization. Electric direc-

tion miss match (𝜃 ) can cause polarization loss of power at

the receiver.

to position #16. Even though the changing of antenna position is

relatively small compared to the long communication distance, such

small changes in position cause significant SNR variations (6.1 dB in

this example). This phenomenon encourages us to properly select

positions for a receiving antenna to achieve good packet reception

performance.

2.2 Polarization of antenna

Antenna polarization reflects the direction of the electromagnetic

wave it emits or receives [27]. It is an important character of an

antenna and has a significant impact on the received signal strength.

To empirically study the impact of polarization on packet reception,

we rotate the orientation of gateway’s antenna uniformly to 16

different orientations within the plane perpendicular to the direc-

tion of electromagnetic wave, while keeping the antenna’s position

fixed. We collect 20 packets’ SNR at each orientation and report

results in Figure 2 (b). We can observe that polarization also affects

signal’s SNR. For instance, orientation #5 achieves the worst SNR

of 4.5 dB, which is 10.4 dB lower than that of packets collected

with orientation #1. Such a huge SNR variation is caused mainly

by polarization misalignment since the position of the antenna is

fixed. Our experiments show that the SNR variation induced by

polarization mismatch (10.4 dB) can be even larger than that of

the position change (6.1 dB), depending on the various channel

conditions.

As the quality of received signal is affected by orientation of

antenna, a natural question is: how can we decide the orientation

to get the best signal quality? In theory, if polarization is not con-

sidered, the received signal power 𝑃𝑟 can be calculated with Friis
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power model in both (a) Indoor environment and (b) Outdoor

environment.

Transmission Formula [66]:

𝑃𝑟 =
𝑃𝑡𝐺𝑡𝐺𝑟𝜆

2

(4𝜋𝑑)2
(1)

where 𝑃𝑡 is the transmission power, 𝐺𝑡 and 𝐺𝑟 are the gains of

transceiver antennas respectively, 𝜆 is the wavelength of signal,

and 𝑑 is the distance between the transceiver. While antenna polar-

ization is taken into consideration, a new term named polarization

loss factor (PLF) [2, 54, 70] shall be used. PLF is generally defined

as follows:

𝑃𝐿𝐹 = |
−−→
𝐸𝑡𝑥 ·

−−→
𝐸𝑟𝑥 |

2 = 𝑐𝑜𝑠2 (𝜃 ) (2)

where 𝜃 is the angle between the unit electric direction vector of

transmitting and receiving antennas (
−−→
𝐸𝑡𝑥 and

−−→
𝐸𝑟𝑥 ) as shown in

Figure 3. In the case of linear polarization, we just need to project

the incident electric field onto the polarization axis of the antenna.

The received signal power with polarization loss can be represented

as

𝑃𝑟 (𝜃 ) = 𝑃𝑟𝑐𝑜𝑠
2 (𝜃 ) (3)

In this case, we expect that the maximum received signal power is

obtainedwhen the orientations of transmitter and receiver antennas

are aligned (i.e., 𝜃 = 0).

However, in real-world implementation, we find it hard to achieve

maximum SNR by physically aligning the transceiver’s antenna.

We conduct controlled experiments by varying the orientation shift

angle 𝜃 while keeping the position fixed. We see from Figure 4 that

the power measurement results differ significantly from the the-

oretical values in both indoor and outdoor settings. The receiver’s

orientation with maximum signal power does not physically align

with the transmitter’s orientation. Instead, the receiver reports the

highest SNR when 𝜃 = −30◦ in the indoor environment and 𝜃 = 30◦

in the outdoor environment. A hypothetical reason is that the multi-

path and signal blockages in real-world environments [2] can cause

reflection, scattering, and diffraction, which fade the signal strength

and distort the direction of the electric field. The RF radiance in

space with blockages and multi-path does not fit the ideal RF radi-

ance model. Thus, we cannot apply an ideal model like Eq. (3) to

decide the best antenna orientation for a transceiver.

2.3 Motivation

The above experiments show that small changes in the position

and orientation of a receiving antenna can indeed cause significant

variations in the SNRs of received LoRa signals. Interestingly, the

best SNR may not necessarily be obtained when the transmitter

and receiver antennas are physically aligned. It calls for practi-

cal and adaptive approaches to adjust the antenna position and

orientation. In LoRaWAN applications, low-cost LoRa nodes are

typically deployed statically over large areas, and many of these

nodes are not feasible for frequent access (e.g., nodes located in

pipelines or basements for oil or gas monitoring). It is challeng-

ing to impose the state adaption overhead on such low-cost and

resource-constrained LoRa nodes. Conversely, LoRa gateways are

usually tether-powered and have relatively sufficient resources to

support antenna state optimization. Therefore, we choose to put

the intelligence on gateways rather than end nodes.

The unique characteristics of LoRa communication also allow

implementations of such an intelligent antenna: (1) Proved by prior

studies [23, 72], the long-symbol and preamble structure of LoRa

packets make it possible to detect LoRa signals and estimate SNRs

accurately, even when the signal strength falls below noise floors.

This enables a gateway to examine link conditions even for nodes

located in blind spots. (2) The low duty cycles (e.g., <1%) and low

traffic rates of LoRaWANs leave large time intervals (e.g., tens of

seconds) between two transmissions of a node, providing sufficient

time for antenna state selection and movements.

3 DESIGN

3.1 System overview

The key idea of MoLoRa is enabling antenna mobility to explore

a better state for receiving packets instead of sticking to a fixed

position.We term the specific position and orientation of an antenna

as the antenna’s state. The state is defined as a 6-tuple, (𝑥 , 𝑦, 𝑧, 𝛼 , 𝛽 ,
𝛾 ), where 𝑥 , 𝑦, 𝑧 denote the 3D antenna position and 𝛼 , 𝛽 , 𝛾 denote

the roll, yaw, pitch of the antenna respectively. MoLoRa mounts a

gateway antenna on a mobile actuation device. We first build the

system with some easy-to-setup actuation devices and then move

to a more powerful robot arm to achieve better performance.

Actuator design. Initially, we built the system with simple,

easy-to-set-up actuation devices, i.e., a sliding track ($10 USD) and

a gimbal ($22 USD), which are combined with step or servo motors

to control the antenna’s position and orientation. We then extended

our design to an advanced prototype using a robot arm to achieve

enhanced flexibility and performance. Although the robot arm

serves as an example of a sophisticated actuation device, MoLoRa’s

design remains compatible with more cost-effective alternatives,

allowing users to choose according to their practical needs.

In our prototype, we choose an SDR receiver as the gateway to

gain access to physical-layer raw data for ultra-weak packet detec-

tion, offering more experimental flexibility. In future implementa-

tions, this capability could be integrated directly into commercial

off-the-shelf (COTS) gateways. Details on implementations and

experiments with various actuation devices are provided in §4.3.7.

In LoRaWAN, Class A and Class C devices send uplink packets

randomly, while Class B devices transmit periodically. MoLoRa

first focuses on Class B nodes in this section, as their periodic

transmissions allow for a more predictable optimization process,

and then generalizes its functionality to handle Class A and C

devices.

MoLoRa focuses on scenarios where a LoRa node reports sensor

data (e.g., temperature and humidity) periodically to a gateway.
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Figure 5: MoLoRa’s high-level design: Separate modules han-

dle data pre-processing, state optimization, and multi-node

joint optimization for Class B devices.

Figure 5 shows MoLoRa’s high-level design, which uses a mobile

antenna for packet reception. It first detects the arrival of a packet

and then calculates the signal-to-noise ratio (SNR) of the packet as

an indicator of signal quality. If the signal quality is not good enough

for packet demodulation or decoding, a BayesOpt-based method

will be used to search for a satisfactory receiving state (antenna

position and orientation). Otherwise, the antenna keeps receiving

packets in the current state. Previous work [64] also report that

many LoRa nodes share similar optimal receiving states in urban

area. This encourages us to further coordinate the transmission of

end nodes and extendMoLoRa to multiple nodes. Note that MoLoRa

demodulates and decodes incoming packets as a commodity LoRa

gateway.

3.2 Data pre-processing

The data pre-processing contains two phases:

Packet detection. Standard LoRa packet detection adopts a

one-chirp detection window and signals the presence of a packet

when 4 periodic peaks are detected after cross-correlation (CAD) or

FFT on dechirped signal. However, this method struggles to detect

extremely low-SNR packets from blind spots, even with the most

aggressive ADR parameters.

MoLoRa leverages unique packet structure of LoRa to detect

weak packets. In specific, LoRa preamble consists of several con-

secutive and identical base chirps, which can be added up within a

larger detection window. Therefore, our packet detection module

enlarges the detection window to combat noise by concentrating

the energy of multiple chirps. The larger the detection window,

the higher the energy peak of the targeted chirp signal. Theoret-

ically, a combination of 4 chirps can achieve roughly 6 dB SNR

gain for packet detection [23]. In our design, we use 8 base chirps

in preamble and slide a detection window with length of 4 chirps.

We configure the sliding step to 1 chirp to achieve high detection

sensitivity as well as low energy consumption. We also signal the

presence of a packet if 4 periodic peaks are detected.

SNR calculation. Once a packet is detected, MoLoRa needs

to calculate the SNR of packets and then feed the result to the

following state optimization module. Intuitively, we can represent

the SNR of a packet by using the SNR of the preamble. MoLoRa

calculates the SNR of the preamble by leveraging dechirp results

of the preamble in the frequency domain [23]. The calculated SNR

serves as an indicator of real-time channel condition.

3.3 Searching for satisfactory state

MoLoRa starts receiving packets from a random initial state and

then calculates SNR as an indicator of packet quality to decide
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Figure 6: Distribution of SNRs in an indoor scenario (Fig-

ure 10 (a)).

whether the current state is optimal for packet receiving. The key

challenge is how to search for the optimal state with high efficiency.

Searching strategy. Grid search and random search are two

straightforward yet ineffective ways to find the best state. In grid

search, we uniformly divide the reachable space into several states

and test them one by one. The grid’s granularity determines the

number of tests and how closely we can approach the optimal state.

For the robot arm prototype, the search space - a hemisphere with

a radius of 1 m (i.e., the length of robot arm) - consists of a 6-tuple

configuration, where each 3D point allows for a 3-dimensional

choice of roll, yaw, and pitch. Given the substantial search space

(6D), it may require numerous attempts to discover the best state by

using grid search. Random search encounters a similar predicament,

struggling with the expansive search domain.

We aim to find the optimal state with fewer attempts. Because

each attempt needs to explore a new state to receive a real-world

packet, which may be received with better quality if we can find the

optimal state earlier. Besides, the SNR may fall during the search

process. Excessive explorations do not guarantee good packet re-

ception.

MoLoRa leverages BayesOpt [16] to direct the search for optimal

state with high efficiency. Unlike complex deep learning models,

BayesOpt is well-suited for this scenario, where each test builds

on prior outcomes. As wireless channels are continuous in space,

the RSS or SNR at one location is spatially correlated with another,

enabling MoLoRa to learn from previous exploration results and

expedite the search process. Figure 6 (a) and (b) illustrate SNR spatial

distribution in 3D from different angles of view. Figure 6 (c) shows

the project of 3D SNR heatmap in table plane. This experiment is

conducted with packets sent every 10 seconds in an indoor scenario.

The high-level objective of BayesOpt for our problem can be

described as

𝑥∗ = argmax
𝑥∈𝜒

𝑓 (𝑥) (4)

where 𝑥 is the state of an antenna (a 6-tuple consisting of position

and orientation), 𝜒 is the reachable space of an antenna, and 𝑓 (𝑥) is
the unknown SNR distribution function. The basic idea of BayesOpt

is to model the unknown objective function 𝑓 (𝑥) as a probabilistic
surrogate model, typically a Gaussian process (GP), and then use the

acquisition function to iteratively select the next point to evaluate.

In specific, the surrogate model fits the existing observed data

points and quantifies the uncertainty of unobserved areas, while

the acquisition function determines which areas in the domain

of 𝑓 (𝑥) are worth exploiting and what areas are worth exploring.

The acquisition function gives a high value to areas where 𝑓 (𝑥)
is optimal or areas that it has not sampled at and vice versa. In
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Figure 7: Statistical analysis of SNR distribution.

Algorithm 1 BayesOpt for MoLoRa

Require: Target SNR gain Δ𝑆𝑁𝑅𝑡ℎ , Maximum attempt number 𝑁 .
1: Initialization: randomly select a state 𝑥𝑡=0, get corresponding 𝑆𝑁𝑅𝑡=0, and form

observation set 𝐷0 = {𝑥𝑡=0, 𝑆𝑁𝑅𝑡=0 }.
2: while (𝑡 ≤ 𝑁 ) do
3: Find 𝑥𝑡 by optimizing the acquisition function over the GP: 𝑥𝑡 =

argmax𝑥 𝑢 (𝑥 |𝐷1:𝑡−1 ) .
4: Move to 𝑥𝑡 and obtain 𝑆𝑁𝑅𝑡 .
5: Augment observation set 𝐷1:𝑡 = {𝐷1:𝑡−1, (𝑥𝑡 , 𝑆𝑁𝑅𝑡 ) and update the GP.
6: if 𝑆𝑁𝑅𝑡 − 𝑆𝑁𝑅𝑡−1 > Δ𝑆𝑁𝑅𝑡ℎ then
7: Break;
8: end if
9: end while
10: 𝑥𝑡 = argmax𝑥 (𝑥 |𝐷1:𝑁 ) if cannot achieve target SNR gain in N attempts.

fact, instead of maximizing the unknown SNR distribution 𝑓 (𝑥),
BayesOpt maximizes the acquisition function. By finding 𝑥 that

maximizes the acquisition function, BayesOpt identifies the next

best guess of state for an antenna to receive a packet. In this setting,

at iteration 𝑛, the antenna chooses a state 𝑥𝑛 , at which to query

𝑓 (receive a LoRa packet) and evaluate 𝑦 = 𝑆𝑁𝑅𝑛 as the result of

𝑓 (𝑥𝑛). By iteratively updating the surrogate model and intelligently

selecting the next state to evaluate, BayesOpt can efficiently explore

the search space 𝜒 and is likely to reach a good state 𝑥∗ faster than
the other two strawman solutions.

Threshold setting. Recall that our goal is to find an optimal

statewith fewer attempts. To obtain a proper threshold for BayesOpt

termination condition, we investigate the distribution of SNRs in

space. Specifically, we randomly collect 200 measurements of SNRs

with different states and take the Shapiro-Wilk test [48]. Results

show that we cannot reject the assumption that such data comes

from a normally distributed population1. Figure 7 (a) and (b) show

the Gaussian fitting and CDF of SNRs respectively. We can observe

in Figure 7 (b) that though the achievable maximum SNR is more

than 30 dB, 50% of the states have SNRs lower than 20.71 dB and

80% of the states have SNRs lower than 25.14 dB. In practice, it

is impractical to measure as many as 200 states to search for an

optimal state. And we cannot decide which state is the optimal state

even with 200 samples. Besides, LoRa nodes have different SNR

ranges when they are differently located. Therefore, we cannot set

a fixed SNR threshold to determine whether a state is an optimal

state or not.

Instead, we use SNR gain (Δ𝑆𝑁𝑅) as the threshold. Our intuition
is that regardless of the receiving antenna’s initial state, a larger

SNR gain indicates a better search result. In practice, we note that

the upper bound of SNR gain varies a lot with different initial

states or among different nodes. As shown in Figure 7 (b), if the

1We set the significance level to 0.05. The data has W = 0.9741 and p-value = 0.0675 .
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Figure 8: SNRs within (a) 2000 s and (b) 2 days.

initial SNR is 15 dB, we may achieve as large as 15 dB SNR gain.

However, if the initial state has an SNR of 25 dB, the achievable SNR

gain is about 5 dB. Therefore, we set different levels of SNR gain

thresholds (e.g., 6 dB, 9 dB, and 12 dB) to adapt to different scenarios.

A gateway can choose a ‘satisfactory’ SNR gain as its threshold to

trade off between SNR gain and the number of attempts. We also set

a maximum attempt number to avoid excessive exploration. If the

receiver cannot meet the threshold within the maximum number

of attempts, it will choose the state with the best SNR. Algorithm 1

summarizes this approach.

Adaptive updating. After a gateway finds an optimal state for

receiving packets from a node, can this state be reused for subse-

quent packets from that node? We hope the wireless channel stays

relatively stable so that a receiving antenna can identify an opti-

mal state based on historical (both short-term and long-term) SNR

records. To investigate LoRa channel stability in a practical network,

we conduct experiments with packets sent every 10 seconds.

Figure 8 (a) shows the received SNR of two antenna states within

a short period (2000 s). Although there are small variations, we

observe that the SNRs of the two representative channels remain

overall stable within a 2,000-second observation window. LoRa

channel is relatively stable compared with other signals such as

WiFi [25, 40]. However, as shown in Figure 8 (b), when stretching

the time period to 2 days, we observe that though the SNRs are

stable in late night and early morning, the variations are relatively

large in busy daytime. Therefore, a receiver needs to re-search for

a satisfactory state to adapt to environmental dynamics. Here we

use SNR variation as a triggering condition. Empirically, when the

measured SNR drops 6 dB for 3 consecutive packets, we will change

the antenna states to adapt to the up-to-date conditions.

Latency Issue. LoRa’s long-range, low-power design favors

energy efficiency over high data rates. Thus, LoRa is not commonly

used for real-time tasks due to its low data rate. MoLoRa’s antenna

switch delay is no more than 3 seconds and its design allows packet

reception during switching, ensuring full compatibility with LoRa

applications.

3.4 Extending to multiple nodes

So far, we have focused on improving the packet reception per-

formance of a single node. In real-world, a LoRa gateway should

support multiple nodes transmitting concurrently. Yet, it is time-

consuming to change the states of a receiving antenna packet-

by-packet. Moreover, due to the complex spatial distributions, an

optimal Rx state for one node can be a blind spot for another node.

It is challenging yet important to select a good receiving state that

can improve the packet reception performance for multiple nodes

simultaneously.
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Figure 9: Periodic reporting of multiple nodes.

Although the optimal receiving states may vary across nodes

due to differences in distances, locations, and physical channels,

we observe that some nodes share close states in the search space.

This indicates that it is possible to position a receiving antenna

in a specific state to receive signals from multiple nodes, all with

satisfactory performance. Note that a gateway in LoRaWAN uses

beacon packets to provide a timing reference for Class B end devices

[20]. Therefore, we group LoRa nodes into clusters and use beacons

to schedule nodes in the same cluster to transmit concurrently, and

their packets are received at a common antenna state. A MoLoRa

gateway can decode these concurrent packets by incorporating

SOTA parallel decoding methods like FTrack [74], making it pos-

sible for MoLoRa to scale well as the number of nodes increases.

Nodes with contrasting SNR profiles (e.g., nodes in good SNRs vs.

nodes in bad SNRs) will be arranged into different clusters and

scheduled with different antenna states. In this cluster-based ap-

proach, although the overall packet reception performance gain

can be relatively lower compared to adapting the antenna state for

each individual node, the antenna only needs to transit to one state

for one cluster of nodes, thus avoiding frequent state changes.

MoLoRa groups nodes using K-means and employs the elbow

method [24] to find the suitable number of clusters. We coordinate

the data reporting of LoRa nodes according to their clusters and

search for a common satisfactory state for nodes within a cluster by

jointly optimizing the sum of SNR gain of that cluster. Specifically,

the common receiving state of a cluster is initialized at the center

of the optimal antenna states of all nodes in that cluster. A gate-

way then coordinates the transmission of nodes in this cluster and

calculates the total SNR gain. The gateway adds empirical shifts to

the central state and repeats above process three times. The state

with the highest total SNR gain is selected as the optimal state for

that cluster. As shown in Figure 9, a gateway allocates different

periodic transmission slots for nodes in different clusters and the

mobile antenna changes its state periodically to receive packets

from different groups. The coordination overhead increases with

the number of clusters, but this also enhances overall SNR gain.

Practical implementation requires balancing these trade-offs.

Compatibility with LoRaWAN standards. The above design

focuses on enabling multi-packet reception from Class B nodes,

where packet transmission can be coordinated by using beacons,

as demonstrated in previous work [20] for data aggregation ap-

plications. Since the duty cycle of LoRa transmission is no more

than 1%, an antenna usually has adequate time to transit to a new

target state for incoming packets. Empirically, we reserve 3 sec-

onds for state transition. However, Class A and C devices in LoRa

networks send uplink packets randomly to a gateway, making it

impractical for a receiving antenna to transition to an optimal state

in time for each randomly arriving packet. Although MoLoRa may

not consistently achieve an optimal antenna state for every packet

from these devices, it can leverage historical exploration data to

select a position and orientation that statistically maximizes recep-

tion quality for the majority of nodes. This approach minimizes

the likelihood of blind spots by avoiding positions that historically

result in poor reception. By prioritizing states with a higher proba-

bility of successful packet reception, MoLoRa enhances coverage

and maintains robust reception across the network, even under the

non-coordinated transmission patterns of Class A and C devices.

Performance of MoLoRa with different types of ended nodes can

be found in Sec. 4.3.

Energy cost of MoLoRa. Gateways are typically deployed with

tethered power supplies, making the additional energy required for

antenna movement manageable. For end nodes, Class A and Class

C devices operate as usual as with a standard commodity gateway,

incurring no extra energy cost for the SNR gains achieved. Class

B devices are required to periodically receive beacons and open

ping slots to obtain timing references and coordination messages

in standard LoRaWAN. With these timing references, the network

server can schedule downlinks to specific devices or groups of de-

vices [60]. MoLoRa embeds minimal coordination information (a

few bytes) into these downlink messages during ping slots. Conse-

quently, Class B nodes in MoLoRa expend only slightly more energy

to receive this additional coordination data—an increase that is neg-

ligible compared to their standard energy usage. Critically, Regard-

less of device type, LoRa nodes in blind spots continuously transmit

uplinks, rapidly draining their batteries. Traditional methods like

XCopy exacerbate this issue by requiring multiple retransmissions

to improve SNR, significantly increasing energy consumption. In

contrast, MoLoRa enhances packet reception efficiency, reducing

retransmissions and substantially extending battery life—making it

a highly energy-efficient solution for battery-powered LoRa nodes.

Note that MoLoRa focuses on predicting optimal state for packet

receptionwith high efficiency. It does not consider the joining/roaming

process of nodes to/between multiple gateways and the changing

of clusters over a long time at the current design stage. We leave

these for future research.

4 IMPLEMENTATION AND EVALUATION

4.1 Implementation

Hardware. MoLoRa can be implemented with any actuation de-

vices that can change the position and orientation of an antenna.

Here we first present an advanced version as a proof-of-concept.

Specifically, we use a high-end robot arm JAKA Zu 3 [26] with six

degrees of freedom (6-DOF) to change the antenna state. We use

VERT900 [46] as a receiving antenna and mount it to the gripper of

the robot arm. The antenna is connected to USRP N210 via coaxial

cables. Here we use USRP for convenient access to raw data and

algorithm testing. Corresponding algorithms can be integrated into

a COTS gateway for future implementation. A laptop (Intel Core

i9-13980HX @ 2.2GHz) is used as an edge server to run the state

search algorithm and control the robot arm. We also implement

low-cost and low-DoF devices (e.g., sliding tracks and gimbals) to
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build dimensionality-reductioned prototypes of mobile antenna sys-

tems in §4.3.7 for ablation study. In practice, developers can choose

suitable moving devices according to their budgets and needs.

Software. We integrate data pre-processing described in §3.2

into an open-source project of LoRa implementation gr-lora [19],

and transmit the processing result (i.e., packet SNR) to the edge

server through socket communication. The server runs BayesOpt-

based search algorithm and sends commands (i.e., next state) to the

robot arm through Wi-Fi communication. Our code is developed in

Python and C++. MoLoRa achieves real-time packet data processing

and control of the robot arm. We also process packets offline in

MATLAB for performance comparison.

4.2 Evaluation methodology

Experiment setup. MoLoRa is tested with COTS LoRa nodes

(LoRa Shield). Figure 10 (b) and (c) show our testbed, which consists

of 30 LoRa nodes and a mobile receiver. We place LoRa nodes in

rooms inside buildings and outside areas across our campus. For the

convenience of experiments, we locate the mobile antenna inside a

lab room. We configure all nodes to work at 915 MHz ISM band and

set the default transmission power to 20 dBm. We also configure

all nodes to work in an ADR mode, with which nodes properly

choose a spreading factor according to the SNRs of underlying

wireless links. The gateway sends beacon signals to coordinate

the transmission of LoRa nodes. After receiving all packets from

one cluster, the mobile antenna changes its state to receive packets

from another cluster. In our experiment, 30 nodes are divided into

3 clusters, depending on their SNR profiles, and more than 10,500

packets are transmitted for over four months to evaluate MoLoRa.

These packets can cover diverse channel conditions in typical urban

scenarios (e.g., blockages, multipath, dynamic traffic, etc.)

Comparison.MoLoRa uses BayesOpt to search antenna states

for achieving a certain SNR gain. We compare MoLoRa against (1)

a Baseline receiver with a fixed antenna state, moving antennas

with (2) Random search and (3) Grid search, and (4) a SOTA method

XCopy [72].

Metrics. We evaluate MoLoRa with various metrics: (1) SNR of

packets; (2) Symbol Error Rate (SER) of packet decoding; (3) Packet

Reception Ratio (PRR) of link communication; (4) Throughput of a

communication link. These metrics characterize the signal quality

and communication performance of MoLoRa. We also use (5) Num-

ber of attempts to evaluate the efficiency of MoLoRa in terms of

how many rounds of searches are required to achieve a target SNR

gain.

4.3 Evaluation results

4.3.1 Basic performance. Packet reception performance im-

provement. In this experiment, we evaluate the packet reception

performance of MoLoRa. We first collect packets from 30 LoRa

nodes with a fixed antenna. We collect 30 packets from each node.

For fairness, we randomly choose 5 states within the search space of

a robot arm and use the average results as the performance of a fixed

antenna (baseline). We then receive packets with a moving antenna.

For each node, we try at most 15 states using BayesOpt. We collect

30 packets at satisfactory states and calculate the corresponding

packet reception performance.

Figure 11 presents a comparison of communication performance

between a fixed antenna and MoLoRa. Specifically, Figure 11(a)

illustrates the average SNRs of packets received by these two meth-

ods. We observe that MoLoRa achieves an average SNR that is 7 dB

higher than that of the fixed-state antenna. Notably, the average

SNR of the first node is−10.6 dBwhen received by the fixed antenna,

with the lowest received SNR dropping to −15 dB – indicating that

this node may be in a blind spot. In contrast, by employing a mo-

bile receiving antenna, the average SNR increases to 1.4 dB. This
example demonstrates that MoLoRa can effectively help a node in

a blind spot to reconnect to the network.

Figure 11 (b) shows the average symbol error rate (SER) of these

two methods. We see that MoLoRa achieves nearly 0 SER for all

nodes in the networkwhile the average SER of the baseline is as high

as around 0.3. Besides, the SER standard deviation of the baseline

is much higher than that of MoLoRa. This result demonstrates

that the communication performance of a fixed antenna highly

depends on the state it chooses. MoLoRa empowers mobility to the

antenna to search for a good receiving state and avoid those bad

states. Figure 11 (c) presents the corresponding packet reception

rate (PRR). Results show that a fixed antenna can only receive no

more than 65% of the packets. In contrast, a mobile antenna achieves

a packet reception rate of 100%.

We further evaluate the throughput of the network. As shown

in Figure 11 (d), the throughput first increases as the number of

nodes increases and then keeps rather static when the number of

nodes exceeds 10. In fact, the turning point should be 8 due to the

gateway’s parallel decoding capability. As expected, a mobile an-

tenna performs much better than a fixed one. Specifically, MoLoRa

achieves an average throughput of 6 kbps when there are more than

10 nodes in the network while a fixed antenna can only achieve

around 4 kbps. MoLoRa boosts 50% throughput for LoRaWAN in

urban settings. The above experiment results demonstrate that em-

powering receiving antenna with motion can greatly improve the

packet reception performance of LoRaWANs.

4.3.2 Comparison with state-of-the-art. We compare MoLoRa with

the state-of-the-art method XCopy [72], which combines multiple

re-transmitted packets to improve weak packet reception, to evalu-

ate their performance in low-SNR scenarios. For fairness, we keep

other transmission settings the same, control the packet SNR to be
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−20 dB, and let a LoRa node re-transmit the same packet 10 times.

We use a fixed antenna to receive packets for XCopy; whereas al-

lowing antenna movements to an optimal state for MoLoRa. The

fixed and mobile antenna can be regarded as co-located considering

the long transmission range of LoRa.

Figure 12 displays the SNR gain comparison with different num-

bers of re-transmissions. MoLoRa produces 4 dB higher SNR gains

than XCopy with the same number of re-transmissions/attempts.

MoLoRa only needs 4 attempts to achieve 6 dB SNR gain, whereas

XCopy requires 10 re-transmissions to achieve a comparable perfor-

mance. It is noteworthy that MoLoRa’s SNR gain fluctuates during

the first few attempts, while XCopy’s SNR gain increases almost lin-

early as the number of re-transmissions increases. In fact, MoLoRa

and XCopy are complementary strategies that can be used together

to improve communication performance in challenging channel

conditions.

4.3.3 Compatibility with ADR. This experiment evaluates the com-

patibility of MoLoRa with LoRaWAN’s ADR scheme. In this experi-

ment, we adjust SF to represent ADR as this is the core technology

in ADR scheme. We put a LoRa node at a none-line-of-sight posi-

tion 200 m away from two co-located receivers: a baseline receiver

running ADR with a fixed antenna and a MoLoRa receiver running

ADR as well as BayesOpt. We set SF to 8 at the beginning of ex-

periments and gradually increased SF to 10 and 11. We collect 30

packets for each SF and calculate the average SNR.

Figure 13 presents the SNR under different SFs. As ADR increases

SF, both baseline method and MoLoRa receive packets with higher

SNRs. The average SNR gain achieved by ADR increasing SF by

one is 2.32 dB for the fixed antenna. MoLoRa achieves an average

of 8.66 dB higher SNR than the baseline under the same SF setting

due to the mobility of the antenna. This experiment demonstrates

that MoLoRa can jointly work with ADR for better performance.

4.3.4 Performance across different classes of nodes. In this experi-

ment, we evaluate MoLoRa’s performance across different classes
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Figure 15: Number of attempts to reach target SNR gain.

of LoRa nodes. We deploy a testbed of 30 LoRa nodes, sequentially

configuring them as Class A, B,C to assess MoLoRa’s performance

with each. For the Class B configuration, we apply the same setup

stated in §4.2. In the Class A and C cases, MoLoRa first explores the

available state space, then selects the optimal state with the highest

probability of achieving robust reception across all nodes. We set

the number of attempts to 30 and collect over 150 packets per class

to calculate the resulting SNR gain in each scenario.

Figure 14 showsMoLoRa’s SNR gain across different node classes.

Class B nodes achieve the highest average SNR gain at 13 dB, while

Class A and C nodes achieve lower gains, averaging no more than

6 dB. Additionally, the SNR gain in Class A and C nodes shows

a higher standard deviation compared to Class B nodes. This is

expected, as MoLoRa identifies optimal receiving states with finer

granularity (in terms of the number of nodes) for Class B nodes

due to their working patterns capable of supporting periodic trans-

mission.

4.3.5 Search efficiency. Searching strategy comparison. We

compare BayesOpt search with random search and grid search

and evaluate the number of attempts to achieve a target SNR gain.

Considering that different initial states may have an impact on the

number of attempts, we conduct two experiments with different

initial states of nodes. In the first experiment, we select 10 nodes

with low PRR (<70%) and SNR (<-15 dB) in non-line-of-sight sce-

narios when using a fixed antenna. These nodes are likely to fall

into blind spots. In the second experiment, we randomly select 10

nodes in the network, aiming to cover different kinds of channel

conditions. We configure the maximum attempt number to 30. We

mark 31 attempts if the antenna cannot achieve the target SNR gain

within 30 attempts.

Figure 15 shows the number of attempts required to achieve

target SNR gains in two experiments. By comparing the results,

we observe that for nodes with poor initial conditions, all three
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searching strategies achieve the target SNR gains with relatively

few explorations. Specifically, BayesOpt achieves 6 dB SNR gain

with an average of 2.3 search attempts when the initial state is

low-SNR, whereas it requires 8.24 search attempts to achieve the

same gain with a random initial state. These results indicate that a

mobile antenna is efficient at improving the link quality of nodes in

suboptimal conditions (e.g., non-line-of-sight, multipath environ-

ments). Regarding the searching efficiency of different strategies,

BayesOpt outperforms both grid search and random search in both

experiments. For example, in Figure 15(a), BayesOpt achieves a 12

dB SNR gain with an average of 10.3 attempts, whereas random

and grid search require 21.2 and 20.5 attempts, respectively—both

approximately twice the number of attempts needed by BayesOpt.

Additionally, we observe that, on average, achieving higher SNR

gains necessitates more explorations. In practice, users must set

appropriate target SNR gains to balance the cost of explorations.

Maximum SNR gain comparison.We also evaluate the max-

imum SNR gains and plot results in Figure 16. We find that all

three methods can achieve a maximum SNR gain of 10 to 13 dB

with a sufficient number of attempts (≥ 10). Among these methods,

BayesOpt achieves the highest maximum SNR gain, followed by

Grid search. As the number of attempts increases, the SNR gains

increase, and the advantage of BayesOpt and Grid search increases.

This improvement is likely because the surrogate model used in

Bayesian optimization and the granularity of Grid search increas-

ingly approximate the true distribution of the signal in space as

the number of sampling points grows. Consequently, BayesOpt can

approach the optimal receiving state with more precise parameters

than the other two methods.

Impact of updating methods. Next, we evaluate the impact of

channel dynamics and the benefit of our adaptive updating meth-

ods. In this experiment, we transmit packets every 10 seconds and

implement 3 updating strategies that search for satisfactory states

every 30 min, 60 min, and automatically update upon detecting

3 consecutive packets with 6 dB gain loss. Figure 17 plots the re-

sults of SNR gains of these three methods for 6 hours. We observe

that in the first hour, three methods achieve similar SNR gain. In

the second hour, the per-hour updating method achieves the best

performance, followed by the auto-updating method. This may be

attributed to the antenna maintaining a static state, as there is no

consecutive 6 dB SNR loss during this period. In contrast, our adap-

tive updating method outperforms the other two interval updating

methods in the last 4 hours. We infer that the channel condition has

changed greatly from 3.5-4.5 h, resulting in a severe drop of SNR

gains for the per-hour updating method since it cannot adapt to
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changes timely. By contrast, our automated state-searching method

can keep tracking the optimal state to combat channel dynamics.

4.3.6 Microbenchmarking of movable area. This experiment evalu-

ates MoLoRa’s performance across different state changing areas.

We gradually increase the radius of the state-changing space from

7.5 cm to 150 cm, receiving 30 packets at random antenna states

within each radius. For each radius, we calculate the SNR gain by

using the packet with the minimum SNR as the reference point.

As shown in Figure 18: when the state-changing space expands,

the average SNR gain improves significantly. Specifically, MoLoRa

achieves an average SNR gain of 5 dB within a 30 cm movable

area. When the range is extended to 150 cm, the average SNR gain

increases to about 10 dB, indicating that movable range is one influ-

encing factor of MoLoRa. These results demonstrate that enabling

antenna mobility within just 0.1% to 1% of the LoRa communication

range yields substantial SNR gains, highlighting MoLoRa’s effec-

tiveness in utilizing small-scale movement to enhance LoRa packet

reception.

4.3.7 Microbenchmarking with low-cost and easy-to-setup actuation

devices. In the previous experiments, we change the state of antenna

with high-end robot arm. Here we use low-end actuation machines

to narrow the search space to 1-DoF and benchmark the gain of

micro-mobility. Specifically, we conduct experiments with a slide

track ($10 USD) and a gimbal ($22 USD), which are low-cost and

easy to set up.

As shown in Figure 19, we select 7 points on a 3 m-long track

to receive LoRa packets. These points are equally spaced with an

interval of 0.5 m. A LoRa node is placed 50 m away from the receiver

with no line-of-sight path. The LoRa node is configured to transmit

every 1 second. We collect 15 packets at each state and move to

the next. Similarly, for the experiment with a gimbal, we select 7

receiving angles 𝛼 (the angle between the antenna and the left side

of a horizontal line) by adjusting the shift angle of the gimbal. In

this experiment, we only change the roll of the antenna in a step of

30◦, ensuring that the antenna is positioned with different receiving

angles in the same plane.

Performance with slide track. Figure 20 shows the measured

SNRs of packets received at different positions of a slide track. We

can observe that the receiving antenna has the lowest SNR of 9.4 dB

when it is positioned at the left start point of the track. As the an-

tenna moves from left to right, the average SNR increases, but there

is a slight decrease at the right endpoint. The gateway achieves
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Figure 21: Gimbal result.

its highest average SNR of 14.3 dB when the antenna is positioned

2.5 m away from the left starting point. In this experiment, the

overall SNR gain of micro-mobility in one dimension is 2.9 dB. The

result demonstrates that low-cost and low-DoF devices such as a

slide track can also be effective in enhancing LoRa reception per-

formance. Besides, this experiment demonstrates the feasibility of

employing a mobile antenna to measure the instantaneous channel

condition.

Performance with gimbal. Figure 21 reports the channel con-

dition measured by different receiving angles within a plane. It can

be observed that the average SNRs vary across different angles. The

SNR gain by adjusting the roll of the receiving antenna with a gim-

bal is 2.25 dB. To our surprise, the antenna achieves the worst SNR

of 10.59 dB when the antenna angle 𝛼 is 90◦, where the transmitting

antenna and receiving antenna are physically aligned. In contrast,

it achieves the highest SNR of 12.84 dB when the antenna angle 𝛼
is 0◦, where the transmitting antenna and receiving antenna are

orthogonally positioned. This result indicates that the angle of the

transmitted signal’s electrical magnetic (EM) has been twisted 90◦

by the environment before it arrives at the receiver. This experiment

again demonstrates that even 1-DoF mobility brought by a simple

actuation device can improve the packet reception performance of

LoRa.

Future design of actuators. Previous experiments have proved

MoLoRa’s feasibility on low-cost actuators, even with only 1-DoF

mobility. MoLoRa’s gain increases when provided with more de-

grees of freedom. In the future, we consider exploring programmable

antenna technique [3] at the gateway of MoLoRa to replace real-

world mechanical movement and save cost.

5 RELATEDWORK

Many studies [1, 11, 12, 17, 21, 34, 41, 42, 55, 62, 65, 67, 72, 73, 75,

77, 80] have aimed to enhance the communication reliability of

LoRa. Charm [8] collaborates multiple gateways to improve link

quality. Falcon [63] allows weak links to selectively interfere with

ongoing transmissions to extend LoRa coverage. MALoRa [23]

coherently combines signal copies from synchronized antennas to

receive weak LoRa packets. These works either require complex

hardware with high cost or sacrifice data rate. NELoRa [33] uses

neural networks at the gateway to enhance weak packets. However,

it trains various networks for packets with different parameters.

By contrast, MoLoRa empowers intelligence and mobility to Rx

antenna to boost packet reception in a lightweight manner. MoLoRa

also complements ADR of LoRaWAN.

Intelligent hardware inwireless network.Many studies have

demonstrated the benefits of intelligent hardware for wireless com-

munication [69, 76]. Some works use mobile access points [86] and

relays to enhance network performance for WiFi [6], RFID [43],

and mmWave [85]. Recent advances in smart surface [13, 14, 47]

reshape beamforming to illuminate blind spots and increase link

capacity. Unlike these works, MoLoRa is specifically designed for

LoRaWAN to detect ultra-weak packets and combat blockage and

small-scale fading. MoLoRa designs and implements an intelligent

mobile antenna that can automatically adjust antenna position and

orientation for incoming LoRa packets.

Antenna polarization in LoRa. Antenna polarization poses

a challenge for mobile LoRa devices, as it leads to unstable link

quality, blind spots, and further degrades network performance.

PolarTracker [70] introduces an orientation-aware channel access

method that adapts to the antenna polarization. PolarScheduler

[36] further proposes a dynamic transmission control method that

optimizes the transmission configuration to improve both reliability

and throughput. Demeter [53] leverages programmable polarization

with additional hardware at end nodes to improve link quality.

Unlike previous works, MoLoRa enables mobile Rx antenna to

actively adjust for the best-polarized directivity without incurring

costs at low-end nodes.

6 CONCLUSION

In this paper, we present the design and implementation of MoLoRa,

an intelligent mobile antenna system that automatically searches

for optimal positions and orientations for enhanced LoRa packet

reception. MoLoRa puts together a series of novel techniques for

detecting packets, searching for satisfactory states, and joint opti-

mization for multiple packets. MoLoRa provides a new perspective

on the challenging problems in LoRa networking such as blind spots

and line-of-sight path blockages. Experiments show that MoLoRa

can potentially improve SNR by 13 dB. Moreover, by dynamically

adjusting the receiving antenna, MoLoRa can effectively create new

paths and cover those nodes in blind spots that would otherwise

never be saved with existing solutions like packet retransmissions

or power adaptation.
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