
GPIoT: Tailoring Small Language Models for IoT Program
Synthesis and Development

Leming Shen1, Qiang Yang2, Xinyu Huang1, Zijing Ma1, Yuanqing Zheng1
1The Hong Kong Polytechnic University, 2University of Cambridge

{leming.shen,unixy-xinyu.huang,zijing.ma}@connect.polyu.hk,qy258@cam.ac.uk,csyqzheng@comp.polyu.edu.hk,

ABSTRACT

Code Large Language Models (LLMs) enhance software develop-

ment efficiency by automatically generating code and documen-

tation based on user requirements. However, code LLMs cannot

synthesize specialized programs when tasked with IoT applications

that require domain knowledge. While Retrieval-Augmented Gener-

ation (RAG) offers a promising solution by fetching relevant domain

knowledge, it necessitates powerful cloud LLMs (e.g., GPT-4) to

process user requirements and retrieved contents, which raises

significant privacy concerns. This approach also suffers from un-

stable networks and prohibitive LLM query costs. Moreover, it is

challenging to ensure the correctness and relevance of the fetched

contents. To address these issues, we propose GPIoT, a code genera-

tion system for IoT applications by fine-tuning locally deployable

Small Language Models (SLMs) on IoT-specialized datasets. SLMs

have smaller model sizes, allowing efficient local deployment and

execution to mitigate privacy concerns and network uncertainty.

Furthermore, by fine-tuning SLMs with our IoT-specialized datasets,

the SLMs’ ability to synthesize IoT-related programs can be sub-

stantially improved. To evaluate GPIoT ’s capability in synthesizing

programs for IoT applications, we develop a benchmark, IoTBench.

Extensive experiments and user trials demonstrate the effectiveness

of GPIoT in generating IoT-specialized code, outperforming state-

of-the-art code LLMs with an average task accuracy increment of

64.7% and significant improvements in user satisfaction.

CCS CONCEPTS

• Computing methodologies→ Artificial intelligence; • Com-

puter systems organization→ Embedded and cyber-physical

systems.

KEYWORDS

Small Language Model, IoT Program Synthesis, Fine-tuning

ACM Reference Format:

Leming Shen1, Qiang Yang2, Xinyu Huang1, Zijing Ma1, Yuanqing Zheng1 .

2025. GPIoT: Tailoring Small Language Models for IoT Program Synthesis

and Development. In The 23rd ACM Conference on Embedded Networked

Sensor Systems (SenSys ’25), May 6–9, 2025, Irvine, CA, USA. ACM, New York,

NY, USA, 14 pages. https://doi.org/10.1145/3715014.3722064

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SenSys ’25, May 6–9, 2025, Irvine, CA, USA

© 2025 Association for Computing Machinery.
ACM ISBN 979-8-4007-1479-5/25/05. . . $15.00
https://doi.org/10.1145/3715014.3722064

Figure 1: Existing code LLMs need to transmit sensitive data

to remote servers. In contrast, GPIoT features three local

SLMs to protect user privacy and reduce query costs.

1 INTRODUCTION
Large language models (LLMs) [65, 70] are revolutionizing various

aspects of embedded system development and mobile computing,

e.g., smartphone task automation [74], advanced virtual assistants

[46], and even IoT data comprehension [4, 41, 48, 79]. Code LLMs

(e.g., WizardCoder [43] and CodeLlama [53]) stand out as promising

tools designed to synthesize programs based on user requirements

described in natural language. As illustrated in Fig. 1, the integra-

tion of programming tools with code LLMs significantly enhances

software development by automating code completion, code gener-

ation, bug detection, documentation writing, etc.

While powerful and promising, when confronted with IoT appli-

cations [6, 25, 26, 80–84] that require special domain knowledge,

existing code LLMs tend to simply provide general solutions with

sub-optimal performance (§ 2.2). This is because they focus on

general-purpose programming tasks [34] rather than being tailored

to any particular domain. Moreover, IoT-related knowledge and

programs only occupy a small proportion of the datasets which

code LLMs were trained on [85]. Consequently, IoT terminologies

will be assigned a lower priority during inference with the gener-

ated code less dedicated to the IoT domain (§ 2.2). This motivates

the following research question: Can we build a code LLM specially

tailored for IoT application code generation tasks? If yes, we can

synthesize IoT-related programs with higher task accuracy and

efficiency, offering significant convenience for IoT developers.

A potential approach can be Retrieval-Augmented Generation

(RAG) [36], which provides LLMs with retrieved domain knowledge

to enhance their abilities in generating accurate and contextually

relevant solutions. Existing works [17, 28, 56] construct a sophisti-

cated LLM+RAG agent to gradually generate code through multiple

intermediate steps via prompts. Nonetheless, they suffer from three

main problems. 1) A powerful LLM with strong language compre-

hension capability is needed to learn from the retrieved knowledge.

However, cloud LLMs (e.g., GPT-4 [2]) may suffer from bad network

conditions, high costs, and privacy concerns, while local LLMs (e.g.,

Llama2-70b [61]) have harsh requirements in system resources (e.g.,

SenSys ’25, May 6–9, 2025, Irvine, CA, USA Leming Shen, Qiang Yang, Xinyu Huang, Zijing Ma, Yuanqing Zheng

memory and network). 2) Complicated RAG designs (e.g., itera-

tive retrieval [77]) are mandatory to ensure the correctness and

high relevance of the retrieved knowledge, with extended process-

ing time. Otherwise, LLMs may fail to focus on the IoT context

and still provide general solutions [75]. 3) Meticulously designed

prompts are required to ensure that outputs must strictly follow

pre-defined formats [38], which is extremely challenging due to the

hallucinations and unreliability of LLMs [62].

To tackle the above problems, we propose GPIoT, a code gen-

eration system tailored for IoT application development by fine-

tuning local small language models1 (SLMs) on IoT-specialized

text-generation datasets. This approach has the following benefits:

1) The system overhead, privacy leakage, and network instability

can be mitigated, as SLMs have smaller sizes and can be locally de-

ployed without incurring heavy resource burdens. 2) SLMs tuned on

IoT-specialized datasets can generate responses with significantly

enhanced quality and higher relevance to the IoT domain [58]. 3) As

our tuning datasets are well-structured text data, the tuned SLMs

can produce intermediate outputs following the expected format

with enhanced stability and avoid hallucinations.

We implement GPIoT2 with three tailored SLMs to handle differ-

ent stages of IoT application development: TDSLM for Task Decom-

position, RTSLM for Requirement Transformation, and CGSLM for

Code Generation. Though tuning one SLM to handle all the tasks is

possible, it is extremely challenging due to SLMs’ limited language

understanding and processing capabilities [35, 42]. As shown in

Fig. 1, TDSLM first decomposes an IoT application into multiple

sub-tasks with detailed descriptions. Next, the descriptions are con-

verted into well-structured specifications following pre-defined

formats by RTSLM. Accordingly, CGSLM further generates a list

of code snippets with detailed documentation. By sequentially exe-

cuting the code based on the documentation, the IoT task can be

solved. Note that we only fine-tune TDSLM and CGSLM as these

two stages require IoT domain knowledge during inference while

RTSLM only needs basic language processing.

In practice, we face three significant technical challenges. 1)

Lack of high-quality data. To the best of our knowledge, there

are no IoT-oriented user-requirement-to-sub-task and sub-task-to-

program text-generation datasets. Thus, we first construct two

datasets containing IoT knowledge retrieved from various public

sources, aiming to enhance the task decomposition and code gen-

eration abilities of TDSLM and CGSLM, respectively. Moreover, we

design an IoT-oriented text data augmentation method to enhance

the datasets’ quality and diversity, considering the unique charac-

teristics (e.g., sensor modality and resource heterogeneity) of IoT

applications, thereby enhancing SLMs’ knowledge comprehension

and code generation capabilities for IoT tasks. 2) Domain mis-

alignment between SLMs. The decomposed tasks generated by

TDSLM may fall beyond the scope that CGSLM can handle due to

domain misalignment. This is because the two SLMs focus on dif-

ferent stages of IoT application development during tuning, which

could lead to thematic inconsistencies in task interpretation and

execution (§ 2.2). To tackle this, we propose a parameter-efficient

1We consider SLMs as open-source language models that can be locally deployed and
operated efficiently on commodity GPUs [29] (e.g., Llama2-13b with INT8 quantization
requires around 16 GB of GPU memory).
2The models and datasets are available at https://github.com/lemingshen/GPIoT

co-tuning (PECT) paradigm featuring a multi-path Low-Rank Adap-

tation (LoRA) pipeline. Unlike conventional LoRA tuning that tunes

adapters separately, our designed PECT paradigm enables collabora-

tive fine-tuning of multiple SLMs with a shared base model but with

different adapters, thereby mitigating the inconsistency issues and

facilitating knowledge sharing between SLMs. 3) Format incom-

patibility. Decomposed tasks are typically described in natural

language, while the expected inputs of CGSLM should be well-

structured. If we directly use the decomposed task descriptions as

prompts to generate code, CGSLM can not provide programs strictly

following user requirements (§ 2.2). To address this, we leverage

Chain-of-Thought (CoT) prompting [73] that instructs RTSLM to

transform the descriptions into well-structured specifications step

by step. As such, CGSLM can better handle the specifications to

provide IoT-specialized solutions.

To evaluate GPIoT, we also propose IoTBench, a benchmark to

quantify LLMs’ capabilities in synthesizing IoT-related programs.

Extensive experiments and a user study demonstrate that GPIoT

can generate code adopting more IoT-specialized algorithms and

outperform SOTA code LLMs in terms of task accuracy (more than

64.7% on average), memory usage (less than 310MB on average), and

user satisfaction. In summary, we make the following contributions:

• GPIoT presents the first code generation system tailored for

IoT application development featuring privacy-preserving local

SLMs tuned on IoT-specialized datasets.

• We create IoT domain text-generation datasets with a novel aug-

mentation method tailored for the unique characteristics of IoT

tasks, significantly enhancing the IoT knowledge comprehension

ability of our tuned SLMs. We also construct IoTBench to evaluate

the capability of LLMs in synthesizing IoT-specialized programs.

• We propose the PECT paradigm, a new LLM tuning method that

can collaboratively fine-tune multiple SLMs to mitigate their

domain misalignment with facilitated knowledge exchange.

2 BACKGROUND & MOTIVATION
We first revisit existing code LLMs to underscore the importance

of constructing tailored IoT-related LLMs. Then, we conduct some

preliminary experiments on existing LLM+RAG methods to further

motivate our work with several challenges we need to address.

2.1 Code LLM and LLM+RAG
Existing code LLMs aim to synthesize programs and enhance soft-

ware development efficiency and accuracy. While they performwell

on general and simple programming tasks (e.g., sorting algorithms),

they often struggle with complex problems in the IoT domain. For

example, when prompted to design an R-peak detection method

for electrocardiogram (ECG) data, existing code LLMs can only use

the find_peaks() function, which adopts a general peak detection

algorithm rather than a dedicated one tailored for ECG data (e.g.,

Pan-Tompkins [50]). The underlying reason is that IoT knowledge

and programs only occupy a small proportion of the training dataset

of code LLMs. As a result, despite being presented with abundant

IoT terminologies in the prompt, LLMs still tend to prioritize and

respond with more general words, due to their higher similarity

(shorter distance in Fig. 2(a)) within the vector representation space.

LLM+RAG methods address this by retrieving domain knowl-

edge for reference and establishing multiple cascaded agents to

GPIoT: Tailoring Small Language Models for IoT Program Synthesis and Development SenSys ’25, May 6–9, 2025, Irvine, CA, USA

Word Vector Space

Given an ECG data, implement a
R-peak detection algorithm.

ECG

Pan-Tompkins

R-peak

find_peaks()

Higher priority
Lower priority

(a) Terminologies in vector space (b) General workflow of LLM+RAG

Figure 2: (a) Existing LLMs tend to prioritize general terms;

(b) LLM+RAG systems require multiple cascaded agents.

facilitate information transfer among modules. For example, in

Fig. 2(b), multiple LLM-based agents are employed for different

tasks during development (i.e., domain knowledge retrieval, task

planning, coding, and debugging). Sophisticated prompt design

and meticulously structured intermediate outputs are necessary to

ensure that one agent’s output can be accurately parsed and inter-

preted by another agent. We conduct a preliminary experiment by

prompting MapCoder [30], a multi-agent-based LLM+RAG frame-

work, to synthesize programs for R-peak detection. We repeatedly

generate 100 distinct versions of the programs and analyze them

through code review and execution. Surprisingly, we find that only

28% of the programs adopt appropriate IoT-related algorithms to

perform R-peak detection. This is because LLM+RAG requires so-

phisticated RAG design and user prompts. Otherwise, the retrieved

knowledge is less accurate and relevant to the IoT context, and

LLMs may fail to focus on the IoT domain and still provide sim-

ple and general solutions [75]. Moreover, this cascading process

inevitably introduces noise and propagates errors [76], leading to a

long self-recover time. More importantly, cloud LLMs suffer from

bad network conditions, high costs, and privacy concerns.

To overcome these challenges, GPIoT fine-tunes SLMs on IoT-

specialized text-generation datasets, as SLMs have smaller sizes and

can be locally deployed. Additionally, by steering the parameter

distribution towards the IoT domain via tuning, SLMs can focus on

IoT-related semantic context, generating highly relevant responses

that follow pre-defined formats with enhanced stability.

2.2 Preliminary Experiments & Findings
We conduct some preliminary experiments by separately fine-

tuning two SLMs on our manually constructed datasets (§ 4.1),

i.e., the task decomposition dataset (TDD) and the code generation

dataset (CGD). TDD aims to enhance TDSLM’s capability to break

a problem statement proposed by the user into multiple decomposed

tasks described in natural language. CGD aims to enhance CGSLM’s

ability to generate code & documentation for the user based on the

decomposed tasks. However, we find it extremely challenging to

ensure the correctness of the generated code. Note that we use

Llama2-13b [61] as the default SLM for demonstration purpose.

Lack of high-quality data. Directly fine-tuning SLMs incurs little

performance gain, even with data augmentation. We first deploy

four models: GPT-4o, the original SLM, the SLM tuned on TDD, and

the SLM tuned on augmented TDD via Evol-Instruct [78]. Then, we

randomly select three IoT problems from TDD and input them into

the four models to obtain a set of responses. Next, we measure the

(a) BLEU scores (b) Requirement-specification gap

‘Figure 3: (a) Directly tuning SLM with simple augmentation

only yields small improvements; (b) Gap between SLMs.

similarity between the generated responses and the human-crafted

references as ground truth (decomposed tasks) using the BLEU score

[51], where a larger value indicates higher semantic similarity. As

shown in Fig. 3(a), GPT-4o achieves the highest score with an ac-

ceptable value for such a text-generation task. However, the scores

achieved by tuned SLMs increase slightly even with augmented

TDD. Further analysis reveals that the solutions provided by the

SLMs are either irrelevant to the IoT domain or contain halluci-

nations. This is because traditional augmentation methods (e.g.,

Evol-Instruct) focus on augmenting linguistic characteristics of the

original text data, which may fall short of effectively capturing

intricate relationships among IoT terminologies. This motivates us

to design an IoT-tailored text augmentation method to enhance the

quantity, quality, and diversity of the original dataset.

Domain misalignment. Since TDSLM and CGSLM are tuned on

distinct datasets for different tasks, domain misalignment occurs

when used in tandem. Specifically, we feed the task descriptions

generated by TDSLM into CGSLM to synthesize corresponding

programs for each sub-task. Surprisingly, we find that only 53.4%

of the programs can be successfully executed without bugs and

only 10.6% of the programs adopt IoT-specialized algorithms for the

IoT tasks. The main reason is that the two SLMs develop expertise

in different domains with knowledge inconsistency during tuning,

hindering the seamless integration of task decomposition and code

generation. As a result, the responses generated by TDSLM may

fall outside the scope that CGSLM can handle. This motivates us to

develop a knowledge-sharing strategy between the two SLMs during

tuning so that they can reach a consensus when handling IoT tasks.

Format incompatibility. TDSLM’s outputs (decomposed tasks) are

described in natural language while CGSLM’s inputs (task speci-

fications) should be well structured (Fig. 3(b)). When we directly

feed TDSLM’s output into CGSLM, only 23.6% of the synthesized

programs can be successfully executed. The rest exhibits higher

uncertainty with a lack of confidence in mapping the input task

specification to the desired code [86]. The reason is that CGSLM is

more sensitive to well-formatted inputs as it has been tuned on our

dataset with structured text. Though directly tuning TDSLM to gen-

erate well-structured task specifications can be a solution, we find

it challenging due to the limited language processing capabilities of

SLMs, which cannot be sufficiently enhanced through tuning alone.

This motivates us to develop a method to convert the task descriptions

in natural language into well-organized specifications.

To address the above challenges, we propose three key technical

modules, i.e., an IoT-oriented text data augmentation method, a

Parameter-Efficient Co-Tuning (PECT) paradigm with a multi-path

LoRA pipeline, and a requirement transformation module.

SenSys ’25, May 6–9, 2025, Irvine, CA, USA Leming Shen, Qiang Yang, Xinyu Huang, Zijing Ma, Yuanqing Zheng

Task Decomposition SLM

Research Papers

RAG Agent

Webpages &
Programs

</>

Code Generation SLM

Requirement for
IoT Applications

Decomposed Task List
Task 1: Load Data

Requirement
Transformation SLM

Prompt 1

Prompt 2

Prompt n

……CoT-based
Prompting

Offline Tuning Stage
Requirement for Decomp

Online Processing Stage

Task 2: Preprocessing
Task n: Output ResultsTask Decomposition

Task Specification List
Task Specification 1: ……
Task Specification 2: ……
Task Specification n: ……

p g
stttCode Generation

Code & Doc.
A list of code
Related Doc. Result

LoRA Adapter

PECT

LoRA Adapter

PECT

TTT
TT

Code Generation

C d & DC

T
TTask DecompositionIoT-Oriented

Augmentation

Figure 4: The system overview and workflow of GPIoT (All the local SLMs share the same foundation model).

RAG Agent

+

Technical Module List
Module 1: Load ECG Data
Module 2: Signal Preprocess
Module n: Output Results

Implementation Detail Extraction Prompt +
Model 1: Load ECG Data + Description

Sub-Task List for Module 1: Load ECG Data
— Task 1 [Download the MIT-BIH Dataset]

— Access the network and download the data
— Task 2 [Load the ECG Data from Local Disk]

— Write a script to load all the ECG data
— Implementation Workflow

— Step 1: Import the `wfdb` package and …

GG AgAge

al MMMMo

Technical Module
Extraction Prompt

CGG DaD

Moduodudd l

Figure 5: Task decomposition dataset construction.

3 SYSTEM OVERVIEW

Fig. 4 illustrates the overall architecture of GPIoT, consisting of an

offline tuning stage and an online processing stage.

Offline Stage. The offline tuning stage (the left part in Fig. 4) con-

structs two IoT-specialized datasets and fine-tunes TDSLM and

CGSLM, which will be used for task decomposition and code gen-

eration in the online stage, respectively. We first build a RAG agent

to extract knowledge and programs from various IoT-related pub-

lic sources (e.g., websites and articles) to construct high-quality

datasets. Then, we augment the datasets by adopting our IoT-

oriented augmentation method (§ 4.1) to enhance their quantity,

quality, and diversity. Note that the RAG agent is only used for

high-quality dataset construction during the offline stage. With the

two augmented datasets, we fine-tune two SLMs via our PECT par-

adigm, where certain model parameters are collaboratively tuned

through a multiple-path LoRA pipeline with two projection layers

for task decomposition and code generation, respectively. Our PECT

paradigmmitigates the domain misalignment between TDSLM

and CGSLM with facilitated knowledge transfer and sharing.

Online Stage. The online stage (the right part in Fig. 4) aims to

synthesize IoT-specific programs based on the user requirement for

an IoT application development. Specifically, GPIoT first leverages

Task Decomposition SLM (TDSLM) to decompose the IoT appli-

cation into multiple manageable sub-tasks with detailed descrip-

tions (�∼�). Next, through CoT-based prompting techniques, the

sub-task descriptions will be gradually transformed into well-

structured specifications by Requirement Transformation SLM

(RTSLM) (�∼�). Next, for each sub-task, Code Generation SLM

(CGSLM) accordingly generates a code snippet with documentation

(�∼�). Users can execute the code sequentially to realize the IoT

application based on the instructions from the documentation (�).

SLM Considerations. We consider SLMs as open-source models

that can be locally deployed and operated efficiently on commodity

GPUs (e.g., RTX 4070 Ti). This aligns with the practical constraints

of normal users, where local models offer advantages in terms of

cost, privacy, and independence from the cloud. Note that although

there are three SLMs working simultaneously, they share the same

foundation model and differ only in some additional tunable parame-

ters, which only occupy 1% of all the parameters. Such a low-cost

tuning and inference process stems from our PECT paradigm, avoid-

ing significant overhead when deploying GPIoT on local devices.

4 SYSTEM DESIGN

4.1 Data Collection & Augmentation
Since there are no text-generation datasets in the IoT domain, we

need to first construct a task decomposition dataset (TDD) and a

code generation dataset (CGD). Note that our datasets contain Q&A

pairs in textual form, fundamentally differing from conventional

IoT datasets that typically contain pairs of sensor data and labels.

4.1.1 Task Decomposition Dataset. TDD contains pairs of

"problem statement → decomposed tasks", aiming to enhance TD-

SLM’s task decomposition ability for IoT problems. The construc-

tion process consists of three stages: raw IoT-related text data col-

lection, data formatting, and IoT-oriented text data augmentation.

Raw Data Collection. IoT-related research papers contain a huge

quantity of high-quality SOTA applications and algorithms. More-

over, the systems proposed are comprehensive and functional,

which can be decomposed into multiple modules with clear moti-

vation and implementation details. Therefore, we download IoT-

related papers from several public literature databases3 as our high-

quality data sources, covering a wide range of IoT topics, such as

communication, wireless sensing, edge computing, etc.

Data Formatting. We need to extract IoT knowledge from the

papers and format it to pairs of "problem statement → decomposed

tasks". Intuitively, we can regard the proposed system in each paper

as an IoT problem, with its technical modules as the corresponding

decomposed tasks. However, two challenges occur if we directly

use such "System → technical modules" pairs for tuning: 1) These

module descriptions are typically lengthy, which exceed the context

length of SLMs [11]. 2) These modules are still sophisticated, often

containing multiple sub-systems. TDSLM may struggle to extract

IoT-specialized technical concepts and accurately generate manage-

able components. To tackle this, our insight is that we regard each

module as an individual problem, which can be further decomposed

into several manageable sub-tasks. The disintegrated sub-tasks can

be easily handled by TDSLM with reduced context length.

Fig. 5 shows the entire process of how we extract pairs of "prob-

lem statement → decomposed tasks" from the papers. Specifically,

we first build a RAG agent by combining the downloaded papers

with an LLM (GPT-4o). Based on the provided context documents,

3We download papers from public databases via our institution’s certification. The
papers are for research only, adhering to ethical standards.

GPIoT: Tailoring Small Language Models for IoT Program Synthesis and Development SenSys ’25, May 6–9, 2025, Irvine, CA, USA

Technical Module Extraction Prompt
Context Document: PDF File
System Message
Based on the document, split the system
proposed in the paper into multiple
modules with detailed descriptions. You
must search through the document
repeatedly for detailed information.
The output must be in the following
Markdown format:
- Module 1: module name + description
- Module 2: module name + description

(a) Technical module extraction

Implementation Detail Extraction Prompt
Context Document: PDF File
System Message
Based on the document, summarize a
problem statement of the given technical
module and split it into a sub-task list with
implementation details. You must search
through the entire document thoroughly.
The output must be in the format of:
- Sub-Task 1 [Task Name]
- [Problem Statement]
- Implementation step 1 ……
(b) Implementation detail extraction

Figure 6: Prompts for paper information extraction.

Figure 7: Examples of IoT-oriented data augmentation with

different modalities, representations, and resource budgets

.
we then prompt (Fig. 6(a)) the agent to split the proposed system

in the paper into multiple technical modules with detailed descrip-

tions. Next, for each technical module, we prompt (Fig. 6(b)) the

agent to further decompose it into several sub-tasks with detailed

implementation steps. As such, we encapsulate the problem state-

ment 𝑝𝑖 of each technical module and the corresponding sub-tasks

𝑡𝑖 into a Q&A pair 𝑄𝑖 to construct a raw dataset D𝑡 :
D𝑡 = {𝑄1,𝑄2, · · · ,𝑄𝑛𝑡 }, 𝑄𝑖 = (𝑝𝑖 , 𝑡𝑖) (1)

where 𝑛𝑡 is the total number of technical modules from all the

papers. Fig. 8(a) shows a data sample from the dataset. Note that

each sub-task is separated by a blank line, allowing us to parse

and split 𝑡𝑖 into multiple task description strings for further code

generation in a divide-and-conquer way.

IoT-Oriented Data Augmentation. As revealed in § 2.2, existing

text augmentation methods are ineffective in the IoT domain as

they focus on expanding language characteristics rather than IoT

knowledge. As a result, IoT terminologies are still assigned lower

priority during inference, preventing the tuned model from gener-

ating IoT-specialized solutions. To address this, we propose a novel

IoT-oriented data augmentation method that considers unique prop-

erties of IoT applications, i.e., sensor modality, data representation,

and system resource heterogeneity, as shown in Fig. 7.

Our augmentation considers three aspects: 1) Sensor modality.

For the same IoT problem, we can use different sensor modali-

ties. For instance, to implement human activity recognition (HAR),

we can utilize IMU data, WiFi CSI, etc. 2) Data representation. For

the same modality, we can leverage distinct data representations

to achieve the same task. For example, we can use WiFi CSI, 2D

spectrograms, or extracted Doppler features to implement HAR.

3) Resource heterogeneity. For the same task, various IoT devices

require heterogeneous system resources. When deploying an AI

model, smartphones typically have less memory than PCs, requir-

ing model optimization methods. Based on the three aspects, we

prompt (Fig. 8(b)) GPT-4o to rewrite and augment each problem

statement from D𝑡 . To generate reference decomposed tasks, we

build a search agent to retrieve relevant IoT domain knowledge and

(a) Task decomposition data sample

Sensor Data Modality Augmentation Prompt
System Message
You are a professional prompt writer.
Rewrite the prompt into a diverse version
by replacing the sensor data modality
with a different one (e.g., WIFI --> IMU).
Direct output three different versions of
the rewritten prompt separated by a
blank line in the following format:
<rewritten prompt1>
<rewritten prompt2>
User Message ()
<Problem Statement>

(b) Augment sensor modality

Figure 8: (a) Tuning data sample for task decomposition. (b)

Prompt for sensor modality augmentation.

API Reference - A Function from SciPy
find_peaks(x, height=None, threshold=None)

This function takes a 1-D array and finds all local maxima
by simple comparison of neighboring values.
Parameters
- x (array): A signal with peaks.
- height (int): required height of peaks.
- threshold (int): required threshold of peaks
Returns
- peaks (array): indices of peaks in x.
Examples

Universal Non-Uniform
Random Number Sampling

Introduction
Random variate generation
deals with algorithms to
generate random variates
from various distributions ……
Workflow
First ……, Then ……, Finally ……
A Simple Example

Example Gallery
A Usage Sample

>>> import numpy as np
>>> from scipy.signal import find_peaks
>>> x = np.random.rand(2000)
>>> peaks, _ = find_peaks(x, height=0)

>>> import scipy
>>> x = ……
>>> output = ……

Figure 9: An example of a Python package’s website.

prompt it to produce results. We then manually filter out incorrect

results and craft the formats (i.e., each sub-task is separated by a

blank line as aforementioned). The augmented dataset D′
𝑡 is:

D′
𝑡 =

3⋃

𝑗

{ (𝑝𝑖 𝑗 , 𝑡𝑖 𝑗) | 𝑝𝑖 𝑗 = 𝐴𝑗 (𝑝𝑖), 𝑡𝑖 𝑗 = 𝐺 (𝑝𝑖 𝑗) }, ∀𝑝𝑖 ∈ D𝑡 (2)

where 𝐴 𝑗 (·) is the 𝑗-th type of augmentation operation and 𝐺 (·) is

the black-box function of GPT-4o.

Remark.We take the diversity of both language expression and

IoT characteristics into account, demonstrating significant perfor-

mance improvement in task decomposing (§ 6.5). Note that the data

collection and augmentation processes are both performed offline.

4.1.2 Code Generation Dataset. CGD contains pairs of "task

specification→ code & documentation", aiming to enhance CGSLM’s

ability in generating IoT-related code for decomposed tasks. The

data construction includes two stages: raw data collection and target

diversity-aware augmentation for different code generation tasks.

Raw Data Collection. Open-source IoT-related Python4 packages

(e.g., SciPy [64]) contain abundant hand-crafted IoT algorithms and

applications with high performance, which can serve as our data

sources. Thus, we first collect numerous public repositories from

GitHub and extract Python packages they used, covering areas of

signal processing, machine learning, and data processing (IoT data

I/O and visualization). We then build a web crawler to automatically

retrieve information from each package’s official website.

A package’s website (Fig. 9) typically contains two parts: 1) API

reference includes a list of modules (i.e., functions and classes) with

comprehensive guidance on how to use them effectively in code.

For example, find_peaks() is a function from the SciPy package,

which identifies the local maxima (peaks) in an input signal array

and returns the indices of the peaks. We denote the detailed in-

formation of each module as its metadata,𝑚𝑖 . 2) Example gallery

4We focus on Python since it is a cross-platform programming language.

SenSys ’25, May 6–9, 2025, Irvine, CA, USA Leming Shen, Qiang Yang, Xinyu Huang, Zijing Ma, Yuanqing Zheng

find_peaks()
SciPy

(a) Module description

find_peaks()
SciPy

(b) Module implementation

Well-Structured Task Specification (Prompt)
Target
Write some code and documentation to
create a universal non-uniform random
number generator to sample random
variates from a wide variety of univariate
continuous and discrete distributions.
Input Specification
- numbers (arr): a stream of uniform

random numbers.
Output Specification
- output (arr): random variates sampled

from the specified distribution.
(c) Task specification (d) Traditional LoRA tuning

Figure 10: (a) & (b) Two tuning data samples. (c) Well-structured task specification. d) Traditional LoRA tuning.
provides practical usage samples of how to use various modules and

features of the package to implement specific algorithms. For in-

stance, a usage sample provides detailed documentation with code

about performing universal non-uniform random number sampling

using the SciPy package in an end-to-end manner. We denote the

detailed information of each usage sample as its metadata, 𝑢 𝑗 . By
combing these two types of metadata, we form a raw dataset D𝑐 :

D𝑐 = {𝑚𝑖 | ∀𝑖 ∈ {1, 2, · · · , 𝑛𝑚 }} ∪ {𝑢 𝑗 | ∀ 𝑗 ∈ {1, 2, · · · , 𝑛𝑢 }} (3)

where 𝑛𝑚 and 𝑛𝑢 is the total number of modules and usage samples.

Target Diversity-Aware Augmentation. This augmentation aims

to enhance the diversity of the metadata in D𝑐 . We target each

module in the packages for two text-generation tasks: 1) Module

Description: providing detailed descriptions of a module and 2)Mod-

ule Implementation: writing code & documentation to demonstrate

usage samples of the module. aSince the example gallery already

contains abundant algorithms with sample code and detailed de-

scriptions, they can be directly used as code generation tasks.

1) Module Description. We format the task specification to "Pro-

vide detailed descriptions of <module> from <package>." The cor-
responding reply contains the module metadata in a pre-defined

format. This Q&A mapping relation from a task specification 𝑡𝑖 to a

module description𝑚𝑖 is expressed as:
D1 = {𝑡𝑖 →𝑚𝑖 } (4)

Such a "task specification→ module description" mapping can teach

CGSLM to be familiar with the module’s information, strengthen-

ing the semantic correlation between the module’s name and the

detailed descriptions. Fig. 10(a) illustrates a data sample from D1.

2) Module Implementation. We format the task specification to

"Write some Python code with comments and documentation to

perform <target> by using <module> from <package>." The cor-
responding reply contains the sample code and documentation that

provides the workflow and guidance on how to execute the code.

To obtain well-structured documentation, we prompt GPT-4o to

format the module’s metadata into Markdown. This Q&A mapping

relation from a task specification 𝑡𝑖 to the corresponding module

implementation (i.e., code 𝑐𝑖 and documentation 𝑑𝑖) is:

D2 = {𝑡𝑖 → (𝑐𝑖 , 𝑑𝑖) | 𝑑𝑖 = 𝐺 (𝑚𝑖) } (5)

Such a "task specification → module implementation" mapping rela-

tionship aims to enhance CGSLM’s capability in generating code

and documentation according to the module specification. Fig. 10(b)

shows a data sample from D2.

3) Example Implementation.We format the task specification to a

well-structured Markdown format as shown in Fig. 10(c), including

the task target and the I/O specifications for the expected code.

Correspondingly, we prompt GPT-4o to convert the usage sample’s

metadata into well-structured documentation. This Q&A mapping

relation from a task specification 𝑡 𝑗 to the code 𝑐 𝑗 and documentation

𝑑 𝑗 can be expressed as:

D3 = {𝑡 𝑗 → (𝑐 𝑗 , 𝑑 𝑗) | 𝑑 𝑗 = 𝐺 (𝑢 𝑗) } (6)

This aims to enhance CGSLM’s ability in generating IoT-related

code and detailed documentation following well-structured task

specifications. Ultimately, by concatenating all three augmented

datasets, the final CGD D′
𝑐 becomes:

D′
𝑐 = D1{𝑡𝑖 →𝑚𝑖1 } ∪ D2{𝑡𝑖 → (𝑐𝑖 , 𝑑𝑖) } ∪ D3{𝑡 𝑗 → (𝑐 𝑗 , 𝑑 𝑗) } (7)

4.1.3 IoTBench. To evaluate LLMs’ abilities in task decomposi-

tion and code generation for IoT applications, we create IoTBench, a

benchmark of text-generation tasks in the IoT domain. Specifically,

we choose 100 samples from TDD and CGD with manually created

test cases, covering various IoT topics (e.g., signal processing, edge

AI, etc.). All the selected data samples are first manually filtered

to ensure correctness and relevance to the IoT domain. Then, we

format the sub-tasks separated by a blank line in between. Note that

although many SOTA benchmarks (e.g., HumanEval [10]) can also

evaluate LLMs’ code generation abilities, they are not tailored to

IoT tasks. Besides, the data in IoTBench is excluded from the tuning

processes (§ 4.2) to test the generalizability of the tuned SLMs.

4.2 Parameter-Efficient Co-Tuning (PECT)

With the two augmented datasets (D′
𝑡 and D′

𝑐), our next step is

to fine-tune TDSLM and CGSLM to enhance their ability in task

decomposition and code generation, respectively. In the following,

we first introduce the traditional LoRA tuningmethod [27] for SLMs,

and then explain our Parameter-Efficient Co-Tuning paradigm.

4.2.1 LoRA Tuning. Fig. 10(d) shows the Low-Rank Adaptation

(LoRA) tuning process of a Transformer block [63]. Specifically,

each Transformer block in an LLM contains two main components:

a self-attention mechanism and a feed-forward network (FFN), both

of which are followed by residual connections and layer normaliza-

tion. The self-attention features three tunable weight matrices (𝑊𝑞 ,

𝑊𝑘 , and𝑊𝑣) to capture contextual relationships between input em-

beddings, while the FFN processes the outputs from the attention

mechanism to refine the feature representations. In conventional

LLM full-tuning, the entire weight matrices are updated, leading to

extensive GPUmemory requirements and high computational costs.

Instead of fully updating the weight matrices, LoRA reduces the

number of tunable parameters [15, 18], where two low-rank matri-

ces 𝑨 and 𝑩 (i.e., LoRA adapters) are inserted alongside the weight

matrix. Given an input 𝑿 , the tuning process can be expressed as:

𝑽 ′ = (𝑾𝑣 + 𝑩𝑨) · 𝑿 (8)

GPIoT: Tailoring Small Language Models for IoT Program Synthesis and Development SenSys ’25, May 6–9, 2025, Irvine, CA, USA

Figure 11: PECT in one Transformer block with both inde-

pendently and collaboratively tuned LoRA adapters.
This reduces the computational burden by only updating the smaller

low-rank matrices 𝑨 and 𝑩, significantly cutting down resources.

However, as demonstrated in § 2.2, domain misalignment arises

when separately tuning TDSLM and CGSLM using this vanilla LoRa

method. This is because they focus on two distinct text-generation

tasks with different semantic attention, thereby hindering GPIoT

from synthesizing IoT-related programs. To tackle this issue, we

propose a parameter-efficient co-tuning (PECT) paradigm. Un-

like conventional LoRA tuning that tunes adapters separately,

PECT enables collaborative fine-tuning of several SLMs with

a shared base model but with different LoRA adapters. PECT

features a Multi-Path LoRA Pipeline (MPLP) and two lightweight

projection layers, which can promote information sharing between

TDSLM and CGSLM, thereby narrowing the semantic comprehen-

sion gap between task decomposition and code generation.

4.2.2 Multi-Path LoRA Pipeline. MPLP selects a subset of

shared LoRA adapters to be collaboratively tuned by TDSLM and

CGSLM, with another adapter set independently tuned.

Pipeline Construction. In the lower part of Fig. 11, we create

three pipelines of LoRA adapters in each Transformer block. Two

pipelines (the orange one and the green one) are independently

tuned by TDSLM and CGSLM with respect to TDD and CGD. The

other pipeline (the gray one) is co-tuned on both TDD and CGD.

For example, given a data sample from TDD, only the orange LoRA

adapters and gray LoRA adapters are updated, as shown in Fig. 11.

Note that we only assign the shared adapters beside the key and

value weight matrices (𝑾𝑘 ,𝑾𝑣). The insight behind this is that the

value vector provides the information to be activated based on the

key vector [63]. In other words, themapping from problem statement

to decomposed tasks and the mapping from task specification to code

& documentation are determined by the key and value vectors in

TDSLM and CGSLM, respectively. Domain misalignment is thus

caused by such differentmapping relations during tuning on distinct

datasets with disparate semantic focuses. Therefore, by co-tuning

the shared adapters integrated into the key and value vectors, the

mapping relations will be shared between the two SLMs, allowing

TDSLM’s outputs to align with CGSLM’s scope.

Co-Tuning. In Fig. 11, we designate the orange line as the task

decomposition path (TDP), through which only data from TDD will

pass. The green line is the code generation path (CGP), through

which only data from CGD will pass. The grey line represents

the co-tuning path, through which all data will pass. During co-

tuning, the LoRA adapters will be tuned either independently or

User Target Extraction Prompt
System Message
You are a skilled IoT application developer,
especially in writing well-structured task
specifications. Given the task description,
define and directly output the objective of
the task. Example: develop a R-peak
detection algorithm for ECG data.
User Message ()
Task 1 [Task Name]
- Implementation step 1
- Implementation step 2 ……

(a) User target extraction

Input/Output Specification Extraction Prompt
System Message
You are a skilled IoT application developer,
especially in writing well-structured task
specifications. Given the task description,
define the input/output specifications for
the expected code. The output must be in
the following format:
- Param 1 (type): description ……
User Message ()
Task 1 [Task Name]
- Implementation step 1 ……

(b) I/O specification extraction

Figure 12: CoT-based prompts for RTSLM.

collaboratively, depending on the path they occupy. Specifically,

take the adapter alongside the projection matrix𝑾𝑘 as an example,

the key vectors after projection in the two paths are calculated by:
𝑲1 = (𝑾𝑘 + 𝑩1𝑨1 + 𝜆 · 𝑩𝑐𝑨𝑐) · 𝑿
𝑲2 = (𝑾𝑘 + 𝑩2𝑨2 + (1 − 𝜆) · 𝑩𝑐𝑨𝑐) · 𝑿

(9)

where𝑿 is the input text embedding, 𝑲1 and 𝑲2 are the key vectors

within TDP and CGP, respectively. 𝑩1𝑨1 and 𝑩2𝑨2 are the param-

eters of LoRA adapters independently tuned within the two paths,

respectively. 𝑩𝑐𝑨𝑐 are the LoRA adapters collaboratively tuned

by the two paths. 𝜆 is a hyper-parameter to balance the data flow

between the two paths. During the co-tuning process, we first ran-

domly sample data from TDD and CGD. Next, if the data is sampled

from TDD, it will pass through TDP; otherwise, it will pass through

CGP.We then calculate the loss and update the corresponding LoRA

adapters based on the source of the data sample.

Remarks. By orchestrating the independent and collaborative tun-

ing paths, MPLP dismantles the information barrier between TD-

SLM and CGSLM, fostering their consensus during inference and

thereby alleviating the misalignment issue.

4.2.3 Projection Layers. To further enhance knowledge sharing

between the two SLMs during tuning, we create two projection

layers for the two paths. We place the projection layers in parallel

with the FFN layers in the Transformer block. As such, they can

serve as extra FFNs that apply non-linear transformations to the

attention representations, thereby enhancing token-level feature

extraction and increasing the complexity of the model’s learning

capabilities. By receiving representations from the other path with

enhanced non-linearity, the cross-domain IoT knowledge compre-

hension capabilities of the two SLMs will be further strengthened.

Specifically, take TDP as an example, as shown in the upper part of

Fig. 11, with the obtained value (denoted as 𝑥1) from the LayerNorm

in TDP, we feed it into a projection layer 𝐿1 (·). The output is then
added with the FFN’s output 𝐹 (𝑥2) and 𝑥2 in CGP. The sum will be

sent to the next Transformer block for further processing. Such a

knowledge transfer process can be expressed as:
𝑥 ′
1 = 𝑥1 + 𝐹 (𝑥1) + 𝛾 · 𝐿2 (𝑥2)

𝑥 ′
2 = 𝑥2 + 𝐹 (𝑥2) + (1 − 𝛾) · 𝐿1 (𝑥1)

(10)

where 𝑥 ′1 and 𝑥
′
2 are the final output of the two paths. 𝑥1 and 𝑥2 are

the input attention representations from TDP and CGP, respectively.

𝐹 (·) represents the FFN layer, 𝐿1 (·) and 𝐿2 (·) are the projection

layers in the two paths, and 𝛾 is a hyper-parameter to balance

the knowledge-sharing between the two paths. Note that each

projection layer has the same architecture as the FFN, consisting of

two fully connected layers and a non-linear SwiGLU function [54].

Remarks. By combining independent and collaborative tuning

of LoRA adapters with the projection layers, PECT optimizes the

task-specific performance of TDSLM and CGSLMwhile minimizing

domain conflicts. As a result, the decomposed tasks generated by

SenSys ’25, May 6–9, 2025, Irvine, CA, USA Leming Shen, Qiang Yang, Xinyu Huang, Zijing Ma, Yuanqing Zheng

TDSLM will have closer semantic alignment with CGSLM and thus

can be better handled. Note that during both tuning and inference,

the SLMs share the same foundation model architecture, with the

only difference being the LoRA parameters shown in Fig. 11. There-

fore, our proposed PECT paradigm fundamentally differs from those

traditional PEFT approaches that tune SLMs separately.

4.3 Requirement Transformation
When cascading TDSLM and CGSLM together, a huge gap ex-

ists between TDSLM’s outputs (decomposed task descriptions) and

CGSLM’s inputs (task specifications). The task descriptions are

typically natural language while the task specifications are well-

structured. Directly feeding the task descriptions into CGSLM will

lead to sub-optimal performance of the generated code. To fill this

gap, we leverage RTSLM to transform the descriptions into well-

structured specifications. Considering that RTSLM has limited IoT

knowledge comprehension ability, we enhance it with RAG and

several CoT-based prompts to perform requirement transformation.

RAGConstruction. To enhance RTSLM’s ability in understanding

IoT domain knowledge during requirement transformation, we first

transform all the downloaded papers into a text embedding database.

Then, armed with such an IoT knowledge database, we build a RAG

agent based on RTSLM to retrieve relevant context for reference. As

such, RTSLM can better comprehend and handle IoT terminologies

in the task descriptions during requirement transformation.

CoT Prompting. Fig. 10(c) shows an example of a well-structured

task specification for code generation, consisting of three parts:

task target, input and output specifications of the expected code.

For each decomposed task 𝑡𝑖 generated by TDSLM, we prompt the

agent to generate such well-structured specifications step-by-step.

Specifically, we first prompt (Fig. 12(a)) the agent to summarize a

target for the task. Next, we further instruct (Fig. 12(b)) the agent to

generate a list of parameter descriptions for the input and output of

the expected code. Each single parameter description item contains

the parameter name, the parameter type, and a brief explanation of

its meaning. For example, "signal (numpy.ndarray): the raw ECG

data collected from patients with noises." Finally, RTSLM reorga-

nizes and formats the above information into a well-structured task

specification, which will be further handled by CGSLM to generate

corresponding code snippets and documentation.

Remarks. Note that tuning is excluded in this process since it only

needs basic language comprehension and processing capabilities

of RTSLM. Therefore, RTSLM shares the same base model without

additional tunable LoRA parameters to perform the transformation.

5 EXPERIMENT SETUP
5.1 Implementation
SystemConfigurations.WedeployGPIoT on an edge PC equipped

with an RTX 4090 GPU (24 GB). We use selenium [45] to create a

web crawler for data retrieving from public websites. To perform

data formatting and augmentation, we construct an agent based

on GPT-4o and LangChain [8]. For SLM tuning, we use a high-

performance cloud server with an NVIDIA A100 GPU (80 GB).

Hyper-parameters. TDD contains 36,098 pairs of "problem state-

ment → decomposed tasks". CGD contains 35,419 pairs of "task

specification → code & documentation". Llama2-13b [61] with INT8

quantization serves as the foundation model and is fine-tuned via

LoRA [27], with a rank of 64 and a dropout rate of 0.1. The number

of tuning epochs is 5, with an initial learning rate of 0.0001, varied

by a cosine learning rate scheduler. The 𝜆 in Eq. 9 and the𝛾 in Eq. 10

are both set to 0.5 by default. The tuning process takes around 80

GPU hours. Since TDSLM, RTSLM, and CGSLM share the same

foundation model, only about 16 GB of GPU memory is needed for

the whole system, which is affordable for a commodity GPU [52].

5.2 IoT Applications
Considering the different technologies required during develop-

ment, we select three IoT applications, focusing on healthcare and

edge computing. 1) Heartbeat Detection (HD) is essential for

continuously monitoring patient vitals with enhanced healthcare

and ensuring timely intervention in case of abnormalities [47]. We

instruct GPIoT to develop a heartbeat (R-peak) detection algorithm

and test it on the MIT-BIH dataset [44]. 2)HumanActivity Recog-

nition (HAR) [3, 7, 31–33] deployed on edge devices is important

for real-time analysis of daily human activities. We instruct GPIoT

to develop a WiFi-based HAR model using the WiAR dataset [23]

and deploy it on a Jetson Nano board that has limited resources [40].

3)Multimodal HAR leverages different sensors to capture comple-

mentary information, thereby enhancing HAR systems’ robustness

and versatility [19]. We instruct GPIoT to construct a multimodal

HAR model based on the Harmony dataset [49], which contains

three sensor modalities: audio [68], depth camera, and radar [13].

Notes: HD requires signal processing methods, HAR demands

technologies in both signal processing and machine learning, and

multimodal HAR necessitates advanced multimodal processing

algorithms. Though we use HD as an example for demonstration

throughout the paper, all the tasks are unseen to GPIoT.

6 EVALUATION

6.1 Metrics
We compare the programs synthesized by GPIoT and several base-

lines by measuring the following evaluation metrics.

HD. 1) Precision: The fraction of correctly detected R-peaks out of

all detected peaks: 𝑇𝑃
𝑇𝑃+𝐹𝑃 . 2) Recall rate: The proportion of correctly

detected R-peaks out of all actual R-peaks: 𝑇𝑃
𝑇𝑃+𝐹𝑁 . The larger these

two metrics are, the more accurate the heartbeat detection becomes.

HAR. 1) Classification accuracy: The portion of the test data that is

correctly classified based on the label. A higher accuracy implies a

more robust and accurate HAR model. 2) GPU memory usage: The

amount of GPU memory used during model inference. 3) Inference

time: The time it takes from feeding the data into the code to the

generation of the recognition result. The less memory and inference

time consumed, the more resource-efficient the HAR model is.

6.2 Baselines
Given the same user problem, we input it into the following base-

lines to compare their performance with GPIoT (GT). 1) GPT-4o

(G4) [2] is an advanced LLM from OpenAI, optimized for instruc-

tion following and code generation tasks. 2) DeepSeek-Coder

(DC) [22] is a high-performance code LLM, particularly effective in

understanding and generating programming code across various

domains. 3) CodeLlama-34b (CL) [53] is a specialized version of

the Llama designed to generate, understand, and assist with coding.

4) WizardCoder-33b (WC) [43] incorporates complex instruction

fine-tuning by adopting evolving instructions. 5) CodeQwen-7b

GPIoT: Tailoring Small Language Models for IoT Program Synthesis and Development SenSys ’25, May 6–9, 2025, Irvine, CA, USA

Heartbeat Detection (User Input)
Given the ‘MIT-BIH’ Arrhythmia Dataset,
write Python code to perform R-peak
detection for all the signal records in the
dataset. The code should also output the
detection accuracy for each data.
Code Input
1. The local file path to the dataset
Code Output Format
Case {ECG data record name}
Detection accuracy: 91% ……
Remarks
The dataset folder contains several data
samples, each of which contains four files,
i.e., ‘.atr’, ‘.dat’, ‘.hea’, and ‘.xws’.

(a) Problem statement for HD

Human Activity Recognition (User Input)
Given the WiFi-based Activity Recognition
(WiAR) dataset, write some Python code
to perform human activity recognition.
First split the dataset into ‘train’ and ‘test’
parts. Then, train an AI model to output
the recognition accuracy of the test data.
Code Input
1. The local file path to the dataset
Code Output Format
The average recognition accuracy: 91%
Remarks
The dataset is a NumPy array with a shape
of (450, 90, 250), containing 15 activities
with each repeated 30 times.

(b) Problem statement for HAR

Figure 13: Problem statements of the two applications (HAR

and multimodal HAR share a similar prompt).

(CQ) [5] is the Code-Specific version of Qwen1.5, which is a decoder-

only LLM pre-trained on a large amount of data of programs. 6)

GitHub Copilot (GC) [21] is an AI-powered code generation tool

that assists developers by suggesting code snippets and functions.

7)MapCoder (MC) [30] is an LLM+RAG-based code generation

framework that cascades multiple LLM-based agents to solve com-

petitive problems, where GPT-4o is selected as the built-in LLM.

We access GPT-4o and DeepSeek-Coder via API keys, interact

with GitHub Copilot via Visual Studio Code’s chat window, and

deploy the rest on an edge server. Note that to our best, currently

there is no LLM-based program synthesis system tailored for IoT

application development. Therefore, we choose some SOTA code

generation LLMs and systems as our baselines.

6.3 Application Evaluation
With the designed two problem statements (Fig. 13) for the three

IoT applications, we input them into GPIoT and the baselines to

synthesize 20 different programs for each task. We then evaluate

their performance based on the metrics described in § 6.1.

6.3.1 HD. As shown in Fig. 14, the code generated by GPIoT sig-

nificantly outperforms all the baselines, with an average precision

gain of 64.7% and an average RR increase of 16.9%. It’s also worth

noting that CodeLlama, WizardCoder, and CodeQwen achieve mod-

erate RR (above 80%) but exhibit lower precision. With further

analysis of the code, we find that they all adopt a simple peak detec-

tion function, scipy.signal.find_peaks(), which typically fails

when handling abnormal ECG data from patients. As a result, the de-

tection results contain numerous false positives with low precision.

Additionally, after reviewing the code generated by MapCoder, we

observe that it incorporatesmore advanced heartbeat signal process-

ing algorithms (e.g., bandpass filtering and adaptative thresholding).

However, the final program exhibits a significant performance drop

compared with other baselines. This is because heartbeat detection

is a relatively simple IoT application that does not require highly

sophisticated planning and iterative debugging. Integrating many

advanced algorithms into a simple signal-processing program may

lead to inconsistency issues. In other words, the heartbeat signal

may be over-processed by these algorithms, leading to degraded

performance. [24, 60]. On the contrary, the code generated by GPIoT

utilizes dedicated algorithms (e.g., Pan-Tompkins) for R-peak de-

tection due to embedded IoT domain knowledge during tuning,

consistently achieving high precision and RR.

6.3.2 HAR. In this evaluation, for all the generated HAR mod-

els, we set the training epochs to 10 and the batch size to 32 for

(a) Precision (b) Recall rate

Figure 14: The overall performance of HD.

(a) Classification accuracy (b) GPU memory & inference time

Figure 15: The overall performance of HAR.

a fair comparison. Besides, during our implementation, we find

that after around 15 training epochs, all the models gradually con-

verge. Therefore, we compare the model performance at the 10th

epoch. As shown in Fig. 15(a), the program synthesized by GPIoT

achieves a 17.2% higher accuracy with 47.8% less GPU memory and

38.3% shorter inference time on average. By analyzing the generated

code, we find GPIoT applies: 1) a data preprocessing method, But-

terworth low-pass filtering, on the WiFi data, considering that the

low-frequency components of WiFi CSI are primarily influenced by

human activities [69]. 2) an augmentation method tailored for IoT

data (e.g., time-frequency masking [87]) on the WiFi signal to fur-

ther enhance the diversity of the dataset. 3) a CUDA optimization

mechanism [12] to reduce GPU memory usage while enhancing

runtime efficiency. In contrast, the baselines directly input raw

WiFi data into HAR models without GPU optimization, leading

to diminished performance and heightened memory consumption.

Moreover, the error bar of GPIoT is smaller than that of the base-

lines, indicating that GPIoT generates more stable responses with a

more robust performance of the synthesized program. Note that MC

can synthesize programs with competitive performance since HAR

is a more complex application. Such advancements of GPIoT origi-

nate from our meticulously crafted IoT-specialized datasets and the

PECT paradigm, which embeds abundant IoT domain knowledge

from our datasets into the tuned SLMs for more consistent outputs.

Additionally, considering that our HAR model is deployed on

edge devices with various resource constraints [39, 55, 57, 66, 67],

we involve different resource requirements in the prompts for

the generated code to facilitate a more comprehensive evaluation.

Specifically, we first design a base prompt: "I need to deploy the

HAR model on Jetson Nano" (P1) without any resource specifi-

cations. Based on P1, we then create three variations by adding

different resource constraints: "Do not consider any resource con-

straints but only model accuracy" (P2), "The GPU memory usage

should not exceed 200 MB" (P3), and "The GPU memory should

not exceed 50 MB" (P4). We then instruct GPIoT to synthesize 20

different versions of programs using each of the prompts above.

After executing the programs with the same configurations, we

record the average classification accuracy and GPU memory usage,

as shown in Fig 19(a). We find that: 1) Given P2, GPIoT can con-

struct an AI model with a large number of parameters to achieve

ultimate performance, with its classification accuracy approaching

nearly 100%. 2) Given P3, GPIoT can adopt a smaller model within

SenSys ’25, May 6–9, 2025, Irvine, CA, USA Leming Shen, Qiang Yang, Xinyu Huang, Zijing Ma, Yuanqing Zheng

(a) Classification accuracy (b) GPU memory & inference time

Figure 16: The overall performance of multimodal HAR

(a) The BLEU score (b) The Format Correctness Rate

Figure 17: Breakdown evaluation on TDSLM.

the resource budget (i.e., GPU memory usage not exceeding 200

MB) with a slight performance drop. 3) Given P4, GPIoT employs

a highly optimized model requiring only approximately 50 MB

of GPU memory, resulting in an acceptable accuracy drop of 5%.

These results demonstrate that GPIoT can generate code tailored to

different resource budgets, stemming from our IoT-Oriented Data

Augmentation method, which augments data samples considering

resource heterogeneity of target devices in IoT applications.

6.3.3 Multimodal HAR. We further instruct GPIoT to synthesize

programs for the multimodal HAR application, aiming to evalu-

ate its programming ability for more complex tasks. As shown in

Fig. 16, compared with the baselines, the program synthesized by

GPIoT achieves an average accuracy improvement of 13.44% while

requiring moderate GPU memory and inference time. After review-

ing the source code, we find that both GPIoT and the baselines

train three encoders to first extract useful features from different

modalities, followed by a classifier to recognize the correspond-

ing activity. However, the program synthesized by GPIoT adopts

some model optimization methods (e.g., quantization or pruning)

and data augmentation methods tailored for IoT sensor data (e.g.,

time-frequency masking). As such, the synthesized program can

train a memory-optimized model while maintaining high classifica-

tion accuracy. These results indicate that, benefiting from our SLM

tuning, the program synthesized by GPIoT can incorporate more

IoT-specific data processing and model optimization algorithms,

thereby achieving high performance even for multimodal HAR.

6.4 Breakdown Evaluation
We separately evaluate TDSLM and CGSLM on IoTBench to explore

the effectiveness of fine-tuning in the IoT domain.

6.4.1 Metrics. We adopt different metrics for the two SLMs.

TDSLM. 1) BLEU : we measure the BLEU score [51] between the

generated decomposed tasks and the reference from IoTBench. A

larger BLEU score indicates higher semantic similarity and higher

task decomposition quality. 2) Format Correctness Rate (FCR): the

portion of TDSLM’s outputs that correctly separate each decom-

posed task with a blank line for the convenience of further pro-

cessing. This aims to quantify TDSLM’s instruction-following and

text-formatting abilities. 3) Sub-Task Completeness (STC): we invite

10 IoT experts to assess the extent to which the decomposed tasks

cover all essential parts of the application based on the reference.

(a) The embedding similarity (b) The pass@k

Figure 18: Breakdown evaluation on CGSLM

(a) Specifying resource constraints (b) Code quality evaluation

Figure 19: (a) EvaluatingGPIoT ’s performance using prompts

with different resource constraints. (b) Evaluating the quality

of the code generated by CGSLM using SonarQube.

CGSLM. 1) Code embedding similarity: we use CodeT5+ [71] to

convert code snippets into embeddings and compute the cosine sim-

ilarity between embeddings of the generated and reference code. A

higher similarity indicates a stronger ability to generate IoT-related

code. 2) Pass@k: we measure the pass@k value by calculating the

portion of programs that pass all the test cases. A higher value indi-

cates better performance of the generated code. 3) User Requirement

Coverage (URC): we first ask the users to execute the generated code

and review the documentation. Next, they are asked to evaluate

the extent to which the generated code and documentation fulfill

all the user requirements. 4) Code quality: we assess the quality of

the generated code by adopting a commercial-off-the-shelf (COTS)

code quality verification tool, SonarQube [59], detecting bug/logic

errors, security issues, and code smells [1]. Code smells are not

bugs but bad coding styles (e.g., variable name mismatching regular

expression) or potential weaknesses (e.g., package version incom-

patibility). Note that STC and URC are user-related metrics, which

are rated on a scale from 1 (not at all) to 5 (completely).

6.4.2 TDSLM. We input each problem statement from IoTBench

into TDSLM and the baselines to generate 20 different decomposed

tasks and calculate the average BLEU score, FCR, and URC. From

Fig. 17, we observe: 1) The decomposed tasks generated by TDSLM

achieve a 48% higher BLEU score than the baselines on average,

indicating a stronger decomposition ability for IoT tasks. 2) TDSLM

achieves 99% FCR, indicating remarkable stability to generate in-

termediate output (decomposed tasks) based on pre-defined formats.

3) TDSLM also achieves a 28% higher STC on average, showcasing

strong abilities in understanding IoT knowledge and generating

comprehensive decomposed tasks for IoT applications. Such su-

perior IoT task decomposition and data formatting performance

of TDSLM originate from the tuning process on TDD with our

IoT-oriented text data augmentation method.

6.4.3 CGSLM. We input each task specification from IoTBench

into CGSLM and the baselines to generate 20 different code & docu-

mentation. We then report the average code embedding similarity,

pass@1, pass@5, URC, and the number of various issues detected by

SonarQube. by executing and reviewing the code. For comparison,

we also report the pass@1 achieved by CodeLlama on a general-

purpose programming benchmark, HumanEval [10]. From Fig. 18,

GPIoT: Tailoring Small Language Models for IoT Program Synthesis and Development SenSys ’25, May 6–9, 2025, Irvine, CA, USA

(a) Impact on TDSLM (b) Impact on HD

Figure 20: Ablation of IoT-oriented augmentation (A.).

(a) Impact on CGSLM (b) Impact on HAR

Figure 21: Ablation of PECT (P. in the figure).

we observe that: 1) 1) CGSLM achieves an 18% higher code embed-

ding similarity than the baselines on average, implying stronger ca-

pability and generalizability in generating IoT-related code snippets.

2) CGSLM achieves higher pass@1 and pass@5 than the baselines,

with an average increase of 21.5% and 31%, respectively, showcasing

higher quality and accuracy of the generated code for solving IoT

tasks. 3) Nearly all the baselines achieve much lower pass@1 for IoT

programming tasks than CodeLlama on HumanEval due to limited

capabilities in the IoT domain. 4) Users show a stronger preference

for CGSLM over the baselines, with an average increase of 23% in

URC. 5) The program synthesized by CGSLM contains fewer bugs,

security issues, and code-smell-related issues. This is primarily be-

cause, CGSLM, fine-tuned on our manually crafted datasets, can

synthesize programs with enhanced code quality. Such superior

abilities of CGSLM in generating IoT-related code snippets with

high URC stems from our co-tuning on CGD with well-structured

data. Consequently, CGSLM can generate code adopting more IoT-

specific algorithms following task specifications.

6.5 Ablation Study
We conduct an ablation study by removing some proposed technical

modules to investigate their importance to GPIoT.

6.5.1 IoT-Oriented Data Augmentation. We directly tune TD-

SLM on the raw dataset without our IoT-oriented data augmenta-

tion, which contains only 273 data samples. We then evaluate the

tuned model on IoTBench and report the average BLUE score, FCR,

and STC. As shown in Fig. 20(a), without our augmentation, the

tuned model exhibits a substantial performance decline across all

metrics, much lower than GPT-4o. The main reason is that the raw

dataset lacks generalizability and diversity in the IoT domain, which

limits the tuned SLM’s ability to decompose IoT problems into man-

ageable sub-tasks, occasionally leading to incorrect results due to

hallucinations. As a result, if we use such an insufficiently tuned

TDSLM for heartbeat detection, GPIoT still adopts a simple peak

detection algorithm, leading to significant performance degradation

of the generated code in both precision and recall rate (Fig. 20(b)).

The results demonstrate the importance of our IoT-oriented text

data augmentation method in improving TDSLM’s capability in

task decomposition and IoT domain knowledge comprehension.

6.5.2 PECT. We separately fine-tune TDSLM and CGSLM on their

own datasets without our PECT paradigm. We then evaluate the

performance of the tuned CGSLM on IoTBench and measure the

average code embedding similarity, pass@1, and URC. As shown in

(a) Impact on HD (b) Impact on HAR

Figure 22: Ablation of requirement transformation.

(a) Signal processing-related tasks (b) Machine learning-related tasks

Figure 23: User study on different tasks.

Fig. 21(a), without PECT, the code generated by CGSLM exhibits per-

formance degradation across all the metrics. This is because some

IoT domain knowledge possessed by TDSLM cannot be shared with

CGSLM. As a result, CGSLM cannot handle some programming

tasks that are out of the scope, providing simple programs with

degraded performance. However, even such insufficiently tuned

CGSLM still outperforms GPT-4o, highlighting the advantage of

fine-tuning in enhancing IoT-related code generation ability. Fur-

thermore, without PECT in the HAR task, the final code neither

adopts data pre-processing methods nor designs high-performance

neural networks, leading to decreased classification accuracy, as

shown in Fig. 21(b). The results confirm the importance of our PECT

paradigm in mitigating the domain misalignment issue and facili-

tating the IoT knowledge sharing between TDSLM and CGSLM.

6.5.3 RTSLM. We directly feed the natural-language-described

decomposed tasks from TDSLM into CGSLM. We then compare

the performance of the generated code by GPIoT, GPIoT without

RTSLM, and GPT-4o. As illustrated in Fig. 22, without RTSLM, we

find that: 1) In HD,GPIoT tends to generate code unrelated to the IoT

domain with substantial precision degradation but a high recall rate.

This implies that the heartbeat detection results contain numerous

false positives. 2) In HAR, GPIoT designs a basic HAR model with

only a few simple layers, leading to a notable accuracy drop. These

results highlight the importance of RTSLM in aiding CGSLM to

understand the decomposed tasks generated by TDSLM, thereby

improving its code generation ability for IoT applications.

6.6 User Study
We conduct a user study to evaluate the functionality, generaliz-

ability, and overall satisfaction of GPIoT for IoT application devel-

opment. Specifically, with GPIoT deployed on an edge server, we

invite 5 experts and 15 non-experts in IoT and ask them to freely

express their requirements for any IoT application development

that requires signal processing or AI technologies. By sequentially

executing the generated code based on the instructions in the docu-

mentation, we ask the users to rate GPIoT based on five metrics: 1)

Overall Code Performance (OCP) evaluates the overall performance

of the generated code on corresponding test data considering task

accuracy, runtime efficiency, and resource consumption; 2) Code &

Documentation Readability (CDR) measures the clarity and struc-

ture of the code and documentation; 3) Generation Efficiency (GE)

SenSys ’25, May 6–9, 2025, Irvine, CA, USA Leming Shen, Qiang Yang, Xinyu Huang, Zijing Ma, Yuanqing Zheng

accesses how efficiently GPIoT operates in terms of speed and re-

source usage to produce the final results; 4) Code Modularity (CM)

judges whether the code is properly modularized for easy reuse

and extension; 5) User Satisfaction (US) captures users’ feedback

regarding their overall personal experience. All the above metrics

are rated by the users on a scale from 1 (not at all) to 5 (completely).

Github Copilot, DeepSeek-Coder (cloud), CodeLlama (local), and

MapCoder (agent) serve as representative baselines for comparison.

As shown in Fig. 23, we observe: 1) GPIoT significantly outper-

forms the baselines in terms of OCP and US. The main reason is

that, tuned on our IoT-specialized datasets,GPIoT can generate code

containing more dedicated algorithms with better performance.

Therefore, the users provide a higher score for GPIoT regarding the

overall code performance and user satisfaction. 2) GPIoT achieves

similar scores to the baselines in terms of CDR and CM, because

our datasets mainly focus on generating IoT-related code snippets.

Therefore, the readability of the code and documentation are not

explicitly enhanced via tuning. 3) GPIoT gets a lower GE score

as it performs requirement transformation and code generation

for each decomposed task. Nevertheless, we can enhance its effi-

ciency by adopting various LLM inference and serving optimization

methods [20]. Additionally, during our implementation, we find

that MapCoder costs around $20 to synthesize a program for a

single IoT application while GPIoT incurs no query costs. The infe-

rior performance of MapCoder may be attributed to the fact that

LLM+RAG-based agents typically incorporate multiple modules to

generate intermediate results in a cascaded manner, making them

susceptible to unstable networks. This yields longer generation

time, prohibitive token costs, and degraded user experiences. The

user study results demonstrate the superior performance of GIoT in

synthesizing IoT-related programs in an end-to-end manner, with

the ability to generalize to other unseen IoT applications.

7 DISCUSSION
System Cost of GPIoT. In GPIoT, though there are three SLMs (i.e.,

TDSLM, RTSLM, and CGSLM) operating simultaneously in GPIoT,

they share the same foundation model architecture and only differ

in a small subset of tunable parameters (§ 4.2). Moreover, though

LLM+RAG systems (e.g., MapCoder) require less memory (no more

than 1 GB), GPIoT does not need sophisticated prompt design and

requires a shorter generation time for the final output (§ 6.6).

Applicability to Resource-Constrained IoT Devices. The main

focus of GPIoT is generating domain-specific and high-quality code

for IoT application development. Considering the resource hetero-

geneity of various IoT devices for data processing, our IoT-Oriented

Data Augmentation method (§ 4.1) augments the original task de-

composition dataset by considering various resource requirements

of different target platforms for IoT application development. Fur-

ther experiments (Fig. 19(a)) demonstrate the effectiveness of GPIoT

in handling different resource requirements with optimized models.

Generalizability of GPIoT. Existing IoT applications can be cate-

gorized into four types based on the functionality they deliver: data

collection, data transmission, data processing, and decision-making.

Data collection, transmission, and decision-making have been ex-

tensively studied using fixed programs. For instance, manufacturers

typically provide COTS sample code for sensor data collection [14].

In contrast, IoT data processing demands more complex algorithms

due to fluctuating sensor data with noises and various resource con-

straints. Therefore, GPIoT focuses on IoT data processing tasks by

offering end-to-end solutions with executable programs. We believe

that the general workflow (i.e., task decomposition → requirement

transformation→ code generation) ofGPIoT can be applied to other

programming tasks. In future work, we plan to comprehensively

assess GPIoT in other complex programming tasks.

8 RELATEDWORK
Code LLMs & Programming Copilot. Code LLMs have signifi-

cantly impacted the field of code generation, with prominent exam-

ples such as CodeLlama [53] and DeepSeek-Coder [88]. Trained on

vast datasets comprising diverse code repositories, these models

are capable of synthesizing programs based on user requirements,

effectively bridging the gap between natural language and code.

One notable application is GitHub Copilot, an LLM-powered assis-

tant that provides real-time code suggestions and auto-completion.

Though powerful and promising, existing code LLMs and copilots

are primarily designed for general-purpose programming, lacking

customization to the IoT domain when tasked with IoT applications.

GPIoT addresses this by tuning local SLMs on IoT-specialized text-

generation datasets with scrupulous augmentation. Additionally, by

locally deploying GPIoT, it can potentially serve as a copilot for IoT

application developers, enhancing task accuracy and development

efficiency in a privacy-preserving manner.

Data Augmentation for LLMs. Existing text augmentation meth-

ods [16, 72] for LLM tuning harness the advanced language process-

ing capabilities of powerful LLMs (e.g., GPT-4) to synthesize diverse

and high-quality text data. These methods have two categories: 1)

Depth-based augmentation [9, 78] aims to increase the complexity

of the original text data by adding constraints, concretizing the

problem, and increasing reasoning steps. 2) Breadth-based augmen-

tation [37] directly uses powerful LLMs to rewrite the original text

data and generate a completely new instruction. However, these

augmentation methods focus on linguistic characteristics rather

than the IoT domain knowledge. In GPIoT, we propose a novel

IoT-oriented text augmentation method tailored for the IoT do-

main, considering unique features of IoT applications, i.e., sensor

modalities, data representations, and system resource constraints.

9 CONCLUSION
We present GPIoT, a tailored local code generation system that syn-

thesizes programs with documentation based on user requirements

for IoT application development. Armed with two IoT-specialized

text-generation datasets, the IoT-oriented augmentation method,

and our PECT paradigm, GPIoT can generate more IoT-related code

in a privacy-preserving way, achieving enhanced task accuracy

and user satisfaction for IoT application development. As IoT tech-

nologies are emerging rapidly, it is also worthwhile to explore the

construction of a dynamic IoT knowledge database and continuous

fine-tuning of local SLMs in the future.

ACKNOWLEDGMENTS
We sincerely thank our anonymous shepherd and reviewers for

their constructive comments and invaluable suggestions that helped

improve this paper. This work is supported by Hong Kong GRF

Grant No. 15211924 and 15206123. Yuanqing Zheng is the corre-

sponding author.

GPIoT: Tailoring Small Language Models for IoT Program Synthesis and Development SenSys ’25, May 6–9, 2025, Irvine, CA, USA

REFERENCES
[1] 2024. Python static code analysis. Unique rules to find Bugs, Vulnerabilities,

Security Hotspots, and Code Smells in your PYTHON code. https://rules.sona
rsource.com/python/RSPEC-2316/

[2] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-
cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal
Anadkat, et al. 2023. Gpt-4 technical report. arXiv preprint arXiv:2303.08774
(2023).

[3] Aakriti Adhikari and Sanjib Sur. 2024. MiSleep: Human sleep posture identifi-
cation from deep learning augmented millimeter-wave wireless systems. ACM
Transactions on Internet of Things (2024), 1–33.

[4] Tuo An, Yunjiao Zhou, Han Zou, and Jianfei Yang. 2024. IoT-LLM: Enhancing
Real-World IoT Task Reasoning with Large Language Models. arXiv preprint
arXiv:2410.02429 (2024).

[5] Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan,
Wenbin Ge, Yu Han, Fei Huang, et al. 2023. Qwen technical report. arXiv preprint
arXiv:2309.16609 (2023).

[6] Jiani Cao, Jiesong Chen, Chengdong Lin, Yang Liu, Kun Wang, and Zhenjiang Li.
2024. Practical Gaze Tracking on Any Surface with Your Phone. IEEE Transactions
on Mobile Computing (2024).

[7] Jiani Cao, Yang Liu, Lixiang Han, and Zhenjiang Li. 2024. Finger Tracking Using
Wrist-Worn EMG Sensors. IEEE Transactions on Mobile Computing (2024).

[8] Harrison Chase. 2022. LangChain. https://github.com/langchain-ai/langchain
[9] Liuqing Chen, Yiyan Tsang, Qianzhi Jing, and Lingyun Sun. 2024. A LLM-

augmented Morphological Analysis Approach for Conceptual Design. (2024).
[10] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde

De Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large language models trained on code.
arXiv preprint arXiv:2107.03374 (2021).

[11] Shouyuan Chen, Sherman Wong, Liangjian Chen, and Yuandong Tian. 2023.
Extending context window of large language models via positional interpolation.
arXiv preprint arXiv:2306.15595 (2023).

[12] Jake Choi, Heon Young Yeom, and Yoonhee Kim. 2021. Implementing cuda unified
memory in the pytorch framework. In IEEE ACSOS-C.

[13] Kaiyan Cui, Leming Shen, Yuanqing Zheng, Fu Xiao, and Jinsong Han. 2024.
Talk2Radar: Talking to mmWave Radars via Smartphone Speaker. In IEEE INFO-
COM 2024-IEEE Conference on Computer Communications. IEEE, 2358–2367.

[14] Dejan. 2024. Arduino and MPU6050 Accelerometer and Gyroscope Tutorial.
https://howtomechatronics.com/tutorials/arduino/arduino-and-mpu6050-acce
lerometer-and-gyroscope-tutorial/

[15] Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. 2024.
Qlora: Efficient finetuning of quantized llms. Advances in Neural Information
Processing Systems (2024).

[16] Bosheng Ding, Chengwei Qin, Ruochen Zhao, Tianze Luo, Xinze Li, Guizhen
Chen, Wenhan Xia, Junjie Hu, Anh Tuan Luu, and Shafiq Joty. 2024. Data
augmentation using llms: Data perspectives, learning paradigms and challenges.
arXiv preprint arXiv:2403.02990 (2024).

[17] Hao Ding, Ziwei Fan, Ingo Guehring, Gaurav Gupta, Wooseok Ha, Jun Huan,
Linbo Liu, BehroozOmidvar-Tehrani, ShiqiWang, andHao Zhou. 2024. Reasoning
and Planning with Large Language Models in Code Development. In ACM KDD.

[18] Ning Ding, Xingtai Lv, Qiaosen Wang, Yulin Chen, Bowen Zhou, Zhiyuan Liu,
and Maosong Sun. 2023. Sparse low-rank adaptation of pre-trained language
models. arXiv preprint arXiv:2311.11696 (2023).

[19] Jinxiao Fan, Mengshi Qi, Liang Liu, and Huadong Ma. 2025. Diffusion-driven
Incomplete Multimodal Learning for Air Quality Prediction. ACM Transactions
on Internet of Things (2025), 1–24.

[20] Yao Fu, Leyang Xue, Yeqi Huang, Andrei-Octavian Brabete, Dmitrii Ustiugov,
Yuvraj Patel, and Luo Mai. 2024. {ServerlessLLM}:{Low-Latency} Serverless
Inference for Large Language Models. In 18th USENIX Symposium on Operating
Systems Design and Implementation.

[21] GitHub. 2024. GitHub Copilot - The world’s most widely adopted AI developer
tool. https://github.com/features/copilot

[22] Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang,
Guanting Chen, Xiao Bi, Yu Wu, YK Li, et al. 2024. DeepSeek-Coder: When the
Large Language Model Meets Programming–The Rise of Code Intelligence. arXiv
preprint arXiv:2401.14196 (2024).

[23] Linlin Guo, Lei Wang, Chuang Lin, Jialin Liu, Bingxian Lu, Jian Fang, Zhonghao
Liu, Zeyang Shan, Jingwen Yang, and Silu Guo. 2019. Wiar: A public dataset for
wifi-based activity recognition. IEEE Access (2019).

[24] Dong Han, Syed Khairul Bashar, Jesús Lázaro, Fahimeh Mohagheghian, Andrew
Peitzsch, Nishat Nishita, Eric Ding, Emily L Dickson, Danielle DiMezza, Jessica
Scott, et al. 2022. A real-time PPG peak detection method for accurate determina-
tion of heart rate during sinus rhythm and cardiac arrhythmia. Biosensors (2022),
82.

[25] Ningning Hou, Xianjin Xia, Yifeng Wang, and Yuanqing Zheng. 2024. One shot
for all: Quick and accurate data aggregation for LPWANs. IEEE/ACM Transactions
on Networking (2024), 2285–2298.

[26] Ningning Hou, Xianjin Xia, and Yuanqing Zheng. 2023. Don’t miss weak packets:
Boosting LoRa reception with antenna diversities. ACM Transactions on Sensor
Networks (2023), 1–25.

[27] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean
Wang, Lu Wang, and Weizhu Chen. 2021. Lora: Low-rank adaptation of large
language models. arXiv preprint arXiv:2106.09685 (2021).

[28] Dong Huang, Qingwen Bu, Jie M Zhang, Michael Luck, and Heming Cui. 2023.
Agentcoder: Multi-agent-based code generation with iterative testing and opti-
misation. arXiv preprint arXiv:2312.13010 (2023).

[29] IBM. 2024. What are small language models? https://www.ibm.com/think/topi
cs/small-language-models

[30] Md Ashraful Islam, Mohammed Eunus Ali, and Md Rizwan Parvez. 2024. Map-
Coder: Multi-Agent Code Generation for Competitive Problem Solving. arXiv
preprint arXiv:2405.11403 (2024).

[31] Sijie Ji, Yaxiong Xie, and Mo Li. 2022. SiFall: Practical online fall detection with
RF sensing. In Proceedings of the 20th ACM Conference on Embedded Networked
Sensor Systems. 563–577.

[32] Sijie Ji, Xuanye Zhang, Yuanqing Zheng, and Mo Li. 2023. Construct 3d hand
skeleton with commercial wifi. In Proceedings of the 21st ACM Conference on
Embedded Networked Sensor Systems. 322–334.

[33] Sijie Ji, Xinzhe Zheng, and ChenshuWu. 2024. Hargpt: Are llms zero-shot human
activity recognizers?. In 2024 IEEE International Workshop on Foundation Models
for Cyber-Physical Systems & Internet of Things (FMSys). IEEE, 38–43.

[34] Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and Sunghun Kim. 2024.
A Survey on Large Language Models for Code Generation. arXiv preprint
arXiv:2406.00515 (2024).

[35] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess,
Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. arXiv preprint arXiv:2001.08361 (2020).

[36] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin,
Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel,
et al. 2020. Retrieval-augmented generation for knowledge-intensive nlp tasks.
Advances in Neural Information Processing Systems (2020).

[37] Zheng Li, Lijia Si, Caili Guo, Yang Yang, and Qiushi Cao. 2024. Data Augmentation
for Text-based Person Retrieval Using Large Language Models. arXiv preprint
arXiv:2405.11971 (2024).

[38] Chaofan Lin, Zhenhua Han, Chengruidong Zhang, Yuqing Yang, Fan Yang, Chen
Chen, and Lili Qiu. 2024. Parrot: Efficient Serving of LLM-based Applications
with Semantic Variable. In USENIX OSDI.

[39] Chengdong Lin, Kun Wang, Zhenjiang Li, and Yu Pu. 2023. A workload-aware
dvfs robust to concurrent tasks for mobile devices. In Proceedings of the 29th
Annual International Conference on Mobile Computing and Networking. 1–16.

[40] Neiwen Ling, Kai Wang, Yuze He, Guoliang Xing, and Daqi Xie. 2021. Rt-mdl:
Supporting real-time mixed deep learning tasks on edge platforms. In ACM
SenSys.

[41] Kaiwei Liu, Bufang Yang, Lilin Xu, Yunqi Guo, Neiwen Ling, Zhihe Zhao, Guoliang
Xing, Xian Shuai, Xiaozhe Ren, Xin Jiang, et al. 2024. Tasking Heterogeneous
Sensor Systems with LLMs. In ACM SenSys.

[42] Zhenyan Lu, Xiang Li, Dongqi Cai, Rongjie Yi, Fangming Liu, Xiwen Zhang,
Nicholas D Lane, and Mengwei Xu. 2024. Small Language Models: Survey,
Measurements, and Insights. arXiv preprint arXiv:2409.15790 (2024).

[43] Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu,
Chongyang Tao, Jing Ma, Qingwei Lin, and Daxin Jiang. 2023. Wizardcoder:
Empowering code large language models with evol-instruct. arXiv preprint
arXiv:2306.08568 (2023).

[44] George BMoody and Roger GMark. 2001. The impact of the MIT-BIH arrhythmia
database. IEEE engineering in medicine and biology magazine (2001).

[45] Baiju Muthukadan et al. [n. d.]. Selenium with Python. https://github.com/baiju
m/selenium-python

[46] Jingping Nie, Hanya Shao, Yuang Fan, Qijia Shao, Haoxuan You, Matthias Preindl,
and Xiaofan Jiang. 2024. LLM-based Conversational AI Therapist for Daily
Functioning Screening and Psychotherapeutic Intervention via Everyday Smart
Devices. arXiv preprint arXiv:2403.10779 (2024).

[47] Xiaomin Ouyang, Xian Shuai, Yang Li, Li Pan, Xifan Zhang, Heming Fu, Sitong
Cheng, Xinyan Wang, Shihua Cao, Jiang Xin, et al. 2024. ADMarker: A
Multi-Modal Federated Learning System for Monitoring Digital Biomarkers
of Alzheimer’s Disease. In ACM MobiCom.

[48] Xiaomin Ouyang and Mani Srivastava. 2024. LLMSense: Harnessing LLMs
for High-level Reasoning Over Spatiotemporal Sensor Traces. arXiv preprint
arXiv:2403.19857 (2024).

[49] Xiaomin Ouyang, Zhiyuan Xie, Heming Fu, Sitong Cheng, Li Pan, Neiwen Ling,
Guoliang Xing, Jiayu Zhou, and Jianwei Huang. 2023. Harmony: Heterogeneous
multi-modal federated learning through disentangled model training. In ACM
MobiSys. 530–543.

[50] Jiapu Pan and Willis J Tompkins. 1985. A real-time QRS detection algorithm.
IEEE transactions on biomedical engineering (1985).

[51] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. Bleu: a
method for automatic evaluation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computational Linguistics.

SenSys ’25, May 6–9, 2025, Irvine, CA, USA Leming Shen, Qiang Yang, Xinyu Huang, Zijing Ma, Yuanqing Zheng

[52] Bharadwaj Pudipeddi, Maral Mesmakhosroshahi, Jinwen Xi, and Sujeeth Bharad-
waj. 2020. Training large neural networks with constant memory using a new
execution algorithm. arXiv preprint arXiv:2002.05645 (2020).

[53] Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiao-
qing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023. Code
llama: Open foundation models for code. arXiv preprint arXiv:2308.12950 (2023).

[54] Noam Shazeer. 2020. Glu variants improve transformer. arXiv preprint
arXiv:2002.05202 (2020).

[55] Leming Shen, Qiang Yang, Kaiyan Cui, Yuanqing Zheng, Xiao-Yong Wei, Jian-
wei Liu, and Jinsong Han. 2024. Fedconv: A learning-on-model paradigm for
heterogeneous federated clients. In Proceedings of the 22nd Annual International
Conference on Mobile Systems, Applications and Services. 398–411.

[56] Leming Shen, Qiang Yang, Yuanqing Zheng, and Mo Li. 2025. AutoIOT: LLM-
Driven Automated Natural Language Programming for AIoT Applications. In
Proceedings of the 31st Annual International Conference on Mobile Computing and
Networking.

[57] Leming Shen and Yuanqing Zheng. 2023. FedDM: data and model heterogeneity-
aware federated learning via dynamic weight sharing. In 2023 IEEE 43rd Interna-
tional Conference on Distributed Computing Systems (ICDCS). IEEE, 975–976.

[58] Leming Shen and Yuanqing Zheng. 2024. IoTCoder: A Copilot for IoT Application
Development. In Proceedings of the 30th Annual International Conference on Mobile
Computing and Networking. 1647–1649.

[59] Sonar Source. 2024. SonarQube. https://www.sonarsource.com/
[60] Javier Tejedor, Constantino A García, David G Márquez, Rafael Raya, and Abra-

ham Otero. 2019. Multiple physiological signals fusion techniques for improving
heartbeat detection: A review. Sensors (2019), 4708.

[61] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023. Llama: Open and efficient foundation language models. arXiv
preprint arXiv:2302.13971 (2023).

[62] Shubham Ugare, Tarun Suresh, Hangoo Kang, Sasa Misailovic, and Gagandeep
Singh. 2024. Improving LLM code generation with grammar augmentation. arXiv
preprint arXiv:2403.01632 (2024).

[63] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems (2017).

[64] Pauli Virtanen et al. 2020. SciPy 1.0: Fundamental Algorithms for Scientific
Computing in Python. Nature Methods (2020).

[65] Zhongwei Wan, Xin Wang, Che Liu, Samiul Alam, Yu Zheng, Jiachen Liu, Zhong-
nan Qu, Shen Yan, Yi Zhu, Quanlu Zhang, et al. 2023. Efficient large language
models: A survey. arXiv preprint arXiv:2312.03863 (2023).

[66] Kun Wang, Jiani Cao, Zimu Zhou, and Zhenjiang Li. 2024. SwapNet: Efficient
Swapping for DNN Inference on Edge AI Devices Beyond the Memory Budget.
IEEE Transactions on Mobile Computing (2024).

[67] Kun Wang, Zimu Zhou, and Zhenjiang Li. 2024. LATTE: Layer Algorithm-aware
Training Time Estimation for Heterogeneous Federated Learning. In Proceedings
of the 30th Annual International Conference on Mobile Computing and Networking.
1470–1484.

[68] Tianben Wang, Zhangben Li, Honghao Yan, Xiantao Liu, Boqin Liu, Shengjie Li,
Zhongyu Ma, Jin Hu, Daqing Zhang, and Tao Gu. 2023. AudioGuard: Omnidi-
rectional Indoor Intrusion Detection Using Audio Device. ACM Transactions on
Internet of Things (2023), 1–22.

[69] Wei Wang, Alex X Liu, Muhammad Shahzad, Kang Ling, and Sanglu Lu. 2015.
Understanding and modeling of wifi signal based human activity recognition. In
ACM MobiCom.

[70] Xin Wang, Yu Zheng, Zhongwei Wan, and Mi Zhang. 2024. Svd-llm: Truncation-
aware singular value decomposition for large language model compression. arXiv
preprint arXiv:2403.07378 (2024).

[71] Yue Wang, Hung Le, Akhilesh Deepak Gotmare, Nghi DQ Bui, Junnan Li, and
Steven CH Hoi. 2023. Codet5+: Open code large language models for code
understanding and generation. arXiv preprint arXiv:2305.07922 (2023).

[72] Zhenhua Wang, Guang Xu, and Ming Ren. 2024. LLM-Generated Natural Lan-
guage Meets Scaling Laws: New Explorations and Data Augmentation Methods.
arXiv preprint arXiv:2407.00322 (2024).

[73] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi,
Quoc V Le, Denny Zhou, et al. 2022. Chain-of-thought prompting elicits reasoning
in large language models. Advances in neural information processing systems
(2022).

[74] Hao Wen, Yuanchun Li, Guohong Liu, Shanhui Zhao, Tao Yu, Toby Jia-Jun Li,
Shiqi Jiang, Yunhao Liu, Yaqin Zhang, and Yunxin Liu. 2024. Autodroid: Llm-
powered task automation in android. In ACM MobiCom.

[75] Kevin Wu, Eric Wu, and James Zou. 2024. How faithful are RAG models? Quan-
tifying the tug-of-war between RAG and LLMs’ internal prior. arXiv:2404.10198
(2024).

[76] Shengqiong Wu, Hao Fei, Leigang Qu, Wei Ji, and Tat-Seng Chua. 2023. Next-gpt:
Any-to-any multimodal llm. arXiv preprint arXiv:2309.05519 (2023).

[77] Guangzhi Xiong, Qiao Jin, Xiao Wang, Minjia Zhang, Zhiyong Lu, and Aidong
Zhang. 2024. Improving Retrieval-Augmented Generation in Medicine with
Iterative Follow-up Questions. arXiv preprint arXiv:2408.00727 (2024).

[78] Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng,
Chongyang Tao, and Daxin Jiang. 2023. Wizardlm: Empowering large language
models to follow complex instructions. arXiv preprint arXiv:2304.12244 (2023).

[79] Huatao Xu, Liying Han, Qirui Yang, Mo Li, andMani Srivastava. 2024. Penetrative
ai: Making llms comprehend the physical world. In ACM HotMobile.

[80] Qiang Yang and Yuanqing Zheng. 2021. Model-based head orientation estimation
for smart devices. Proceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies (2021), 1–24.

[81] Qiang Yang and Yuanqing Zheng. 2023. Aquahelper: Underwater sos transmission
and detection in swimming pools. In Proceedings of the 21st ACM Conference on
Embedded Networked Sensor Systems. 294–307.

[82] Qiang Yang and Yuanqing Zheng. 2024. Neural Enhanced Underwater SOS
Detection. In IEEE INFOCOM. 971–980.

[83] Shiming Yu, Xianjin Xia, Ningning Hou, Yuanqing Zheng, and Tao Gu. 2024.
Revolutionizing lora gateway with xgate: Scalable concurrent transmission across
massive logical channels. In Proceedings of the 30th Annual International Confer-
ence on Mobile Computing and Networking. 482–496.

[84] Shiming Yu, Xianjin Xia, Ziyue Zhang, Ningning Hou, and Yuanqing Zheng.
2024. FDLoRa: Tackling Downlink-Uplink Asymmetry with Full-duplex LoRa
Gateways. In Proceedings of the 22nd ACM Conference on Embedded Networked
Sensor Systems. 281–294.

[85] Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou,
Yingqian Min, Beichen Zhang, Junjie Zhang, Zican Dong, et al. 2023. A survey
of large language models. arXiv preprint arXiv:2303.18223 (2023).

[86] Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. 2021. Calibrate
before use: Improving few-shot performance of languagemodels. In ICML. PMLR.

[87] Hao Zhou, Taiting Lu, Yilin Liu, Shijia Zhang, and Mahanth Gowda. 2022. Learn-
ing on the Rings: Self-Supervised 3D Finger Motion Tracking Using Wearable
Sensors. ACM IMWUT (2022).

[88] Qihao Zhu, Daya Guo, Zhihong Shao, Dejian Yang, Peiyi Wang, Runxin Xu,
Y Wu, Yukun Li, Huazuo Gao, Shirong Ma, et al. 2024. DeepSeek-Coder-V2:
Breaking the Barrier of Closed-Source Models in Code Intelligence. arXiv preprint
arXiv:2406.11931 (2024).

