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ABSTRACT
Federated Learning (FL) facilitates collaborative training of a shared
global model without exposing clients’ private data. In practical FL
systems, clients (e.g., edge servers, smartphones, and wearables)
typically have disparate system resources. Conventional FL, how-
ever, adopts a one-size-fits-all solution, where a homogeneous large
global model is transmitted to and trained on each client, resulting
in an overwhelming workload for less capable clients and starva-
tion for other clients. To address this issue, we propose FedConv,
a client-friendly FL framework, which minimizes the computa-
tion and memory burden on resource-constrained clients by pro-
viding heterogeneous customized sub-models. FedConv features a
novel learning-on-model paradigm that learns the parameters of the
heterogeneous sub-models via convolutional compression. Unlike
traditional compression methods, the compressed models in Fed-
Conv can be directly trained on clients without decompression. To
aggregate the heterogeneous sub-models, we propose transposed
convolutional dilation to convert them back to large models with a
unified size while retaining personalized information from clients.
The compression and dilation processes, transparent to clients, are
optimized on the server leveraging a small public dataset. Extensive
experiments on six datasets demonstrate that FedConv outperforms
state-of-the-art FL systems in terms of model accuracy (by more
than 35% on average), computation and communication overhead
(with 33% and 25% reduction, respectively).

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting; • Computing methodologies→ Learning paradigms.
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1 INTRODUCTION
Federated Learning (FL) allows mobile devices to collaboratively
train a shared global model without exposing their private data [8–
10, 26, 36]. In each communication round, clients keep their private
data locally and only upload their model parameters or gradients
to a server after local training. The server then orchestrates model
aggregation and updates the global model for the next round [49].

In real-world deployments, federated clients typically have di-
verse system resources, calling for heterogeneous models with
different sizes. As shown in Fig. 1, high-end PCs can support large
models, while wearables cannot. Simply assigning the smallest af-
fordable model to all clients results in resource under-utilization
and sub-optimal performance.

Previous solutions that generate heterogeneous models mainly
include knowledge distillation (KD) [43, 45], parameter sharing
[21], and parameter pruning [19, 39]. KD distills the knowledge
from heterogeneous client models to a global model for aggregation.
Nonetheless, it imposes additional compute overhead on clients [50]
as they must first train on public data and then transfer knowledge
via private data. Parameter-sharing strategies distribute different
regions of a global model as sub-models to different clients. How-
ever, some sub-models can only be trained on a small portion of the
dataset. Parameter pruning methods utilize channel or filter level
pruning to generate sparse sub-models. However, they suffer from
information loss due to the removal of entire channels or filters
(§ 2.2). Moreover, to determine the pruning structure, clients need
to receive the large global model from the server and then perform
the pruning operation locally, increasing the overhead of clients.

Ideally, the heterogeneous sub-models should retain the infor-
mation of the global model in a way that they can be efficiently
sent to and trained on resource-constrained clients without any
extra overhead. To this end, we propose FedConv, a client-friendly
FL framework for heterogeneous models based on a new learning-
on-model paradigm. The key insight is that convolution, a technique
to extract effective features from data, can also compress large mod-
els via various receptive fields while preserving crucial information.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 1: Heterogeneous models in federated learning.

In FedConv, the server performs convolutional compression on the
global model to learn parameters of diverse sub-models according to
clients’ resource budgets. Clients directly train on the compressed
sub-models as in traditional FL without model decompression. In
model aggregation, the server first uses transposed convolution
(TC) to transform heterogeneous client models into large models
that have the same size as the global model. Then, the server as-
signs different learned weight vectors to these dilated models and
aggregates them. FedConv optimizes the model compression, dila-
tion, and aggregation processes by leveraging a small dataset on
the server that can be obtained via crowdsourcing, or voluntarily
shared by users without compromising their privacy. Therefore,
our system does not incur extra communication or computation
overhead for resource-constrained clients.

To deliver a practical system, we address three key technical
challenges: 1) How to learn the parameters of heterogeneous sub-
models via convolution while retaining the global model’s pre-
diction capability? To tackle this problem, we formulate the com-
pression process as a training task. By iteratively fine-tuning the
convolution operations, heterogeneous sub-models can be learned
effectively and achieve a performance comparable to that of the
global model. 2) How to preserve clients’ personalized information
after converting their models to a unified size for aggregation? We
apply separate TC operations on each client’s model parameters
and learn a set of dilated models, which inherit their personalized
information. We add a residual connection to further enhance the
transfer of personalized information from client models to dilated
models. 3) How to aggregate these dilated models with imbalanced
contributions of heterogeneous federated clients? As client models
are trained on the non-independent and identically distributed (non-
IID) personalized data, directly averaging [49] these large models
would lead to performance degradation. To tackle this issue, we set
different learnable weight vectors for the dilated models. Through
a tuning process, the server can learn the relative importance of
each model and orchestrate the final aggregation.

We implement FedConv1 based on a user-friendly FL framework
(Flower [5]) with two representative FL tasks (image classification
and human activity recognition). We evaluate FedConv on six public
datasets and compare its performance with eight baselines. The
experiments show that FedConv outperforms the SOTA in terms of
inference accuracy (by more than 35% on average), memory, and
communication cost (with 21% and 25% reduction, respectively).
Besides, FedConv substantially reduces the computation overhead
for federated clients and saves the total training time.

In summary, we make the following key contributions:

1The code is available at https://github.com/lemingshen/FedConv.

• To our knowledge, FedConv is the first model compression
method based on convolution operations. This paradigm
can not only compress the global model effectively, but also
preserve its crucial information, without imposing extra
burden on resource-constrained mobile clients.
• FedConv handles heterogeneous models with new technolo-
gies. Specifically, we propose a convolutional compression
module to compress the global model and generate heteroge-
neous sub-models via our learning-on-model paradigm. We
design a transposed convolutional dilation method to obtain
models with uniform sizes and use weighted average aggre-
gation to balance clients’ contributions for final aggregation.
• We evaluate FedConv based on Flower and conduct compre-
hensive evaluations with heterogeneous mobile devices. The
results demonstrate the superior performance of FedConv in
terms of both inference accuracy and resource efficiency.

2 MOTIVATION
In this section, we underscore the necessity of model heterogeneity-
aware FL systems and analyze SOTA works (parameter sharing
and model pruning) to motivate our work. Knowledge distillation-
based methods incur heavy overhead on clients (§ 6.3), which is
not suitable for resource-constrained mobile devices.

2.1 Necessity of Heterogeneous Models
In a conventional FL system, all clients typically share the same
model architecture. In practice, however, different clients have di-
verse computation and communication resources. For example,
high-end edge PCs usually have more resources, while low-cost
embedded systems have much constrained resources. Therefore,
the size of a global model is typically upper-bounded by the clients
with the least system resources in conventional FL. Such a one-size-
fits-all solution often leads to sub-optimal performance. Moreover,
clients with more resources suffer from starvation [46, 59] when
waiting for weaker clients in synchronized FL [42, 58, 64]. To make
full use of more powerful clients while accommodating those with
limited resources, it is necessary to develop an FL system that sup-
ports heterogeneous models with varied parameter sizes that best
fit all clients with diverse resources.

2.2 Limitations of Existing Solutions
Imbalance problem in parameter sharing. HeteroFL [21] is a
representative parameter sharing scheme where clients share dif-
ferent regions of the global model. As shown in Fig. 2(a), the shared
portions (the overlapped part across different sizes of models) are
fixed, and the parameters are aggregated only from clients that hold
them, missing the information from other clients. To showcase its
impact, we train a ResNet18 model [30] on the CIFAR10 dataset [37]
with 100 global rounds. We find that smaller models outperform
larger models (Fig. 2(b)) due to their exposure to a larger volume
of data held by more clients. Besides, the global model exhibits
instability and even performs worse than the large model due to
unbalanced aggregation. Thus, this scheme will lead to imbalanced
performance among clients and unexpected performance degrada-
tion [4, 77]. FedRolex [4] proposes a dynamic sharing scheme to
tackle the imbalance issue. It enables sub-models to share different
parts of the global model’s parameters via multiple rolling windows,

https://github.com/lemingshen/FedConv
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Figure 2: The parameter sharing and pruning scheme with limitations (the pruned part is colored blue in (c)).
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Figure 3: Convolutional compression process.

ensuring that the aggregated parameters are evenly trained on all
client-side datasets. However, since different clients contribute dis-
tinct parts, the aggregated parameters comprise mixed windows
from the diverse sub-models. As a result, the distribution of the
global model’s parameters is distorted and thus cannot effectively
extract useful features from the input data [60, 67], leading to de-
graded performance and a longer convergence time.

Information loss and client workload inmodel pruning.As
shown in Fig. 2(c), model pruning can be categorized into channel-
level and filter-level pruning. Channel-level pruning removes some
input channels from the model parameters, where the correspond-
ing channels of the input data are also excluded from the training
process. Filter-level pruning prunes out some output channels (fil-
ters), resulting in fewer output feature maps. Consequently, these
two schemes suffer from information loss as they not only discard
some input data channels or feature maps but also remove certain
weights or connections in model parameters [7]. To study the in-
formation loss, we apply channel-level and filter-level pruning to
the pre-trained ResNet18 model based on the parameter magnitude
ranking. We measure the mutual information (MI) I(𝑋,𝑍 ), which
quantifies the amount of information that can be inferred from 𝑋

after observing 𝑍 [13]. We find that the MI between the parameters
of the ResNet18 model and itself is 3.29, whereas theMI between the
parameters of the pre-trained model and the channel-pruned model
is reduced to 2.56, with an accuracy drop from 84.04% to 73.36%.
Similarly, the accuracy of the filter-pruned model drops to 75.64%
while MI is 2.68. This indicates information loss due to pruning.
Moreover, existing pruning-based methods typically require the
server to transmit all the parameters of a global model to clients,
and perform model pruning at resource-constrained clients, which
incurs high communication and computation overhead for clients.
2.3 Model Compression via Convolution
Ideally, a compression method should minimize the information
loss of model parameters to retain the performance after compres-
sion, without posing extra computation or communication burden

on resource-constrained clients. To this end, we propose a novel
convolutional compression technique that applies convolution oper-
ations on the global model parameters to generate the parameters
of heterogeneous sub-models while preserving crucial information
of the global model (e.g., parameter distributions and patterns). Our
preliminary studies find that by applying refined convolution oper-
ations via various receptive fields [79], the sub-model can inherit
spatial and hierarchical parameter patterns from the global model.
These receptive fields selectively determine which parameter infor-
mation should be retained after convolution. Hence, the generated
sub-models can also extract valuable features from the input data,
similar to the features extracted by the large global model.

Fig. 3 shows the convolution-based compression process. To
showcase that a compressed model generated by convolutional com-
pression (compression layers) can effectively extract features from
the input data, we compress the pre-trained model described in
§ 2.2 at a shrinkage ratio of 0.75. We then select the top-4 and top-3
feature maps with the highest importance outputted by a convo-
lutional layer (measured by IG [65]) from the large model and the
sub-model, respectively. As shown in Fig. 3, both the large model
and the sub-model can learn and focus on the key features (e.g., the
deer’s body, head, and horn). Moreover, compared with the large
model, the first two feature maps from the sub-model pay more at-
tention (deeper color) to the deer’s body and ears. The third feature
map can be regarded as a fusion of the last two feature maps from
the large model, as it focuses on both the body and head of the deer.
This observation indicates that the feature extraction capability of
the large model can be effectively preserved and transferred to the
sub-model via convolutional compression. Besides, the accuracy of
the sub-model only decreases by 0.19% and the mutual information
between the parameters of the large model and the sub-model is
3.09 (Fig. 2(d)), which is much higher than that of the pruned model.
This indicates that our proposed convolutional compression method
can effectively minimize information loss after model compression.

To optimize the compression process, same as existing knowl-
edge distillation-based FL systems [43, 45] that need server-side
data during FL training, we also maintain a small publicly avail-
able dataset on the server to fine-tune the compression process
(§ 4.1). The server-side data can be collected from public datasets,
or crowdsourced by volunteers who are willing to share their data.
We note that same as conventional FL schemes, clients do not need
to send their data to the server. By leveraging such server-side data
with iterative refining of the compression process, the server can
gradually gain a comprehensive global view [19] of the entire FL
process and thus transfer more general information from the server
to heterogeneous clients [3].
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3 FRAMEWORK OVERVIEW
Fig. 4 illustrates the architecture of FedConv, consisting of three
main modules: convolutional compression (§ 4.1), transposed convo-
lutional dilation (§ 4.2), and weighted average aggregation (§ 4.3).

The server first initializes a global model with an estimated mem-
ory requirement and records a set of shrinkage ratios (SR) reported
by each client based on their resource profiles (①). In the first com-
munication round, the server pre-trains the global model for several
epochs with a server-side dataset to gain a better global view of the
data distribution [19]. Then, based on the SRs, a set of fine-tuned
convolution parameters are used to compress the global model with
the convolutional compression module, and generate heterogeneous
sub-models (②). Afterwards, the server sends the heterogeneous
sub-models to federated clients (③). Clients then perform several
epochs of local training with their private training dataset to fine-
tune the received sub-models (④), and then upload the updated
parameters to the server (⑤). After that, the server performs the
transposed convolutional dilation, where different transposed convo-
lution parameters are used to dilate the sub-models to a set of large
models that have the same size as the global model (⑥). Finally, the
server applies the weighted average aggregation to aggregate the
dilated models with the learned weights(⑦).

In FedConv, the compression and dilation operations are trans-
parent to clients and performed by the powerful server, which can
be seamlessly integrated into conventional FL systemswhere clients
only need to perform local training.

4 FRAMEWORK DESIGN
4.1 Convolutional Compression
The convolutional compression module leverages a set of convolu-
tional layers (termed as compression layers) to compress the global
model and generate heterogeneous sub-models. As shown in Fig. 3,
after feeding the global model parameters to the compression layers,
the compressed parameters of the sub-model become smaller and
output fewer feature maps. We use the server-side data to itera-
tively optimize the convolution parameters (i.e., the parameters of
compression layers) until the sub-models can achieve comparable
performance to the global model, as they inherit the parameter in-
formation from the global model with a comprehensive perspective.
Thus, they are able to extract general features and can be further
updated by clients to fit their local data for personalization.

Convolution configurations. To determine the sizes of the sub-
models, clients first specify their shrinkage ratios (SRs). Specifically,

the server first broadcasts the size of the global model to all the
clients. Then, each client will determine an appropriate SR for
the corresponding sub-model to meet its own computing resource
budget2 (e.g., GPU memory, network bandwidth). Subsequently,
the SRs are transmitted back to the server. We note that same as
conventional FL schemes, no client-side sensor data needs to be
transferred to the server. Accordingly, the server determines the
corresponding configurations (i.e., input channel 𝒊𝒏, output channel
𝒐𝒖𝒕 , kernel size (𝒌1, 𝒌2), stride 𝒔, and padding 𝒑) of the compression
layers so that the sizes of generated sub-models match with the
expected SRs. Let’s take convolution layers as an example. As shown
in Fig. 3, a convolutional layer in the global model has 16 input
and 32 output channels with a kernel size of (3, 3). Regarding each
element in the kernel as a single unit, we can reshape its parameter
matrix from (32, 16, 3, 3) to 9 × (1, 32, 16). Suppose the SR is 0.75,
the shape of the parameter matrix becomes 9 × (1, 24, 12) after
compression. Therefore, we use nine separate 2D convolutional
layers (i.e., compression layers) to compress the reshaped matrix.
The configuration3 of each compression layer is Conv⟨𝒊𝒏=1, 𝒐𝒖𝒕=1,
𝒌=(9, 5), 𝒔=1, 𝒑=0⟩. This convolution-based process can also be
applied to compress other types of layers by properly adjusting the
configurations. Note that the input channels of the first layer will
not be compressed, ensuring that all channels of the raw data can
be fed into the sub-model. Similarly, the output channels of the last
layer are also uncompressed, ensuring that the sub-models and the
global model have the same prediction task.

Convolution parameter fine-tuning. Next, we need to fine-
tune the convolution parameters so that the generated sub-models in-
herit the parameter information from the global model and achieve
comparable performance. We use the server-side data to iteratively
adapt the convolution parameters by minimizing the loss between
the ground truth and the prediction result of the compressed model:

min
𝒘𝐶𝑜𝑛𝑣,𝑙

∑︁
𝑥

L(𝑓 (𝑥 ;𝑾𝐺,𝑙 ⊙ 𝒘𝐶𝑜𝑛𝑣,𝑙 ), 𝑦),

𝑠 .𝑡 . ∀𝑙 ∈ {1, 2, · · · , 𝐿}, ∀(𝑥, 𝑦) ∈ D .
(1)

where L is the Cross-entropy loss [73] and 𝑓 (·) is the forward
function of the compressed model. (𝑥,𝑦) is the data and the corre-
sponding label in the server-side data D.𝑾𝐺,𝑙 is the parameters of
the 𝑙-th layer in the global model.𝒘𝐶𝑜𝑛𝑣,𝑙 is the convolution param-
eters. ⊙ is the convolution operation. To fine-tune the convolution

2The resource profiling process can be performed by existing tools, e.g., nn-Meter [81].
3By default, we set the stride and padding as one and zero, respectively. We will vary
their values and the kernel size to explore the impact in § 6.4.4
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parameters, the compressed sub-model (𝑾𝐺,𝑙 ⊙𝒘𝐶𝑜𝑛𝑣,𝑙 ) is first eval-
uated on the server-side data. By back-propagating the calculated
loss, the convolution parameters𝒘𝐶𝑜𝑛𝑣,𝑙 is updated while others (i.e.,
the parameters of the global model and the sub-model) are frozen.

Remarks. In the model compression process, the server applies
compression layers on the global model parameters and iteratively
fine-tunes the convolution parameters to learn heterogeneous sub-
models, aiming to preserve crucial parameter information and pre-
diction capability from the global model. Such a learning-on-model
method fundamentally differs from the traditional learning-on-data
paradigm. Specifically, the learning-on-data method takes raw data
as input and trains a model to extract features, while our learning-
on-model method takes model parameters as input and uses com-
pression layers to generate sub-model parameters. The parameters
of compression layers are fine-tuned by minimizing the loss between
the sub-model outputs and the ground-truth labels.

Challenges. Nevertheless, several practical challenges emerge
during this compression process. We use a pre-trained model on the
MNIST [18] dataset (with an accuracy of 99.04%) as an example to
show how we address these challenges and the progress we make.

(1) Information loss. After fine-tuning the convolution parameters
as aforementioned, we find that the amount of the parameter in-
formation in the sub-model inferred from the global model is still
low (the mutual information between the parameters of the global
model and the sub-model is only 0.84). This can be attributed to
the limited capability of simple compression layers to capture more
fine-grained parameter information effectively, leading to a lower
accuracy of the sub-model (90.2%). To address this issue, we add
two 1 × 1 convolutional layers with biases before compression (Fig.
5(a)). Intuitively, the first Conv 1×1 increases the number of output
channels to 16, capturing more diverse and complex parameter
information in the global model. The second Conv 1 × 1 decreases
the channel number back to one, fusing information from different
channels and producing a comprehensive parameter representation.
In addition, we add a residual connection between the global model
parameters and the output of the second Conv 1 × 1, facilitating
the transfer of parameter information from the global model to
sub-models through convolution operations. With these designs,
the accuracy of the sub-models increases to 93.15%, indicating that
the information loss is effectively mitigated.

(2) Imbalanced parameter distribution. As shown in Fig. 6(a), al-
though the distributions of the parameters in sub-models and the
global model are similar, the parameters in sub-model skew towards
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negative values, leading to numerical instability, slow convergence,
and unexpected performance degradation [27]. Therefore, we adopt
a modified Leaky ReLU (MLR) activation function (Fig. 6(b)) to rec-
tify the negative value, where 𝑠𝑛 and 𝑠𝑝 are slopes for negative and
positive values, respectively. With a small 𝑠𝑛 , the MLR can suppress
the negative parameters but not entirely eliminate them, thereby
preserving potential information embedded in negative parameters.
After applying the MLR, the sub-model parameters exhibit a similar
distribution pattern and value range to the global model (Fig. 6(a)).
The accuracy of the sub-model further increases to 95.06%.

(3) Performance fluctuation. During the fine-tuning process, we
observe significant performance fluctuation of the sub-model. This
is because in learning-on-data methods, model parameters are di-
rectly updated during training. However, in our learning-on-model
method, only the convolution parameters are updated, which subse-
quently generate sub-model parameters via the convolution process.
As a result, the performance of the sub-model exhibits much higher
sensitivity to the changes in convolution parameters. To address
this issue, we apply weight normalization [56] on the convolution
parameters to decouple their magnitude and direction during up-
dating, which stabilizes the convergence in a fine-grained way.
Moreover, we apply a cosine annealing learning rate scheduler [34]
that dynamically varies the learning rate to avoid local optima and
enables faster convergence [38]. The learning rate undergoes a
cosine function decay as the epoch progresses:

𝑙𝑟 = 𝑙𝑟𝑚𝑖𝑛 + 0.5(𝑙𝑟𝑚𝑎𝑥 − 𝑙𝑟𝑚𝑖𝑛 ) (1 + cos (𝑒/𝑇𝑚𝑎𝑥 · 𝜋 ) ) (2)
where 𝑒 is the current epoch index, 𝑙𝑟𝑚𝑖𝑛 and 𝑙𝑟𝑚𝑎𝑥 are the lower
and upper bound of the learning rate, and 𝑇𝑚𝑎𝑥 is the maximum
number of iterations before the 𝑙𝑟 restarts to 𝑙𝑟𝑚𝑖𝑛 . As shown in
Fig. 7(a), after applying weight normalization and the learning rate
scheduler, the accuracy of the sub-model improves to 96.8% and
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98.59%, respectively. Meanwhile, the performance becomes more
stable, and the sub-model converges after around 20 epochs.

After fine-tuning the convolution parameters, the compressed
models will have comparable performance to the global model. The
server then sends the compressed parameters to the corresponding
clients for local training. The fine-tuned convolution parameters
will be kept on the server and updated in the next communication
round. Note that this process is performed completely on the server
without imposing any extra computation or communication burden
on clients. The detailed process is shown in Algorithm 1.

4.2 Transposed Convolutional Dilation
Upon receiving the updated sub-models from clients, we need to
rescale the heterogeneous client models to a unified size for fur-
ther aggregation. Although knowledge distillation-based methods
[43, 45] are promising, they impose significant computational and
communication overhead on clients (§ 1). Instead, we use transposed
convolution (TC) layers on the server side, a reverse operation to the
convolution compression. In contrast, we apply different TC layers to
each of the received client models, as they are trained on non-IID
data with different sensing heterogeneity and thereby inherently
carry diverse personalized information. Then, by meticulously fine-
tuning the TC parameters (i.e., parameters of the TC layers), the
personalized information embedded in each client model’s param-
eters will be preserved and transferred to the dilated models for
subsequent aggregation.

TC configurations. To transform the heterogeneous models
from different clients to a unified size, it is important to ensure that
the configurations of each TC layer for dilation are identical to the
corresponding compression layer. For instance, as illustrated in Fig.
5(b), a convolutional layer in a client model has 12 input and 24
output channels with a kernel size of (3, 3). With the SR as 0.75,
the configurations of the TC layer should be TC⟨𝒊𝒏=1, 𝒐𝒖𝒕=1, 𝒌=(9,
5), 𝒔=1, 𝒑=0⟩. Similarly, this process can also be employed to dilate
other kinds of network layers. Note that the input channel number
of the first layer and the output channel number of the last layer in
all client models are also unchanged.

TC parameter fine-tuning. To fine-tune the TC parameters, we
also set them as learnable variables and minimize the loss between
the ground truth and the prediction result of the dilated large model:

min
𝒘𝑇𝐶,𝑙

∑︁
𝑥

L(𝐹 (𝑥 ;𝑾𝐶,𝑙 ⊚ 𝒘𝑇𝐶,𝑙 ), 𝑦),

𝑠 .𝑡 . ∀𝑙 ∈ {1, 2, · · · , 𝐿}, ∀(𝑥, 𝑦) ∈ D .
(3)

where 𝐹 (·) is the forward function of the dilated large model,𝑾𝐶,𝑙
is the parameters of the client model,𝒘𝑇𝐶,𝑙 denotes the TC param-
eters, and ⊚ represents the TC operation. To further enhance the
integration of personalized information into the dilated models, we
also add two TC 1 × 1 layers with a residual connection before the
dilation process (detailed in Fig. 5(b)).

4.3 Weighted Average Aggregation
After generating a set of dilated large models, the server aggregates
them to obtain the global model. However, we find that directly av-
eraging [49] the parameters of all the dilated models leads to severe
performance degradation (the accuracy of the aggregated model
is only 47.6% on the MNIST dataset). The reasons are two-folded:
1) the magnitude of the dilated models’ parameters varies with

Algorithm 1: Convolutional compression
Input :Global round 𝑟 , pre-training epochs 𝑒𝑝 , convolution

parameters updating epochs 𝑒𝑐 , device type number 𝑛, SR
list {𝑆𝑅1, 𝑆𝑅2, · · · , 𝑆𝑅𝑛 },𝑇𝑚𝑎𝑥 , 𝑙𝑟𝑚𝑎𝑥 , 𝑙𝑟𝑚𝑖𝑛

Output :Compressed parameters {𝑃1, 𝑃2, · · · , 𝑃𝑛 }
1 /* Configuration initialization */;
2 if 𝑟 == 1 then
3 Initialize the global model as 𝒘 (𝑟 ) ;
4 Pre-train 𝒘 (𝑟 ) for 𝑒𝑝 epochs on D;
5 for device_type 𝑖 ∈ {1, 2, · · · , 𝑛} parallel do
6 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑠ℎ𝑟𝑖𝑛𝑘𝑎𝑔𝑒_𝑟𝑎𝑡𝑖𝑜 ← 𝑆𝑅𝑖 ;
7 𝐶𝑜𝑛𝑣𝑖 (𝑟 ) ← Initialize_Conv(𝒘 (𝑟 ), 𝑆𝑅𝑖 ) ;
8 end
9 else
10 𝐶𝑜𝑛𝑣𝑖 (𝑟 ) ← 𝐶𝑜𝑛𝑣𝑖 (𝑟 − 1) ;
11 end
12 /* Convolution parameters fine-tuning */;
13 for device_type 𝑖 ∈ {1, 2, · · · , 𝑛} parallel do
14 for e ∈ {1, 2, · · · , 𝑒𝑐 } do
15 𝑙𝑟 = 𝑙𝑟𝑚𝑖𝑛 + 0.5(𝑙𝑟𝑚𝑎𝑥 − 𝑙𝑟𝑚𝑖𝑛 ) (1 + cos (𝑒/𝑇𝑚𝑎𝑥 · 𝜋 ) ) ;
16 for each (𝑥, 𝑦) in D do
17 𝑃𝑖 ← MLR(𝒘 (𝑟 ) ⊙ 𝐶𝑜𝑛𝑣𝑖 (𝑟 ) ) ;
18 𝑜𝑢𝑡𝑝𝑢𝑡 ← 𝑓 (𝑃𝑖 ;𝑥 ) ;
19 𝑙𝑜𝑠𝑠 ← Loss_fn(𝑜𝑢𝑡𝑝𝑢𝑡, 𝑦) ;
20 Back-propagate gradient 𝑔𝑖 to𝐶𝑜𝑛𝑣𝑖 (𝑟 ) ;
21 𝐶𝑜𝑛𝑣𝑖 (𝑟 ) ← 𝐶𝑜𝑛𝑣𝑖 (𝑟 ) − 𝑙𝑟 · 𝑔𝑖 ;
22 end
23 end
24 end
25 Send 𝑃𝑖 to the corresponding client;

their sizes [19]; 2) the parameters of the dilated models through
TC operations also carry personalized information from different
clients, thus exhibiting distinct patterns and varying skewness to-
ward client-side data distribution (Fig. 7(b)). Simply aggregating
these dilated models overlooks the diverse contributions that het-
erogeneous clients can make in the aggregation process.

Contribution coordination. To fuse and balance the diverse
personalized information from the dilated models, we first normal-
ize the parameters of all the dilated models to [0, 1] and then assign
different learnable weight vectors to every network layer in each
dilated model for the weighted aggregation. The parameters of the
𝑙-th aggregated network layer are then expressed as:

𝑾𝑙 = (
𝑛∑︁
𝑗=1

𝒗𝑗,𝑙 · 𝑠 𝑗 · 𝒘𝑗,𝑙 )/
𝑛∑︁
𝑗=1
𝑠 𝑗 (4)

where𝑾𝑙 is the parameters of the 𝑙-th layer in the aggregatedmodel,
𝑛 is the number of large models.𝒘 𝑗,𝑙 and 𝒗 𝑗,𝑙 are the parameters and
the corresponding weight vector of the 𝑙-th layer in the 𝑗-th large
model, 𝑠 𝑗 is the number of data samples that are used for training the
𝑗-th client model. We iteratively optimize 𝒗 𝑗,𝑙 via gradient descent
to gradually balance the distinct contributions.

Aggregation enhancement. To further quantify the differ-
ent contributions of heterogeneous clients and enhance the ag-
gregation process, we use Kullback-Leibler Divergence (KLD) [44]
as a practical criterion to measure the similarity between the pa-
rameters of the global model and the dilated models. The higher
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Table 1: The hardware configuration of heterogeneous devices in a real-world experiment.

Type Device Name Number CPU RAM GPU GDDR Network SR
Server ASUS W790-ACE Server 1 Intel Xeon Gold 6248R, 3.0GHz 640GB NVIDIA A100 40GB Ethernet -
Router Mi Router AX3000 1 Qualcomm IPQ5000 A53, 1.0GHz 256MB - - Ethernet -

PC
Supermicro X11SCA-F 2 Intel Xeon E-2236, 3.4GHz 32GB NVIDIA RTX A4000 16GB Ethernet 1.0
Supermicro SYS-5038A-I 2 Intel Xeon E5-2620 v4, 2.10GHz 64GB NVIDIA GeForce GTX 1080 Ti 12GB * 2 Wi-Fi 1.0
ThinkPad P52s Laptop 4 Intel i5-8350U, 1.70GHz 32GB NVIDIA Quadro P500 2GB Wi-Fi 0.75

Board
NVIDIA Jetson TX2 4 Dual-Core NVIDIA Denver 2, 2GHz 8GB 256-core NVIDIA Pascal GPU 4GB Wi-Fi 0.75
NVIDIA Jetson Nano 4 ARM Cortex-A57 MPCore, 1.5 GHz 4GB NVIDIA Maxwell architecture GPU 2GB Wi-Fi 0.5

Raspberry Pi 4 4 Quad core Cortex-A72, 1.8GHz 8GB - - Wi-Fi 0.25

the similarity, the more contribution the large model will make
to the aggregation. Thus, the aggregated global model can at-
tain higher generalizability and a more comprehensive global per-
spective. The KLD for the 𝑗-th dilated model is formulated as
𝐾𝐿𝐷 𝑗 =

∑𝐿
𝑙=1

∑
𝑥 𝑾𝐺,𝑙 (𝑥) log

𝑾𝐺,𝑙 (𝑥 )
𝒘𝑗,𝑙 (𝑥 ) , where 𝑾𝐺 is the global

model parameters from the previous communication round. The
optimization of the weight vectors is expressed as:

L(𝒗 ) = LD (𝑾 ) + _
𝑛∑︁
𝑗=1

𝐾𝐿𝐷 𝑗 (5)

where L is the Cross-Entropy loss for the model output, and _ is
a coefficient for balance. After fine-tuning the weight vectors, the
aggregated model will be used for the next round.

5 EXPERIMENT SETUP
5.1 Implementation
We implement FedConv with PyTorch [53] and Flower [5]. The
load_state_dict() function in PyTorch is overridden to enable
the gradient to back-propagate to the convolution/TC parameters.
We evaluate FedConv with a cloud server, a router, and 20 het-
erogeneous mobile devices with different hardware and network
conditions. Detailed configurations of the heterogeneous devices
are described in Table 1. We deploy these edge devices in our offices
and laboratories under real-world network conditions.

5.2 Datasets and Models
We select two representative mobile applications and use different
model architectures and sizes on various datasets.

Application#1: Image Classification. Imagine classification
is a popular computer vision application for FL. We choose three
datasets: 1)MNIST [18] consists of 60,000 28×28 gray-scale images
of ten handwritten digits. We use a convolutional neural network
(CNN) with two convolutional layers and one fully connected layer
as the classification model; 2) CIFAR10 [37] consists of 60,000 32 ×
32 color images in ten classes. We use ResNet18 [30] to perform the
evaluation; 3) CINIC10 [16] contains 180,000 32 × 32 color images
in ten classes. We use GoogLeNet [66] for evaluation.

Application#2: Human Activity Recognition (HAR). HAR
[14, 68, 72, 75, 76] is realized by analyzing different types of sensor
data (e.g., Depth camera, IMU, and the channel state information of
WIFI signals). We select three datasets: 1) WiAR [28] contains 480
90 × 250 Wi-Fi CSI samples of 16 activities. We augment the dataset
to 64,000 samples following OneFi [74]; 2) Depth camera dataset
(DCD) [52] contains 5,000 36 × 36 gray-scale depth images of five
common gestures; 3)HARBox [52] captures 9-axis IMU data of five
daily activities. A sliding window of 2 seconds is applied to generate
900-dimensional features for each of the 30,000 data samples in
total. The IMU data was collected from 121 users with 77 different
smartphones, demonstrating a degree of sensing heterogeneity. As
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Figure 8: Visualization of Non-IID data. The size of scattered
points indicates the number of data samples.

there is no standard model for these datasets, we use a CNN model
with three convolutional layers and one FC layer, which can achieve
high accuracy with a small number of parameters.

We divide these datasets into four parts: 1) the IID server-side
global data for convolution/TC parameters and weight vectors tuning,
2) IID test data for evaluating the aggregated global model, 3) client-
side training and 4) testing data (IID or non-IID). Each part counts
for 5%, 20%, 70%, and 5% of the total dataset, respectively. The first
and second parts of the dataset are kept on the server, whereas the
third and fourth parts are distributed among heterogeneous clients.
Besides, to emulate real-world heterogeneity, we employ different
datasets on the server and clients (§ 6.7).

5.3 Baselines
We compare FedConv with the following baselines: 1) Serveralone
trains one model with only the server-side global data. We evaluate
the model using the server-side IID test data and non-IID client-side
test data. 2) Standalone allows each client to train an affordable
model locally using their private data without parameter exchange.
3) FedAvg [49] is a classic FL paradigm where clients collabora-
tively train a shared global model and upload the updated model
parameters to a central server for averaging aggregation. Due to
the constrained resources of some devices, we assign the smallest
affordable models to all clients. 4) FedMD [43] utilizes knowledge
distillation to reach a consensus among heterogeneous client mod-
els through training on a public dataset. 5) LotteryFL [40] generates
sub-models by exploiting the Lottery Ticket hypothesis on hetero-
geneous clients for personalization. 6) Hermes [39] finds a sparse
sub-model for each client by using a channel-wise pruning scheme
to reduce the communication overhead. 7) TailorFL [19] produces
sub-models by filter-level pruning based on the learned importance
value of each filter. 8)HeteroFL [21] is a parameter sharing method
that allows each client to select a subset of the parameters from the
global model. 9) FedRolex [4] adopts dynamic rolling windows
when extracting sub-models for heterogeneous clients.

5.4 Heterogeneity Consideration
For model heterogeneity, we consider four SRs: 0.25, 0.5, 0.75,
and 1.0, according to the resource profiles of the heterogeneous
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Figure 9: Accuracy comparison under model heterogeneity (𝛼 = 0.1).
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(b) Client model accuracy comparison
Figure 10: The inference accuracy of aggregated global models and client models on different datasets.

clients. The SR for each client is detailed in Table 1. For powerful
clients, we assign larger SRs (e.g., 0.75 for laptops), and for resource-
constrained clients, we assign smaller SRs (e.g., 0.25 for Raspberry
Pis). For data heterogeneity, we sample the disjoint non-IID client-
side data using the Dirichlet distribution Dir(𝛼). A larger 𝛼 (e.g.,
10000) indicates a more homogeneous distribution and a smaller 𝛼
(e.g., 0.05) generates a more heterogeneous distribution [32], The
sample distribution among different classes is illustrated in Fig. 8.

5.5 Hyper-parameter Settings
For baselines and FedConv, we set the number of communication
rounds to 100. Each client performs 5 local training epochs with
a learning rate of 0.001. In the model compression and dilation
process, the stride and padding of all the convolution parameters
are 1 and 0. The server-side pre-training epoch number is 5. The
epoch number for updating convolution/TC parameters are both 20,
and the 𝑇𝑚𝑎𝑥 , 𝑙𝑟𝑚𝑖𝑛 , 𝑙𝑟𝑚𝑎𝑥 in the cosine annealing scheduler are 4,
0.00001, and 0.001, respectively. 𝑠𝑝 and 𝑠𝑛 (Fig. 6(b)) in the activation
function are 0.85 and 0.001, respectively. In model aggregation, the
number of epochs, the learning rate for updating weight vectors,
and _ in Eq. (4) are 10, 0.001, and 0.2, respectively.

6 EVALUATION
6.1 Metrics
Training performance: 1) Inference accuracy: we measure the
global model accuracy with the server-side test dataset to evaluate
the generalizability of the global model. We also report the average
client model accuracy with client-side private test datasets to eval-
uate the effectiveness of personalization. 2) Communication cost:
we use the Pympler library to monitor the network traffic of all the
clients over 100 communication rounds.

Runtime performance: 1) Memory footprint: the real-time GPU
memory usage is monitored using the PyTorch CUDA Toolkit. We
track each client’s process ID over 100 communication rounds to
monitor their CPU usage and report the average value. 2)Wall-clock
time: we measure the execution time of each client from receiving
model parameters to finishing the training task, and report the
average wall-clock time in each round.

6.2 Overall Performance
We evaluate the overall performance of FedConv with heteroge-
neous models and data distribution.
6.2.1 Global model performance. We first evaluate the accuracy
of the aggregated global model to demonstrate its generalizability.
Standalone and FedMD are excluded because they do not create
global models. Fig. 9(a) shows the global model accuracy under
the same degree of heterogeneous data (𝛼 = 0.1). Serveralone
achieves a higher global model accuracy than the baselines in most
cases, as the server-side data for training and testing are both IID.
FedConv achieves average improvements of 20.5%, 13.8%, and 10.5%
compared with pruning-based methods (Hermes and TailorFL),
parameter sharing-based method (HeteroFL and FedRolex) and
other baselines (FedAvg and LotteryFL), respectively. Since we
assign the smallest affordable model to all clients in FedAvg, the
clientmodels have an insufficient number of parameters for training.
Therefore, FedConv can outperform FedAvg evenwith IID data. This
shows the superior generalization performance of FedConv.

Moreover, Fig. 10(a) shows the global model accuracy of Fed-
Conv and all baselines across different data heterogeneity on all
datasets. We can see that the performance enhancement of FedConv
becomes more significant as 𝛼 decreases, meaning that FedConv
can better cope with the increased data heterogeneity. Although
FedConv does not obviously outperform FedAvg with homogeneous
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Table 2: System resource overhead.

Metric System Heterogeneous Data (𝛼 = 0.05) Homogeneous Data (𝛼 = 10000)
MNIST CIFAR10 CINIC10 WiAR DCD HARBox MNIST CIFAR10 CINIC10 WiAR DCD HARBox

Memory
Footprint
CPU + GPU

(GB)

Standalone 2.14 3.51 4.07 3.95 2.24 2.19 2.13 3.47 4.47 4.03 2.21 2.17
FedAvg 1.90 2.40 3.31 2.39 1.98 2.01 1.90 2.51 2.79 2.36 1.88 2.08
FedMD 2.71 3.65 7.51 4.71 2.99 2.79 2.71 3.65 7.93 4.58 2.99 2.81

LotteryFL 2.62 3.51 4.30 3.23 2.69 2.67 2.63 3.49 4.36 3.27 2.70 2.66
Hermes 2.64 3.45 6.07 3.28 2.73 2.69 2.64 3.35 6.13 3.32 2.72 2.68
TailorFL 2.75 3.61 5.09 3.41 2.79 2.71 2.75 3.47 7.52 3.16 2.77 2.70
HeteroFL 2.63 3.31 4.15 3.25 2.73 2.67 2.63 3.45 4.10 3.08 2.73 2.67
FedRolex 2.63 3.21 4.15 3.25 2.72 2.67 2.60 3.54 4.16 3.16 2.68 2.69
FedConv 2.52 3.21 4.15 3.02 2.60 2.67 2.52 3.35 4.10 3.14 2.62 2.67

Wall-clock
Time (s)

Standalone 3.87 24.65 279.62 8.05 5.91 3.54 9.38 52.38 273.52 7.60 6.14 3.56
FedAvg 7.05 39.19 285.30 10.62 10.19 10.09 13.75 97.95 1711.34 20.79 43.67 26.98
FedMD 44.34 437.14 5370.83 55.03 75.25 32.92 45.17 475.42 6700.17 64.43 79.10 34.53

LotteryFL 9.18 147.98 699.35 8.89 8.61 5.69 17.59 235.89 1829.33 19.77 22.06 10.92
Hermes 43.22 714.00 5580.71 103.90 169.97 104.53 43.84 937.82 7621.38 117.85 217.97 115.31
TailorFL 6.98 62.89 393.46 14.44 12.72 10.11 13.61 99.60 813.94 25.53 13.96 13.27
HeteroFL 6.96 42.56 641.21 10.78 10.03 5.10 13.56 82.07 1310.81 22.26 23.90 10.98
FedRolex 6.92 45.98 602.48 11.57 12.34 4.87 12.46 84.25 1389.41 23.64 20.14 11.26
FedConv 5.96 40.68 264.30 12.96 10.15 4.40 10.33 71.26 1406.87 21.79 17.22 9.89

Table 3: Communication overhead comparison (GB).
System MNIST CIFAR10 CINIC10 WiAR DCD HARBox

FedAvg 14.80 4815.84 2697.85 28.24 13.45 8.87
FedMD 19.99 5126.46 2859.79 40.91 19.94 16.24

LotteryFL 11.11 4713.91 2623.93 23.01 10.05 8.55
Hermes 16.34 7099.66 2848.83 36.63 15.02 12.95
TailorFL 11.40 4787.18 2686.15 24.30 10.32 8.82
HeteroFL 11.11 4713.91 2623.93 23.01 10.05 8.55
FedRolex 11.11 4713.91 2623.93 23.01 10.05 8.55
FedConv 11.11 4713.91 2623.93 23.01 10.05 8.55

data, it exhibits better generalizability and robustness in the global
model under heterogeneous data. FedConv also provides better per-
sonalization performance for clients (§ 6.2.2). The performance
improvements of the global model stem from our convolutional
compression and TC dilation methods. They facilitate the informa-
tion embedded in the global model being preserved and transferred
from the server to clients through our learning-on-model approach.
6.2.2 Client model performance. To evaluate the personalization
performance, we measure the accuracy of each client model with
client-side test datasets and report the average value. Fig. 9(b) shows
that with the same heterogeneous data settings, FedConv outper-
forms baselines (FedAvg, LotteryFL, Hermes, TailorFL, HeteroFL,
and FedRolex) with accuracy improvements ranging from 8.4% to
50.6%. In Serveralone, when evaluating the global model using the
client-side non-IID data, the accuracy of the client model drops be-
low that of most baseline systems. This is because, in FedConv, the
server-side data occupies a small portion (5%) of the entire dataset.
Therefore, Serveralone’s global model hasn’t seen sufficient data,
leading to degraded performance on the client-side non-IID data.

Additionally, Fig. 10(b) shows the client model accuracy of Fed-
Conv and all baselines with different data heterogeneity. We can
see that the performance disparities become more substantial as 𝛼
decreases, implying that FedConv is more robust and can achieve
consistently high accuracy across diverse data distribution. This
performance gain stems from the TC dilation process, where dis-
tinct TC parameters are assigned to each uploaded client model on
the server. The rescaled large models will thereby preserve the per-
sonalization information from clients, which is then aggregated into
the global model. Besides, Fig. 9(b) shows that, with sensing hetero-
geneity in the HARBox dataset, FedConv achieves a better and more
stable performance. However, when 𝛼 is small (e.g., 𝛼 ∈ {0.05, 0.1}
on CIFAR10), the client model accuracy of FedMD is higher than

FedConv. The better performance stems from the distilled knowl-
edge shared by all clients. Nonetheless, the downside is that it
imposes excessive communication and computational overhead
on clients (Table 2 & Table 3). By contrast, FedConv can achieve
comparable personalization performance without an extra burden
on clients. In practice, we can further improve the personalization
performance by adding task-specific layers [35] (detailed in§ 6.6).

Remarks. FedConv exhibits significant performance gains in
both global and client models across various settings. The parame-
ter information of the global model can be preserved via our con-
volutional compression module. We suspect that the performance
instability of some baselines might be attributed to the information
loss in model pruning and the imbalance issue in parameter sharing.

6.3 Overhead Assessment
We evaluate the memory footprint, wall-clock time, and communi-
cation overhead of each client in FedConv and baselines with both
homogeneous (𝛼=10000) and heterogeneous (𝛼=0.05) data across
clients. Table 2 provides an overview of the average memory usage
and the average wall-clock time of each client. With the same set
of SRs, FedConv achieves an average saving of 40.6% in memory
cost and 54.6% in computation overhead compared with the base-
lines, respectively. Furthermore, when the client model is complex
(ResNet18 and GoogLeNet), FedConv only needs approximately
half of the memory and training time compared to the pruning-
based methods. For example, in the homogeneous data condition,
FedConv needs 2GB less memory and saves around 90 minutes of
wall-clock time than Hermes in one single round. This is because
the computation-intensive pruning operations are executed on the
resource-constrained clients. In contrast, clients in FedConv only
need to perform local training in each round, resulting in signifi-
cant savings in terms of memory, computation, and communication
resources. Note that FedAvg consumes less memory and wall-clock
time because we assign the smallest affordable models to all clients.

Table 3 lists the total size of data packets transmitted through
the network by all clients. We observe that the communication
cost of FedConv, LotteryFL, and HeteroFL are comparable, as they
exclusively transmit sub-model parameters without extra contents.
In contrast, Hermes and TailorFL have to transmit the pruning
structure, and FedMD needs to transmit logits. Thus, FedConv, Lot-
teryFL, and HeteroFL are more friendly to resource-constrained
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Figure 11: Varying number of clients.
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Figure 12: Varying shrinkage ratios.
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Figure 13: Sensitivity analysis of varying hyper-parameters in FedConv.

clients. Moreover, it holds significant potential that exiting quanti-
zation techniques [2, 20] and masking method [41] can be extended
to FedConv, to further diminish the communication overhead.

Remarks. In summary, benefiting from the lighter communi-
cation and computation burden imposed on resource-constrained
clients, FedConv saves more system resources and performs infer-
ence tasks faster than the baselines.

6.4 Sensitivity Analysis
6.4.1 Varying client number. We simulate 100 clients and vary the
number of selected participating clients from 10 to 50 (𝛼 = 10000)
to compare the client model performance with the baselines. As
shown in Fig. 11(a), the client model accuracy in FedConv exhibits
an upward trend as the number of clients increases. For example,
the client model accuracy on HARBox increases by 17.54% when the
number of clients increases from 10 to 50. We then select CIFAR10
to compare the client model performance of FedConv with pruning-
based and parameter sharing-basedmethods. From Fig. 11(b), we see
that FedConv attains an average client model accuracy that is at least
32.5% higher than that of the baselines. The results demonstrate the
scalability and superiority of FedConv with varying client numbers.

6.4.2 Varying shrinkage ratios. To investigate the trade-off be-
tween the SR and model performance, we set the SR for 10 clients
as 1.0 and set the SR for the remaining 10 clients as 𝑟 . We then vary
𝑟 from 1.0 to 0.05 and record the average client model accuracy
(𝛼 = 10000). From Fig. 12(a), we can see that as the SR decreases
below a certain threshold, there is a notable accuracy drop in client
models, as expected. For MNIST, WiAR, and DCD, the SR threshold
is about 0.25 (the red shadow), and for CIFAR10, CINIC10, and HAR-
Box, the threshold is about 0.4 (the blue shadow). Fortunately, we
find that even a lightweight device (e.g., Raspberry Pis) can afford
the GoogLeNet model on CINIC10 when the SR is 0.4. Consequently,
as long as the SR remains above the corresponding threshold, it can
be reduced to conserve system resources effectively.

We then use CIFAR10 to compare FedConv with the baselines,
and the client model accuracy is shown in Fig. 12(b). We can see
that though the accuracy of FedConv also decreases with limited

resources, it can retain much higher accuracy than the baselines.
The reason is that with a lower SR (higher pruning rate), the base-
lines discard a larger amount of parameter information. In contrast,
with convolutional compression, FedConv can effectively preserve
the parameter information of the global model as much as possible
to the sub-models bounded by their sizes and resource budgets.

6.4.3 Varying server-side data sizes. To investigate the impact of
server-side data, we vary the sample number ratio of the server-side
data from 1% to 25%, with a step of 0.5%. As shown in Fig. 13(a), we
obtain two key observations: 1) When the ratio of the server-side
data varies from 1% to 5%, the client models will have better perfor-
mance, due to the richer information obtained from the server-side
data; 2) After the turning point (> 5%) the global model tends to
overfit to the server-side data, leading to less personalization and
degraded client model performance. In our evaluation, we set the
default sample ratio of the server-side data to 5%. Note that the
actual turning point may differ in practice. In addition, continuous
learning [48] or incremental learning [29] techniques can be further
applied as more server-side data become available.

6.4.4 Varying hyper-parameters. We vary the number of epochs
for fine-tuning the model compression, dilation, and aggregation to
evaluate their impact on the personalization performance of client
models. We select two datasets (CIFAR10 and HARBox) for demon-
stration. We first vary the number of epochs for updating the con-
volution/TC parameters in each global round. Fig. 13(b) shows that
when the number of convolution/TC parameters updating epochs
is around 20, the client models achieve better and more stable per-
formance. After the 20-th and the 40-th epoch, the client model
accuracy gradually drops due to the convolution/TC parameters be-
ing over-fitted to the server-side data. Similarly, from Fig. 13(c), we
can observe that when the number of tuning epochs for updating
weight vectors exceeds 40 and 80, the accuracy of the aggregated
global model also decreases. Therefore, we set the number of epochs
for model compression, dilation, and aggregation to 20.

We also vary the kernel size and stride length of the compression
layers and report the mean client model accuracy to explore the
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Figure 14: Ablation study of FedConv.
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Figure 15: FedConv with personalized FL.

impact on client performance. We select a convolutional layer from
the large model as an example, whose parameter matrix has a shape
of 9× (1, 64, 64). With the SR being 0.75, the compressed parameter
matrix will have a shape of 9 × (1, 48, 48). Since the kernel size
𝑘 and the stride 𝑠 should satisfy (64 + 2𝑝 − 𝑘 + 1)/𝑠 = 48, the
padding 𝑝 can then be determined accordingly. In general, a larger
kernel can capture more comprehensive parameter information,
and a smaller stride can capture more fine-grained information. As
shown in Fig. 13(d), client models tend to have better performance
as the kernel size increases and the stride decreases. However, a
larger kernel incurs high computational complexity and imposes a
heavy workload on the server. Therefore, in our default settings,
the kernel size and stride are set as 23 and 1, respectively.

6.5 Ablation Study
Next, we conduct ablation studies to investigate the importance
of the server-side pre-training process and the weighted average
aggregation module, respectively.

6.5.1 Server-side pre-training. Fig. 14(a) shows the impact on global
model accuracy with and without server-side pre-training with
𝛼 = 0.05. It can be observed that with the integration of pre-training,
the global model achieves higher average accuracy (about 15.69%)
and reaches faster convergence (about 40 communication rounds
earlier), which helps the FL server and clients save communication,
computation, and energy costs involved in the training process.

6.5.2 Weighted average aggregation. To demonstrate the impact
of our learned weight vectors for model aggregation, we assign
weights with respect to sample number as in FedAvg to all clients
and measure the global model accuracy. Fig. 14(b) shows the effect
on global model accuracy when performingmodel aggregation with
learned weights and equal weights separately. Significant perfor-
mance degradation can be observed when employing the averaging
aggregation method. This is because the parameters from heteroge-
neous client models usually exhibit varying skewness toward their
local data distribution. Merely averaging all the model parameters
overlooks the different contributions made by clients in the aggre-
gation process. On the contrary, with the learned weight vectors,
clients can contribute different parameter information to the aggre-
gated global model and improve its generalization performance.

6.6 Personalization Enhancement
To evaluate the potential in personalization, we extend FedConv
by adding task-specific layers [35] on each client, and evaluate the
client model accuracy. Specifically, after receiving the parameters
from the server, each client appends its own personal layers to
the sub-model. By doing so, the personalization performance of
each client can be enhanced during local training. We record the
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Figure 16: Case study with real-world heterogeneity.

average accuracy of client models after 100 communication rounds.
Fig. 15 shows the performance improvement on five datasets after
applying personalization enhancement. Compared with FedMD,
which achieves the highest client model accuracy (§ 6.2.2), we
can see that FedConv with personalization enhancement is able
to surpass FedMD in most cases. This result indicates that FedConv
can be enhanced with existing personalized federated learning
methods to achieve better performance.

6.7 Case Study with Real-World Heterogeneity
In our default configuration, both the server-side and client-side
datasets originate from the same domain. To test with real-world
heterogeneity and assess its impact, we conduct a case study where
the Chars74K dataset [17] is kept on the server, while the MNIST
dataset is used for heterogeneous clients. The Chars74K dataset
contains images of digits from computer fonts with variations (italic,
bold, and normal). In this case, the global model can learn and
extract general features (e.g., different shapes of the digits from the
Chars74K dataset), while heterogeneous clients can further fine-
tune the compressed model to extract personalized features (e.g.,
various writing styles of the digits from the MNIST dataset). The
convolutional compression process and the TC dilation process can
be regarded as a transformation from one data domain to another.
The generated sub-models via convolutional compression contain
parameter information from the large global model and can thereby
extract general features. Similarly, the server applies TC to the
locally trained heterogeneous client models to rescale them. This
facilitates the aggregation process to form a new global model,
retaining the personalization information of the client-side data. As
shown in Fig. 16(a) and Fig. 16(b), due to the domain gap between
the server-side and the client-side data, there is a decrease in both
the globalmodel and the clientmodel accuracy. FedMD still achieves
comparable performance to FedConv with only the MNIST dataset,
benefiting from the knowledge distillation method. However, when
we further enhance FedConv with transfer learning strategies [12,
55] on each client to narrow down the domain gap between the
server-side and the client-side data, the client models will achieve
higher accuracies and even outperform FedMD. This observation
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indicates that FedConv can be combined with existing federated
transfer learning approaches to achieve better performance.

7 DISCUSSION
Privacy Concerns. In addition to transferring model parameters
between the server and heterogeneous clients, FedConv requires
all the clients to report their SRs before the FL training starts. To
determine appropriate SRs, clients will perform resource profiling
locally and report to the server. We note that same as conventional
FL schemes, no client-side sensor data needs to be transferred to the
server during this process. Thus, we believe the privacy protection
of conventional FL schemes can be effectively retained.

Practicality of FedConv. In FedConv, we use the Flower [5]
framework to orchestrate the entire FL process. While Flower offers
a stable and robust simulated environment for FL, deploying it in a
mixed Linux-Android environment encounters significant obsta-
cles. These include technical challenges in training neural network
models on Android devices and issues related to the compatibility
of the Flower framework with Android systems. Fortunately, recent
advancements [6] in Flower support federated learning setup with
Android clients using TensorFlow Lite [1].

Convolutional Compression. As shown in our evaluation, the
convolutional compression is effective in compressing large global
models and achieves better performance compared with model
pruning, parameter sharing, and knowledge distillation-basedmeth-
ods. Additionally, the compression and dilation process is performed
on the server side, without imposing any extra burden on the clients.
From the client’s perspective of view, they do not need to participate
in the pre-training and fine-tuning process and can join throughout
the FL processes, which is the same as the conventional FL systems.

8 RELATEDWORK
Data heterogeneity. Recent works [52, 54, 62, 70] optimize FL per-
formance under non-IID data. Clustering-based methods [11, 33, 52]
group clients according to the distribution of their data or model
parameters. For example, ClusterFL [52] captures the intrinsic clus-
tering patterns among clients by measuring the similarity of client
models. Shu et al. [61] propose a clustered multi-task federated
learning on non-IID data. Personalized FL adopts local fine-tuning
[24] or add task-specific layers on client side [35, 78]. For example,
pFedMe [22] uses Moreau envelopes as a regularized loss function
to decouple the task of optimizing a personalized model from the
global model learning. Yosinski et al. [78] enable the upper layers of
the global model to learn task-specific features, while the lower lay-
ers capture more general features which are further shared across
clients. Our work is orthogonal to these works and requires minimal
modification to clients for integration into existing FL systems.

Model heterogeneity and model compression. To accom-
modate heterogeneous clients, recent works mainly compress the
global model to reduce communication and computation costs. They
can be divided into three categories: 1) Knowledge distillation-based
methods [80, 82] generally regard heterogeneous client models as
teacher models and learn an aggregated global student model via
knowledge distillation (KD). Lin et al. [45] leverage KD and ensem-
ble learning to combine the knowledge from heterogeneous client
models. FedMD [43] computes an average consensus to substitute
the aggregation process. However, the tuning of KD is performed on

clients with a shared dataset, incurring extra overhead for clients; 2)
Parameter sharing strategies [57] allow sub-models to share a part
of the global model parameters to reduce computation overhead.
HeteroFL [21] enables heterogeneous clients to select fixed subsets
of global parameters with minimal modification to the existing FL
framework. Yet, the sharing strategy suffers from the imbalance
issue [77]; 3) Pruning-based methods [31, 71] have gained popu-
larity in heterogeneous FL. Hermes [39] applies a channel-level
pruning method to selectively prune out less important channels.
TailorFL [19] proposes an importance value-based filter-level prun-
ing scheme to enable a dual-personalized FL system. Removing en-
tire channels or filters results in information loss and performance
degradation [47]. Unlike these works, we compress the global model
with convolutional compression to generate sub-models. Orthogonal
to our work, traditional compression techniques (e.g., quantization
[69]) can be applied to compress model parameters and reduce
network traffic. However, as the compressed parameters should
be decompressed back to their original size before training, these
works cannot reduce the system overhead of clients.

Convolution and transposed convolution. Convolution can
effectively extract useful features from input data by capturing local
patterns and spatial relationships [38, 63]. In FedConv, we exploit a
novel convolutional compression technique to generate sub-models
for heterogeneous clients, which can capture key information em-
bedded in the global model. TC is renowned for its capability of
reconstructing super-resolution images from fuzzy ones [23, 25],
which is widely adopted in image dilation [15] and semantic seg-
mentation [51]. In our aggregation process, we leverage TC to resize
the heterogeneous client models to a unified size for aggregation.

9 CONCLUSION
Wepropose FedConv, a client-friendly federated learning framework
for heterogeneous clients, aiming to minimize the system overhead
on resource-constrained mobile devices. FedConv contributes three
key technical modules: 1) a novel model compression scheme that
generates heterogeneous sub-models with convolutional compres-
sion on the global model; 2) a transposed convolutional dilationmod-
ule that converts heterogeneous client models back to large models
with a unified size; and 3) a weighted average aggregation scheme
that fully leverages personalization information of client models to
update the global model. Extensive experiments demonstrate that
FedConv outperforms SOTA baselines in terms of inference accu-
racy with much lower computation and communication overhead
for FL clients. We believe the proposed learning-on-model paradigm
is worthy of further exploration and can potentially benefit other FL
tasks where heterogeneous sub-models can be generated to retain
the information of a global model.
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