
FTrack: Parallel Decoding for LoRa Transmissions

Xianjin Xia
The Hong Kong Polytechnic
University, Hong Kong, China
csxxia@comp.polyu.edu.hk

Yuanqing Zheng
The Hong Kong Polytechnic
University, Hong Kong, China
csyqzheng@comp.polyu.edu.hk

Tao Gu
RMIT University,

Melbourne, Australia
tao.gu@rmit.edu.au

ABSTRACT

LoRa has emerged as a promising Low-Power Wide Area Network
(LP-WAN) technology to connect a huge number of Internet-of-
Things (IoT) devices. The dense deployment and an increasing
number of IoT devices lead to intense collisions due to uncoordi-
nated transmissions. However, the current MAC/PHY design of
LoRaWAN fails to recover collisions, resulting in degraded perfor-
mance as the system scales. This paper presents FTrack, a novel
communication paradigm that enables demodulation of collided
LoRa transmissions. FTrack resolves LoRa collisions at the physical
layer and thereby supports parallel decoding for LoRa transmissions.
We propose a novel technique to separate collided transmissions
by jointly considering both the time domain and the frequency
domain features. The proposed technique is motivated from two
key observations: (1) the symbol edges of the same frame exhibit
periodic patterns, while the symbol edges of different frames are
usually misaligned in time; (2) the frequency of LoRa signal in-
creases continuously in between the edges of symbol, yet exhibits
sudden changes at the symbol edges. We detect the continuity of
signal frequency to remove interference and further exploit the
time-domain information of symbol edges to recover symbols of
all collided frames. We implement FTrack on a low-cost software
defined radio. Our testbed evaluations show that FTrack demodu-
lates collided LoRa frames with low symbol error rates in diverse
SNR conditions. It increases the throughput of LoRaWAN in real
usage scenarios by up to 3 times.

CCS CONCEPTS

• Networks → Network protocol design; Link-layer proto-

cols; • Computer systems organization → Embedded systems;

KEYWORDS

Internet of Things, LoRaWAN, collision, parallel decoding

ACM Reference Format:

Xianjin Xia, Yuanqing Zheng, and Tao Gu. 2019. FTrack: Parallel Decoding
for LoRa Transmissions. In The 17th ACM Conference on Embedded Net-

worked Sensor Systems (SenSys ’19), November 10–13, 2019, New York, NY, USA.

ACM,NewYork, NY, USA, 13 pages. https://doi.org/10.1145/3356250.3360024

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SenSys ’19, November 10–13, 2019, New York, NY, USA

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6950-3/19/11. . . $15.00
https://doi.org/10.1145/3356250.3360024

1 INTRODUCTION

Recently, LoRa has emerged as a promising technology for Low-
Power Wide Area Networks (LP-WANs). Among many LPWAN
technologies (e.g., SigFox [47], NB-IoT [41]), LoRa technology [3]
has attracted wide attention due to its low cost, long communication
range, and supports from IoT industry as well as open-source and
research community. LoRaWAN is an open-standard networking
layer governed by the LoRa Alliance [3], which has about 400 mem-
ber companies including Tencent, IBM, Cisco, Semtech, etc. LoRa
employs a variant of Chirp Spread Spectrum (CSS) modulation to
support several kilometers of wireless transmissions at very low
power consumption. The PHY layer of LoRa is robust against inter-
ference, noise, multi-path and Doppler effects. Such characteristics
make LoRaWAN a promising communication technology for IoT in-
novations such as smart city, health care, environment monitoring,
warehouse management, etc.

When a LoRa node receives a packet, it first detects the preamble,
then searches for chirp boundaries (i.e., symbol edges) and locates
the chirp signal of each symbol to decode. The standard demodula-
tion scheme dechirps the incoming signals by multiplying with a
down chirp, then performs FFT on the multiplication, which pro-
duces a single FFT peak indicating the symbol. The PHY technique
of LoRa (i.e., CSS) is inherently robust to interference and noise in
the ISM band (e.g., WiFi, RFID, etc.).

Although LoRa uses several PHY techniques for parallel trans-
missions of multiple LoRa nodes, a high-end LoRa gateway can only
support up to 8 LoRa nodes to transmit at the same time [32]. It fails
to meet the need of many IoT applications which require dense de-
ployment of LoRa devices in practice. Constrained by the hardware
capability and power supply, LoRa nodes typically adopt a simple
aloha-based MAC for collision avoidance. As a result, collisions
may occur among LoRa nodes with the same PHY configuration.
One may configure LoRa nodes with different radio parameters
(e.g., channel, spreading factor, etc.) to mitigate collision, but it re-
quires cooperation among different operators and service providers.
A more effective method is to enable parallel decoding for LoRa
transmissions without any extension to COTS LoRa nodes or any
coordination among the users. Ideally, a LoRa node should be able to
join on-going communications in parallel with other nodes without
specific coordination.

To enable parallel decoding for LoRa transmissions, prior work
(e.g., Choir [15]) exploits the frequency offset introduced by the im-
perfection and diversity of LoRa nodes to separate collided frames.
The key idea is to classify the collided frames according to the
distinct frequency offset of each LoRa node (e.g., carrier frequency).
However, due to interference and noise, it is difficult to accurately
extract the hardware-induced offset of carrier frequencies in prac-
tice. Moreover, the carrier frequencies of LoRa nodes inevitably

SenSys ’19, November 10–13, 2019, New York, NY, USA Xianjin Xia, Yuanqing Zheng, and Tao Gu

resemble each other as the number of LoRa nodes increases. Conse-
quently, Choir may incorrectly classify collided frames and result
in decoding errors.

In this paper, we present FTrack, a parallel decoding scheme for
LoRa that resolves collision by jointly considering both time and
frequency domain features. We exploit an observation that, as the
airtime of a low-rate LoRa packet is much longer than the packets
in other wireless technologies (e.g., WiFi and RFID), LoRa packets
are more likely to be misaligned and separated in the time domain.
Due to the periodicity of LoRa symbols, the symbols from the same
frame share the same pattern of edge misalignment in time. We
leverage such time-domain information to separate collided LoRa
symbols. In addition, we also leverage the fact that the chirp of a
LoRa symbol starts from an initial frequency and then increases
continuously along a fixed ‘track’ to sweep through the whole
LoRa bandwidth. The different arrival time of colliding frames
would result in timing offset and a corresponding shift in frequency
between collided symbols. Thus, chirps of collided symbols are
also likely to exhibit as different tracks in the frequency domain.
We separate the frequency tracks of individual chirps to recover
collisions of all frames transmitted in parallel.

Intuitively, the decoding process consists of the following key
steps. FTrack first detects the edges of LoRa symbols in the time
domain and groups the symbols according to different LoRa nodes.
Then, it iteratively demodulates and decodes the symbols of each
individual LoRa node. FTrack is orthogonal to existing parallel
decoding techniques for LoRa transmissions. As long as the trans-
missions are interleaved with misaligned symbol edges, LoRa nodes
should be able to transmit concurrently even with the same param-
eter configuration in the same channel.

Turning the idea into reality, however, entails tremendous chal-
lenges. First, it is non-trivial to detect the symbol edges of each
individual transmission from collided signals and group the symbol
edges according to each LoRa node. To address this problem, we
leverage the fact that the preamble of a LoRa node is known in
advance, which allows us to extract the symbol edges from col-
lided signals by correlating the known preamble with the collided
signals. The correlation peaks indicate the symbol edges in the
preamble. The extracted symbol edges, however, are interleaved in
the time domain due to collisions. As a LoRa preamble consists of
repeated base chirps, the signal frequency would increase continu-
ously across boundaries of all chirps associated with the preamble,
resulting in a long track of continuous frequency. As such, we filter
out any interfering chirps not belonging to the long frequency track
to extract a pure collision-free preamble. We detect symbol edges
from the extracted preamble and use that timing information to
accurately pinpoint the symbol edges in its payload. Between the
symbol edges corresponding to the same LoRa node, the frequency
of a LoRa chirp should continuously increase, while the frequencies
of other coexisting chirps may exhibit sudden changes. We leverage
such a fact to filter out coexisting chirps and resolve collisions. We
iterate the above process until all chirps are correctly associated
with their corresponding nodes.

We implement FTrack using software defined radios (SDRs). To
reduce the deployment cost, we employ low-cost SDRs to collect
PHY samples and run the proposed parallel decoding scheme. We
build a testbed of 20 LoRa nodes to evaluate FTrack with a variety of

transmission configurations. Results show that FTrack decodes col-
lided frames with low symbol error rates in diverse SNRs. Compared
with the state-of-the-art schemes, FTrack improves the throughput
of LoRaWAN networks in real usage scenarios by up to 3 times.

2 BACKGROUND AND MOTIVATION

LoRa adopts Chirp Spread Spectrum (CSS) as the PHY modulation
scheme. Symbols are modulated as up-chirp signals whose frequen-
cies increase linearly with time over a predefined bandwidth. LoRa
varies the initial frequency of an up-chirp to modulate different
data. Such a procedure can be represented as follows.

S(t , fsym) = e j2π (
k
2 t+f0)t · e j2π fsym t = C(t) · e j2π fsym t , (1)

where fsym denotes the initial frequency of the up-chirp (i.e., en-

coded symbol). C(t) = e j2π (
k
2 t+f0)t represents the raw chirp signal

(termed base chirp); f0 and k denote the starting frequency and
frequency increasing rate of the chirp, respectively.

A LoRa receiver can demodulate an incoming chirp as follows.
It first multiplies the received signal with the conjugate of the base
chirp denoted as C−1(t), performs a Fast Fourier Transform (FFT)
on the multiplication, and searches for power peak in the FFT bins
to demodulate symbol. The procedure can be represented as follows

S(t , fsym) ·C−1(t) = e j2π fsym t (2)

The FFT of e j2π fsym t produces one peak in the FFT bins, that indi-
cates the frequency component of fsym .

When multiple LoRa nodes transmit concurrently, their signals
add up at the receiver. Figure 1 presents the signal received with
USRP N210 when two LoRa nodes transmit simultaneously. In the
figure, we observe multiple chirps overlapping in time, each of
which corresponds to the symbol of one transmitter. As a standard
LoRa demodulator (Eq.(2)) searches for the maximum in FFT results,
it cannot reliably decode the collided signals. We aim to support
parallel transmissions of multiple LoRa nodes and resolve collisions.

A recent work, Choir [15], exploits the frequency offset (i.e., off-
set of carrier frequency) introduced by the hardware imperfection
and diversities of LoRa nodes to separate collided frames. However,
it is difficult to extract the frequency offset of LoRa hardware in the
presence of low SNR and inter-packet collisions. More importantly,
as the number of LoRa nodes increases, the carrier frequencies of
nodes are likely to resemble each other. Solely relying on hardware-
induced frequency offsets may fail to differentiate LoRa nodes in
practice.

In this paper, we leverage the fact that the concurrent transmis-
sions of LoRa packets are likely to be misaligned in time. Figure 1 il-
lustrates the time misalignment of two collided LoRa transmissions.
A receiver can increase the sampling rate to better differentiate the
misaligned chirps in the time domain. Besides, as the frequencies of
LoRa chirps vary linearly with time, the timemisalignment of chirps
leads to the corresponding frequency offsets between the chirps.
Thus, we can separate collided chirps in both time and frequency
domains. We configure COTS LoRa nodes to transmit with the de-
fault parameters (i.e., Spreading Factor=8, bandwidth=250kHz) and
use a low-cost receive-only SDR (e.g., RTL-SDR dongle) to sample
at a high rate (e.g., 1MS/s). The receiver chain will decimate the

FTrack: Parallel Decoding for LoRa Transmissions SenSys ’19, November 10–13, 2019, New York, NY, USA

Figure 1: Collision of two LoRa transmissions. Red/blue dashed lines indicate the symbol edges of two LoRa transmissions.

(a) Correlation detection on the preamble of the first transmission

(b) Correlation detection on the preamble of the second transmission

Figure 2: Edge detection on (a) collision-free and (b) collid-

ing preambles, i.e., the preambles of the first and second

transmissions in Figure 1. The correlation peaks indicate the

boundaries of base chirps, i.e., symbol edges.

received LoRa packets and produce 256 PHY samples for each sym-
bol. As the data rate of LoRa node is low, the high sampling rates
of SDRs provide sufficient time resolution to separate misaligned
chirps.

3 DESIGN

In this section, we present the design of parallel decoding for LoRa
transmissions and describe the key design considerations.

3.1 Detecting Symbol Edges

A LoRa receiver must accurately locate the boundaries of a chirp
(i.e., symbol edges) to demodulate the chirp. For example, Figure
3(a) illustrates three base chirps that start with the same initial fre-
quency f0. If the chirp boundary t0 is correctly located, the initial
frequency can be correctly measured as f0 and the base chirp can
be demodulated. However, if the boundaries are located mistak-
enly with an offset of Δt , where t1 = t0 + Δt , the measured initial
frequency would become f1 = f0 + Δf , leading to demodulation
errors. The increasing rate of chirp frequency k = Δf /Δt depends
on the spreading factor of LoRa modulation which remains constant
during the transmission of a packet.

Intuitively, we detect chirp boundaries and calibrate the fre-
quency offset introduced by timing misalignment by leveraging

f f

f

t t

f

f

f f

Figure 3: Illustration of (a) preamble chirps, and (b) the cor-

responding frequency tracks, i.e., normalize instantaneous

frequency into the meta initial frequency of chirps.

our prior knowledge of LoRa preamble which is a standard method
in LoRa demodulation. We calculate the correlation of received
signals with a base chirp to detect symbol edges. When we apply
the method on a non-collided preamble (e.g., the first preamble in
Figure 1), symbol edges can be well identified by the correlation
peaks as shown in Figure 2(a). However, when collision happens
(e.g., the second preamble in Figure 1), the concurrent LoRa trans-
missions may introduce interference as shown in Figure 2(b). As
such, a key problem arises: how shall we detect symbol edges in the

presence of collisions?

To solve the problem, we extract pure preamble from collisions
and then detect symbol edges with the extracted collision-free
preamble. The method is inspired by the following observation. The
frequency of a LoRa chirp will start from an initial value (named
meta initial frequency) and increase linearly with time. All chirps in
the preamble have the same meta initial frequency (i.e., f0 in Figure
3(a)), yet those from the payload of LoRa frame do not. We exploit
this fact to detect LoRa preamble.

Ideally, the meta initial frequency of a LoRa chirp (i.e., f0) should
be measured at the arrival time of the chirp (i.e., chirp boundary t0).
Without knowing the exact boundary of the chirp, we may obtain
different initial frequency (e.g., f1) when measuring at different
locations (e.g., t1) of the chirp, as illustrated in Figure 3(a). Indeed,
f1 corresponds to the instantaneous frequency of the chirp at the
measuring point, but not the meta initial frequency (i.e., f0). To
deduce f0, we leverage the relationship between chirp frequency
and time to remove the frequency deviation (i.e., Δf) induced by time

offset Δt , as illustrated in Figure 3(b). Doing so, we normalize the
time-varying frequency of chirps (e.g., f1) into horizontal frequency
lines, termed as frequency tracks, that indicate the meta initial fre-
quency of chirps, i.e., f0. With such a normalization process, we
can measure the meta initial frequency at any time of a chirp.

We employ a sliding window on the received signals shown in
Figure 1 to extract the normalized initial frequency of chirps. As
shown in Figure 4(a), the normalized initial frequency of each LoRa

SenSys ’19, November 10–13, 2019, New York, NY, USA Xianjin Xia, Yuanqing Zheng, and Tao Gu

(a) The normalized initial frequencies (i.e., frequency tracks) of collided LoRa chirps

(b) Filtering out the interfering chirps (c) Reconstructing preamble from offset #3441 (d) Reconstructing preamble from offset #3641

Figure 4: Extraction of collision-free preambles: (a) normalize LoRa chirps intometa initial frequency and transform colliding

symbols into different frequency tracks, (b) remove interfering symbols, and (c-d) use inverse operations (i.e., the inverse of

frequency normalization, followed by an inverse FFT) to reconstruct the second preamble.

chirp corresponds to a horizontal high-power line (i.e., frequency
track). The long frequency tracks correspond to LoRa preamble.
Since the base chirps in preamble have identical meta initial fre-
quency, their frequency tracks form a single long track as illustrated
in Figure 4(a). We exploit such a property to detect LoRa preambles.

From Figure 4(a), we also observe that the preambles of collided
frames are separated into different frequency tracks. The location
of frequency track is determined by both the meta initial frequency
and the arrival time of a LoRa chirp (see §3.3 for detail). Therefore,
although the chirps of two preambles have the same meta initial
frequency, collided preambles will be separated into different tracks
as long as their chirp boundaries are interleaved in time. We exploit
the property to extract LoRa preamble from collisions. Specifically,
we filter out interference by setting the frequency tracks of interfer-
ing chirps to zero while only keeping the long frequency track as
shown in Figure 4(b). As the extracted frequency track indicates the
normalized initial frequency of base chirps in preamble, we employ
an inverse operation to reconstruct a pure, collision-free preamble,
as shown in Figure 4(c). We can reconstruct the same preamble
using a segment of the frequency track starting from different off-
sets, as shown in Figure 4(c) and (d). We then perform correlation
detection on the reconstructed preamble to detect symbol edges. In
this way, we can eliminate the impact of collision and detect the
symbol edges of concurrent transmissions.

3.2 Demodulating Symbols

To demodulate symbols in the payload of a LoRa frame, we need
to first locate the chirp of each symbol. We leverage the timing
information of symbol edges detected from a LoRa preamble to
deduce symbol edges in the payload. We refer to the signals located
between two symbol edges as a demodulation window. Ideally, when
there is no collision, there will be only one complete chirp (i.e., tar-
get symbol) in a demodulation window, as illustrated in Figure 5(a).
We can demodulate the chirp using the standard procedure pre-
sented in §2, which will produce a single FFT peak as illustrated in

Figure 5: Symbol demodulation: (a) locate a target chirp

within a demodulation window, (b) a target chirp and an in-

terfering chirp within the same demodulation window due

to collisions, (c) filter out the interfering chirp by detecting

frequency continuity.

(a) Demodulation without collisions (b) Demodulation with collisions

Figure 6: Demodulation with interference: the target chirp

can be demodulated incorrectly due to interference.

Figure 6(a). However, when collision happens, chirps of interfering
transmissions would also appear in the demodulation window, as
shown in Figure 5(b). Directly applying the standard algorithm to
demodulate the collided chirps will produce multiple FFT peaks, as
shown in Figure 6(b), where the highest peak may not correspond
to the target symbol. Therefore, how to correctly demodulate the
target symbol in the presence of collisions becomes a key issue.

Our solution separates the target symbol from collisions by
jointly exploiting the frequency-domain and time-domain features
of concurrent LoRa transmissions. We find that the frequency of the
target chirp changes continuously in the demodulation window, as
there is only one chirp of the target symbol in the window.Whereas

FTrack: Parallel Decoding for LoRa Transmissions SenSys ’19, November 10–13, 2019, New York, NY, USA

Figure 7: Successive interfering chirps carry identical data.

We filter interference by leveraging timing information.

for interfering symbols, as their symbol edges are misaligned with
the demodulation window of the target symbol, the window spans
across two chirps. Since the second chirp may change its initial
frequency to modulate a different symbol, it will result in a sudden
change of chirp frequency. Based on this observation, we examine

the continuity of frequency tracks to filter out interfering symbols in

each demodulation window. As illustrated in Figure 5(c), the nor-
malized initial frequency of interfering symbols will switch to a
different track. In contrast, the target symbol produces a single
complete frequency track that spans over the whole window. A
complete frequency track within the demodulation window indi-
cates the initial frequency (i.e., encoded data) of the target symbol.

In case that two successive chirps of an interfering node carry the
same data, the corresponding frequency tracks exhibit no sudden
changes within a demodulation window, as shown in Figure 7. To
address this problem, we may look into a longer window (e.g., two
or more symbols). As illustrated in Figure 7, for the target symbol,
the frequency track’s starting and ending points are located at the
target symbol edges. In contrast, the starting and ending points
of the interfering chirps are not located at the symbol edges. We
can filter out the interference by checking the starting and ending
points of frequency tracks against the target symbol edges.

3.3 Frequency Track in Practice

Frequency track plays important roles in collision resolving: Firstly,
it separates colliding symbols into different tracks, indicating dif-
ferent meta initial frequencies. We exploit this property for colli-
sion recovery. Secondly, we can directly demodulate symbols from
frequency tracks because data are encoded by the meta initial fre-
quency of LoRa chirps (§2). In this subsection, we describe how to
extract frequency tracks from received signals.

The signal of a LoRa chirp is represented by S(t , fsym) in Eq. (1).
Based on Eq. (1), we can formally represent the frequency track of
chirp S(t , fsym) as follows

Ftrack (fsym) = e j2π fsym t , (3)

where fsym is the meta initial frequency of the chirp. To extract fre-
quency track from the received signal of a LoRa chirp, one approach
is to measure the instantaneous frequency of the chirp and subtract
a frequency deviation Δf from the instantaneous frequency, as
illustrated in Figure 3(b). In order to measure the instantaneous
frequency, we can use the short-time Fourier transform (STFT) to
analyze the changing spectra of signal over time (i.e., spectrogram
of signal). However, such a method only provides a coarse-grained
estimate of chirp frequency, which cannot precisely identify the
frequency track (i.e., meta initial frequency) of LoRa chirp.

(a) PHY Win=8 (b) PHY Win=32 (c) PHY Win=256

(d) PHY Win=8 (e) PHY Win=32 (f) PHY Win=256

(g) PHY Win=8 (h) PHY Win=32 (i) PHY Win=256

Figure 8: Frequency estimationwith differentPHYWins (the

FFTWin is 256). (a-c): Spectrogram of preamble chirps; (d-f):

Width of the FFT peak of original signal; (g-i): Width of the

FFT peak of dechirped signal.

As STFT takes PHY samples from received signal with a PHYWin

to analyze the frequency components, the size of PHY Win affects
the resolution of frequency estimation. Figures 8(a-c) present the
resulting spectrograms of the same signal with different configura-
tions of PHY Win. Comparing Figure 8(b) and (c), we see that the
measured frequency of chirps become narrower with a smaller PHY
Win of 32, because a smaller PHY Win would contain PHY samples

with less time-varying frequencies. Yet, the chirps do not become
thinner as PHY Win further decreases from 32 to 8 (see Figure 8(a)
and (b)). The reason is that, when PHY Win is too short, STFT must
pad a number of zeros to the PHY samples before FFT analysis,
which will produce a wide main-lobe and many sinc side-lobes
between two main chirps, as shown in Figure 8(a). As displayed in
Figures 8(d-f), even with the finest configuration for spectrogram
(i.e., PHYWin=32), the width of obtained chirp frequency would still
span tens of FFT bins, which does not provide sufficient resolution
to precisely locate the frequency track of the chirp.

We aim to extract narrow frequency tracks that can precisely
indicate the meta initial frequencies of LoRa chirps. As we men-
tioned, due to the CSS modulation scheme of LoRa, signals in a
period of Δt would sweep a frequency width of Δf (see Figure 3(a)).
The time-varying frequencies of chirp within PHY Win prevent
spectrogram from producing narrow frequency tracks. To solve the
problem, we dechirp the signal in PHY Win by multiplying with
a down chirp (i.e., C−1(t), see Eq. (2)). Figures 8(g-i) present the
FFT of the signal samples in PHY Win after being dechirped. The
resulting FFT peaks become narrower and can precisely pinpoint
the frequency of corresponding chirps shown in Figure 8(d-f). Be-
sides, the width of FFT peak becomes thinner as PHYWin increases,
because the window includes more PHY samples with the same meta

initial frequency. In particular, when PHY Win=256, i.e., containing
the samples of a whole chirp, the resulting peak width can reach
the resolution of one FFT bin, as shown in Figure 8(i).

SenSys ’19, November 10–13, 2019, New York, NY, USA Xianjin Xia, Yuanqing Zheng, and Tao Gu

PHY Win

tw tw+T

 t

Figure 9: Illustration of chirp signals in a PHY Win.

Our approach of frequency track extraction involves three key
steps: Firstly, we dechirp the signal samples in PHYWin and perform
FFT on dechriped signals to measure the instantaneous frequency
of chirps at a given time offset. Secondly, we normalize the instan-
taneous frequency measured at different offsets by subtracting the
corresponding frequency deviation. Finally, we move PHY Win to
the next PHY sample of received signals and repeat the above two
steps. We describe the approach in details in the following.

Suppose that n LoRa nodes transmit simultaneously. Let X (t)
denote the signal received by a LoRa device and xi (t) denote the
signal from node i , i.e., X (t) =

∑n
i=1 xi (t). We focus on the signal of

one transmitter (i.e., xi (t) of node i) in the following. In particular,
we configure the length of PHYWin toT , i.e., the duration of a LoRa
chirp. Let tw denote the offset position of PHY Win in X (t). A PHY

Win generally spans two LoRa symbols as illustrated in Figure 9,
where the starting edges of the two symbols are represented by t1
and t1 +T , respectively. We denote the offset between t1 and PHY

Win by Δt , i.e., Δt = tw − t1. Specifically, 0 ≤ Δt < T (note that
when Δt = 0, only the first symbol is included in PHY Win, which
is a special case). Let t denote the relative time of chirp signals
within PHY Win, i.e., 0 ≤ t < T . As illustrated in Figure 9, signals
in PHY Win are composed of two segments from the first and the
second symbols, respectively. Based on Eq. (1), we can denote the
first segment of signal in PHY Win as

xi (t) = hi · S(t + Δt , f1), t ∈ [0,T − Δt) (4)

where f1 represents the initial frequency of the first chirp. hi is a
complex value representing amplitude and phase changes on the
wireless channel between the LoRa transmitter and the receiver.

According to the CSS modulation, a time shift of Δt in chirp
signals would result in a frequency offset of Δf = k

2 Δt as illustrated
in Figure 3(a). Therefore, Eq. (4) can be transformed as follows

xi (t) = hi · S(t , f1 +
k

2
Δt), t ∈ [0,T − Δt) (5)

Similarly, the second segment of signal in PHY Win can be repre-
sented by

xi (t) = hi · S(t − (T − Δt), f2)

⇔ xi (t) = hi · S(t , f2 −
k
2 (T − Δt)), t ∈ [T − Δt ,T)

(6)

where f2 represents the initial frequency of the second symbol chirp.
For conciseness, we focus on the first segment in the following.
Similar results can be obtained for the second segment.

We dechirp xi (t) in Eq. (5) by multiplying a standard down chirp
(i.e., C−1(t)) as follows

xi (t) ·C
−1(t) = hi · e j2π (

k
2 Δt)t

︸�������︷︷�������︸
Offset of PHY Win

· e j2π f1t
︸�︷︷�︸

Initial freq.

, t ∈ [0,T − Δt) (7)

Figure 10: Steps of extracting frequency tracks: (a) spectro-

gram of received signals (the preamble part), (b-c) dechirp

the signal in PHYWin (FFT of dechirped signals at #660 and

#760), (d) slide PHYWin across all samples (the frequency of

dechirped signal vs. offsets of PHY Win), (e) remove the fre-

quency deviation induced by tw (i.e., the time offset of PHY

Win) to produce the normalized frequency of LoRa chirps,

i.e., frequency tracks.

The FFT of Eq. (7) produces a peak at f1+
k
2 Δt , which corresponds to

the frequency of the first chirp with time shift Δt , i.e., instantaneous
frequency of the chirp in PHY Win. Figure 10(d) presents the FFT
of dechirped signals when PHY Win slides across the PHY samples
of chirps shown in Figure 10(a). It produces thin bright lines that
precisely indicate the instantaneous frequency of chirps.

Lastly, we normalize the instantaneous frequency of chirps to
extract frequency tracks. We need to subtract Δf = k

2 Δt from the

resulting frequency of the dechirped signal in Eq. (7), i.e., f1 +
k
2 Δt .

Note that Δt = tw −t1, where t1 denotes the starting edge of symbol
chirp f1. As t1 is not known, we cannot directly remove Δt from
Eq. (7). Instead, we subtract tw , i.e., the offset of PHY Win, from the
second term of Eq. (7) as follows

Fnorm (f1, t1) = hi · e
j2π (− k

2 t1)t · e j2π f1t

= hi · Fedдe (t1) · Ftrack (f1)
(8)

where Fnorm (f1, t1) represents the normalized frequency of the first
chirp in PHYWin, where f1 and t1 are the meta initial frequency and
arrival time of the chirp, respectively. Ftrack (f1) denotes the ideal
frequency track of the chirp, as defined in Eq. (3). Fedдe (t1) denotes
the frequency shift induced by t1, i.e., the arrival time (symbol edge)
of the first chirp. Since t1 is invariant as PHY Win slides across the
signal samples, Fedдe (t1) is a constant.

FTrack: Parallel Decoding for LoRa Transmissions SenSys ’19, November 10–13, 2019, New York, NY, USA

Figure 10(e) presents the normalized frequency of the dechirped
signals shown in Figure 10(d). Note that, with Eq. (8), we actually
normalize the instantaneous frequency of chirp signals into a dif-
ferent frequency track (i.e., Fnorm (f1, t1)) that shifts from the ideal
frequency track (i.e., Ftrack (f1)) with a specific offset Fedдe (t1).
Since Fedдe (t1), i.e., the frequency offset between Ftrack (f1) and
Fnorm (f1, t1), remains constant across all symbols in the received
signal, we can employ Fnorm (f1, t1) to separate collided symbols in
practice. Moreover, as Fnorm (f1, t1) is determined by both the meta
initial frequency (f1) and arrival time (t1) of LoRa chirps, collided
symbols would be separated into different frequency tracks as long
as their edges (i.e., t1) are interleaved in time.

3.4 FTrack: Put It Together

Figure 11 illustrates the general workflow of FTrack. Specifically, it
involves the following key operations:

Frequency track extraction. FTrack first dechirps the received
signal with a sliding window. The collided symbols in each window
are normalized into the initial frequency of corresponding LoRa
chirps (i.e., frequency track). The collided signals are thus converted
into a sequence of frequency tracks for further processing.

Frame identification. FTrack extracts long frequency tracks to
separate preamble from collisions. It detects symbol edges from the
preamble and searches for sync words to identify LoRa packets. The
edges of payload symbols can then be deduced from the symbol
edges of preamble based on the frame structure of LoRa packets.

Symbol demodulation. FTrack employs the detected symbol
edges of a specific preamble to locate the demodulation window of
each payload symbol associating with the preamble. FTrack checks
the continuity of frequency tracks, as well as the timing information,
in each window to filter interference and demodulate symbol from
the resulting frequency track of target based on Eq. (8).

Iteration to decode parallel transmissions. FTrack iterates
to detect more preambles and demodulate concurrent LoRa trans-
missions. As collided transmissions may have misaligned symbol
edges, they would have different sequences of payload symbol. For
example, when we apply FTrack to demodulate the collided LoRa
signals shown in Figure 1, we can detect two LoRa preambles (ex-
hibiting as long frequency tracks), as shown in Figure 12. Thereafter,
we separate the collided symbols into two concurrent transmissions
(i.e., frequency track classifying) and demodulate symbols of each
transmission. FTrack removes a frequency track after demodulat-
ing symbol corresponding to the frequency track, and outputs a
sequence of demodulated symbols for each LoRa transmission, as
shown in Figure 12. A conventional LoRa decoder can be applied
to decode data from such symbols.

3.5 Discussion

Computation overhead. The overheads of FTrack mainly come
from frequency track extraction and frame identification. The fre-
quency track extraction procedure needs to slide a window across
each PHY sample and perform FFT. The computational complexity
isO(Nsnf f t log(nf f t)), where nf f t is the FFT window size and Ns

is the number of PHY samples. To reduce the overhead, one can
set a step τ for the sliding window, i.e., slide the window across τ
samples each time. The resulting computation complexity would be

…
…

‘SenSys’
‘LoRa’

Figure 11: The workflow of FTrack system. Long track and

short track represent the frequency tracks of LoRapreamble

and payload symbol, respectively.

O(Ns
τ nf f t log(nf f t)). The procedure of frame identification needs

to reconstruct preamble from collided signals using inverse FFT.
The overhead is Np ·Cpnf f t loд(nf f t), where Np denotes the num-
ber of detected preambles and Cp denotes the number of chirps in
the preamble. As the maximum of Cp is a constant, the computa-
tion complexity can be denoted as O(Npnf f t loд(nf f t)). As FTrack
detects the correlation of preamble with a base chirp to detect sym-
bol edges, the complexity is O(Npn

2
sym), where nsym denotes the

number of PHY samples corresponding to the base chirp. Finally,
the overhead of iterative symbol demodulation isO(Nf), where Nf

denotes the number of detected frequency tracks.
Demodulating capacity and the gain. The demodulation ca-

pacity of FTrack is not unbounded as the number of colliding nodes
increases. Basically, FTrack exploits the timing misalignment of
symbol edges to separate collisions. If the edges of collided symbols
are aligned or closely-located, FTrack may not be able to separate
them in time. Besides, the configurations of LoRa transmission,
such as spreading factor (SF) and bandwidth (BW), also affect the
demodulation performance. Nevertheless, FTrack can separate col-
lisions in frequency and time domains in most cases. Assisted by
the coding/decoding schemes of LoRa, it can handle symbol er-
rors with error correction code at upper layers. In fact, current
LoRaWAN supports concurrent transmission of packets using or-
thogonal spreading factors which require careful configuration and
coordinations of LoRa nodes. However, due to lack of coordination,
some nodes may still collide if they choose the same parameter set-
tings especially in densely-populated LoRa networks (e.g., an urban
or warehouse scenario). As such, the proposed collision recovery
approach can be complementary to current LoRa network.

Accounting for SNR variations and the near-far problem.
In practice, the power strength of received signal would impact
the extraction of frequency tracks. As SNR varies across diverse
transmitters and channel conditions, FTrack may fail to detect the
frequency power of weak transmitter (i.e., false negative error)
or mistakenly detect the power leaking from the main frequency
of strong transmitter as frequency track (i.e., false positive error).
Both can lead to incorrect demodulation results. FTrack solves
the problem by selecting thresholds for frequency track detection
dynamically based on the signal strength of different transmitters.
Moreover, to handle the case that strong receptions of a nearby
transmitter overwhelm the weak signals of far-away transmitters
(i.e., the near-far problem [18]), we can employ a method similar to
ZigZag [17] and successive interference cancellation [19] to extract
signals of comparable power strength. We apply FTrack on each

SenSys ’19, November 10–13, 2019, New York, NY, USA Xianjin Xia, Yuanqing Zheng, and Tao Gu

Figure 12: Separating the collided signals of Figure 1 into two LoRa frames: the frame structure and demodulated symbols of

(a) the first and (b) second transmission.

Figure 13: Experiment equipment.

set of the divided signals that have similar power levels, and use
adaptive power thresholds to detect frequency tracks.

Combating the absence of LoRa configurations. A LoRa
packet transmitted at given bandwidth (BW) and spreading factor
(SF) can only be demodulated with a unique chirpC−1(t) associated
with the same configurations. Generally, BW and SF are chosen by
a transmitter. A receiver may not know the configurations of re-
ceived frames. With FTrack, we can detect BW and SF from a short
segment of the received signals (e.g., ≤ 5 chirps). We exploit the
fact that chirps are transformed into horizontal frequency tracks
only if down-chirp C−1(t) is produced with the correct BW and
SF. One approach is to detect the existence of frequency tracks by
trying all BW-SF combinations. The search space is (10 BWs × 7 SFs)
for the Semtech SX1276 LoRa transmitter [46]. To accelerate the
process, we can process the PHY samples in parallel with multiple
threads, each of which is configured by a particular pair of BW and
SF. Specifically, if two packets transmitted with different configura-
tions collide, due to the orthogonality of transmission, they will be
demodulated separately by different instances of FTrack.

4 EVALUATION

We implement and evaluate the system using software radio base
stations and commodity LoRa devices. For performance evaluation,
we use both high-end software defined radio (i.e., USRP N210) and
low-cost receive-only software defined radio (i.e., RTL-SDR dongle)
as shown in Figure 13(a). We develop our own LoRa demodulator
based on the GNU Radio library, and implement FTrack in MATLAB

Low Medium High
0.0

0.2

0.4

0.6

0.8

1.0

Sy
m

bo
l E

rro
r R

at
e

(S
ER

)

SNR

 GR_LoRa
 Choir
 FTrack

Figure 14: Demodulation with two-node collisions.

to process PHY samples. If not otherwise specified, we employ RTL-
SDR dongles to receive PHY samples at the 900 MHz bands. The
USRP N210 is only used for performance evaluations.

The LoRa nodes are composed of Dragino LoRa shields [13],
which consist of HopeRF’s RFM96W transceiver module embedded
with the Semtech SX1276 chip, as shown in Figure 13(b).We connect
the LoRa shield to Arduino Unomotherboard to control SX1276 chip
in packet transmission and reception. The SX1276 chip operates at
915MHzwith the bandwidth of 250kHz or 125kHz, depending on the
configuration of LoRa parameters. We note that radio broadcasting,
RFID and P-GSM-900 may also work in the 900MHz frequency band.
The measured noise floor is around -90dBm in our experiments.
By default, we set the spreading factor (SF), coding rate (CR) and
bandwidth (BW) of LoRa communication as 8, 4/5 and 250kHz,
respectively. The sampling rate of RTL-SDR dongle is 1 MS/s.

In the following, we first evaluate the performance of FTrack
in two-node collisions and consider various factors (e.g., timing
offsets, SNR conditions, LoRa parameters, etc.). We examine the
capability of FTrack on parallel decoding in §4.2. We evaluate the
performance of FTrack in real usage scenarios in §4.3.

4.1 Parallel Demodulation

4.1.1 Basic performance. In the following experiment, we use an
RTL-SDR dongle as a receiver and three LoRa nodes as transmitters
in an indoor environment. To experiment with varied colliding
time, we configure one transmitter to send beacons every 2 seconds.
Upon receiving such beacons, the other two LoRa nodes reply a

FTrack: Parallel Decoding for LoRa Transmissions SenSys ’19, November 10–13, 2019, New York, NY, USA

Symbol Error Rate (SER)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

C
D

F

0.0

0.2

0.4

0.6

0.8

1.0

High SNR
Medium SNR
Low SNR

(a) CDF of SERs

Edge offsets (% of chirp duration)
0 10 20 30 40 50

C
D

F

0.0

0.2

0.4

0.6

0.8

1.0

High SER
Medium SER
Low SER

(b) CDF of edge offsets (High SNR)

Edge offsets (% of chirp duration)
0 10 20 30 40 50

C
D

F

0.0

0.2

0.4

0.6

0.8

1.0

High SER
Medium SER
Low SER

(c) CDF of edge offsets (Medium SNR)

Edge offsets (% of chirp duration)
0 10 20 30 40 50

C
D

F

0.0

0.2

0.4

0.6

0.8

1.0

High SER
Medium SER
Low SER

(d) CDF of edge offsets (Low SNR)

Figure 15: In-depth study of FTrack performance: (a) CDF of the Symbol Error Rates (SERs); (b-d) Relationships between SERs

and the normalized edge offsets of colliding symbols: FTrack produces high SERs when colliding symbols are closely-aligned

in time (i.e., with short edge offsets).

Edge offsets (% of chirp duration)
0 10 20 30 40 50

C
D

F

0.0

0.2

0.4

0.6

0.8

1.0

High SNR
Medium SNR
Low SNR
Ideal

(a) CDF of edge offsets

Symbol Error Rate (SER)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

C
D

F

0.0

0.2

0.4

0.6

0.8

1.0

High SNR
Medium SNR
Low SNR

(b) Small edge offsets (<10%)

Symbol Error Rate (SER)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

C
D

F

0.0

0.2

0.4

0.6

0.8

1.0

High SNR
Medium SNR
Low SNR

(c) Medium edge offsets (10%∼20%)

Symbol Error Rate (SER)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

C
D

F

0.0

0.2

0.4

0.6

0.8

1.0

High SNR
Medium SNR
Low SNR

(d) Large edge offsets (>20%)

Figure 16: Relationship between the demodulation performance of FTrack and edge offsets of colliding symbols: (a) CDF of

edge offsets in the collected frames, (b-d) Demodulation performance when edge offsets are small (<10%), medium (10%–20%)

and large (>20%), respectively.

30-Byte data frame, which consists of 61 payload symbols and lasts
for about 80ms when SF=8, BW=250kHz. Specifically, we configure
the two LoRa nodes to delay for a random period of time before
transmission with a maximum delay of 20ms (i.e., the air time
of 20 symbols). The experiment setting can result in collisions at
different parts of packets (e.g., preambles, sync words and payloads)
as reported in [39]. We vary the transmission power of LoRa nodes
to evaluate demodulation performance across three SNR regimes:
low (<5dB), medium (5-20 dB) and high (>20 dB). For each SNR
regime, we collect 500 colliding frames and repeat the experiment
5 times. We compare FTrack against GR_LoRa (i.e., a standard LoRa
demodulation scheme) and Choir [15] which represents the state-
of-the-art on LoRa collision recovery.

Figure 14 compares the average SERs of the three demodulation
schemes when two LoRa nodes transmit concurrently. According
to the experiment results, FTrack performs the best and GR_LoRa is
the worst (SER > 80%) because GR_LoRa is not capable of recovering
any collisions. Our experimental study reveals that the hardware fre-
quency offset (i.e., the fractional part of chirp frequency) extracted
by Choir is not reliable to classify colliding symbols in practice. The
main reason is that along with the hardware imperfection, various
influencing factors (e.g., phase jitters, noise) may cause variations
in the measurement of fractional part of carrier frequency. We
also notice that the time offset between a detection window and a
symbol edge also influences the measurement of fractional part of

carrier frequency. As a result, Choir suffers high symbol error rates
(70%∼80%) in our experiments. In contrast, FTrack can leverage
the timing misalignment to separate colliding symbols. It yields
<10% symbol error rates across all SNR regimes. The low symbol
error rates of FTrack can be corrected by standard error correction
schemes (e.g., Hamming code) adopted by current LoRa nodes.

We present the CDF of SERs of FTrack in Figure 15(a). As we can
see, FTrack achieves better performance in the high SNR condition
than in the low SNR condition. More importantly, the performance
of FTrack does not degrade dramatically even in the low SNR condi-
tion. That is because FTrack can still leverage the long transmission
time of a LoRa packet to boost the signal strength. In particular, 80%
of the symbol error rates are below 10% when SNR is high. Even
in the medium and low SNR conditions, nearly 70% of the collided
frames are demodulated with <10% SERs.

4.1.2 Impact of time offsets and SNR. We analyze the major fac-
tors that may influence the performance of FTrack. Figures 15(b-d)
examine the relationships between SERs and the timing offsets of
collided symbols. In each SNR regime, we divide the demodulation
results into three groups for analysis: low SER (<0.1), medium SER
(0.1∼0.2) and high SER (>0.2). We observe that in the high-SNR
condition, 100% of high SERs and 50% of medium SERs appear
when the edges of colliding symbols are closer than 10% of a chirp
duration, as shown in Figure 15(b). Similar results are observed in

SenSys ’19, November 10–13, 2019, New York, NY, USA Xianjin Xia, Yuanqing Zheng, and Tao Gu

SF=6 SF=8 SF=10
0.00

0.05

0.10

0.15

0.20

Sy
m

bo
l E

rro
r R

at
e

(S
ER

)

Spreading Factors

(a) Overall SER performance

Symbol Error Rate (SER)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

C
D

F

0.0

0.2

0.4

0.6

0.8

1.0

SF=6
SF=8
SF=10

(b) SERs of small edge offsets (<10%)

Figure 17: Impact of the Spreading Factor (SF) of LoRa PHY

modulation, BW=250kHz: (a) SERs under different SFs, (b)

Demodulation results when edge offsets are small (<10%).

the medium and low SNR cases, as shown in Figures 15(c,d). That is
because once the symbols are not separated in time with sufficient
margin, FTrack may not be able to separate such edges, leading to
incorrect symbol grouping and demodulating results.

In practice, LoRa nodes may transmit packets in random time
slots. Figure 16(a) shows the edge offsets of collided symbols in our
collected traces, where edge offsets are normalized in percentages
of a chirp duration. As LoRa nodes transmit at random time, the
edge offsets of colliding symbols distribute uniformly across the
whole range of one chirp duration (i.e., length of a LoRa symbol).
As we mentioned, FTrack may fail to demodulate concurrent trans-
missions when the edge offsets are short (e.g., <10% chirp duration),
while FTrack can successfully recover collisions in most other cases.

We examine the symbol error rates of demodulation when the
edge offsets of colliding symbols are small (<10%), medium (10%∼20%)
and large (>20%), respectively. By comparing Figures 16(b-d), we see
that FTrack achieves lower SERs as the edge offsets of interfering
symbols increases. For instance, as shown in Figure 16(b), when
the edge offsets are shorter than 10% chirp duration, nearly 40% of
the results of high-SNR (60% of medium-SNR and 80% of low-SNR)
have high or medium symbol error rates (i.e., SER>0.1, collisions
may not be recovered). This number decreases to lower than 5%
when the edge offsets increases to 20%, as shown in Figure 16(d).
In this case, 80% of the results have SERs<0.05.

In addition, by increasing the SNR of received signals, FTrack
can produce better demodulation results. For example, as shown
in Figures 15(b) and (d), when the SNR is low, 82% of low SERs
are produced in the case that symbol edges are apart farther than
20% of the symbol length; whereas the results of low SER appear
uniformly in all edge offset occasions when SNR becomes high.
Therefore, as the SNR increases, FTrack may demodulate with low
SERs even when the edges of colliding symbols are closely located.
This implies that we can increase the transmission power of LoRa
nodes for better collision recovery performance.

4.1.3 Impact of LoRa packet configuration. The demodulation per-
formance of FTrack can be influenced by the symbol duration of
LoRa packets. Some parameters configure the symbol duration
of LoRa (e.g., Spreading Factor (SF) and Bandwidth (BW)). In the
following, we investigate the impact of SF and BW on collision re-
covery performance. Unless otherwise specified, we adopt the same
experimental settings as in §4.1.1. We only present the evaluation

62.5kHz 125kHz 250kHz 500kHz
0.00

0.05

0.10

0.15

0.20

0.25

Sy
m

bo
l E

rro
r R

at
e

(S
ER

)

Bandwidth

(a) Overall SER performance

Symbol Error Rate (SER)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

C
D

F

0.0

0.2

0.4

0.6

0.8

1.0

BW=62.5 kHz
BW=125 kHz
BW=250 kHz
BW=500 kHz

(b) SERs of small edge offsets (<10%)

Figure 18: Impact of LoRa Bandwidth (BW), SF=8: (a) SERs

under different BW settings, (b) Demodulation results when

edge offsets are small (<10%).

results of high-SNR. The experiment results exhibit similar trends
in both medium-SNR and low-SNR regimes (not presented).

We set the Bandwidth of LoRa to 250kHz and study the impact
of Spreading Factor on demodulation performance. Figure 17(a)
presents the overall symbol error rates of FTrack with varied SFs
(e.g., SF=6, 8, and 10). We see that FTrack achieves lower SERs
with a larger SF. The average SER decreases from 0.17 to 0.05 as SF
increases from 6 to 10. In particular, a larger SF facilitates collision
recovery especially when the edge offsets of interfering symbols
are small, as shown in Figure 17(b). When SF=6, only 20% of the
collisions with small edge offset can be correctly recovered (i.e.,
SER<0.1). This number increases to 40% for SF=8 and around 70%
for SF=10. That is because when SF increases, a symbol takes a
longer air time [32], which helps FTrack separate collisions in time.

Next, Figure 18 evaluates the demodulation performance of
FTrack with varied BWs. The Spreading Factor is fixed to 8. The
results show that FTrack performs better with a larger BW. The
average SER decreases from 0.21 to 0.07 as the LoRa bandwidth
increases from 62.5kHz to 500kHz. That is because when the LoRa
bandwidth increases, the frequency gap between the symbols coex-
isting within a demodulation window also increases, which helps
the differentiation of symbols in the frequency domain. As shown
in Figure 18(b), when the edge offsets of colliding symbols are small,
even though it is hard to separate symbols in time, FTrack recovers
more collisions with larger BWs. For instance, less than 20% colli-
sions can be correctly recovered (i.e., SER<0.1) when BW=62.5kHz.
The number increases to about 45% when BW=500kHz. However,
we note that a larger BW comes at the cost of an increased number
of PHY samples and higher computational overhead to process the
PHY samples.

4.2 FTrack Capability

Impact of a varied number of LoRa nodes.We examine the ca-
pability of FTrack on collision recovery with an increasing number
of colliding nodes. In this experiment, we use the same configura-
tion as in §4.1.1 and increase the number of concurrent transmis-
sions from 1 node to 10 nodes. We measure the PHY-layer symbol
error rate (SER) and the ratio of packets being correctly decoded
(i.e., packet reception ratio, PRR). As shown in Figure 19, the demod-
ulation errors of FTrack increase as more nodes transmit in parallel.
For instance, the average SER is 7% when two nodes collide. Yet it

FTrack: Parallel Decoding for LoRa Transmissions SenSys ’19, November 10–13, 2019, New York, NY, USA

of Nodes
1 2 3 4 5 6 7 8 9 10

Sy
m

bo
l E

rr
or

 R
at

e
(S

E
R

)

0.00

0.05

0.10

0.15

0.20

(a) Symbol Error Rate (SER)

of Nodes
1 2 3 4 5 6 7 8 9 10

Pa
ck

et
 R

ec
ep

tio
n

R
at

e
(P

R
R

)

0.0

0.2

0.4

0.6

0.8

1.0

(b) Packet Reception Ratio (PRR)

Figure 19: Performance of FTrack on decoding a varied num-

ber of parallel transmissions.

of transmissions N=1 N=2 N=4 N=8

Choir 0.246 s 0.328 s 0.443 s 0.475 s
FTrack 0.139 s 0.153 s 0.205 s 0.373 s

Table 1: Comparison of computational time (in second).

increases to 14% in the case of 10-node collisions. When two nodes
transmit concurrently, nearly 80% of the packets can be successfully
recovered. The packet reception ratio, however, decreases as more
nodes collide. When 10 nodes transmit in parallel, although we
cannot recover all packets, 58% of the packets can still be correctly
decoded leading to a considerable throughput gain.

Computational overhead.Table 1 compares the computational
time of Choir and FTrack when running on a PC with the Intel Core
i5 CPU processor. In general, the computational time of FTrack is
shorter than that of Choir. The decoding time increases proportion-
ally with the number of collided packets. As the data rates of LoRa
are much lower than other wireless technologies (e.g., WiFi, RFID),
it leaves sufficient time for LoRa base stations to decode collisions.
In the future, we plan to optimize and adopt more efficient software
and hardware designs (e.g., multi-thread, FPGA, ASIC) to accelerate
FTrack so as to meet the real-time processing requirement.

4.3 Performance in Real Network

In the following, we evaluate how FTrack performs in practice. We
deploy the testbed LoRaWAN network within our office building,
as illustrated in Figure 20. Each node senses the environments (e.g.,
light, temperature, humidity, etc.) and randomly selects a 200ms-
slot to transmit data to a base station. The payload is 30 Bytes,
corresponding to about 80 PHY symbols (payloads + headers) and
80ms air time when SF=8, BW=250kHz. The duty cycle of LoRa
nodes are set to 10% for evaluation purpose. To reduce power con-
sumption, LoRa node can adopt a much lower duty cycle (e.g., <2%)
in real usage scenarios that results in lower traffic rates and thus
less severe collisions. In particular, the ordinary LoRa nodes in our
testbed can transmit in 8 uplink slots during each data collection
cycle (the rest two slots are reserved by the LoRaWAN testbed to
send control messages). We increase the number of nodes from 1 to
20 to compare the scalability of different approaches. We compare
FTrack with GR_LoRa [27] and Choir [15]. We also compare the
performance against an Oracle scheme that is assumed to optimally
schedule the LoRa nodes such that no collision could happen.

Figure 21(a) shows the network throughput of four approaches.
We see that the throughput of all approaches increase as more nodes
join the network, when the network size is small (e.g., # nodes≤4).

Base
Station

47 m

20 m

Figure 20: Layout of a LoRaWAN testbed.

of LoRa nodes
1 2 4 6 8 10 12 16 20

T
h
ro

u
g
h
p
u
t
(s

y
m

b
o
ls

/s
e
c
o
n
d
)

 0

 50

100

150

200

250

300
GR_LoRa
Choir
FTrack
Oracle

(a) Network throughput

of LoRa Nodes
1 2 4 6 8 10 12 16 20

#
 o

f
C

o
n
c
u
rr

e
n
t
T

ra
n
s
m

is
s
io

n
s

0

1

2

3

4

5

6

7

8

(b) Number of concurrent LoRa transmis-
sions

Figure 21: Performance of decoding concurrent transmis-

sions in real-world LoRaWAN network (SF=8, BW=250kHz).

However, the throughput of GR_LoRa and Choir saturate (around
80 symbols/sec) rapidly when the network size increases to 4 nodes.
That is because as more nodes transmit concurrently, GR_LoRa and
Choir cannot recover collisions among the nodes. Benefiting from a
perfect transmission schedule, Oracle yields the highest throughput
that increases linearly with network size as the number of nodes
increases from 1 to 8. However, the Oracle reaches its capacity limit
(200 symbols/sec) when network size is 8. In contrast, the through-
put of FTrack further increases to 250 symbols/second as network
size increases to 20 nodes, which is about 3 times the throughput
of Choir and GR_LoRa. The performance gain stems from FTrack’s
capability of decoding concurrent LoRa transmissions.

Figure 21(b) presents the number of concurrent transmissions
with a varied number of LoRa nodes working in the low-duty cycle
mode. We see that when the network size exceeds 4, nodes collide
more frequently even if they work in the low-duty cycle mode. As
such, the performance of GR_LoRa and Choir starts to degrade
when the number of nodes exceeds 4, as shown in Figure 21(a). As
the network size further increases, we observe more collisions: A
median of 2 and a maximum of 5 nodes transmit concurrently at a
slot when the network size exceeds 16. In this case, FTrack achieves
the highest network throughput as it is able to recover collisions.

5 RELATEDWORK

A variety of LP-WAN technologies [7, 29] have been proposed to
enable the fast-growing IoT applications. SigFox [47] uses Ultra

SenSys ’19, November 10–13, 2019, New York, NY, USA Xianjin Xia, Yuanqing Zheng, and Tao Gu

Narrow Band (UNB) technology combined with DBPSK and GFSK
modulation to support low-power long-range communication in
the ISM band. NB-IoT [41] and LTE-M [28] are introduced by 3GPP.
They use a subset of the LTE standard, operate at licensed spectrum
yet limit the bandwidth to a single narrow-band of 200kHz. LoRa
[3, 7], like SigFox, works at license-free frequency band. It employs
Chirp Spread Spectrum (CSS) modulation to transmit data, which
is resilient to interference, multi-path fading and Doppler effects.
Such characteristics make LoRa a competitive candidate for long-
range low-cost IoT networks [5, 12]. We focus on LoRa in this paper
and refer the readers to [48–50] for detailed comparisons of existing
LP-WAN technologies.

There are some pioneer researches on LoRa and LoRaWAN [21].
Early efforts have been devoted to the measurement study [8, 11, 32]
and performance analysis, such as transmission air time [30, 34],
power consumption [10, 16, 32], coverage [36, 37], etc. Based on
these studies, some improvement schemes [1, 33, 42] are introduced
for better performance. Although the LoRa PHY is proprietary,
authors of [27] and [44] employ reverse engineering to study the
encoding and decoding schemes of LoRa.

With respect to the limited capability of hardware, LoRaWAN
[3] adopts a simple ALOHA-based MAC for access control. The
limits of LoRaWANMAC have been analytically concluded in [2, 6].
[9] studies LoRa collisions via simulation. [20] employs commodity
devices to empirically study the characteristic of LoRa collisions.
More recently, [39] presents an in-depth investigation of LoRa col-
lisions within actual running networks. To avoid collisions, some
researchers [38, 43] proposed newMAC designs that incorporate ad-
vanced scheduling schemes on top of LoRa. However, these schemes
would add higher complexity yet produce lower efficiency in terms
of network capacity and throughput.

The work most related to ours is Choir [15], which exploits
the frequency offsets introduced by LoRa hardware to separate
collisions. However, in practice, the extracted frequency offset is
not reliable to classify colliding symbols due to various influencing
factors (e.g., phase jitters, time offset).

Our work is inspired by the previous works of collision recovery
and parallel decoding in various wireless systems (e.g., WiFi, RFID).
ZigZag [17] decodes collisions by exploiting the fact that the time
offset of collided transmissions produces some interference-free
chunks. It extracts the interference-free chunks and subtracts from
collisions to separate each individual transmission. BiGroup [35]
examines the collision states of concurrent transmissions of RFID
tags, and iteratively detects the state transitions of collided signals
to decode tag transmissions. LF-Backscatter [23] employs power-
ful RFID readers to detect the interleaving signal edges with high
sampling rates and separate collided tag signals. More recently, Flip-
Tracer [26] andHubble [25] support parallel decoding of backscatter
communications by leveraging both PHY and time domain informa-
tion. NetScatter [22] proposes a new coding scheme that combines
On-Off Keying and CSS to support concurrent transmissions.

In addition to the collision recovery approach, some works aim
to avoid collisions, including MIMO [4, 40, 53], TDMA [45, 52],
collision-recovery methods [24, 51], and constructive interference
[14, 31]. LoRa also supports orthogonal communications by trans-
mitting with different channels, bandwidths and spreading factors.
However, even with orthogonal parameter settings, transmission

collisions may still happen as the number of devices further in-
creases, e.g., in scenarios like urban and warehouse [20, 39]. Our
work is complementary to such collision avoidance schemes.

6 LIMITATIONS AND FUTUREWORK

FTrack exploits the timing misalignment of collided frames to en-
able parallel decoding. The evaluation results indicate that the
performance of FTrack is affected by the edge offsets of collided
symbols. When the symbol edges of two colliding LoRa nodes are
well-aligned (e.g., <10% of symbol duration), the performance of
FTrack will degrade. In practice, some LoRaWAN MAC protocols
schedule LoRa transmissions with CSMA or random slotting mech-
anisms, which can lead to collisions in synchronized time slots. As
a result, the symbol edges of collided frames can be aligned, which
could potentially affect the capability of FTrack in resolving colli-
sions. To address this problem, we can modify the MAC protocols in
practice to intentionally mis-align collided transmissions. Moreover,
we can properly select the parameters of LoRa communication (e.g.,
spreading factor, bandwidth, transmission power, etc.) to maximize
the capability of FTrack in supporting more parallel transmissions.
We leave such a exploration for future work.

7 CONCLUSION

This paper presents FTrack, a practical strategy that resolves LoRa
collisions in both time and frequency domains. FTrack jointly ex-
ploits the distinct frequency tracks and misaligned edges of LoRa
symbols to separate collisions. It enables a novel communication
paradigm that allows LoRa node to join on-going communications
in parallel without specific coordination. We implement FTrack on
a low-cost SDR platform and deploy an indoor testbed to evaluate
the performance of FTrack in a variety of network settings. Results
show that FTrack recovers collided LoRa frames with low symbol
error rates in diverse SNR conditions. It can boost the throughput of
real-world LoRaWAN by up to 3 times. The parallel decoding capa-
bility of FTrack can benefit the deployment of large-scale LoRaWAN
in densely-populated IoT scenarios.

8 ACKNOWLEDGEMENTS

We thank anonymous shepherd and reviewers for helpful com-
ments. This work is supported in part by the National Nature Sci-
ence Foundation of China under grant 61702437 and Hong Kong
GRF under grant PolyU 152165/19E, and in part by the Australian
Research Council (ARC) Discovery Project Grants DP190101888
and DP180103932. Yuanqing Zheng is the corresponding author.

REFERENCES
[1] Khaled Abdelfadeel, Victor Cionca, and Dirk Pesch. 2018. Poster: A Fair Adaptive

Data Rate Algorithm for LoRaWAN. In Proceedings of the 2018 International
Conference on Embedded Wireless Systems and Networks (EWSN’18). 169–170.

[2] Ferran Adelantado, Xavier Vilajosana, Pere Tuset-Peiro, Borja Martinez, Joan
Melia-Segui, and ThomasWatteyne. 2017. Understanding the Limits of LoRaWAN.
IEEE Communications Magazine 55, 9 (Sept. 2017), 34–40.

[3] LoRa Alliance. 2019. LoRaWAN for Developer. Retrieved Jan 10, 2019 from
https://lora-alliance.org/lorawan-for-developers

[4] Narendra Anand, Ryan E. Guerra, and Edward W. Knightly. 2014. The Case for
UHF-band MU-MIMO. In Proceedings of the 20th Annual International Conference
on Mobile Computing and Networking (MobiCom ’14). 29–40.

[5] AloÃ£s Augustin, Jiazi Yi, Thomas Clausen, and William Mark Townsley. 2016.
A Study of LoRa: Long Range & Low Power Networks for the Internet of Things.
Sensors 16, 9 (Sept. 2016), 1446.

FTrack: Parallel Decoding for LoRa Transmissions SenSys ’19, November 10–13, 2019, New York, NY, USA

[6] Dmitry Bankov, Evgeny Khorov, and Andrey Lyakhov. 2016. On the Limits of
LoRaWAN Channel Access. In Proceedings of the 2016 International Conference on
Engineering and Telecommunication (EnT). 10–14.

[7] Jean-Paul Bardyn, Thierry Melly, Olivier Seller, and Nicolas Sornin. 2016. IoT:
The era of LPWAN is starting now. In Proceedings of the ESSCIRC Conference 2016:
42nd European Solid-State Circuits Conference. 25–30.

[8] Norbert Blenn and Fernando A. Kuipers. 2017. LoRaWAN in the Wild: Measure-
ments from The Things Network. CoRR(arXiv preprint) abs/1706.03086 (2017).

[9] Martin C. Bor, Utz Roedig, Thiemo Voigt, and JuanM. Alonso. 2016. Do LoRa Low-
Power Wide-Area Networks Scale?. In Proceedings of the 19th ACM International
Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems
(MSWiM’16). 59–67.

[10] Taoufik Bouguera, Jean-FranÃğois Diouris, Jean-Jacques Chaillout, Randa
Jaouadi, and Guillaume Andrieux. 2018. Energy Consumption Model for Sensor
Nodes Based on LoRa and LoRaWAN. Sensors 18, 7 (Jul 2018), 2104.

[11] Anders Carlsson, Ievgeniia Kuzminykh, Robin Franksson, and Alexander Lilje-
gren. 2018. Measuring a LoRa Network: Performance, Possibilities and Limita-
tions. In Proceedings of the 18th International Conference, NEW2AN 2018, and 11th
Conference, ruSMART 2018. 116–128.

[12] Jonathan de Carvalho Silva, Joel J.P.C. Rodrigues, Antonio M. Alberti, Petar
Solic, and Andre L. L. Aquino. 2017. LoRaWAN–A low power WAN protocol
for Internet of Things: A review and opportunities. In Proceedings of the 2017
2nd International Multidisciplinary Conference on Computer and Energy Science
(SpliTech). 1–6.

[13] Dragino. 2019. LoRa Shield for Arduino. Retrieved Mar 25, 2019 from http:
//www.dragino.com/products/module/item/102-lora-shield.html

[14] WanDu, Jansen Christian Liando, Huanle Zhang, andMo Li. 2015. When pipelines
meet fountain: Fast data dissemination in wireless sensor networks. In Proceedings
of the ACM Conference on Embedded Networked Sensor Systems. 365–378.

[15] R. Eletreby, D. Zhang, S. Kumar, and O. Yagan. 2017. Empowering Low-Power
Wide Area Networks in Urban Settings. In Proceedings of the Conference of the
ACM Special Interest Group on Data Communication (SIGCOMM’17). 309–321.

[16] Weifeng Gao, Wan Du, Zhiwei Zhao, Geyong Min, and Mukesh Singhal. 2019.
Towards Energy-Fairness in LoRa Networks. In Proceedings of the 39th IEEE
International Conference on Distributed Computing Systems (ICDCS).

[17] Shyamnath Gollakota and Dina Katabi. 2008. Zigzag decoding: combating hid-
den terminals in wireless networks. In Proceedings of the ACM SIGCOMM 2008
conference on Data communication (SIGCOMM’08). 159–170.

[18] D.J. Goodman and A.A.M. Saleh. 1987. The near/far effect in local ALOHA radio
communications. IEEE Transactions on Vehicular Technology 36, 1 (Feb. 1987),
19–27.

[19] Daniel Halperin, Thomas Anderson, and David Wetherall. 2008. Taking the Sting
out of Carrier Sense: Interference Cancellation for Wireless LANs. In Proceedings
of the 14th ACM International Conference on Mobile Computing and Networking
(MobiCom’08). 339–350.

[20] Jetmir Haxhibeqiri, Floris Van den Abeele, Ingrid Moerman, and Jeroen Hoebeke.
2017. LoRa Scalability: A Simulation Model Based on Interference Measurements.
Sensors 17, 6 (Mar 2017), 1193.

[21] Jetmir Haxhibeqiri, Eli De Poorter, Ingrid Moerman, and Jeroen Hoebeke. 2018.
A Survey of LoRaWAN for IoT: From Technology to Application. Sensors 18, 11
(Nov. 2018), 3995.

[22] Mehrdad Hessar, Ali Najafi, and Shyamnath Gollakota. 2019. NetScatter: Enabling
Large-Scale Backscatter Networks. In 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI’19). 271–284.

[23] Pan Hu, Pengyu Zhang, and Deepak Ganesan. 2015. Laissez-Faire: Fully Asym-
metric Backscatter Communication. In Proceedings of the 2015 ACM Conference
on Special Interest Group on Data Communication (SIGCOMM’15). 255–267.

[24] Kyle Jamieson and Hari Balakrishnan. 2007. PPR: Partial Packet Recovery for
Wireless Networks. In Proceedings of the 2007 Conference on Applications, Tech-
nologies, Architectures, and Protocols for Computer Communications (SIGCOMM
’07). 409–420.

[25] Meng Jin, Yuan He, Xin Meng, Dingyi Fang, and Xiaojiang Chen. 2018. Parallel
Backscatter in the Wild: When Burstiness and Randomness Play with You. In
Proceedings of the 24th Annual International Conference on Mobile Computing and
Networking (MobiCom ’18). 471–485.

[26] Meng Jin, Yuan He, Xin Meng, Yilun Zheng, Dingyi Fang, and Xiaojiang Chen.
2017. FlipTracer: Practical Parallel Decoding for Backscatter Communication. In
Proceedings of the 23rd Annual International Conference on Mobile Computing and
Networking (MobiCom ’17). 275–287.

[27] Matthew Knight and Balint Seeber. 2016. Decoding LoRa : Realizing a Modern
LPWAN with SDR. In Proceedings of the 6th GNU Radio Conference. 1–5.

[28] Mads Lauridsen, Istvan Z. Kovacs, Preben Mogensen, Mads Sorensen, and Steffen
Holst. 2016. Coverage and Capacity Analysis of LTE-M and NB-IoT in a Rural
Area. In Proceedings of IEEE 84th Vehicular Technology Conference ((VTC-Fall
2016)). 1–5.

[29] Alexandru Lavric and Adrian Ioan Petrariu. 2018. LoRaWAN communication
protocol: The new era of IoT. In Proceedings of the 2018 International Conference

on Development and Application Systems (DAS). 74–77.
[30] Alexandru Lavric and Valentin Popa. 2017. A LoRaWAN: Long range wide area

networks study. In Proceedings of the 2017 International Conference on Electrome-
chanical and Power Systems (SIELMEN). 417–420.

[31] Zhenjiang Li, Wan Du, Yuanqing Zheng, Mo Li, and Dapeng Wu. 2017. From
rateless to hopless. IEEE/ACM transactions on networking 25, 1 (2017), 69–82.

[32] J.C. Liando, A. Gamage, A.W. Tengourtius, and M. Li. 2019. Known and Un-
kown Facts of LoRa: Experiences from a Large Scale Measurement Study. ACM
Transactions on Sensor Networks (TOSN) 15, 2 (Feb. 2019), 16:1–16:35.

[33] Jin-Taek Lim and Youngnam Han. 2018. Spreading Factor Allocation for Massive
Connectivity in LoRa Systems. IEEE Communications Letters 22, 4 (Apr 2018),
800–803.

[34] Umber Noreen, AhcÃĺne Bounceur, and Laurent Clavier. 2017. A study of LoRa
low power and wide area network technology. In Proceedings of the 2017 Inter-
national Conference on Advanced Technologies for Signal and Image Processing
(ATSIP). 1–6.

[35] Jiajue Ou, Mo Li, and Yuanqing Zheng. 2015. Come and Be Served: Parallel
Decoding for COTS RFID Tags. In Proceedings of the 21st Annual International
Conference on Mobile Computing and Networking (MobiCom’15). 500–511.

[36] Juha Petajajarvi, Konstantin Mikhaylov, Antti Roivainen, Tuomo Hanninen, and
Marko Pettissalo. 2015. On the coverage of LPWANs: range evaluation and
channel attenuation model for LoRa technology. In Proceedings of the 2015 14th
International Conference on ITS Telecommunications (ITST). 55–59.

[37] Juha PetÃďjÃďjÃďrvi, Konstantin Mikhaylov, Marko Pettissalo, Janne Janhunen,
and Jari Iinatti. 2017. Performance of a low-power wide-area network based on
LoRa technology: Doppler robustness, scalability, and coverage. International
Journal of Distributed Sensor Networks 13, 3 (Mar 2017), 1–16.

[38] Congduc Pham. 2018. Investigating and experimenting CSMA channel access
mechanisms for LoRa IoT networks. In Proceedings of the 2018 IEEE Wireless
Communications and Networking Conference (WCNC). 1–6.

[39] Andri Rahmadhani and Fernando Kuipers. 2018. When LoRaWAN Frames Collide.
In Proceedings of the 12th International Workshop on Wireless Network Testbeds,
Experimental Evaluation & Characterization (WiNTECH’18). 89–97.

[40] Hariharan Shankar Rahul, Swarun Kumar, and Dina Katabi. 2012. JMB: Scaling
Wireless Capacity with User Demands. In Proceedings of the ACM SIGCOMM 2012
Conference on Applications, Technologies, Architectures, and Protocols for Computer
Communication (SIGCOMM ’12). 235–246.

[41] Rapeepat Ratasuk, Benny Vejlgaard, Nitin Mangalvedhe, and Amitava Ghosh.
2016. NB-IoT system for M2M communication. In Proceedings of IEEE Wireless
Communications and Networking Conference ((WCNC 2016)). 1–5.

[42] Brecht Reynders, Wannes Meert, and Sofie Pollin. 2017. Power and spreading
factor control in low power wide area networks. In Proceedings of the 2017 IEEE
International Conference on Communications (ICC). 1–6.

[43] Brecht Reynders, QingWang, Pere Tuset-Peiro, Xavier Vilajosana, and Sofie Pollin.
2018. Improving Reliability and Scalability of LoRaWANs Through Lightweight
Scheduling. IEEE Internet of Things Journal 5, 3 (Jun 2018), 1830–1842.

[44] Pieter Robyns, Peter Quax, Wim Lamotte, and William Thenaers. 2018. A Multi-
Channel Software Decoder for the LoRa Modulation Scheme. In Proceedings of the
3rd International Conference on Internet of Things, Big Data and Security (IoTBDS).
1–11.

[45] Anthony Rowe, Dhiraj Goel, and Ragunathan Rajkumar. 2007. FireFly Mosaic: A
Vision-Enabled Wireless Sensor Networking System. In Proceedings of the 28th
IEEE International Real-Time Systems Symposium (RTSS 2007). 459–468.

[46] Semtech. 2019. Semtech SX1276: 137MHz to 1020MHz Long Range Low Power
Transceiver. Retrieved Apr 5, 2019 from https://www.semtech.com/products/
wireless-rf/lora-transceivers/sx1276

[47] SigFox. 2019. SigFox Overview. Retrieved Jan 10, 2019 from https://www.sigfox.
com/en/sigfox-iot-technology-overview

[48] Rashmi Sharan Sinha, Yiqiao Wei, and Seung-Hoon Hwang. 2017. A survey on
LPWA technology: LoRa and NB-IoT. ICT Express 3, 1 (March 2017), 14–21.

[49] Jothi Prasanna Shanmuga Sundaram, Wan Du, and Zhiwei Zhao. 2019. A Survey
on LoRa Networking: Research Problems, Current Solutions and Open Issues.
arXiv preprint arXiv:1908.10195 (2019).

[50] Benny Vejlgaard, Mads Lauridsen, Huan Nguyen, Istvan Z. Kovacs, Preben Mo-
gensen, and Mads Sorensen. 2017. Coverage and Capacity Analysis of Sigfox,
LoRa, GPRS, and NB-IoT. In Proceedings of the 2017 IEEE 85th Vehicular Technology
Conference (VTC Spring). 1–5.

[51] Yafeng Wu, Gang Zhou, and John A. Stankovic. 2010. ACR: Active Collision Re-
covery in Dense Wireless Sensor Networks. In Proceedings of the IEEE INFOCOM
2010. 1–9.

[52] Xianjin Xia, Shining Li, Yu Zhang, Lin Li, Tao Gu, and et. al. 2017. Surviving
screen-off battery through out-of-band Wi-Fi coordination. In Proceedings of the
IEEE INFOCOM 2017 - IEEE Conference on Computer Communications. 1–9.

[53] Yaxiong Xie, Jie Xiong, Mo Li, and Kyle Jamieson. 2019. mD-Track: Leverag-
ing Multi-Dimensionality for Passive Indoor Wi-Fi Tracking. In Proceedings of
MobiCom’19. 8:1–8:16.

