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Abstract—Binaural microphones, referring to two microphones
with artificial human-shaped ears, are pervasively used in hu-
manoid robots and hearing aids improving sound quality. In
many applications, it is crucial for such robots to interact with
humans by finding the voice direction. However, sound source
localization with binaural microphones remains challenging, es-
pecially in multi-source scenarios. Prior works utilize microphone
arrays to deal with the multi-source localization problem. Extra
arrays yet incur higher deployment costs and take up more space.
However, human brains have evolved to locate multiple sound
sources with only two ears. Inspired by this fact, we propose
DeepEar, a binaural microphone-based localization system that
can locate multiple sounds. To this end, we develop a neural
network to mimic the acoustic signal processing pipeline of the
human auditory system. Different from hand-crafted features
used in prior works, DeepEar can automatically extract useful
features for localization. More importantly, the trained neural
networks can be extended and adapted to new environments with
a minimum amount of extra training data. Experiment results
show that DeepEar can substantially outperform the state-of-the-
art deep learning approach, with a sound detection accuracy of
93.3% and an azimuth estimation error of 7.4 degrees in multi-
source scenarios.

Index Terms—Binaural localization, Multi-source localization,
Earable computing.

I. INTRODUCTION

Sound localization can provide context information to im-

prove user experience and enable a variety of innovative

applications such as gaming, smart environment, and human

computer interaction. For example, humanoid service robots

with binaural microphones and speakers can interact with users

to promote products, give directions, and take care of kids

and elders. In these voice interaction applications, when a

user talks to a service robot, it would be great if the robot

can figure out the voice direction, turn to the user, and pro-

vide customized location-aware services. People with hearing

difficulties could also benefit from sound localization. If the

hearing aids they wear can distinguish the sound location, then

the binaural microphones in ears can amplify the sound from

this direction and substantially improve their quality of life

when talking with others as well as their safety when walking

outside.

Currently, many microphone array-based sound localiza-

tion technologies have been proposed, such as beamformer-

based SRP-PHAT [1], spectral estimation-based MUSIC [2],

triangulation based approach [3], and deep learning based

methods [4, 5]. However, an extra microphone array brings

about additional hardware costs, making hearing impaired

Hello, robot!Found you 
in !

(a) Humanoid robots. (b) Hearing aids.

Fig. 1. Application scenarios. (a) Humanoid robots are equipped with artificial
ears. When a user calls the robot, it should be able to locate the voice and
turn around to the user. (b) Binaural microphones in hearing aids can localize
the sound location and amplify the sound for hearing impaired people and
improve their life quality.

users inconvenient to wear. Moreover, the above microphone

array-based solutions cannot be applied to binaural micro-

phones. The correlation-based time difference technique can

estimate the AoA of a sound with microphones. However,

using only two microphones will lead to the cone of confusion

problem [6], which means the sound source can be located in

multiple locations with the same interaural time difference. In

horizontal 2D space, this problem causes front-back confusion.

Therefore, these works typically assume the target source is in

the front facing field. Moreover, when more than one sound

source are present, they will interfere with each other, raising

more challenges to separate multiple sound sources.

Existing binaural microphone-based solutions train machine

learning models on the raw audio data directly [7] or hand-

crafted features (e.g., interaural time difference (ITD) or

interaural level difference (ILD) [8, 9]). However, these works

can only locate one source, or they assume the number of

sound sources is known beforehand. In real usage scenarios,

such assumptions are hard to guarantee and their performance

degrades since they cannot handle the interference of multiple

sources. On the other hand, the human auditory system has

naturally evolved to locate multiple sounds simultaneously.

In this paper, we aim to imitate the human auditory system

and achieve sound localization with binaural microphones. To

enable such human-like sound localization, we identify the

following key objectives and design requirements:

• Full-field localization. Different from the existing meth-

ods (e.g., AoA based methods) which suffer the cone of

confusion problem, human beings can normally differen-

tiate whether the sound is from the front or from the back.
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Accordingly, we expect that our target system should be

able to avoid such a confusion problem and support full-

field localization.

• Multi-source localization. Previous works typically for-

mulate the single sound localization task as a single-

label classification problem [10]. The localization system

estimates the most likely one direction among several

pre-defined degrees. However, it is nontrivial to extend

such a single source localization method to multi-source

scenarios, especially when the number of sound sources

is not known.

• New environment adaptation. We observe a substantial

performance decrease of previous works when they work

in a new environment. For example, neural network-based

source localization methods suffer dramatic performance

degradation when estimating new data collected in un-

seen environments (i.e., unseen data). Ideally, our system

should evolve and adapt to new working environments

with minimum extra training.

To this end, we propose DeepEar, a multi-source local-

ization system with binaural microphones. DeepEar mimics

the signal processing pipeline of the human auditory system.

First, the audio data is transformed into the time-frequency

domain. Then, an encoder network is designed to extract

the latent representation of sounds. To enable multi-source

fullfield localization, we partition the 2D space into a number

of subsectors, and model the multiple sound localization as a

multi-label classification problem. The number of subsectors

can be configured and changed according to application re-

quirements. To bootstrap the training process, we first train

a global model with a large amount of readily available

public data sets. Note that during the training of the global

model, we do not need to collect any data from end users

or their working environments such as their homes or offices,

which dramatically simplifies data collection and global model

training. To adapt the global model to new environments,

DeepEar harnesses a transfer learning strategy and re-trains

the global model with a small amount of new data collected

in the target environments during the usage of end users.

In this way, our method can 1) reduce the data collection

overhead involved in training a global model, and 2) cope with

the heterogeneity of working environments with the minimum

effort of end users.
Comprehensive experiments are conducted in both anechoic

and reverberant environments. The experiment results show

that DeepEar can achieve a 93% sound detection accuracy and

7.4◦ azimuth estimation error in the multiple-source scenario,

which outperforms a deep learning-based state-of-the-art in

various experiment settings. The real-world case study also

illustrates that ears play a pivotal role in disambiguation, which

can improve sound localization performance significantly.
The paper is organized as follows. In Sec. II, we briefly

introduce the background and present the empirical results

of our feasibility study. We elaborate the detailed design in

Sec. III. Then, Sec. IV and Sec. V describe the implementation

and evaluation results. Related works are summarized in

Notch

Amplification

(a) Left ear. (b) Right ear.

Fig. 2. Frequency response with and w/o ears.

Sec. VI. Finally, Sec. VII concludes this paper.

II. BACKGROUND AND EMPIRICAL STUDY

Human-shaped outer ears are an important part of the human

auditory system, which helps in locating sound sources. We

first conducted a feasibility study to evaluate the influence of

artificial human-shaped ears to acoustic signals. As shown in

Fig. 3, we placed a miniDSP EARS binaural microphone at the

center of a meeting room. Then, we used a portable speaker

to play an exponential sweep sine as the excitation signal

1m away in front of the binaural microphone. This excitation

signal was recorded with the microphones to calculate the

Binaural Room Impulse Response (BRIR), which describes

the acoustic channel from the speaker to the microphone

in this room. After that, we kept all settings unchanged

but only detached the two artificial human-shaped ears from

the microphones and repeated the measurement. As shown

in Fig. 2, the frequency responses with the artificial ears

substantially differ from those without ears. Specifically, we

can see an amplification with ears at the voice frequency region

(< 10 KHz), since ear canals act as tubes and amplify the

frequency band where human voices mainly reside. Besides,

there is a noticeable frequency notch in high-frequency band

(10 KHz ∼ 20 KHz). That is because the ears with many

wrinkles can cause special multipath reflection and destructive

interference as reported in literature [11]. This result validates

that ears can significantly distort and filter the sound in certain

frequencies.

180
Loudspeaker

Binaural microphone
0

Fig. 3. Preliminary experiment setting.

As shown in Fig. 3, we conducted another experiment where

we measured the BRIR before and after rotating the binaural

microphones with ears around by 180◦. We note that in the two

measurements, the distances between the sound source to the

two microphones remain the same. Intuitively, we expect that

these two responses will be similar since all settings are kept

fixed but only with the small ears orientation rotated. However,
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(b) Right ear.

Fig. 4. Frequency response in the front/back.
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Fig. 5. Illustration of the human
auditory system [16].
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Fig. 6. Sound localization with
binaural microphones.

we see that the frequency responses significantly differ from

each other in Fig 4. The reason is that, when the sound wave

travels to a user, it will be scattered, reflected, and diffracted by

the body, head, and especially the ears of the user (which can

be described by the Head-Related Transfer Function, HRTF ).

The ears and head shape the acoustic signals by filtering and

absorbing different frequency bands, thus the HRTF is both

frequency and direction dependent [12]. Therefore, our brain

can learn to associate these subtle difference patterns with

certain spatial locations, which helps resolve the ambiguity and

perform source localization, even in multi-source scenarios

[13].

With the help of ears, human beings can perform accurate

sound localization. Fig. 5 shows a basic human auditory

system. Two ears capture and filter the sound, and then the

sound wave strikes the eardrum, leading the vibration in the

spiral-shaped cochlea, which transduces the sound wave to

neural stimulus signals [14]. As neural activity moves along

the pipeline, several brainstem nuclei encode the stimulus to

perception [14, 15]. Finally, the auditory cortex in the brain in-

terprets sound spatial information. We refer interested readers

to the literature [14] for more detailed human auditory mech-

anisms. Inspired by this fact, we utilize binaural microphones

with human-shaped ears to capture sounds, and develop a

deep learning model to mimic the functions of the human

auditory system and locate sound sources as illustrated in

Fig. 6. In the following, we describe the design consideration

and implementation detail of DeepEar.

III. DEEPEAR DESIGN

In this section, we first give a system overview of DeepEar,

and then introduce the detailed components of the human-like

sound processing pipeline.

Air vibration

Pinna

Electrical stimulus

Encoding

PerceptionMechanical pressure

Gammatone Filterbank Sound location

Cognition

Air vibration

Dummy head

ADC

Digital signal

Encoder

t-f representation

Neural network Sound location

Output

Eardrumm

Cochlea Auditory cortexBrainstem nuclei Sound location

on

Sound location

DeepEar

Human Auditory System

Fig. 7. System overview: an analogy between human auditory system and
DeepEar.

A. System Overview

Fig. 7 presents a system overview of DeepEar. The up-

per part depicts the pipeline of the human auditory system.

DeepEar is inspired by the human auditory system and we

design and implement components to mimic the key functions

to locate sound positions. We first utilize binaural microphones

with human-shaped ears to capture sounds. Then, a Gamma-

tone filterbank is used to transform the audio signals into

the time-frequency domain, which mimics the function of a

cochlea in human auditory system. After that, we train an

encoder to extract the high-level representation. Finally, these

sound features are input to a neural network to estimate sound

locations. In the following, we introduce each component in

detail.

B. Data Collection and Preprocessing

Human beings perform sound localization by learning the

sound spatial patterns caused by the head, torso, and ears.

Inspired by this fact, we utilize binaural microphones with

human-shaped ears to capture acoustic signals. A dummy head

can also be used to better capture the acoustic signals.

In human auditory system, the cochlea is a spiral structure

that is essential for frequency analysis. Along with this spiral,

its different parts vibrate in response to different frequen-

cies and convert sound waves into electrical stimuli. During

this process, sounds are decomposed into many constituent

frequency components. Such a frequency-selective vibration

varies exponentially along the cochlea [17]. DeepEar imitates

the function of a cochlea with a Gammatone filterbank, which

is widely used in the literature of auditory system modeling

[18]. We empirically set the number of filters as 100 to strike

a balance between computational efficiency and representative

sufficiency. To preserve sound temporal context, we frame the

audio signals using a 100 ms Hamming window with 50 ms
overlap. In this way, the output of preprocessing, Gammatone

spectrogram coefficients, is a 2D matrix with size [filter size

× frame number].

C. Feature Extraction

Before a neural stimulus reaches the auditory cortex in

the brain, it passes through many stages of processing by

several brainstem nuclei as depicted in Fig. 5. Although
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Fig. 8. Illustration of GRU VAE.

the understanding of the specific processing accomplished in

this stage remains not totally clear yet [19], it is commonly

believed that these nuclei perform a function similar to feature

mapping and encoding for sound localization and recognition

[15]. Such a compressing and extraction process is able to

prevent the overload of information in a short time [20].

This neural coding procedure inspires us to exploit an

autoencoder to automatically extract compact sound represen-

tations. An autoencoder is trained to compress or encode data

to a high-level latent feature space, which can be reconstructed

back into the original input data without much information

loss. An autoencoder consists of two parts: an encoder and a

reversed structure named decoder. As the preprocessed result

is a 2D time series, we use the seq2seq framework [21]

to encode the data. As shown in Fig. 8, we build a Gated

Recurrent Unit (GRU) variational autoencoder (VAE), which

reads the Gammatone spectrogram coefficients and maps them

to a fixed-length feature vector z. Two GRU layers are used

to form an encoder. Similar to LSTM (Long Short-Term

Memory), it can also learn the long and short-term temporal

context, while it has fewer parameters and better generalization

capability. Moreover, instead of coding the latent features from

the input independently, we use a variation autoencoder to

map the data into a multivariate normal distribution. This

constrains the encoder to learn a smoother representation,

which is more generalizable to reconstruct unseen data. After

the training process, the decoder part can be cut off and only

the encoder is used in DeepEar. Fig. 9 illustrates the original

and reconstructed Gammatone coefficients of one sample. We

can see that GRU VAE can extract representative high-level

features from the original input.

As we mentioned before, human brain perceives the spatial

patterns in sound to perform localization. On the one hand,

different propagation paths cause subtle sound differences

between two ears [22]. For example, the interaural time

differences (ITD) can help us to infer the sound azimuth.

As such, we perform cross-correlation GCC-PHAT [23] be-

tween the signals of two ears. The distance between two

ears determines the maximum time difference from a sound

source. Considering extra multipath caused by the head and

body, we take the middle 100 coefficients instead of all

correlation results as a part of features. However, there is no

one-to-one mapping between ITD to sound direction or sound

location because of ambiguities as we discussed. On the other

hand, the ears produce micro-echoes to the arriving sound,
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(b) VAE output.

Fig. 9. GRU VAE can effectively extract the latent features from original
data and reconstruct back with it.

leading to spectral distortion associated with certain spatial

locations. These two patterns jointly help humans to locate

sound signals. Therefore, along with the encoded features

from the left and right ears, we also subtract two outputs and

measure the feature differences between the two ears. Finally,

all of these features are concatenated to form the final feature

representation.

D. Sound Localization

DeepEar first detects whether a sound is present in a specific

sector, and then estimates its AoA and distance if a target is

present. We introduce the neural network design as follows.

1) Network Structure Design: With the extracted features,

we construct a neural network to perform multiple sound

localization. A subsector-based output is used to facilitate

simultaneous multiple source localization with arbitrary spatial

resolution. In this paper, we set the number of sectors to 8, and

we release the assumption of previous work that the number

of sound sources is known beforehand. Instead, we assume

that there is at most only one source in a sector. This also

means that DeepEar supports up to 8 simultaneous acoustic

sources localization. We can increase the number of subsectors

to increase the spatial resolution and the maximum supporting

number of concurrent sources according to application require-

ments.

Fig. 10 shows the network design of DeepEar. The extracted

features of binaural channels are subtracted in the subtract

layer to obtain the difference between two ears. After that,

all features are concatenated to a feature vector and input to

the sound localization network. We only use several dense

layers to construct this network. To prevent overfitting, dropout

layers are attached after each dense layer with a drop rate

of 0.2. We formulate the full-field localization as a multi-

task learning problem. The first three layers learn a general

shared spatial pattern of the sound, followed by eight subnets

that are responsible for each subsector. In each subnet, three

task sub-networks share a common dense layer. The first task

subnet is SoundNet, which detects whether an acoustic source

is present in this sector and outputs a binary result indicating

the presence of a target. The second task subnet AoANet
predicts the AoA of the target. AoANet is a regression net,

whose output is a normalized value in (0,1] indicating the

minimal and maximal degree in the sector. For example, 0

and 1 represent 1◦ and 45◦ in sector 1, respectively. If there

is no sound source in the sector, this value is set to 0 in the
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Fig. 10. DeepEar network design.

corresponding target label. DisNet is the third task subnet,

which estimates the distance between ears and the target

source. Note that humans perform distance estimation with

sound loudness and the ratio of direct to reverberant sound,

which is much worse compared with AoA estimation [24].

Therefore, we classify the sound distance into five classes,

and among them the last category represents the no-source

case.

2) Loss Function: Overall, DeepEar has a 56-dimension

output, and the whole network can be trained by minimizing

the loss between the network output and ground truth. All

SoundNets can be regarded as a multilabel classification

problem, so the activation function is sigmoid and binary

cross-entropy are used as the loss function:

Ls = −y · log (ŷ)− (1− y) · log (1− ŷ) (1)

where y is the ground truth, and ŷ is the prediction prob-

ability. As for AoANets, the mean squared error is used to

qualify this regression task:

La = (y − ŷ)2 (2)

where ŷ is the regression output of AoANet. Since DisNet

is designed for a multiclass classification problem, we use the

softmax activate function and formulate its loss function as

the cross-entropy:

Ld = − 1

C

C∑

i=1

wi · yi · log ŷi (3)

where C is the number of categories (i.e., 5), and wi is

the weight for each category. yi is the i-th one-hot encoding

ground truth bit of this instance.

As a result, the loss of one sector subnet is constructed as

a weighted sum of the losses of three task subnets:

Lsector = αLs + βLa + γLd (4)

where α, β, and γ are weights for different task subnets.

The most important requirement for DeepEar is detecting the

concurrent sound sources, while we also expect better AoA

estimation than distance estimation. Thus, we empirically set

these weights to 0.4, 0.35, and 0.25 respectively. Then we can

average the losses of all sector subnets and obtain the overall

loss of DeepEar network:

L =
1

N

1

M

N∑

n=1

M∑

m=1

Lsector(m) (5)

where M is the sector number, and N is the number of

training data in a batch.

E. Adaptation to New Environments

Humans have the ability that locates sound in various

environments by continuous learning from childhood [25].

This ability indicates that humans can transfer the knowledge

learned from a previous environment to new contexts. There-

fore, we first build a global model for DeepEar, then we can

apply transfer learning [26] to make DeepEar adaptive to new

environments with a small number of new data.

DeepEar network can be divided into three components.

The first one is the feature extraction module, including

VAE and feature concatenation layer. Then three dense layers

are used for learning the general spatial pattern knowledge.

Finally, eight subnets are responsible for learning specific

context information and performing localization tasks. Thus,

based on the pre-trained global model, we freeze the first

two parts and fine-tune subnets with a small amount of data

from new environments. In this way, DeepEar can adapt to

different working environments quickly, saving redundant and

burdensome training overhead for users.

IV. IMPLEMENTATION

System Implementation. We implemented DeepEar with

Python and TensorFlow. The neural network and VAE were

trained on a workstation with an Nvidia GeForce RTX 2080

Ti. Early-stopping was applied to prevent overfitting if no

performance improvement on the validation set was observed

for more than 5 epochs. The loss of VAE is the mean square

error between input Gammatone coefficients and reconstruct

output.

Data Synthesis. Same as the previous binaural localiza-

tion work [7–9], we synthesized binaural spatial sounds by

convolving clean speech audio recordings with the binaural

room impulse responses (BRIR) of different locations. The

clean speeches were randomly chosen from a corpus named

TIMIT [27], containing the recordings of 630 speakers with

eight major dialects of American English, each reading ten

sentences. We choose a publicly available BRIR dataset named

TU Berlin [28]. This dataset was measured with a KEMAR

dummy head (i.e., binaural microphones) in three different

rooms, including an anechoic chamber, a small meeting room

named Spirit, and a mid-size lecture room called Auditorium3.

Considering that the maximal number of concurrent sound

sources is typically small in real world, we set it as 3.

The number of sources, AoA, and distance are all randomly

generated but with a constraint that only one source presents
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Table I. Dataset summary.

Dataset Anechoic-training Anechoic-validation Anechoic-testing-seen Anechoic-testing-unseen Spirit-testing Auditorium3-testing
BRIR convolved Anechoic Anechoic Anechoic Anechoic Spirit Auditorium3

Sample size 72000 9000 9000 9000 9000 9000
Usage Training Validation Testing Testing Testing Testing
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Fig. 11. Performance comparison between DeepEar and WaveLoc on seen data in the anechoic environment.

Metircs Sound detection (%) Hamming score (%) AoA (degree) Distance (%)
Source # ave 1 2 3 ave 1 2 3 ave 1 2 3 ave 1 2 3
DeepEar 91.9 99.8 92.5 83.5 80.5 99.1 78.2 64.1 8.0 2.3 7.7 10.1 81.6 95.2 81.2 68.4
WaveLoc 80.4 90.9 80.0 70.3 43.2 56.7 39.3 33.7 14.5 13.2 15.2 14.5 75.0 87.5 75.0 62.6

Table II. Performance comparison between DeepEar and WaveLoc on unseen data in the anechoic environment.

in a sub-sector. All synthesized data were sampled at 16 KHz

and sliced to 1-second instances.

V. EVALUATION

A. Experiment Setup

We first train a global model for DeepEar only with the pub-

licly available data. After that, DeepEar can be customized and

adapted to the real-world application environments by transfer

learning with a minimum amount of new data collected in

target working environments.

The clean speech recording corpus consists of two portions,

TRAIN and TEST. We randomly selected speeches in the

TRAIN portion, convolved with Anechoic BRIR to get the

anechoic synthesized data for training a global model. These

data were divided into training-validation-testing three parts

with the ratio 8:1:1. Given that these training data and testing

data are split from the same dataset, the evaluation result will

be overestimated since the trained model may have seen the

test data. Therefore, we then separately took random clean

speech recordings in the TEST portion and synthesized a new

testing dataset, denoted Anechoic-testing-unseen. Moreover,

we similarly convolved clean speeches in the TEST portion

with the real-world BRIRs of the meeting room (Spirit)

and lecture room (Auditorium) to generate other two testing

datasets. Overall, we have six datasets: one for training, one

for validation, and four for model testing. We summarize the

names, sizes, usages of all datasets in Tab. I.

For comparison, we implemented a binaural localization

state-of-the-art WaveLoc [7]. WaveLoc decomposes binaural

signals into 32 frequency bands, and then employs CNN

(convolutional neural network) on the raw waveform in each

band to classify the AoA. Noted that WaveLoc only supports

one source azimuth classification, so we replaced the last layer

of WaveLoc with the sector-subNets of DeepEar to enable

multiple sound localization. To illustrate the importance of

ears, we also conduct a real-world case study with a binaural

microphone to locate the sound with and without the presence

of ears.

B. Evaluation Metrics

We evaluate DeepEar with the following metrics:

• Sound detection accuracy. It measures the binary classi-

fication accuracy of SoundNet in detecting whether there

is a sound source or not.

• Hamming score of sound detection. Hamming score is

defined as the proportion of the predicted correct labels

to the total positive labels (predicted and actual) for that

instance:

H =
1

N

N∑

n=1

sum(yn & ŷn)

sum(yn | ŷn) (6)

where yn is the ground truth of eight SoundNets of

the n-th instance. ŷn is the corresponding classification

result. & and | represent bit-wise AND and OR operation,

respectively. Compared to binary accuracy, Hamming

score ignores the true negative (i.e., a no-source case

is correctly detected) as well as penalizes false-positive

cases (i.e., a no-source case is detected as an active source

by mistake).

• Mean absolute degree error of AoA (MAE). MAE means

the absolute degree error between prediction AoA and

ground truth. We average MAE of all AoANet as the

overall MAE of DeepEar.

• Distance classification accuracy. This metric refers to the

averaged accuracy of all DisNets.
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Fig. 12. Performance comparison in Spirit meeting room. The darker bars refer to Accuracy before transfer learning or MAE after transfer learning.
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Fig. 13. Performance comparison in Auditorium lecture room. The darker bars refer to Accuracy before transfer learning or MAE after transfer learning.

C. Anechoic Environment

1) Seen Data: Fig. 11 shows the performance of the global

model on the seen data in the anechoic environment. Overall,

the sound detection accuracies of DeepEar and WaveLoc are

93.3% and 80.9%, respectively. Surprisingly, DeepEar has a

high detection accuracy of 99.8% in the one-source scenario.

In comparison, the performance of WaveLoc is a little lower

with the detection accuracy of 90.9%. We can see that the

performance of both models decreases with the increasing

number of sounds. When three sources coexist, the detection

accuracy of DeepEar drops to 85.3%, and WaveLoc’s accuracy

decreases to 70.6%.

In general, the Hamming score of DeepEar is 83.5%,

which is slightly lower than the binary accuracy since all

no-source cases are excluded. However, the performance of

WaveLoc drops by almost a half and decreases to 44.6%. This

degradation indicates that WaveLoc makes more false-positive

sound detection.

For AoA estimation, the mean absolute degree error of

DeepEar is 7.4◦, which is nearly a half of WaveLoc’s. In

one-source case, DeepEar can even predict AoA within 2.3◦

error. However, the MAE of WaveLoc is 13.2◦, much larger

than DeepEar. It is because that WaveLoc performs CNN

directly on raw waveform data, missing the key time difference

information between binaural channels. With the number of

sources increasing, multiple sounds may interfere with each

other so that time differences will be confused, leading to a

higher estimation error.

The average distance accuracies of all source-cases are

82.9% and 75.6% for DeepEar and WaveLoc, respectively.

There is no large gap between them like before due to narrow

possible categories. Same as before, the larger number of

active sources is, the lower the estimation performance is.

2) Unseen Data: We also evaluate DeepEar on the unseen

data. This dataset is generated separately instead of splitting

from the original training data. The result is listed in Tab. II.

Overall, the sound detection accuracy and Hamming score of

DeepEar are 91.9% and 80.4% respectively. This performance

is almost the same as that on the seen data, so are AoA

MAE (8◦) and distance accuracy (82%). The performance of

WaveLoc presents similar trends like DeepEar, indicating that

both systems generalized well to anechoic unseen data. The

reason is that we synthesized massive training data, which

describes the data space to a great extent.

D. Reverberant Environment

We know that an anechoic environment is hardly possible

in real life, so it is the turn to examine DeepEar on the data in

real reverberant rooms, including a small meeting room and a

larger lecture room.

1) Evaluation in a Small Meeting Room: Fig. 12 illustrates

the performance of a small meeting room. Directly testing the

global model on the reverberant data brings about a dramatic

performance deterioration as we expected. The benchmark

WaveLoc also performs poorly. The average sound detection

accuracy and Hamming score of DeepEar are 65.6% and

24.7%, while WaveLoc achieves 67.5% in sound detection

and 14.3% in Hamming score, respectively. Although the

sound detection accuracy of WaveLoc is slightly higher than

that of DeepEar, the Hamming score of DeepEar is much

higher than WaveLoc. Similarly, the performance of AoA and

distance estimation also drops. The reason is that signals in a

reverberant environment differ substantially from the anechoic

room.

To adapt to this meeting room, we perform a transfer

learning on this global model with 10% of new data. DeepEar

converges fast within 10 epochs and exhibits much better per-

formance. The sound detection accuracy increases to 91.9%,

while WaveLoc only achieves 82.1%. The Hamming score of

DeepEar increases by 53.3%, which almost doubles that of
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Fig. 14. The transfer learning performance of DeepEar with different sizes
of new training data. Two subfigures share the same legend.

WaveLoc. The DeepEar’s AoA MAE decreases by half to

8.8◦, which is very close to the anechoic case. Moreover,

the performance increase in terms of distance estimation is

24.4% for DeepEar and 15.1% for WaveLoc, respectively.

In this figure, we can see that both methods benefit from

transfer learning in testing the new reverberant data. Yet

DeepEar notably outperforms WaveLoc after the same re-

training procedure with the same amount of new data.

Note that the variation encoder has learned the feature

distributions of different locations. Therefore, sub-network can

quickly adapt to the new data and increase the performance. In

contrast, WaveLoc uses CNN to learn a discrete feature space,

which is harder to adapt to new environments with a relatively

small number of additional training data.

2) Evaluation in a Large Lecture Room: In this experiment,

although both methods also suffer performance degradation

on this unseen dataset, DeepEar performs much better than

WaveLoc. As shown in Fig. 13, the overall sound detec-

tion accuracy of DeepEar is 81.5%, i.e., 6.2% higher than

WaveLoc. As for Hamming score, the performance gap is

even wider. In particular, WaveLoc decreases to 16.3%, which

is approximately one-third of DeepEar. Besides, the AoA

estimation errors of these two systems are 12.9◦ and 17.3◦,

respectively. This result shows that while WaveLoc cannot deal

with the reverberation interference, DeepEar can still achieve

a relatively better performance because of its robustness to the

highly reverberant new environment.

The transfer learning is effective in improving the perfor-

mance of both models. Yet, we see that DeepEar benefits

more from this than the benchmark method. Specifically, the

sound detection accuracy and Hamming score of DeepEar

increase to 89.4% and 71.7%, respectively. In contrast, the

sound detection accuracy of WaveLoc only has an increase

of 1.8%. A noteworthy aspect is that the Hamming score of

WaveLoc declines from 16.3% to 14.6% after transfer learning.

The main reason is that the lecture room is larger than the

meeting room, meaning that the lecture room has a longer

reverberation time. The CNN mechanism of WaveLoc relies

more on discrete data so that it cannot adapt to the reverberant

environment. In contrast, DeepEar benefits from the VAE

design that enables subnets to calibrate feature distribution

accordingly with new data and thereby achieves a better

performance.

The AoA MAE of DeepEar and WaveLoc decreases by

3.9◦ and 2.5◦, respectively. Furthermore, the distance accuracy
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Fig. 15. Localization performance with and without human-shaped ears.

of DeepEar and WaveLoc increases to 91.7% and 76.4%,

respectively. Again, DeepEar still outperforms the baseline in

the distance and AoA estimation.

E. Transfer Learning Performance

The experiment results above show that transfer learning

effectively helps DeepEar adapt to new environments. We

also test DeepEar with different sizes of new data in transfer

learning. The result is illustrated in Fig. 14. We zoom into the

y-axis of accuracy for clear observation. We can see that only

2% of new data can essentially boost the DeepEar performance

in both the small meeting room and the large lecture room.

The Accuracy (MAE) steadily increases (decreases) with the

number of training data grows. In theory, if more new data is

used in transfer learning, we can achieve better performance.

Yet we need to balance the performance and the extra training

overhead, since collecting a large number of new data in

different environments could be practically challenging for

ordinary users. This experiment reveals that 2% of new data

(i.e., 180 one-second instances) is efficient for DeepEar to

yield a good adaption result in different new environments,

while with 10% of new data DeepEar can achieve higher

performance if needed.

F. Real-world Case Study

To further evaluate the importance of ears for sound local-

ization in practice, we performed a real-world localization ex-

periment. A binaural microphone (miniDSP EARS) is placed

in a meeting room as the recording device. Several speech

files were randomly selected from the public TIMIT corpus.

Then, we used a portable loudspeaker to play the selected

audio files at eight 45◦ evenly spaced directions 1m away

from the microphones with and without human-shaped ears

respectively. After that, audio recordings were sliced into one-

second samples and 20 Gammatone coefficients were extracted

from each 0.1 s frames as features.

We implemented a one-layer LSTM network consisting

of 100 hidden units, stacked with a dense layer with soft-

max function to execute the sound localization task. Fig. 15

shows the localization confusion matrix with and without ears.

Without ears, the localization accuracy is 58.6% as shown in

Fig. 15(a). We can see the model suffers from front-back con-

fusion. Moreover, although the directions on the left side and
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Sound localization Mic array Binaural mics
One source [32, 33] [7, 34]

Multiple sources [3–5]
Known number Unknown number

[8, 9] DeepEar

Table III. Comparison with related works. DeepEar is the first sound
localization method for binaural microphones that can locate multiple

sources without a priori knowledge of the number of sources.

right side can be easily detected, the model can hardly identify

the degrees on each side. In contrast, the overall classification

accuracy increased to 92% after mounting the ears as shown

in Fig. 15(b). The confusion problem was alleviated and the

accuracy of almost all directions is improved, which means

the human-shaped ears indeed help improve the localization

accuracy significantly.

VI. RELATED WORK

A. Sound Localization

DeepEar is most related to sound localization, especially

binaural localization. We summarise the related works in

literature in Tab. III and highlight the novelty of DeepEar.

The microphone array and distributed microphone arrays

have been widely used for sound localization. These works

mainly target a sound source emitting pre-designed signals

[29–31]. Human voice is generally unknown to microphones,

which brings about challenges for localization. Rich bodies

of research works utilize microphone arrays to estimate the

AoA of a sound, such as SRP-PHAT [1] or MUSIC [2].

VoLoc [32] and [33] locate the voice by nearby reflections

with only one microphone array. However, these methods are

not suitable for binaural microphones since they either suffer

the ambiguity problem, or require three microphones at least.

Previous works tried to tackle this problem via deep learning

techniques. WaveLoc [7] exploits a CNN on the raw waveform

and classifies sound into 37 directions. [34] also employs CNN

on interaural spectrograms to perform azimuth and elevation

classification. These works simply treat sound localization as a

classification problem, which cannot be generalized to multi-

source localization and different environments.

The interference from different sound sources raises practi-

cal challenges for locating multiple sources simultaneously. [3]

explores the microphone redundancy relationship to achieve

multi-source localization with a single microphone array.

Similarly, it requires several microphones to find the redundant

spatial pattern for each source, which cannot be applied to

binaural microphones. SMESLP [4] and [5] adopt a CNN

to localize multiple sources also with a microphone array.

[8] and [9] train a deep neural network for binaural multiple

sound localization. However, they assume that the number of

sources is known in advance. In contrast, DeepEar can achieve

multiple sound localization with binaural microphones with an

unknown number of sound sources.

B. Bionic Auditory Applications

Inspired by the powerful human auditory capability, many

researchers imitated the human auditory mechanism and de-

signed smart systems to deal with sound-related tasks. For

example, [35] proposed an auditory-like system to recognize

the type of musical instruments, and [36] designed a machine

hearing approach to predict the types of sounds. The powerful

perceptual capacity of humans is still the goal of AI technology

today. Same as the research on CNN and its breakthrough

in computer vision tasks, we believe modeling the human

auditory system will open a broad range of possibilities in

sound-related tasks.

C. HRTF Calibration

One might be concerned that ear-caused HRTF is unique

and cannot be applied to a different ear-shaped binaural

microphone. Recent research found that humans can get used

to new mold ears accurately within a few weeks [25], which

indicates that we may perform incremental learning strategies

to adapt the HRTF among different ears. Recent work UNIQ

[37] personalizes the HRTF for different users with a smart-

phone and in-ear microphones. [38] also proposed a regression

approach to estimate the HRTF based on the ear’s 3D shape.

We plan to study whether the DeepEar model can adapt

to different ear-shaped binaural microphones in the future.

DeepEar is more suitable for service robot manufacturing. This

problem certainly calls for more research in the future.

VII. CONCLUSION

In this paper, we propose DeepEar, the first sound localiza-

tion system for binaural microphones that can locate multiple

sources without a priori knowledge of the number of sources.

DeepEar first imitates the human auditory system to process

acoustic signals and extract useful features. Then, a multi-

sector deep learning neural network is designed to estimate the

locations of multiple sources. By leveraging a large amount

of readily available datasets, we train a generic global model

without collecting any data from end users. To cope with

the heterogeneity of working environments, DeepEar further

exploits the transfer learning strategy and re-trains the global

model with a small number of new data collected in real

usage scenarios. Thanks to the variational encoder and novel

neural network architecture design, DeepEar can generalize

to unseen data and quickly adapt to new environments with

minimum extra training data. Experiment results show that

DeepEar substantially outperforms the state-of-the-art works

in terms of sound detection as well as localization accuracy.

The authors have provided public access to their code and data

at https://github.com/Qiangest/DeepEar.
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