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Unit interval graphs
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Definition
There are a set of unit-length intervals I on the real line and φ : V →I such that
uv ∈ E(G) iff φ(u) intersects φ(v).
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Forbidden induced subgraphs

[Wegner 1967]

claw net tent C4 C5

· · ·

unit interval ⊂ interval ⊂ chordal (hole-free)
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Proper interval ordering
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Theorem (Looges 1993)

G is a unit interval graph iff there exists an ordering {v1, . . . ,vn} such that for every
1 ≤ i < j < k ≤ n, vivk ∈ E(G) implies vivj, vjvk ∈ E(G).

The ordering of the left (right) endpoints of the intervals will do.

Corollary
If 1 ≤ i < j ≤ n and vivj ∈ E(G), then {vi, · · · ,vj} is a clique.
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The problem

Input: A graph G and an integer k.
Task: A set V− of ≤ k vertices such that G−V− is a unit interval graph.

Unit interval vertex deletion

NP−complete

[Lewis & Yannakakis 1980]

FPT

[Marx 2006]
O((14k+14)k+1 ·kn6)

[van Bevern et al. 2010]

O(6k ·n6)

[Villanger 2010]

O(6k · (n+m))

[C 2015]
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Kernelization

Definition
Given an instance (x,k), a kernelization algorithm produces an equivalent instance
(x′,k′) with |x′| = O(f (k)) and k′ ≤ k in time (|x|+k)O(1).

(|x|+k)O(1)

x
k

x′
k′

O(k53)

[Fomin, Saurabh, Villanger 2013]

O(k4)

[this talk]
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Main ideas

Use the 6-approximation algorithm to produce a modulator M.

Partition the vertices in G−M, a unit interval graph, into O(k2) cliques.

Pick O(k3) vertices from each clique to make the kernel.

O(k5) → O(k4), with more refined counting.
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The modulator

Theorem (C 2015)

There is a 6-approximation for unit interval vertex deletion.

We start by founding an approximate solution M to G.

If |M| > 6k, then return a trivial no-instance.

Henceforth, G−M is a unit interval graph, where |M| ≤ 6k.
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The clique partition

Find a unit interval model for G−M. [Corneil 2004]
Choose the first unassigned vertex, and all its unassigned neighbors;
repeat till all vertices assigned.
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1 N(Ki) ⊂ Ki−1 ∪Ki+1.
2 for i < j, the distance between u ∈ Ki and v ∈ Kj is ≥ j− i.
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The Number of Cliques
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Bypassing a clique

delete Ki, and
add all possible edges between
N(Ki)∩Ki−1 and N(Ki)∩Ki+1.

Ki−1 Ki
Ki+1

α β

N(Ki)∩Ki−1

N(Ki)∩Ki+1

α βρ

Lemma

The graph obtained by bypassing a clique in the partition is still a unit interval graph.
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Cliques adjacent to M

Rule 1. If a vertex v ∈ M has neighbors in ≥ k+5 cliques, then (G,k) → (G− {v},k−1)

Proof.
There is a claw if v has neighbors in ≥ 5 cliques.
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Cliques not adjacent to M

Ki−4 Ki−3 Ki−2 Ki−1 Ki Ki+1 Ki+2 Ki+3 Ki+4

u v

9 consecutive cliques nonadjacent to M

No vertex in Ki−2, . . ., Ki+2 can be in any claw, net, or tent.

Because its distance to M is at least 4.

Rule 2. Find a minimum u−v separator S in G−M.
One of Ki−1 and Ki+1 is disjoint from S, which is a clique; bypass it.
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The number of cliques

Rule 1 bounds the number of cliques containing neighbors of M.
|M|(k+4) ≤ 6k2 +24k.

Rule 2 bounds the number of cliques lying between them.

Lemma.
If neither of Rule 1, 2 is applicable, then the number of cliques (in G−M) is O(k2).
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Irrelevant Vertices
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Pick a vertex set U ⊆ V (G) \ M such that

any solution X for G[U ∪M] is also a solution for G.

42 / 60



The set U

for each pair x1,x2 ∈ M and each i = 1, . . . , t, we pick the first/last k+1 vertices
from Ki for each of the four patterns—adjacent to both; adjacent to only x1;
adjacent to only x2; and adjacent to neither.
for each x ∈ M, each i = 2, . . . , t, and each y of the last k+1 non-neighbors of x in
Ki−1, we pick the last k+1 common neighbors of x and y in Ki.
for each x ∈ M, each i = 2, . . . , t, and each y of the first k+1 neighbors of x in Ki−1,
we pick the first k+1 vertices in Ki that are neighbors of x but not y

for each x ∈ M, each i = 2, . . . , t, and each y of the last k+1 neighbors of x in Ki−1,
we pick the last k+1 vertices in Ki that are neighbors of y but not x.
for each three pairwise nonadjacent vertices in M, we arbitrarily pick k+1
common neighbors of them in V (G) \ M.
For each triple of vertices in M that induces a P3, we arbitrarily pick k+1 vertices
in V (G) \ M that are adjacent to only the center vertex among them, and k+1
vertices in V (G) \ M that are nonadjacent to only the center vertex among them.
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K1 K2

v1

v5

v10

v15

v20

v25

x1

x2M

For each pair x1,x2 ∈ M, pick the first/last k+1 vertices from Ki that are adjacent to
(1) both x1 and x2; (2) only x1; (3) only x2; and (4) neither of them.

E.g., k = 2 and K2:
(1) {v10,v12,v13}∪ {v18,v21,v24}
(2) ;
(3) {v14,v23}
(4) {v11,v15,v16}∪ {v20,v22,v25}.
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Claw

M M M M

M M
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Example: claws

A vertex v is either picked or irrelevant, i.e., (G−v,k) ⇐⇒ (G,k).

we have picked the
first k+1 vertices
adjacent to y but not x.

we have picked the
last k+1 vertices
adjacent to y but not x.

if u is not picked, then at least k+1 claws containing x,y,v,
of which one has to be in a solution of G[U ∪M].

x y

u v

M
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C4

Similar arguments work for other configurations and for C4’s.

M M M M
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Other obstructions

We may use similar arguments for nets, tents, and longer holes.

But, such an exhaustive case analysis would be long and excruciatingly hard to verify.
(For example, a long hole may go through M many times.)

Instead, we use a constructive argument for them:
From a unit interval model for G[U ∪M], we build a unit interval model for G.
(For a vertex v we didn’t select, we derive an interval from intervals of other vertices in
the same clique.)
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Conclusion

We pick O(k3) vertices from each clique.

There are O(k2) cliques.
⇒ An O(k5)-vertex kernel.

An improved analysis:
We pick O(k3) vertices from each of O(k) cliques.
We pick O(k2) vertices from each of the other cliques.

Final remark:
It can be produced in O(nm) time.
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Thanks!

yixin.cao@polyu.edu.hk
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