

Motivation

Problems with Random Walks

- Stationary distribution $\propto (d_1, d_2, \dots, d_n)^+$
- Hitting and commute times

$$\frac{1}{\operatorname{vol}(G)}H_{uv} \approx \frac{1}{d_v} \qquad \frac{1}{\operatorname{vol}(G)}C_{uv} \approx \frac{1}{d_u} + \frac{1}{d_v}.$$

Though intended to model non-local structure, a random walk model may end up capturing only local information.

Cluster Assumption

- Semantics vary slowly in regions of high density.
 - Learned boundary should be placed in regions of low density.
- Our Goals
- A new rigorous model to implement cluster assumption.
- A unifying view of existing random walk models that provides new deeper insights.
- Better retrieval and classification accuracy.

A Unifying Framework

- PageRank is a PARW with constant absorption rates β (i.e., the restart probability).
- Absorbing random walks are PARWs with 0/1 absorption rates.
- 6 popular label propagation models are PARWs with different absorption rates, from
 - Zhu et al., ICML'03 • Zhou et al., NIPS'04
- Chapelle et al., AISTATS'05
- Kveton et al., AISTATS'10
- Bengio et al., 2006

Which model is more desirable? And in what sense?

Learning with Partially Absorbing Random Walks Zhenguo Li¹ Anthony Man-Cho So² John Wright¹ Shih-Fu Chang¹ Xiao-Ming Wu¹ ²The Chinese University of Hong Kong ¹Columbia University

• The starting vertex

 $\bigcirc -\mathcal{S}_j \bigcirc -\mathcal{S}_k$

Lighter colors indicate smaller absorption rates.

 $d(\mathcal{S}_k) \ge (1+\phi)d(\mathcal{S}_j)$

 \mathcal{S}_i where $\mathbf{a}(k)$ will remain large.

Our Model: Partially Absorbing Random Walks (PARWs)

Definition & Transition Probabilities

PARWs are defined by second-order Markov Chain:

$$= i, X_t = k) = \begin{cases} 1, & i = j, i = k, \\ 0, & i \neq j, i = k, \\ \mathbb{P}(X_{t+2} = j | X_{t+1} = i) = p_{ij}, & i \neq k, \end{cases}$$

but fully specified by the first–order transition probabilities P_{ij} .

 $\mathcal{G} = (\mathcal{V}, W) \quad W = [w_{ij}] \in \mathbb{R}^{n \times n} \quad \lambda_1, \dots, \lambda_n \ge 0 \quad d_i = \sum_j w_{ij}$ $D = \operatorname{diag}(d_1,$ p_i

$$d_{2}, \dots, d_{n}) \qquad \Lambda = \operatorname{diag}(\lambda_{1}, \lambda_{2}, \dots, \lambda_{n})$$

$$i_{j} = \begin{cases} \frac{\lambda_{i}}{\lambda_{i} + d_{i}}, & i = j, \\ \frac{w_{ij}}{\lambda_{i} + d_{i}}, & i \neq j. \end{cases}$$

First–order transition probability matrix: $P = (\Lambda + D)^{-1}(\Lambda + W)$

Absorption Probabilities

What is the probability that a PARW starting from i gets absorbed by j?

Absorption probability matrix:

$$A = [a_{ij}] \in \mathbb{R}^{n \times n}$$

By first step analysis:

$$\begin{bmatrix}
a_{ii} &= \frac{\lambda_i}{\lambda_i + d_i} \times 1 + \frac{\lambda_i}{\lambda_i + d_i} \\
a_{ij} &= \sum_{k \neq i} \frac{w_{ik}}{\lambda_i + d_i} \\
\end{bmatrix}$$

$$A = (\Lambda + L)^{-1} \Lambda$$

where L = D - W is the graph Laplacian.

The absorption probabilities vary slowly inside the cluster, while dropping sharply outside.

If $\Phi(S_j) \geq 2\phi$, then there exists a k > j such that

and
$$\mathbf{a}(k) \ge \mathbf{a}(j) - \frac{\alpha}{-}$$

If S_i has high conductance, then there will be a set S_k much larger than

 $\left(1-\sum_{k=1}^{j}\mathbf{a}(k)\right)$

 $\phi d(\mathcal{S}_i)$

 $\Phi(S) = \frac{w(S,\bar{S})}{\min(d(S),d(\bar{S}))}$ is the conductance of the vertex set S with

cut $w(S, \overline{S}) := \sum_{(i,j) \in e(S, \overline{S})} w_{ij}$ and volume $d(S) := \sum_{i \in S} d_i$

Digits	0	1	2	3	4	5	6	7	8	9	All
PARW with $\Lambda = \alpha I$.981	.988	.876	.893	.646	.778	.940	.919	.746	.730	.850
PageRank	.886	.972	.608	.764	.488	.568	.837	.825	.626	.702	.728
Manifold Ranking	.957	.987	.827	.827	.467	.630	.917	.822	.675	.719	.783
Euclidean Distance	.640	.980	.318	.499	.337	.294	.548	.620	.368	.480	.508

Experiment	3: Semi-sup	ervised le
HMN	LGC	$\Lambda = \alpha D$

	LUC	$\Lambda = \alpha D$	$\Lambda = \alpha I$
$.782 \pm .068$	$.792 \pm .062$	$.787 \pm .048$	$.881\pm.039$

Simulation

Experiment 2: Image retrieval results (MAP) on USPS all 9298 images.

earning on USPS.

 $\Lambda = \alpha I$

PageRank - "The pagerank citation ranking: Bringing order to the web", Page et al., 1999
Manifold Rank - "Ranking on Data Manifold", Zhou et al., NIPS'04
HMN - "Semi-supervised learning using Gaussian fields and harmonic functions", Zhu et al., ICML'03.
LGC - "Learning with local and global consistency", Zhou et al., NIPS'04.