Problem and Motivations

Segmentation is crucial for high-level vision. It remains challenging due to visual ambiguity and variety.

- **Observations**
 - Different methods behave differently.
 - Each method gives different results under different parameters.

- **Motivations**
 - Combine complementary information to improve performance.
 - Capture visual patterns using superpixels generated by different methods with varying parameters.

Superpixel Aggregation and Bipartite Graph Partitioning

- Combine pixels and multiple/multi-scale segmentations by a bipartite structure. Using superpixels as grouping cues:
 - Pixels in a superpixel tend to belong together.
 - Similar neighboring superpixels tend to belong together.

Algorithm 1 Transfer Cuts

Input: A bipartite graph $G = \{X, Y, B\}$ and a number k. Output: A k-way partition of G.

1. Form $D_X = \text{diag}(B_1)$, $D_Y = \text{diag}(B^T_1)$, $W_X = B^T_1 D^{-1}_Y B_1$, and $L_X = D_X - W_X$.
2. Compute the bottom k eigenvectors $(\lambda_i, v_i)^T$ of L_X.
3. Obtain v_i such that $0 \leq v_i < 1$ and $v_i \geq v_i - 1$, $i = 1, \ldots, k$.
4. Compute $f_1 = (v_1, \ldots, v_k)^T$, with $u_i = \frac{1}{\lambda_i} v_i^T D_X v_i$.
5. Derive k groups of $X \cup Y$ from f_1, \ldots, f_k.

Speedup by the bipartite structure

- $(1, MS)$ $(2, MS)$ $(3, MS)$: 4.11 s for generating superpixels and 0.65 s for Tcut.

Algorithm 2 Segmentation by Aggregating Superpixels

Input: An image I and the number of segments k. Output: A k-way segmentation of I.

1. Collect a bag of superpixels S for I.
2. Construct a bipartite graph $G = \{X, Y, B\}$ with $X = I \cup S$, $Y = S$, and B defined in (1-3).
3. Apply Tcut in Algorithm 1 to derive k groups of G.
4. Treat pixels from the same group as a segment.

SAS takes 6.44 s per image of size 481×321, where 4.11 s for generating superpixels and 0.65 s for Tcut. MNcut, MLSS, Ncut and TBES take more than 30, 40, 150, and 500 s, respectively. Codes of SAS are available at: www.ee.columbia.edu/dvmm.

Segmentation Results

- **Results on Berkeley segmentation database (BSDS)**
 - Methods: PRI, Vol, GCE, BDE
 - PRI: Probabilistic Rand Index; Vol: Variation of Information; GCE: Global Consistency Error; BDE: Boundary Displacement Error.
 - PRI: 0.906, 0.813, 0.818, 0.821, 0.818, 0.813, 0.818, 0.813
 - Vol: 0.857, 0.857, 0.857, 0.857, 0.857, 0.857, 0.857, 0.857
 - GCE: 0.200, 0.200, 0.200, 0.200, 0.200, 0.200, 0.200, 0.200

- **Sensitivity of SAS w.r.t. the parameters**
 - Input: 3D MS&FH: use three over-segmentations from each method.
 - Output: 3D MS&FH: take 6.44 s per image.