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Abstract— Medical visual question answering (Med-
VQA) aims to accurately answer a clinical question pre-
sented with a medical image. Despite its enormous poten-
tial in healthcare services, the development of this technol-
ogy is still in the initial stage. On the one hand, Med-VQA
tasks are highly challenging due to the massive diversity
of clinical questions that require different visual reasoning
skills for different types of questions. On the other hand,
medical images are complex in nature and very different
from natural images, while current Med-VQA datasets are
small-scale with a few hundred radiology images, making it
difficult to train a well-performing visual feature extractor.

This paper addresses above two critical issues. We
propose a novel conditional reasoning mechanism with
a question-conditioned reasoning component and a type-
conditioned reasoning strategy to learn effective reasoning
skills for different Med-VQA tasks adaptively. Further, we
propose to pre-train a visual feature extractor for Med-
VQA via contrastive learning on large amounts of unlabeled
radiology images. The effectiveness of our proposals is
validated by extensive experiments on existing Med-VQA
benchmarks, which show significant improvement of our
model in prediction accuracy over state-of-the-art methods.
The source code and pre-training dataset are provided at
https://github.com/Awenbocc/CPCR.

Index Terms— Medical visual question answering, condi-
tional reasoning, contrastive learning.

I. INTRODUCTION

MEdical visual question answering (Med-VQA) consid-
ers the problem of taking a medical image and a clinical

question in natural language related to the image as input
and inferring the correct answer also in natural language.
Med-VQA has enormous potential in assisted diagnosis and
patient education. It can help doctors to get a second opinion
on diagnosis and reduce the high cost of training medical
professionals. It can also help patients to get prompt feedback
for their inquiries and better understand their disease and treat-
ment, hence saving valuable medical resources and reducing
the stress on medical facilities. As a domain-specific branch of
visual question answering (VQA), the research of Med-VQA
is still in an early stage, where the literature is rather limited.
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Question Are there any
abnormalities?

Where is the lesion in this 
image?

Answer Yes Left Lower Lung
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Question Is this an MRI image? What is the organ on the 
left in the picture?

Answer No Liver
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Fig. 1. Examples of Med-VQA tasks. For closed-ended questions, the
answers are limited, e.g.,“yes” or “no”. For open-ended questions, the
answers can be free-form text.

Hence, we start with introducing VQA, which has recently
attracted a great deal of attention from both the computer
vision and natural language processing research communities.

VQA focuses on visual perceptual tasks that require com-
mon perceptual abilities shared by humans. For example,
given a scenery image with beautiful sunset, either a child
or an adult can easily answer the question “what color is the
sunset?”. Generally, visual perceptual tasks consist of easy
tasks such as “does the man wear glasses?” and difficult tasks
such as “which object in the picture has the same color as
the pet dog in front of the man?”. It requires multi-level
reasoning skills to solve both kinds of tasks. Easy perceptual
tasks require basic skills, e.g., basic-level object recognition
and scene understanding, while difficult tasks require higher-
level reasoning skills such as counting, comparing, or logical
inferring. Nevertheless, most of the existing VQA models are
designed for coping with either easy tasks or difficult tasks.
Simultaneously solving the two kinds of tasks in a single
model is challenging and only considered in the high-data
regime [46], [54].

Med-VQA tasks are, however, much more challenging than
general VQA tasks. On the one hand, accurate answers are
imperative for clinical questions, as they are related to health
services and education. To this end, a Med-VQA system
should be capable of handling multi-level tasks, including
basic perceptual tasks such as identifying the body regions
in an image, and difficult tasks such as counting the number
of nodes, locating lesions, or evaluating the health of an organ
by its size. Therefore, to infer correct answers, it is essential
for the system to acquire domain-specific knowledge and
multi-level reasoning skills. On the other hand, well-annotated
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Med-VQA datasets are extremely lacking, since it requires
medical expertise to construct high-quality datasets, which
is both costly and time-consuming. To our best knowledge,
there are only two manually annotated datasets available -
VQA-RAD [36] and SLAKE [39]. Both of them only contain
hundreds of radiology images but include various types of
clinical questions. Therefore, it is not effective to train a
typical large VQA model from scratch for Med-VQA with
the small-scale training datasets. Moreover, it is impossible
to apply popular object-detection-based VQA models such as
UpDn [4], Pythia [26], and VL-BERT [57] for Med-VQA, due
to the lack of visual object labels and the small size of training
data.

Previous research tried to apply existing VQA models for
Med-VQA. More specifically, they employed deep architec-
tures pre-trained on general datasets such as ImageNet [34]
and then fine-tuned the models on small-scale Med-VQA train-
ing data [1], [2], [71]. However, due to the large differences in
image patterns and language styles of medical data and non-
medical data [38], transfer learning provides little benefit [49].
To overcome this problem, [44] proposed mixture of enhanced
visual features (MEVF) to learn an initialization for the visual
extractor of a Med-VQA model. In particular, they combined
an auto-encoder pre-trained with an image reconstruction
task on undisclosed external medical datasets and a 4-layer
convolutional neural network pre-trained with an auxiliary
classification task on the VQA-RAD dataset [36] using the
meta-learning algorithm MAML [14]. While this work allevi-
ates the problem to some extent, it cannot be easily applied on
other Med-VQA datasets since the auxiliary classification task
is dataset-dependent and requires extra laborious annotations.
Besides, it does not explore improving the reasoning module
which is of critical importance in solving high-level reasoning
tasks. There are some recent attempts [29], [43] to pre-train
a multimodal Transformer on large medical vision-language
datasets and fine-tune it on Med-VQA tasks. However, large
Transformer models tend to overfit on existing small-scale
Med-VQA training datasets.

In this paper, we explore lightweight models like
MEVF [44] and focus on improving both the reasoning module
and the visual feature extractor of a Med-VQA system. First,
to make the system possess task-adaptive reasoning ability,
we design a novel conditional reasoning mechanism, which
includes a question-conditioned reasoning (QCR) module and
a type-conditioned reasoning (TCR) strategy. QCR enables the
model to gain question-specific reasoning skills by leveraging
question attention information to modulate multimodal fusion
features. Further, it can be seen that Med-VQA tasks mainly
consist of two types, closed-ended questions and open-ended
questions, as shown in Figure 1. For closed-ended questions,
the answers are limited choices according to the prompt words,
e.g., the answer to the question starting with “Does” can only
be “Yes” or “No”. For open-ended questions, the answers
are free-form, e.g., no fixed choices for questions starting
with “What”. Generally, open-ended tasks are harder to solve
than closed-ended ones, and current Med-VQA models usually
perform poorly on open-ended tasks. Therefore, motivated by
the disparity of the needed reasoning skills for open-ended and

closed-ended tasks, we design a TCR strategy to handle the
two different types of tasks separately, by learning different
sets of reasoning skills.

Second, to address the data scarcity problem, we propose
to pre-train a visual feature extractor for Med-VQA in an
unsupervised manner without requiring any human annota-
tions. We observe that 1) there involve various types of
organs and imaging modalities (e.g., brain MRI, brain CT,
chest X-Ray, and abdomen CT) in Med-VQA tasks; and 2)
there are many such types of unlabeled radiology images
available in open-access sources. Therefore, we propose to
leverage these publicly available datasets to pre-train a visual
extractor for learning high-level patterns and characteristics of
different organs and imaging modalities through contrastive
self-supervised learning. Having learned prior knowledge of
radiology images, the pre-trained feature extractor can be
readily adapted to train Med-VQA systems, even with small-
scale training datasets.

This paper makes the following contributions:
• We design a novel conditional reasoning mechanism to

empower the reasoning ability of Med-VQA models,
which contains a question-conditioned reasoning function
and a type-conditioned reasoning strategy, by leveraging
both question content and task type.

• We propose to leverage publicly available resources to
pre-train a generic visual feature extractor for Med-VQA
via contrastive self-supervised learning, which can be
easily adapted to existing small-scale training datasets.

• We conduct an extensive evaluation on existing Med-
VQA benchmarks to validate the effectiveness of the
proposed conditional reasoning mechanism and the pre-
trained visual feature extractor and observe significant
improvements over state-of-the-art methods.

II. RELATED WORK

In this section, we briefly review the literature of previous
studies in VQA and Med-VQA. In addition, we summarize
recent advances in contrastive self-supervised learning.

A. Visual Question Answering
A typical VQA system consists of 4 basic components:

(I) a visual feature extractor to obtain the visual image
features; (II) a textual feature extractor to obtain the textual
question features; (III) a multimodal feature fusion module to
aggregate both the visual and textual features to produce a joint
representation; (IV) a classifier to predict the final answers
based on the joint representation. Various VQA systems differ
in how they extract and combine multimodal features.

Early studies mainly employed VGGNet [55] and
LSTM [20] to extract visual and textual features respectively
and combined them by simple mechanisms such as concatena-
tion and pooling [6]. In recent years, a lot of effort has been de-
voted to studying inter-modality relation by exploring the con-
nection between visual and textual semantics [4], [30], [41],
[57], [64]. Stacked attention network (SAN) was proposed in
[64] to progressively search for related image regions using
question semantic representations. Based on low-rank bilinear
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pooling, bilinear attention network (BAN) [30] was proposed
to generate bilinear attention maps to fuse multimodal features,
which is also employed in this work. UpDn [4] utilized Faster
R-CNN [50] to extract regions of interest (ROI) at object level
and aggregated region features with weights generated under
the guidance of the question. Based on ROI features, some
methods such as LXMERT [58] and Pythia [26] achieved
promising results. Very recently, Transformer [60] based
vision-and-language pre-training (VLP) becomes a popular
paradigm. A typical process is to extract question features with
BERT [12] and fuse them with visual features via self-attention
mechanism. According to the different ways of visual feature
extraction, VLP can be divided into object-based methods
such as ViLBERT [40], VL-BERT [57], and VisualBERT [37],
convolution-based methods such as Pixel-BERT [22], and
image-patch-based methods such as ViLT [31]. Since object-
based methods rely on visual object labels, which are not
available in existing Med-VQA datasets, in this paper, we only
explore convolution-based and image-patch-based methods.

Besides, a recent line of research [5], [13], [23], [48]
focused on developing VQA systems with higher-level rea-
soning skills. [5] proposed to split questions into a series
of semantic segments, which would accordingly activate pre-
specified neural network modules. However, it is difficult to
train the network due to complex pre-defined structures and
annotations. [13] focused on solving VQA tasks in the few-
shot setting by generating additional normalization parame-
ters from questions to control the visual feature extractor’s
inner layers. To solve the highly challenging compositional
questions [24], [27], [65], MAC [23] proposed to use various
recurrent cells such as memory, attention, and composition
for reasoning, while neural-symbolic (NS) approaches [42],
[66] exploited executable symbolic programs to mimic human
reasoning process.

B. Medical Visual Question Answering

Existing studies mainly applied popular VQA models on
Med-VQA tasks [1], [2], [25], [53], [61], [63], [71]. Specifi-
cally, the visual features of medical images are extracted by
deep pre-trained networks (e.g., ResNet [19] or VGGNet [55]),
and the textual features of clinical questions are obtained
through stacked RNN-based layers. For multimodal feature
fusion, [71] adopted a simple concatenation operation, [1]
exploited stacked attention networks (SAN) [64] and com-
pact bilinear pooling (MCB) [15], [63] and [53] employed
multimodal factorized bilinear pooling (MFB) [67], and [61]
proposed to query an image by means of a written question
based on the multimodal low-rank bilinear (MLB) module.

However, because of the large difference between radiology
images and general images and the small scale of training
datasets for Med-VQA, such straightforward adaptation suffers
from severe overfitting. Moreover, state-of-the-art VQA meth-
ods such as UpDn [4], which leverage algorithms like Fast
R-CNN [50] for object detection, cannot be applied to Med-
VQA due to lack of annotation of existing datasets. To conquer
the difficulty of data scarcity, [44] proposed mixture of en-
hanced visual features (MEVF) that pre-trained a small visual

feature extractor (several convolutional layers) on VQA-RAD
dataset [36] and an undisclosed external medical datasets, by
using auto-encoder and meta-learning method MAML [14].
While this work achieves good performance on VQA-RAD
dataset, the pre-training approach is dataset-dependent and
requires extra annotation effort. Besides, it simply employs
a bilinear attention mechanism for multimodal feature fusion,
which lacks multi-level reasoning ability. Some recent works
including MMBERT [29] and MedViLL [43] try to pre-
train a multimodal Transformer on medical vision-language
datasets and then fine-tune it on Med-VQA tasks. However,
due to the small scale of existing Med-VQA training datasets,
large models could easily overfit. In this paper, we explore
lightweight models like MEVF [44] and aim to improve both
the reasoning module and the visual feature extraction module.

C. Contrastive Self-supervised Learning

Lately, there is a growing interest in learning data represen-
tations with deep neural networks in an unsupervised or self-
supervised manner, to reduce the need for laborious annotation
works. Several recent studies have shown promise in learning
image representations by designing proper pretext tasks and
loss functions. [16] proposed to randomly rotate an image by
0, 90, 180, or 270 degrees and train a neural network to predict
the rotation angle. CPC [45] pioneered in using a contrastive
objective (InfoNCE loss) to learn data representations with
a context auto-encoding task and achieved promising results
in various domains including speech, image, and text. Recent
development of contrastive self-supervised learning includes
MoCo [18] that utilizes a queue to efficiently store a large
number of negative samples to remove the restriction of mini-
batch size, SimCLR [8] that uses stronger data augmentation
and a very large batch to accommodate more negative samples,
and MoCo-v2 [9] that combines the design improvements
of SimCLR with MoCo. In the medical domain, contrastive
self-supervised pre-training methods have also gained much
attention recently [33], [72]. In this paper, we utilize MoCo-
v2 to pre-train useful representations of radiology images for
Med-VQA.

III. METHODOLOGY

In this section, we present our method for training a Med-
VQA model, which consists of two stages as shown in
Figure 2. In stage I, we propose to learn prior knowledge
of radiology images for the visual module tailored for Med-
VQA from a collected dataset of publicly available unlabeled
radiology images by contrastive self-supervised learning [9].
In stage II, we propose a conditional reasoning mechanism
with a question-conditioned reasoning component and a type-
conditioned reasoning strategy to adaptively learn effective
reasoning skills for different Med-VQA tasks.

A. The paradigm of Med-VQA

The goal of Med-VQA is to automatically answer a clinical
question about a radiology image. By convention, it is formu-
lated as a single-label classification task where there are C
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Fig. 2. Our proposed method for training a Med-VQA model. In stage I, we pre-train a visual feature extractor for Med-VQA by contrastive self-
supervised learning. In stage II, we solve Med-VQA tasks by introducing a conditional reasoning mechanism.

candidate answers and each answer is a label. Unlike general
VQA [4] where a question may have multiple answers, there
is only one correct answer for each question in Med-VQA.
Denote by Dmed−vqa = {(vi, qi, ai)}Ni=1 the training dataset
for a Med-VQA model, where N is the number of training
examples, and v, q, and a denote the image, question, and
answer of a task respectively. A typical Med-VQA model aims
to learn a function f that maps each (vi, qi) pair to a score
vector s ∈ RC where the j-th element sji is the score for the
j-th answer. The probability for the j-th answer is obtained

by the softmax function, i.e., p(sji ) = es
j
i∑C

j=1 e
s
j
i

, 1 ≤ j ≤ C.

The function f is usually instantiated as a neural network with
parameters δ, and optimized by minimizing the cross-entropy
loss:

Lvqa = − 1

N

N∑
i=1

ai log p(fδ(vi, qi)). (1)

The function f usually consists of an image feature ex-
tractor, a question feature extractor, an attention-based feature
fusion module, and an answer classifier, which are trained
together in an end-to-end manner. In this paper, we focus on
designing the visual feature extractor and the feature fusion
module. We use long short-term memory network (LSTM) and
multi-layer perceptron (MLP) as default choices for the ques-
tion feature extractor and the answer classifier respectively.

B. Contrastive Pre-training (CP)
Due to the characteristic of radiology images, it is not

effective to directly apply deep models (e.g., ResNet [19])
pre-trained on general datasets such as ImageNet to extract
visual features of radiology images. Moreover, due to the small

scale of existing Med-VQA datasets (only a few hundred of
radiology images available) [36], [39], fine-tuning pre-trained
large models on them may lead to severe overfitting [44]. As
such, to address the vast diversity of radiology images in terms
of different organs and imaging modalities, we propose to pre-
train a visual feature extractor by contrastive self-supervised
learning on unannotated radiology images. Specifically, we
collect a large set of radiology images of different organs and
in different modalities, e.g., brain CT, brain MRI, chest X-
Ray, and abdomen CT, and train a deep neural network that
can pull together similar images and push away the dissimilar
ones. Further, to avoid overfitting, after pre-training, we freeze
the parameters of the large model and train an additional
small network on Med-VQA tasks. We discuss the impact
of pre-training datasets and strategies to avoid overfitting in
Section IV-D.1.

Particularly, denote by Dpre-train the set of unlabelled radiol-
ogy images collected for pre-training and Dtrain the training set
of the Med-VQA dataset respectively. As shown in Figure 2
stage I, we randomly sample a radiology image xi and a
queue q = {x−

j }Kj=1 of K images disjoint with xi from
Dpre-train. Then, a set of data augmentation operations, denoted
as Aug, which includes random crop, color distortion, resize
with random flip, and Gaussian blur, is applied to all images:

x̂i = Aug(xi), x̂
+
i = Aug(xi), q̂ = {x̂−

j = Aug(x−
j )}

K
j=1,

(2)
where x̂i and x̂+

i are generated by applying Aug on xi twice
and considered as two different views of xi. A feature extractor
(usually a convolutional neural network such as ResNet) is
used to obtain the feature representation of the anchor point
x̂i, i.e., zi = Fθ(x̂i) : X → F , where X and F are the
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input image space and the feature space respectively. Further,
a non-linear layer projects the feature representation into the
projection space P , i.e., ei = Pϕ(zi) : F → P . Similarly,
another two networks Fθ′ and Pϕ′ that share the same structure
as Fθ and Pϕ respectively are used to map x̂+

i and q̂ to
obtain the feature representations {z+

i , z−
1 , z−

2 , ...,z−
K} and

the projections {e+i , e−1 , e−2 , ..., e−K} respectively. Since ei
and e+i are the projections of different views of xi, ei
should be similar to e+i (positive pair), and dissimilar to
{e−1 , e−2 , ..., e−K} (negative pairs).

Following SimCLR [8], we conduct contrastive learning in
the projection space using the InfoNCE contrastive loss [45]
with dot product similarity:

L
ei,e

+
i ,{e

−
j } = − log

exp(ei · e+i /τ)

exp(ei · e+i /τ) +
K∑
j=1

exp(ei · e−j /τ)

,

(3)

where τ is a temperature hyper-parameter [62].
Since the length K of the queue q is much larger than the

training mini-batch size, it is costly to update Fθ′ and Pϕ′ by
gradient back-propagation. Following MoCo-v2 [9], we update
them in a momentum-based way:

θ
′
← mθ

′
+ (1−m)θ, (4)

ϕ
′
← mϕ

′
+ (1−m)ϕ, (5)

where m is a momentum coefficient close to 1.
After pre-training, in stage II, we can apply Fθ to extract

the visual features of radiology images from Dtrain. However,
we observe in experiments that directly fine-tuning the pre-
trained large model easily leads to overfitting on the small-
scale training set of Med-VQA datasets. Hence, we propose
to keep θ fixed and append a non-linear layer Pξ after Fθ for
adaptation on Dtrain. We set the input and output dimensions
of Pξ to be the same. As such, the visual features are obtained
by: zv = Pξ(Fθ(vi)). Notice that unlike MEVF [44] that
designs an auxiliary classification task and requires additional
annotation effort for pre-training, our method leverages large
amounts of unlabeled images to achieve better generalization.

C. Conditional Reasoning (CR)

Besides improving the feature extraction ability of the Med-
VQA model, another key issue is to improve its reasoning
ability. Here, we propose a conditional reasoning mechanism,
aiming to solve different Med-VQA tasks with task-adaptive
reasoning skills, as illustrated in Figure 3. It includes a
question-conditioned reasoning module and a type-conditioned
reasoning module, building on top of a basic multimodal
reasoning module (the multimodal feature fusion module
indicated by the yellow block in Figure 3). We first review
the multimodal reasoning module and then elaborate on our
proposed reasoning modules.

1) Multimodal Reasoning: In this paper, we utilize bilinear
attention networks (BAN) [30], a popular model used in
general VQA, for multimodal feature fusion and reasoning.
Given the extracted visual features Zv ∈ Rdv×N (dv is the
dimension of image features and N is the number of channels),
textual features Zq ∈ Rdq×L (dq is the dimension of word
features and L is the number of words in the question), and
the number of reasoning steps – glimpse G, BAN models
multimodal feature interaction in the i-th reasoning step via:

fi = (ZT
v Wv)

T
j Mi(Z

T
q Wq)j , (6)

Mi = softmax(((1 · pTi ) ◦ZT
v Wv)W

T
q Zq), (7)

where fi ∈ RJ with J ≤ min(dv, dq), i ∈ {1, . . . , G} is
the index of reasoning step, j ∈ {1, . . . , J} is the index of
matrix column, Wv ∈ Rdv×J and Wq ∈ Rdq×J are trainable
weights, 1 ∈ RN is an all-one vector, pi ∈ RJ is a learnable
vector, and ◦ is the element-wise product. We follow MEVF
to set the number of channels of visual features to N = 1.

After G reasoning steps, the final fused features f are
obtained by:

f = SumPool(

G∑
i=1

((Wifi) · 1T + fi−1)), (8)

where f ∈ Rdq , Wi ∈ Rdq×J , 1 ∈ RL, f0 = Zq , and
SumPool is the sum operation over the length dimension L.
We discuss the impact of the hyper-parameter G in Section IV-
D.2.

2) Question-Conditioned Reasoning (QCR): Recent stud-
ies [36], [44] have shown that BAN has limited reasoning abil-
ity for Med-VQA, especially for open-ended questions. This is
because it can not fully capture the interaction between visual
and textual features. For example, BAN merely utilizes bilinear
matrix multiplication to fuse multimodal features. To equip
the Med-VQA model with more powerful reasoning ability,
we improve the standard reasoning module by incorporating
an additional question-conditioned modulation function. Our
motivations are two-fold. First, similar to human reasoning
processes, solving different tasks requires corresponding task-
specific reasoning skills. Second, the question itself contains
rich task information which could be helpful [28].

Hence, the QCR function is designed to extract task infor-
mation from the question and use it to guide the modulation
over multimodal features. In this process, high-level reasoning
skills are learned by imposing importance selection over the
fusion features.

The details of QCR are illustrated on the right side of
Figure 3 within the orange dashed rectangle. First, a question
string q, with L words in it, is converted into a sequence of
word embeddings pre-trained by Glove [47]. Let wi ∈ Rdw
denote the corresponding word vector for the i-th word:

Qemb = WordEmbedding(q) = [w1, ...,wL]. (9)

The word embedding sequence Qemb ∈ Rdw×L is further
processed by a dg-dimensional Gated Recurrent Unit (GRU)
to obtain the question embedding:

Qfeat = GRU([w1, ...,wL]) = [η1, ...,ηL], (10)
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Fig. 3. Our proposed Med-VQA model with conditional reasoning. To prevent overfitting, we freeze the visual model Fθ (pre-trained in stage I)
and append a non-linear layer Pξ for fine-tuning on medical images. First, the TCR module classifies the question as open-ended or closed-ended
and chooses the corresponding branch for reasoning. Then, the question features extracted by the textual model Qψ will be fused with the image
features by the multimodal feature fusion module (e.g., BAN) and our QCR module. Finally, the answer is obtained by an MLP classifier.

where Qfeat ∈ Rdg×L, and ηi denotes the embedding at the
i-th position.

Since the question embedding Qfeat is generated by the
GRU network word-by-word sequentially, it may put more
emphasis on later words. To further highlight the important
words, e.g., “where do nodes locate in the lung?”, we design
an attention mechanism to re-calculate attention weights on
different words:

Q̃ = Qemb ⊗Qfeat, (11a)

Y = tanh(W1Q̃), (11b)

Ỹ = σ(W2Q̃), (11c)

G = Y ◦ Ỹ . (11d)

Here, ⊗ denotes feature concatenation in the feature dimen-
sion, Q̃ ∈ R(dw+dg)×L, W1,W2 ∈ Rdg×(dw+dg) are trainable
weights, σ and tanh are the sigmoid activation function and
tanh activation function respectively, and ◦ is the Hadamard
product. Q̃ can be formed by both context-free embeddings
(e.g., Glove) and contextual embeddings (e.g., GRU), which
has been demonstrated effective in many NLP tasks [35],
[52]. σ and tanh (Equations 11b – 11c) make up the gated
hyperbolic tangent activation [4], [11], which is a special
case of highway networks [56] that outperforms traditional
ReLU or tanh layers in many scenarios. Ỹ acts as a gate
on the intermediate activation Y to control the output G ∈
Rdg×L [56].

Then, the attention vector α ∈ RL for the question embed-
ding Qfeat can be obtained by

α = softmax((WaG)T ), (12)

where Wa ∈ R1×dg are trainable weights.

Finally, with the attention vector α, we obtain the final
output of QCR as:

qatt = Qfeatα, (13)

QCR(q) = MLPQ(qatt), (14)

where qatt is the aggregated question representation, and
MLPQ is a multilayer perceptron network that provides
additional non-linear transformation for importance selection.

In this paper, we propose to impose the proposed QCR
module on the multimodal feature fusion module Aδm by an
element-wise multiplication between their outputs: QCR(q)
and Aδm(Zv,Zq). The final representations are then fed to
the classifier Dδc , and the prediction scores are given by

s = Dδc(Aδm(Zv,Zq) ◦QCR(q)), (15)

where ◦ denotes element-wise product.
3) Type-Conditioned Reasoning (TCR): It has been observed

that closed-ended questions are generally easier than open-
ended questions. For example, the closed-ended question “Is
this an MRI image?” can be correctly answered with a simple
image understanding process, but the open-ended question
“What is the abnormality of the patient’s right brain in
this radiology image?” needs multi-step reasoning, since the
model must locate the abnormality in the right brain first
and then diagnose the type of abnormality, e.g., brain tumor.
Thus, Med-VQA systems need to be empowered with multi-
level reasoning abilities, which are lacking in present VQA
models [54].

To this end, we propose to use a separate reasoning com-
ponent for closed-ended questions and open-ended questions
respectively, in which the proposed QCR module is applied on
top of the multimodal feature fusion module, as shown in the
two black dash rectangles on the left of Figure 3. Particularly,
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we want to train a task type classifier Ctype that takes a ques-
tion as input and outputs the question type, i.e., closed-ended
or open-ended. We observe that different types of questions
put emphasis on different words. For example, closed-ended
questions usually start with “Do\Are\Is\etc.”, and open-ended
questions often start with “What\How many\Where\etc”. The
differences between the two types of questions can be captured
by question embeddings, which makes it possible to train a
reliable and light-weight classifier that divides Med-VQA tasks
into two subbranches, as shown by the rhombus module in
Figure 3.

Similar to Section III-C.2, we use Equations (9) - (13)
to compute the question embedding and denote the map-
ping as Φ. We then employ a multilayer perceptron MLPT
to map question embedding into classification scores. The
binary classification probabilities are computed by pt =
softmax(MLPT (Φ(q))), and pt0 and pt1 are the probabilities
for closed-ended and open-ended respectively. The binary
question type classifier Ctype is then formulated as:

Ctype(q) =

{
0, if pt0 > pt1,

1, else.
(16)

Hence, the predicted scores s of candidate answers for a
task (v, q) can be obtained by

s =

{
Dδc(A

cl
δm

(Zv,Zq) ◦QCRcl(q)), if Ctype(q) = 0,

Dδc(A
op
δm

(Zv,Zq) ◦QCRop(q)), if Ctype(q) = 1,
(17)

where cl and op stand for closed-ended and open-ended
respectively. For the basic multimodal reasoning module, we
use a different number of reasoning steps for the open-ended
branch Aopδm and the closed-ended branch Aclδm and conduct an
ablation study in Section IV-D.2.

D. Proposed Med-VQA Model
The pre-trained visual feature extractor and the conditional

reasoning mechanism can be naturally combined to train an
end-to-end Med-VQA model. As depicted in Figure 3, our
proposed Med-VQA model works as follows. First, the image
features Zv are obtained by the visual feature extractor Pξ◦Fθ
(with Fθ pre-trained and fixed), as indicated by the green
rectangle. The question features Zq are obtained by the textual
feature extractor Qψ , as indicated by the red rectangle. Second,
the TCR module classifies the question as open-ended or
closed-ended and chooses the corresponding reasoning module
(black dash rectangle). Note that the visual and textual feature
extractors are shared for both branches. Third, the chosen
reasoning module will generate fused features, which is the
element-wise multiplication between the output of the basic
reasoning module (e.g., BAN or SAN) (yellow block) and
the modulation vector produced by the QCR module (orange
block). Finally, an MLP classifier gives the prediction score s
for candidate answers.

IV. EXPERIMENTS

In this section, we conduct comprehensive experiments to
evaluate the performance of our proposed framework on the

TABLE I
MED-VQA DATASET STATISTICS

Dataset Images Answers
Questions

Overall Open Closed

VQA-RAD [36] 315 458 3,515 1,420 2,095

SLAKE-EN [39] 642 219 7,033 4,252 2,781

only two available manually-annotated Med-VQA datasets,
VQA-RAD [36] and SLAKE [39]. We compare our approach
with current state-of-the-art baselines, evaluate the effective-
ness of each component of our framework by ablation studies,
and present qualitative results by visualizing the attention maps
of both the images and questions of some Med-VQA tasks.

A. Datasets

VQA-RAD [36] and SLAKE [39] are the only two available
manually-annotated radiology-based datasets for Med-VQA.
The statistics of the two datasets are summarized in Table I.

VQA-RAD [36] contains 315 radiology images (e.g., CT,
MRI, and X-Ray) and 3, 515 clinical question-answer pairs
(tasks), with 3, 064 tasks for training and 451 tasks for testing.
The number of candidate answers is 458. There may be
multiple questions associated with one image. For example,
the clinicians may ask different types of questions regarding a
radiology image such as “imaging modality”, “abnormality”,
or “organ system”.

SLAKE [39] is a newly released bi-lingual Med-VQA
dataset. It includes more question types such as “organ shape”
and “common fact”. In our experiments, we use the English
version of SLAKE, referred to as SLAKE-EN, which contains
642 radiology images, 7, 033 question-answer pairs, and 219
candidate answers. We follow the original dataset splitting,
where 4, 919 tasks about 450 images are used for training,
1, 053 tasks about 96 images for validation, and 1, 061 tasks
about 96 images for testing.

In both datasets, there are closed-ended questions and open-
ended questions, as shown in Figure 1.

B. Implementation Details

We conduct all experiments on a Ubuntu 16.04 server with
8 Titan XP GPUs using PyTorch. The implementation details
for stages I & II of our method (Figure 2) are provided below.

Stage I. We collect 22, 995 unlabeled radiology images
from an online open-access resource1 to form Dpre−train,
which contains 7, 592 brain MRI and CT images, 7, 592
abdomen CT images, and 7, 811 chest X-Ray images. We use
ResNet-50 as the backbone for Fθ and Fθ′ , and use a non-
linear layer with ReLU activation for Pϕ and Pϕ′ to project the
representations into a 128-dimensional space. Then we train
them with the loss Lcontras (Equation (3)) for 800 epochs,
which takes approximately 23 hours. In each epoch, the mini-
batch size is 128, and the model is trained in parallel over 4
GPUs. The length K of the queue q is 4, 096, the temperature

1http://medicaldecathlon.com/

http://medicaldecathlon.com/
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TABLE II
TEST ACCURACY OF OUR PROPOSED METHODS AND THE BASELINES ON VQA-RAD [36] AND SLAKE [39]. “FW.” IS THE ABBREVIATION OF

“FRAMEWORK”. ∗ MEANS RESULTS CITED FROM THE ORIGINAL PAPERS.

Accuracy (%) on VQA-RAD [36] Accuracy (%) on SLAKE-EN [39]
Models #Parameters (M) Overall Open-ended Closed-ended Overall Open-ended Closed-ended
▶ General VQA Frameworks:
MFBCoAtt Fw. [68] 58.20 50.6 14.5 74.3 73.3 72.2 75.0
SAN Fw. [36], [64] 36.54 54.3 31.3 69.5 76.0 74.0 79.1
MFH Fw. [69] 72.11 57.9 35.2 72.8 75.9 73.6 79.3
MCB Fw. [15], [36] 36.29 58.1 38.0 71.3 76.1 73.2 80.5
MUTAN Fw. [7] 58.46 58.1 34.1 73.9 76.8 73.6 81.7
BAN Fw. [30], [44] 42.19 58.3 37.4 72.1 76.3 74.6 79.1
▶ Vision-and-Language Transformers:
Pixel-BERT-R50 [22] 137.37 61.7 48.2 70.5 77.4 77.1 77.9
ViLT-B/32 (w/o pre-training) [31] 113.12 59.6 38.5 73.5 76.0 75.8 76.2
ViLT-B/32 (w/ pre-training) [31] 113.12 66.5 52.0 76.1 78.1 76.9 80.0
MMBERT∗ [29] 111.53 72.0 63.1 77.9 - - -
MMBERT [29] 111.53 68.5 57.5 75.7 79.0 76.1 83.4
MedViLL∗ [43] 129.78 70.3 59.5 77.7 - - -
MedViLL [43] 129.78 69.6 58.7 76.8 78.4 76.3 81.7
▶ Vision-Language Contrastive Pre-training:
GLoRIA+SAN [21] 135.01 67.4 56.4 74.6 76.8 75.2 79.3
GLoRIA+BAN [21] 139.15 69.2 57.5 76.8 79.4 78.1 81.3
▶ Med-VQA Models:
MEVF+SAN∗ [44] 13.99 60.8 40.7 74.1 - - -
MEVF+SAN [44] 13.99 64.1 49.2 73.9 76.5 75.3 78.4
MEVF+BAN∗ [44] 19.64 62.6 43.9 75.1 - - -
MEVF+BAN [44] 19.64 66.1 49.2 77.2 78.6 77.8 79.8
CP+BAN (ours) 18.44 68.1 53.1 77.9 80.9 79.1 83.7
MEVF+BAN+CR (ours) 27.21 71.6 60.0 79.3 80.0 78.8 82.0
CP+BAN+CR (ours) 26.01 72.5 60.5 80.4 81.9 80.5 84.1

parameter τ is 0.2, and the momentum coefficient m is 0.999.
We utilize SGD optimizer with an initial learning rate of
1.5e−2 decayed by cosine schedule. After training, we save
the weights of ResNet-50 in the last epoch for training in
stage II.

Stage II. We use Fθ (ResNet-50) pre-trained in stage I
combined with Pξ (a non-linear layer with ReLU activation)
to extract visual features. For a fair comparison, we follow
MEVF [44] to set the dimension of visual features to 128,
use Glove [47] to initialize word embeddings, and employ a
1024-dimensional LSTM to extract textual features. Moreover,
the hidden size of all GRUs in the QCR and TCR modules
(Figure 3) is 1024. The MLPQ in Equation (14) and MLPT
in Equation (16) are instantiated with hidden units 1024 and
64 respectively. For each dataset, we pre-train a task type
classifier Ctype (with about 2.4M parameters) for 150 epochs
by using the “answer type” label in the training set and Adam
optimizer [32] with learning rate 1e−4, and freeze the pre-
trained weights during both the training and inference stages.
The trained classifiers reach 99.33% and 99.81% classifi-
cation accuracy on the test set of VQA-RAD and SLAKE
respectively. For the training of the Med-VQA model, we
use Adamax optimizer with initial learning rate 2e−3 for
100 epochs. Notice that different from general VQA that
formulates open-ended question answering as a multi-label

classification task (e.g., open-ended questions in the VQA v2.0
dataset normally have more than one correct answer [17]) or a
text generative task [10], in Med-VQA each question has only
one correct answer regardless of question type. Hence, we
follow previous works [36], [44] to formulate Med-VQA as a
single-label classification task and use accuracy as evaluation
metric for both open-ended and closed-ended questions.

C. Comparison with the State-of-the-arts

We compare our method with existing Med-VQA mod-
els including general VQA frameworks, vision-and-language
Transformers, vision-language contrastive pre-training, and the
recently proposed MEVF method [44].

• General VQA frameworks. We follow [36] to compare
with stacked attention network (SAN) [64] and multi-
modal compact bilinear pooling (MCB) [15]. In addition,
we also compare with other frameworks including bilin-
ear attention network (BAN) [30], multi-modal factor-
ized bilinear pooling with co-attention (MFBCoAtt) [68],
multimodal factorized high-order pooling (MFH) [69],
and multi-modal tucker fusion (MUTAN) [7]. These
VQA frameworks are usually named after their respective
reasoning modules.

• Vision-and-language Transformers. Transformer-based
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vision-and-language pre-training (VLP) has achieved im-
pressive results in vision-language tasks. In this paper,
we compare our method with both general and med-
ical VLP models. Due to the lack of regional object
labels in existing Med-VQA datasets, object-based VLP
methods cannot be applied. Hence, we compare with
a convolution-based method – Pixel-BERT [22] and a
patch-based method – general vision-and-language Trans-
former (ViLT) [31]. For medical VLP models, we com-
pare with multimodal medical BERT (MMBERT) [29]
and medical vision language learner (MedViLL) [43].

• Vision-Language Contrastive Pre-training is a self-
supervised approach that pre-trains a model by pulling
the paired image-text instances closer in the embedding
space. The representative method in the medical domain
is GLoRIA [21], which uses ResNet-50 and BioClin-
icalBERT [3] as the visual encoder and text encoder
respectively. Since there is no feature fusion module in
this paradigm, we use BAN [30] and SAN [64] instead.

• MEVF [44] is a recently proposed lightweight model
for Med-VQA, which pre-trains a visual module on
medical datasets and combines it with different attention
reasoning modules such as BAN [30] and SAN [64].

Table II shows the results of our methods and the baselines.
For all general VQA frameworks, ResNet-50 pre-trained on
ImageNet and 1024-D LSTM network are used as visual
extractor and textual extractor, respectively. Note that these
VQA frameworks are usually named after their respective
reasoning modules. We re-implement Pixel-BERT [22] (the
ResNet-50 version) since both the source code and pre-trained
weights are not provided. We use the original implementation
of ViLT [22] and fine-tune the model on Med-VQA datasets
with or without the pre-trained weights. We re-implement
MMBERT, MedViLL, and MEVF+BAN/SAN using the code
released by the authors. We cannot reproduce the results of
MMBERT as reported in the original paper using the configu-
rations provided by the authors2 (probably some key informa-
tion is missing). Our re-implementation of MEVF+BAN/SAN
achieves much better results than the original paper due to
longer training epochs (100 epochs for all methods). For
MEVF+BAN/SAN, the visual extractor is MEVF, and the
reasoning module is BAN/SAN. To compare our proposed
visual extractor CP (Section III-B) with MEVF, we combine it
with BAN (denoted as CP+BAN). For a fair comparison, we
strictly follow MEVF+BAN to use a 1024-D LSTM network
to extract textual features with word embeddings pre-trained
by GloVe [47], set the dimension of visual features to 128,
and set the number of reasoning steps of BAN to 2. When
applying the proposed CR mechanism to boost MEVF+BAN
and CP+BAN, we set the number of reasoning steps of
BAN in open-ended and closed-ended branches to 2 and 1,
respectively.

According to the performance of each model, we can make
the following observations:

• Our method (CP+BAN+CR) performs much better than
general VQA frameworks, vision-and-language Trans-

2https://github.com/VirajBagal/MMBERT/issues/4

TABLE III
COMPARISON OF DIFFERENT VISUAL MODULES ON VQA-RAD [36]. †
INDICATES PRE-TRAINING ON IMAGENET WITH STANDARD SUPERVISED

CLASSIFICATION. ‡ INDICATES PRE-TRAINING ON IMAGENET WITH

CONTRASTIVE SELF-SUPERVISED LEARNING (MOCO-V2 [9]).

Accuracy (%)

Visual Modules #Parameters (M) Overall Open Closed

VGG-16† [55] 134.83 56.8 35.2 71.0

ResNet-50† [19] 23.77 58.3 37.4 72.1

ResNet-50‡ [9] 23.77 59.9 34.6 76.5

MEVF [44] 1.22 66.1 49.2 77.2

CP (Fθ) 23.77 62.3 38.5 77.9

CP (Pξ ◦ Fθ ) 23.79 61.2 38.5 76.1

CP (Pξ ◦ Fθ , w/ Fθ frozen) 0.02 68.1 53.1 77.9

formers, and vision-language contrastive pre-training,
with much fewer parameters, showing the benefit of
utilizing small models for solving Med-VQA tasks. Also,
it can be seen that large models tend to overfit the small-
scale Med-VQA training data.

• Our pre-trained feature extractor (indicated by CP) is
more effective than MEVF. CP+BAN achieves 2% and
2.3% absolute improvement over MEVF+BAN [44] in
overall accuracy on VQA-RAD and SLAKE-EN re-
spectively. Also, it can be noted that since MEVF
is pre-trained on VQA-RAD, combining it with BAN
(i.e., MEVF+BAN) only brings ∼ 2.3% improvement
over BAN on SLAKE-EN, much lower than the
∼ 4.6% improvement brought by our CP model. Besides,
CP+BAN+CR improves over MEVF+BAN+CR by ∼ 2%
in absolute overall accuracy on SLAKE-EN dataset,
which is comparable to the improvement of CP+BAN
over MEVF+BAN. While the improvement on VQA-
RAD dataset is smaller, CP+BAN+CR still consistently
achieves better performance than MEVF+BAN+CR for
each question type. These results demonstrate the effec-
tiveness and generality of our pre-trained model CP.

• Our conditional reasoning (CR) mechanism can further
bring consistent and significant performance gains on top
of different visual feature extractors, including MEVF
and our CP model. It can be seen that CP+BAN+CR sig-
nificantly outperforms CP+BAN while MEVF+BAN+CR
significantly outperforms MEVF+BAN, on both datasets.
The best performance is achieved by our CP+BAN+CR
method. Remarkably, for open-ended Med-VQA tasks,
incorporating CR leads to very large performance gains
on VQA-RAD.

D. Ablation Study and Analysis

In this subsection, we conduct experiments to analyze the
effectiveness of our proposed contrastive pre-training (CP) and
conditional reasoning (CR) modules. We report results in test
accuracy on VQA-RAD [36].

1) Ablation study on contrastive pre-training:
I. Comparison of different visual feature extractors.

Table III shows the comparison of different visual feature

https://github.com/VirajBagal/MMBERT/issues/4
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TABLE IV
COMPARISON OF PERFORMANCE ON VQA-RAD [36] BY USING

DIFFERENT DATASETS FOR CONTRASTIVE PRE-TRAINING (CP IN

SECTION III-B).

Accuracy (%)

Dataset Overall

Random initialization 60.3

ImageNet (22,995) 65.2

Brain (22,995) 61.4

Chest (22,995) 64.3

Abdomen (22,995) 63.0

Brain (11,500), Chest (11,495) 66.3

Chest (11,500), Abdomen (11,495) 67.2

Abdomen (11,500), Brain (11,495) 64.5

Brain (7,592), Chest (7,811), Abdomen (7,592) (ours) 68.1

extractors for Med-VQA. For all the methods, we use BAN
with 2 reasoning steps for multimodal feature fusion and a
1024-D LSTM network as the textual extractor, and set the
dimension of extracted visual features to 128. For Pξ, we keep
the input dimension same as the output dimension. It can be
seen that our CP module (last row) outperforms MEVF and
surpasses general visual backbones VGG-16 and ResNet-50
by large margins (8 ∼ 11%), demonstrating its effectiveness.

In addition, the following observations can be made. First,
compared with ResNet-50‡ pre-trained on ImageNet also
using MoCo-v2 3 (row 3), it can be seen that ResNet-50 pre-
trained on medical images, i.e., our pre-trained Fθ (row 5)
performs better, showing the benefit of domain-specific pre-
training. Second, appending a non-linear layer Pξ to Fθ (row
6) leads to worse performance than Fθ, indicating more over-
fitting. Finally, freezing the parameters of Fθ and only fine-
tuning Pξ (row 7) leads to significantly better performance.
This effective and efficient design helps to avoid overfitting
caused by fine-tuning large models on small-scale Med-VQA
datasets and greatly reduces the training parameters.

II. Comparison of different pre-training datasets. We
observe that existing Med-VQA datasets contain radiology
images of different body regions and imaging modalities,
e.g., brain MRI, chest X-Ray, and abdomen CT, as shown in
Figure 7. Therefore, we collect a dataset Dpre-train (Section III-
B) with a similar composition for contrastive pre-training.
Specifically, it contains brain CT and MRI images, chest X-
ray images, and abdomen CT images. Since the brain images
do not have modality labels, we conduct an ablation study of
Dpre-train w.r.t. different body parts and compare it with other
pre-training datasets. For a fair comparison, we fix the size of
all datasets as 22, 995, and use the same visual module Pξ ◦Fθ
(with Fθ frozen), textual model 1024-D LSTM, and reasoning
module BAN (with 2 reasoning steps).

The results in Table IV show the importance of pre-training
with images of different body parts. Specifically, for the

3The pre-trained weights can be downloaded from https://github.
com/facebookresearch/moco. We choose the 800-epoch version,
which uses the same number of epochs as in our pre-training.

TABLE V
ABLATION STUDY OF OUR PROPOSED CONDITIONAL REASONING (CR)

MECHANISM ON VQA-RAD [36].

Accuracy (%)
Base Model QCR TCR #Parameters (M) Overall Open-ended Closed-ended

MEVF+BAN

19.64 66.1 49.2 77.2
✓ 23.98 67.8 51.4 78.7

✓ 22.87 70.1 56.7 79.0
✓ ✓ 27.21 71.6 60.0 79.3

CP+BAN

18.44 68.1 53.1 77.9
✓ 22.78 69.6 56.4 78.5

✓ 21.67 71.4 58.9 79.7
✓ ✓ 26.01 72.5 60.5 80.4

Open-ended
Closed-ended

Open-ended
Closed-ended

Model: CP + BAN (2) Model: CP + BAN (2-1)

Fig. 4. t-SNE [59] visualization of the multimodal features (input
to the classifier layer) of Med-VQA tasks in the test set of VQA-
RAD [36] learned by CP+BAN(2) and CP+BAN(2-1) respectively. The
TCR module in CP+BAN(2-1) disentangles the representations of open-
ended and closed-ended tasks.

datasets containing images of only a single body part (rows
3 ∼ 5), the pre-trained models perform worse than the model
pre-trained on ImageNet (row 2), though they are better than
random initialization (row 1). By increasing the diversity of
the pre-training datasets (rows 6 ∼ 8), the performance of
the pre-trained models is significantly improved. The best
performance is achieved with Dpre-train which contains images
of three different body parts (row 9).

2) Ablation study on conditional reasoning:
I. Effect of QCR and TCR. We first evaluate the effective-

ness of our proposed conditional reasoning modules QCR and
TCR with two base models, MEVF+BAN and our CP+BAN.
For both of them, the number of reasoning steps of BAN is
set to 2. When incorporating TCR into the base models, we
set the number of reasoning steps of BAN as 2 for open-
ended questions and 1 for closed-ended questions. When only
QCR is included (e.g., MEVF+BAN+QCR), the model does
not differentiate the question type, and hence there is only
one reasoning module. Our QCR module is then imposed
on the basic reasoning module BAN to enhance reasoning
ability. When only TCR is included (e.g., MEVF+BAN+TCR),
the model differentiates the question type and chooses the
corresponding reasoning module. However, only the basic
reasoning module BAN is utilized for reasoning, without the
QCR enhancement.

As shown in Table V, QCR improves the overall accuracy of
MEVF+BAN and CP+BAN by 1.7% and 1.5% respectively,

https://github.com/facebookresearch/moco
https://github.com/facebookresearch/moco
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Q: Where is the lesion located ?                        

A: Right Lower 
Lateral Lung Field

A: RightA: LeftGT: Right Lower Lateral Lung Field A: Left Occipital Lobe A: Right Lower 
Lateral Lung Field

Model: CP+BAN (2) Model: CP+BAN (1-1) Model: CP+BAN (2-1) Model: CP+BAN(2-1)+QCR Model: CP+BAN (3-3)+QCR

Fig. 5. Visual comparison of the prediction results for an open-ended task in VQA-RAD dataset by variants of CP+BAN. The Grad-CAM maps [51]
of the visual model are plotted based on the predicted answers. and indicate the correctness of the answer given by each model.

TABLE VI
EFFECT OF THE NUMBER OF REASONING STEPS FOR OPEN-ENDED

AND CLOSED-ENDED QUESTIONS IN VQA-RAD [36].

Accuracy (%)
Base Model G #Parameters (M) Overall Open Closed

MEVF+BAN

1 17.40 63.6 44.7 76.1
2 19.64 66.1 49.2 77.2
3 21.87 65.9 52.5 74.6
4 24.11 66.1 53.1 74.6
5 26.34 65.6 52.5 74.2
6 28.57 64.5 52.0 72.8

CP+BAN

1 16.20 64.5 48.6 75.4
2 18.44 68.1 53.1 77.9
3 20.67 67.4 53.6 76.5
4 22.90 66.3 52.5 75.4
5 25.14 66.5 53.1 75.4
6 27.37 65.2 52.0 73.9

▶ Incorporating TCR:
Gopen Gclosed

CP+BAN

1 1 19.43 68.7 53.6 78.7
2 1 21.67 71.4 58.9 79.7
1 2 21.67 70.3 55.3 80.1
2 2 23.90 71.2 58.7 79.4
3 2 26.14 69.8 57.5 77.9
2 3 26.14 70.5 56.4 79.8
3 3 28.38 69.2 55.9 77.9

▶ Further Incorporating QCR:
Gopen Gclosed

CP+BAN

1 1 23.77 70.3 58.1 78.3
2 1 26.01 72.5 60.5 80.4
1 2 26.01 71.4 59.2 79.4
2 2 28.25 71.6 61.4 78.3
3 2 30.49 72.1 60.3 79.8
2 3 30.49 71.1 59.2 79.0
3 3 32.73 69.6 58.1 77.2

while TCR improves them by 4% and 3.3% respectively. The
results show that both QCR and TCR are useful, indicating
the importance of utilizing question information to learn
task-adaptive reasoning skills for different Med-VQA tasks.
Further, the large performance improvement brought by TCR
demonstrates the necessity of learning multi-level reasoning
skills for different types of Med-VQA tasks.

When both QCR and TCR are incorporated, we observe
further improvements. The overall accuracy of MEVF+BAN
and CP+BAN is increased by 5.5% and 4.4% respectively,
where the accuracy for open-ended questions is increased by
10.8% and 7.4% respectively and the accuracy for closed-
ended questions is increased by 2.1% and 2.5% respectively.
The large improvements on open-ended tasks show the effec-
tiveness of our conditional reasoning mechanism in learning

Fig. 6. Impact of the prediction accuracy of the type classifier on our
model CP+BAN+CR. Note that the prediction accuracy of our model
refers to the overall metric.

higher-level reasoning skills to solve difficult tasks.
II. The reasoning ability required for solving open-ended

and closed-ended questions. We further study the reasoning
ability required for solving open-ended and closed-ended ques-
tions, including the number of reasoning step G (Equation 8)
and the proposed QCR module. We use BAN(G) to denote
BAN with G reasoning steps and BAN(Gopen-Gclosed) to denote
that in our TCR we use BAN with Gopen reasoning steps for
open-ended questions and BAN with Gclosed reasoning steps
for closed-ended questions.

From the results in Table VI, we can make the following
observations. (I) As the number of reasoning steps (G, Gopen,
or Gclose) increases, the corresponding model performance first
increases and then decreases, indicating a gradual transition
from underfitting to overfitting. (II) By incorporating TCR,
even BAN(1-1) outperforms BAN with any G reasoning steps,
showing the benefit of using a separate reasoning module
for different types of questions. As shown in Figure 4,
the TCR module disentangles the representations of open-
ended and close-ended tasks. (III) The best performance is
achieved by CP+BAN(2-1), indicating that solving open-ended
questions requires stronger reasoning ability than closed-
ended questions. (IV) Incorporating QCR can further improve
the reasoning ability on both open-ended and closed-ended
questions. These observations can also be reflected in the
visual comparison in Figure 5, where CP+BAN(2-1)+QCR can
more accurately find the relevant regions and give the correct
answer.
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Q: Where is the brain 
non-enhancing tumor?

Q: Which lobe is abnormal 
in this image?

A: left lobe A: Center

A: Both A: Left Lung

Input Image MEVF + BAN (2) CP + BAN (2)

Brain†
(MRI)

Chest†
(X-Ray)

Abdomen†
(CT)

CP + BAN (2-1) + CR

Q: What diseases are 
included in the picture? A: Lung Cancer A: Liver Cancer A: Liver Cancer

A: Upper Left Lobe

A: Left

Q: Evidence of hemorrhage 
in the kidneys?

Abdomen‡
(CT)

A: No A: No A: Not seen here

Fig. 7. The Grad-CAM maps of the visual modules of our methods and baseline MEVF+BAN. The attention map of our QCR module is displayed
in the right column, and darker color indicates higher weight. and indicate the correctness of the answer given by each model. † indicates the
test image comes from SLAKE [39], and and ‡ indicates it comes from VQA-RAD [36]. The last row shows a failure case of our method with the
conditional reasoning module, which is caused by the misclassification of question type.

III. Impact of the prediction accuracy of the type clas-
sifier. We analyze how the prediction accuracy of the type
classifier Ctype in the TCR module affects the prediction
accuracy of our model CP+BAN+CR on both VQA-RAD and
SLAKE-EN datasets. As shown in Figure 6, the more accurate
Ctype is, the better performance our model can achieve. An
inaccurate Ctype will result in extremely poor performance.

Fortunately, with our proposed algorithm (Equations (9) - (13)
& Equation (16)), we can easily train a highly accurate Ctype,
achieving 99.33% and 99.81% classification accuracy on the
test set of VQA-RAD and SLAKE respectively.

E. Qualitative Evaluation
We provide a qualitative comparison between our proposed

methods and baseline MEVF+BAN. Figure 7 shows the Grad-
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7.85

7.63

7.14

6.96

0.57

0.57

0.56

0.55

0 2 4 6 8

BASE+QCR+TCR

BASE+TCR

BASE+QCR

BASE

Second

Test Train

Fig. 8. Time efficiency of the proposed conditional reasoning mecha-
nism (i.e., TCR and QCR modules). BASE represents the base model
MEVF+BAN [44]. BASE+QCR does not differentiate the question type,
and hence there is only one reasoning module. Our QCR module is
imposed on the basic reasoning module BAN to enhance reasoning
ability. BASE+TCR differentiates the question type and chooses different
reasoning module correspondingly. However, only the basic reasoning
module BAN is used for reasoning, without our QCR enhancement.

denotes training time (seconds) per epoch. denotes test time
(seconds) per epoch.

CAM [51] maps of the visual models based on the predicted
answers of four tasks in SLAKE-EN and VQA-RAD, which
cover different human body parts and imaging modalities.
We also provide a visualization of the attention weights
(Equation 12) in QCR.

The first task is about a brain MRI image. While
MEVF+BAN and our CP+BAN both give wrong answers, our
CP+BAN+CR can find the relevant regions and predict the
right answer, demonstrating the effectiveness of conditional
reasoning. The second task is about a chest X-Ray image.
Compared with MEVF+BAN, our CP+BAN can better find
more relevant regions, though it also gives a wrong answer.
With conditional reasoning, our CP+BAN+CR can find the
right answer. The third task is about an abdomen CT image.
Both our CP+BAN and CP+BAN+CR give the right answer,
but MEVF+BAN still fails. The last task is also about an
abdomen CT image. In this case, both MEVF+BAN and our
CP+BAN give the right answer, but our CP+BAN+CR fails.
This is because the question type classifier of the TCR module
gives a wrong prediction, mistaking a close-ended question as
an open-ended one. Notice that even though the prediction
accuracy of the question type classifier is as high as 99.33%,
it may still fail in some rare cases.

F. Efficiency Evaluation
We progressively evaluate the time efficiency of the pro-

posed QCR and TCR modules on top of the base model
MEVF+BAN [44]. The results are provided in Figure 8, where
we report the average training time and test time of 10 epochs.
Compared with the base model, our reasoning modules only
increase the training time by a small factor, and the overhead
in test time is negligible. It shows that the proposed conditional
reasoning mechanism can be efficiently applied to existing
Med-VQA systems.

V. CONCLUSION

Despite the recent booming interest in VQA, there has been
little work in Med-VQA. In this paper, we have concerned

with the design of two key modules of a Med-VQA system –
the reasoning module and the visual feature extraction module.
For the former, we have proposed an effective conditional rea-
soning mechanism that endows the system with task-specific
reasoning ability, which is lightweight and can be applied to
existing Med-VQA models in a plug-and-play manner. For the
latter, we have proposed to pre-train a visual feature extractor
via contrastive learning to tackle the data scarcity problem,
which can be readily used by any Med-VQA model on a small-
scale dataset. Empirical evaluation on existing benchmarks
demonstrates the high effectiveness of our proposals compared
with the state-of-the-arts. We hope this work will serve as a
solid step to advance the research of Med-VQA.
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