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Tao Zhang, Jiachi Chen, Xian Zhan, Xiapu Luo‡, David Lo, and He Jiang, Member, IEEE

Abstract—Million of mobile apps have been released to the market. Developers need to maintain these apps so that they can continue
to benefit end users. Developers usually extract useful information from user reviews to maintain and evolve mobile apps. One of the
important activities that developers need to do while reading user reviews is to locate the source code related to requested changes.
Unfortunately, this manual work is costly and time consuming since: (1) an app can receive thousands of reviews, and (2) a mobile app
can consist of hundreds of source code files. To address this challenge, Palomba et al. recently proposed CHANGEADVISOR that utilizes
user reviews to locate source code to be changed. However, we find that it cannot identify real source code to be changed for part of
reviews. In this work, we aim to advance Palomba et al.’s work by proposing a novel approach that can achieve higher accuracy in change
localization. Our approach first extracts the informative sentences (i.e., user feedback) from user reviews and identifies user feedback
related to various problems and feature requests, and then cluster the corresponding user feedback into groups. Each group reports the
similar users’ needs. Next, these groups are mapped to issue reports by using Word2V ec. The resultant enriched text consisting of user
feedback and their corresponding issue reports is used to identify source code classes that should be changed by using our novel weight
selection-based cosine similarity metric. We have evaluated the new proposed change request localization approach (Where2Change)
on 31,597 user reviews and 3,272 issue reports of 10 open source mobile apps. The experiments demonstrate that Where2Change can
successfully locate more source code classes related to the change requests for more user feedback clusters than CHANGEADVISOR as
demonstrated by higher Top-N and Recall values. The differences reach up to 17 for Top-1, 18.1 for Top-3, 17.9 for Top-5, and 50.08%
for Recall. In addition, we also compare the performance of Where2Change and two previous Information Retrieval (IR)-based fault
localization technologies:BLUiR and BLIA. The results showed that our approach performs better than them. As an important part of
our work, we conduct an empirical study to investigate the value of using both user reviews and historical issue reports for change
request localization; the results shown that historical issue reports can help to improve the performance of change localization.

Index Terms—User review, Issue report, Mobile app, Change Request localization, Software maintenance.
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1 INTRODUCTION

As the number of mobile devices (e.g., smartphones and tablet
computers) and their applications (apps) increases, the task of
maintaining mobile apps is becoming more important [1]. In
online app stores such as Google Play Store, Apple Store, and
Windows Phone App Store, users are allowed to evaluate each app
by using scores (i.e., five stars) and posting their reviews. These
reviews are free-form text that may include important information
such as bugs that need to be fixed for developers. These reviews
express users’ problems and suggestions, thus they can be used by
developers to guide software maintenance activities for improving
user experience. In the process of software maintenance, changing
the source code to satisfy users’ requrements is an important task
[2]. In order to achieve the goal, developers’ first priority is to
locate source code that needs to be changed. However, it is difficult
for developers to read each review in order to find the source files
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to be changed because popular apps usually receive hundreds of
reviews every day. Undoubtedly, this is a time-consuming work.

Previous Information Retrieval (IR)-based fault localization
technologies such as BugScout [3], BugLocator [4], BLUiR
[5], and BLIA [6] tend to utilize issue reports to search the
potential faulty source files or classes. However, these approaches
focus on desktop software, which is different with mobile apps.
According to the report at the literature [7], developers in apps
first read user reviews, then resolve the issues reported in the user
reviews and update the apps. To verify this process, we investigate
top 200 most active developers in top 100 popular mobile apps,
we find that 85.7% responders depend on user reviews to find
and resolve issues from source code (See Section 6.2 for details).
Therefore, when previous IR-based fault localization technolo-
gies are employed at mobile apps, they will be confronted with
an important challenge: these technologies cannot automate the
process of analysis on user reviews, thus they may ignore the
problems reported by users because the publication time of user
reviews is always ahead of the generation time of issue reports.
This fact results in that developers still spend more time manually
analyzing and understanding thousands of user reviews in an app.
We start a follow-up investigation of the above-mentioned survey
for the responders. In this investigation, we want to know the
average time of change request localization for each new coming
user review. 32 developers provide their answers, as the result,
the average time per developer to find the classes that should be
changed for a new user review is 1.9 working days. This fact
shows manual change request localization is a time-consuming
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work due to a great number of user reviews posed every day.
Therefore, for mobile apps, a new fully automated change request
localization technology toward user reviews will be of great benefit
to developers.

Recently, Palomba et al. proposed CHANGEADVISOR [8].
This approach clusters user reviews based on similar user re-
quirements, and then locates the set of source code that needs
to be changed for each cluster of reviews. CHANGEADVISOR
measures the similarity between a cluster of reviews and source
code. When the similarity value exceeds a threshold, the classes
are returned. Unfortunately, many user reviews lack of detailed
information. This can cause CHANGEADVISOR to miss the links
between review clusters and the corresponding source code that
should be changed. Indeed, our experiment finds that, using
CHANGEADVISOR, a substantial proportion of reviews cannot be
located to any class in source code (see Section 2 for details).

Let us consider a hypothetical scenario. As a developer of the
popular mobile app K-9 Mail, Mark’s daily work is to fix faults
and add features according to a great number of user reviews.
When he finds a fault or a feature request-related review, he must
locate the source code that should be changed. Obviously, this is
a challenging and time-consuming task. Mark expects to use a
useful tool which can locate all changes automatically. He first
finds a tool CHANGEADVISOR. When using CHANGEADVISOR,
Mark gets a ranked list of classes that link to some clusters of user
feedback. But Mark finds that only a part of feedback clusters
can be mapped to the corresponding classes. According to our
investigation shown in Section 2.2 for top-10 popular mobile apps,
there are 38 clusters of user feedback that cannot be linked to the
classes by using CHANGEADVISOR. The miss rate reaches up
to 33%. For a real case in K-9 Mail, there is a cluster-Topic-
1 that describes the issue of notifications that cannot be turned
off. CHANGEADVISOR cannot find any class which may link this
issue. But in fact, the invited experts1 verify that there are some
classes such as GlobalSettings related to this issue. There-
fore, for these clusters missed by CHANGEADVISOR, Mark needs
to manually identify these classes. This takes much effort and thus
an improved solution is desired. By analyzing CHANGEADVISOR,
we find that this tool does not adopt the historical issue reports.
This may be a major reason why CHANGEADVISOR cannot find
the classes for some issues described in user reviews. According to
our investigation shown in Section 6.2, 72.4% developers still need
to depend on historical issue reports to locate source code classes
related to change requests found in user reviews. Therefore, histor-
ical issue reports can help to change request localization due to the
detailed descriptions for issues. In order to help apps’ developers
such as Mark, it is necessary to develop a new change request
localization technology which adopts historical issue reports for
reducing the miss rate.

To address the above-mentioned challenge, in this paper, we
propose a novel approach named Where2Change to conduct
change request localization for app reviews. First, we extract
the informative sentences (i.e., user feedback) contained in user
reviews. Second, we use a popular review analysis tool-SURF [9]
to automatically classify the user feedback into five categories:
information giving, information seeking, problem discovery, fea-
ture request, and others. We focus on user feedback in the
problem discovery and feature request categories. Next, after pre-
processing the user feedback in above-mentioned two categories,

1. Please refer to Section 5.1: Building Ground Truth

we cluster them using HDP which presents the best clustering
performance among six popular clustering algorithms. Third, we
treat each cluster of user feedback as a query to search for the
classes that should be changed in source code. Due to the small
amount of information provided in user reviews, we introduce
historical issue reports to enrich the user feedback extracted from
user reviews. In particular, we build the multiple links between a
cluster of user feedback and historical issue reports by computing
their similarities via Word2Vec [10]. If the similarity value is larger
than a threshold, an issue report can be used to enrich the cluster
of user feedback. Finally, we propose a more accurate similarity
metric named weight-selection-based cosine similarity to measure
the similarity between an enriched version of comment cluster and
the source code. This metric considers the influence of different
terms’ weights on the accuracy of change request localization so
that the best weight values are used to measure the similarity.
At the end, for each cluster of user feedback, Where2Change
returns a ranked list of potentially classes to be changed. Overall,
our approach can overcome the limitation of CHANGEADVISOR.
For the case described in the last paragraph, by using our approach,
the issue report # 1110 is used to enrich the cluster-Topic-1
due to its detailed description for the problem of notifications
in K-9 Mail. Then Where2Change can easily find the class-
GlobalSettings that should be changed for satisfying users’
requirements. Therefore, it can reduce the workload of develop-
ers like Mark and consequently improve the efficiency of issue
resolution.

We conduct experiments on 31,597 user reviews and 3,272 is-
sue reports collected from 10 open source mobile apps on GitHub.
The experimental results demonstrate that Where2Change can
successfully locate more source code classes related to change
requests for more user feedback clusters than CHANGEADVISOR
due to the highest Top-N and Recall values. The differences reach
up to 17 for Top-1, 18.1 for Top-3, 17.9 for Top-5, and 50.08%
for Recall. We also conduct Wilcoxon test to further compare the
performance between CHANGEADVISOR and Where2Change.
The result indicates that our approach can significantly improve
the performance of change request localization for user feedback
by comparing with CHANGEADVISOR. Moreover, we conduct the
performance comparison between our approach and two IR-based
fault localization technologies-BLUiR and BLIA. The results
show that our approach performs better than them. In order to
explain why we use user feedback clusters as queries rather than
issue reports, we conduct the empirical study for user reviews
and issue reports, the results shown that issue reports can help to
improve the performance of change request localization but cannot
replace user reviews to conduct this task for mobile apps.

We summarize the contributions of our work as follows:
• Where2Change enriches user feedback extracted from user

reviews via similar issue reports. This richer text enables
Where2Change to perform better in change localization
than CHANGEADVISOR and other fault localization ap-
proaches such as BLUiR and BLIA.

• We propose a new textual similarity metric (i.e., weight
selection-based cosine similarity) to produce an accurate
result of change request localization.

• We implement Where2Change in a tool2 to locate source
code classes that should be changed according to user re-
views on mobile apps. We evaluate the tool and compare

2. It will be released after paper publication.
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it with CHANGEADVISOR. The result shows that our ap-
proach successfully locates more source code classes related
to change requests for more user feedback clusters than
CHANGEADVISOR and keeps the similar accuracy in top-5
ranking results.

Roadmap. Section 2 introduces the background knowledge re-
lated to our work and shows the motivation example in order to
indicate why we need to propose a new change request localization
approach based on user reviews for mobile apps. In Section 3, we
detail the proposed change request localization technology. Sec-
tion 4 describes the research questions that guide our experiment
while Section 5 presents the experimental results and Section 6
discusses how the proposed approach performs better than the
previous study. Section 7 introduces the threats to validity. In
Section 8, we present the related work, and Section 9 concludes
the paper and introduces our future work.

2 BACKGROUND AND MOTIVATING EXAMPLES

2.1 Background
In this subsection, we introduce information retrieval (IR) based
change request localization and a sample issue report for a mobile
app.

2.1.1 Information retrieval (IR) based change request local-
ization
Information retrieval (IR) based change request localization tech-
niques attract wide attention due to their relatively low compu-
tation cost and external resources requirements (i.e., only source
code and software artifacts are required.) [11]. In these IR ap-
proaches, each software artifact (e.g., issue report and user review)
is treated as a query, and the source code (e.g., source files,
classes, and methods) to be searched as the document collection.
Then, IR techniques rank the documents by computing the textual
similarities between queries and documents. Finally, a list of
ranked documents are returned.

Previous studies such as [3]–[6], [12]–[21] tend to utilize issue
reports as queries to locate source code related to software faults
in traditional desktop software (e.g., Eclipse and Mozilla). For
mobile apps, user reviews can also be used as queries to change
request localization. The reason is described in Section 6.2.

Fig. 1 shows the examples of three user reviews in Wordpress.
When the users find the problems of Notifications in Wordpress:
“the users cannot do anything (e.g., remove operation and read op-
eration) when the notifications appear”, they posts some reviews
in Google Play Store. With IR-based change request localization
techniques, researchers treat these user reviews as queries to search
the corresponding classes that should be changed in order to help
developers resolve the reported issues. These classes related to
three user reviews are presented as follows:

1 u i . n o t i f i c a t i o n s . N o t i f i c a t i o n s D e t a i l A c t i v i t y . j a v a
2 . . . . . .
3 p r i v a t e N o t i f i c a t i o n D e t a i l F r a g m e n t A d a p t e r

b u i l d N o t e L i s t A d a p t e r A n d S e t P o s i t i o n ( Note note ,
N o t e s A d a p t e r . FILTERS f i l t e r )

4 {N o t i f i c a t i o n D e t a i l F r a g m e n t A d a p t e r a d a p t e r ;
5 A r r a y L i s t<Note> n o t e s = N o t i f i c a t i o n s T a b l e .

g e t L a t e s t N o t e s ( ) ;
6 A r r a y L i s t<Note> f i l t e r e d N o t e s = new A r r a y L i s t <>() ;
7 N o t e s A d a p t e r . b u i l d F i l t e r e d N o t e s L i s t ( f i l t e r e d N o t e s ,

n o t e s , f i l t e r ) ;
8 a d a p t e r = new N o t i f i c a t i o n D e t a i l F r a g m e n t A d a p t e r (

ge tFragmentManager ( ) , f i l t e r e d N o t e s ) ;

 
Review Title: Notifications Blocking My View 

Comment: Everytime I visit my blog through this app the notification 

panel just occupies the three-fourths of the screen and there is no way 

to remove it because everytime I tap it what is clicked is the blog 

underneath. 

Review Title: Cannot be trusted 

Comment: I used to love this app. Until things started changing for the 

worst. Doesn't refresh o sync, what I've done online sometimes doesn't 

show up here and vice versa. Cant even read notifications!!!! 

Review Title: Latest update 

Comment: I'm having problems with the latest update of this app. Once 

I open it by clicking on a notification, I cannot do anything else as it 

freezes. It's a shame, as the previous version has worked relatively well 

most of the times. 

Fig. 1: User reviews in Wordpress

9 mViewPager . s e t A d a p t e r ( a d a p t e r ) ; mViewPager .
s e t C u r r e n t I t e m ( N o t i f i c a t i o n s U t i l s .
f i n d N o t e I n N o t e A r r a y ( f i l t e r e d N o t e s , n o t e . g e t I d ( )
) ) ;

10 r e t u r n a d a p t e r ;}

2.1.2 Issue reports
For each issue report in mobile apps, the main body is composed
of title and description. Title briefs what is the issue
while description details how the issue occurs. Fig. 2 shows
an example of issue report (ID: #945) in WordPress. Its title
is “Crash on 2.6.1, IllegalStateException: Content view not yet
created-NotificationsListFragment.requestMoreNotifications”
which indicates the crash problem when invoking
NotificationsListFragment.requestMoreNotifica
tions. The developer named “maxme” opened this issue report
and posted the description. The description includes the
information of stack traces in order to show the root reason how
the issue occurs.

We find that the above-mentioned issue report describes a sim-
ilar (yet different) issue to the reviews shown in Fig. 1. Therefore,
the issue report #945 (which contains more detailed information)
can help to locate source code to be changed corresponding to the
user reviews. We discuss it in the next subsection.

2.2 Motivating example

In this subsection, we discuss a real-world example that motivates
our research. We collected reviews, issue reports, and their cor-
responding fixed files from the open-source mobile apps. Since
CHANGEADVISOR is, to the best of our knowledge, the state-
of-the-art work on mapping user reviews to code, we run it and
use the same data set to compare it and our approach in Section
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Assignees
 nbradbury

Labels

Projects
None yet

Milestone

2.6.2

2 participants

 Crash on 2.6.1, IllegalStateException: Content view not yet

 

 
created - NotificationsListFragment.requestMoreNotifications
#945

 Closed maxme opened this issue Feb 21, 2014 · 2 comments

[Type] Bug

java.lang.IllegalStateException: Content 
view not yet created
at 
android.support.v4.app.ListFragment.ensur
eList(ListFragment.java:3 28)
at 
android.support.v4.app.ListFragment.getLi
stView(ListFragment.java:222)
at 
...

Fig. 2: An example issue report from Wordpress

Issues with saving email

attachments, I am unable to save

email attachments to my SD Card.

Can't save attachments, Was

fantastic before update, but now

won't save attachments.

Used to love this but now can't

turn off the new mail notifications

so uninstalling.

similarity<threshold

(i.e., 0.5)

Bug ID: 1164

Title: Local Save Failure

Bug ID: 1110

Title: Notification stays after 

reading e-mail

GlobalSettings

Settings

AttachmentController

Fig. 3: Motivating example in K-9 Mail: change request localization

5. In detail, we downloaded 31,597 user reviews from Google
Play Store, 3,272 issue reports and 4,207 classes from GitHub.
Then we use HDP [22] to cluster user feedback extracted from
user reviews and compute the similarities between each cluster
and classes for reproducing CHANGEADVISOR. As a result, we
observe the following issue shown in Fig. 3.

Consider a developer Mark who is using CHANGEADVISOR.
Even though Mark can verify the bug and feature request-related
reviews correctly using CHANGEADVISOR, he will encounter a
challenge. Fig. 3 shows an example of change request localization
for Topic-1 of the app K-9 Mail. We suppose that Mark has
selected the reviews that describe the real issues from all reviews
in Topic-1. We note that the similarity value is less than a
threshold (i.e., 0.53) for identifying potential classes that should
be changed. Thus, none of the classes can be matched to Topic-1
via CHANGEADVISOR. However, Mark finds that the reviews in
Topic-1 can be mapped to the classes by reading the related issue
reports. He still needs to manually locate the classes to be changed
for these reviews. For example, the review “Used to love this but
now can’t turn off the new mail notifications so uninstalling” is
related to issue report # 1110. Both of them present the problem
of mail notifications that cannot be turn off. According to the
change history in GitHub, we find that the issue reported in #
1110 is resolved by changing the source code file corresponding to
the class-GlobalSettings. Thus, the user feedback in Topic-
1 could have been matched to the class, but CHANGEADVISOR
cannot find it. According to our analysis for the results produced
by CHANGEADVISOR, we find the number of clusters that are

3. The threshold value does not appear in the paper, it is found when we run
the replication package provided by Palomba et al.

TABLE 1: The status of number of feedback clusters linked to classes when
using CHANGEADVISOR

Project # feedback clusters linked to classes
unlinked linked total

AntennnaPod 4 8 12
Automattic 6 4 10

Cgeo 8 4 12
Chrislacy 3 5 8
K-9 Mail 4 10 14

OneBusAway 3 9 12
Twidere 3 9 12

UweTrottmann 3 11 14
WhisperSystems 2 91 11

Wordpress 2 8 10
Total 38 159 115

not linked to classes, which is shown in Table 1. The data on last
column indicates the total number of issue reports (i.e., unlinked
and linked reports) in each app.

In Table 1, 33% (38/115=33%) of clusters are missed by
using CHANGEADVISOR. Relatively high miss rate results in that
developers like Mark need to spend additional time to find the
classes that should be changed for the user feedback clusters
missed by CHANGEADVISOR.

Based on the above observation and analysis, we have the
following motivation for this study:

Motivation: The purpose of CHANGEADVISOR is to return
a list of ranked classes to be changed for each cluster of user
feedback. However, not all feedback clusters can be mapped to
classes by CHANGEADVISOR. Developers still need to locate the
classes to be changed. This observation motivates us to propose a
new and effective approach to accurately identify the classes that
should be changed for satisfying more user requests described in
user reviews.

In order to achieve the above-mentioned goal, we conduct the
investigation on real developers for the top-100 popular apps, and
find that 72.4% developers still rely on historical issue reports to
locate source code classes related to change requests found in user
reviews. Therefore, historical issue reports can facilitate change
request localization due to the detailed issues’ descriptions. To
help apps’ developers such as Mark, it is necessary to develop a
new change request localization technology which adopts histori-
cal issue reports for reducing the miss rate.

Due to the aforementioned motivation, we propose a two-
phase approach to locate classes to be changed in mobile apps
according to user reviews. Section 3 describes the design of this
approach.

3 METHODOLOGY

In this section, we first show the overall framework of
Where2Change. Next, we detail how to implement change
request localization based on user reviews on mobile apps in
Where2Change.

3.1 Overall framework
To locate source code classes related to change requests appearing
in user reviews on mobile apps, we propose Where2Change, a
two-phase method to retrieve the classes to be changed for resolv-
ing the bugs and feature requests described in user reviews. In the
first phase, Where2Change extracts the informative sentences
from user reviews as user feedback. It selects change requests-
related user feedback and enriches them using issue reports; in
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the second phase, Where2Change recommends a list of ranked
classes that should be changed for each cluster of user feedback.
Fig. 4 shows its overall framework. In this framework, the first
phase includes the steps (1-3) while the step (4) belongs to the
second phase.

In this framework, we first (1) utilize SURF [9], a state-of-
the-art review analysis tool, to extract the informative sentences
belonging to categories feature request and problem discovery.
Then we (2) cluster pre-processed user feedback via Hierarchical
Dirichlet Processes (HDP) which performs the best among six
clustering algorithms. Next, we (3) compute the similarity between
a cluster of user feedback and a pre-processed issue report via
Word2Vec. If the similarity value exceeds the threshold, we treat
the issue report as a change-related issue report. In other words,
we build a link between a cluster of user feedback and the related
issue report. We use these related issue reports to enrich the cluster
of user feedback. These enriched versions of feedback clusters
are treated as queries. After we pre-process the source code, we
(4) compute the similarity between each query and the potential
classes to be changed via the proposed weight selection-based
cosine similarity. Finally, we get a ranked list of classes for the
cluster of user feedback.

We give an example to further explain the process of our
change request localization approach. For a user review “Used
to love this but not can’t turn off the new mail notifications so
uninstalling” shown in Fig. 3, by using SURF, we learn that
this review includes only one informative sentence which belongs
to the category Problem Discovery. Then we extract it as user
feedback. After pre-processing, we use HDP to group the user
feedback and other similar feedback entries into Topic 1. Next, by
using Word2Vec, we find that there are some issue reports such
as #1662 and #1110 linked to them because the similarity score is
more than a threshold value (i.e., 0.4). We use these issue reports
to enrich the cluster. Finally, we compute the similarity scores
between the different versions of enriched feedback clusters and
the classes that should be changed. As a result, we get a global
ranked list of all potential classes with the similarity scores.

In the following subsections, we show how to implement the
novel change request localization approach step by step.

3.2 Selecting change request-related user feedback

User reviews provide rich information that can facilitate the
development and maintenance of mobile apps, however, they often
include a lot of uninformative data that should be eliminated.
To resolve the problem described in Section 1, we first choose
change request-related user feedback extracted from user reviews
that describe real faults or feature requests.

We utilize SURF [9] to remove the uninformative data in user
reviews and find change-related user feedback. For ARDOC [23]
used in CHANGEADVISOR [8], Sorbo et al. pointed out that this
one-dimensional classification approach cannot sufficiently utilize
the available review information [9]. Due to this reason, they
developed SURF which can facilitate developers to understand
the contents of user reviews. SURF relies on AR-miner [24] to
filter out non-informative reviews in our dataset, then it employs
an Intent Classifier [23] combining Natural Language Processing
(NLP), Sentiment Analysis (SA) and Text Analysis (TA) tech-
niques through a Machine Learning (ML) algorithm for detecting
sentences from the five categories: Feature Request, Problem
Discovery, Information Seeking, Information Giving and Other.

Finally, SURF uses a sentence selection and scoring mechanism
to generate the summaries.

Because we focus on change-related user feedback, we only
collect the sentences in the categories Problem Discovery and
Feature Request to generate the queries. The summaries produced
by SURF are used to help the invited developers create the ground
truth (See Section 5.1).

In order to ensure the classification is acceptable, we verify
whether all user feedback classified into the categories Problem
Discovery and Feature Request really belongs to them. The second
author and the third author are responsible for verifying whether
the user feedback describes a real fault or a feature request. They
have more than 5-years experience in software testing. They are
also familiar with the apps’ user reviews and issue reports. The
user feedback is divided into two groups. One person is invited to
check one group and another person is responsible for checking
the remainder. In order to reduce the possible bias, they exchange
their data to conduct the verification again. We invite the software
test expert from Alibaba Company to make a final decision when
the verification results are inconsistent. He has more than 15-years
software testing experience at Baidu and Alibaba. As a result, we
get an accuracy of 95.64%. Therefore, the classification results is
acceptable.

3.3 Clustering change-related user feedback
Before clustering change request-related user feedback the pre-
processing for NLP is executed. Since user feedback is written
by end-users, the language is generally informal and very noisy.
The feedback is different from conventional software artifacts like
issue reports. Thus, they should be further processed in order
to better match issue reports by using our approach. For this
reason, we adopt the text processing tools that contain python
libraries NLTK4 and TEXTBLOB5, and the spell check tool-
PYENCHANT library to implement the following steps:
• Tokenization: An issue report or a piece of user feedback is

split into a list of words (i.e., tokens), which can be used to
compute the textual similarity.

• Stop word removal: Stop words like “the”, “a”, and “are”
are common words but they make no sense to change
localization. Therefore, these words are removed accord-
ing to the list of WordNet English stop words. We main-
tain this list at https://github.com/ReviewBugLocalization/
ReviewBugLocalization. Note that the predicate negatives
such as “aren’t”, “isn’t”, “can’t” are also appeared in this
list, which are removed.

• Stemming: The words are transformed to their basic forms
(i.e., stems). For example, “running” is changed to “run”, and
“bugs” is changed to “bug”.

• Lemmatization: It is the process of grouping together the
inflected forms of a word so that they can be analyzed as a
single item, identified by the word’s lemma. Lemmatization is
closely related to stemming. The difference is that a stemmer
operates on a single word without knowledge of the context,
and therefore cannot discriminate between words which have
different meanings depending on part of speech. For example,
a word “better” can be transformed to “good” when we
use lemmatization. But for stemming, it cannot conduct the
transformation.

4. http://www.nltk.org
5. http://textblob.readthedocs.org/en/dev/
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Fig. 4: Overall framework of Where2Change for user reviews in mobile apps

• Spelling correction: By using the spell check tool-
PYENCHANT library, the misspelled words appearing in
user feedback are corrected.

• Contractions expansion: We extend the possible contrac-
tions of English words in user feedback. For example, the
abbreviated form “It’s” becomes “It is”.

• Nouns and verbs filtering: We adopt a part of speech (POS)
tagging classification to identify the nouns and verbs from
user feedback and issue reports. Only these words are con-
sidered to compute the following textual similarity because
they are the most representative words in the documents.

• Non-English characters filtering: We find that the ASCII
codes of the non-English characters are out of the range of
65-90 and 97-122. Therefore, we utilize regular expression
to filter the non-English characters existing in each word by
matching the range of the ASCII codes.

As a result, the process returns bag-of-words for user feedback.
We use them as the input of the following steps.

We find that there are three clustering algorithms frequently
utilized in the research articles6 published in Software Engineering
(SE) field at the last 5 years. These algorithms include Latent
Dirichlet Allocation (LDA), K-means, and Density-Based Spatial
Clustering of Applications with Noise (DBSCAN). Moreover, we
also consider to verify the performance of the three extended
versions of LDA: SentenceLDA, CopulaLDA, and HDP. By com-
paring their performance on our data set, the result shows that
HDP performs the best among the above-mentioned clustering
algorithms. Therefore, we select HDP to cluster the user feedback.
With regard to comparing process and result, please refer to
Section 5.

When the process of topic modelling is finished, each cluster
is treated as a query to search the classes that need to be changed.

6. We only consider the research papers published in ICSE, FSE, ASE, TSE,
TOSEM, and EMSE

3.4 Building a link between feedback clusters and is-
sue reports

Most of users have not enough knowledge to understand program
development and bug fixing, thus user feedback usually includes
inadequate information related to change requests. Therefore, di-
rectly computing the textual similarity between the user feedback
and classes can lead to low similarity scores so that it is possible
to result in the result like CHANGEADVISOR that some change
request-related reviews cannot match the correct classes because
the similarity score is lower than the threshold. To avoid this
situation, we use issue reports that provide the detailed information
of bugs and feature requests as a bridge to build a link between
feedback clusters and classes to be changed so that we can use
issue reports to enrich user feedback.

Before enriching feedback clusters via issue reports, it is
necessary to refine these clusters because the clustering results via
algorithms are still far away from the manual classification results
(See Section 5). Note that we do not use the manual classification
results to replace the automated clustering results due to the fol-
lowing two reasons. First, Where2Change is a semi-automated
change request localization tool which is developed to reduce
the developers’ workload. Thus, we only conduct the moderate
manual refinement process for feedback clusters; second, our
purpose is to build the accurate links between feedback clusters
and issue reports rather than directly compute the similarity scores
between feedback clusters and source code. By referring to the
manual classification results, we conduct the refinement process
as the following two steps:

• We remove the feedback entries which are very different from
others in the same cluster.

• We add the appropriate feedback entries which have the
stronger relations with the most of feedback entries in a
cluster.

We adopt a method named “full voting” to complete the
aforementioned steps. In detail, we convoke the persons who
have the qualification to decide which feedback entries should be
removed/added. We grant seven persons the right to vote. These
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Fig. 5: Refinement process for the clustering results

persons include the first two authors of our article, the developers
who are invited to manually classify user feedback, and the expert
who are responsible for verifying the classification results. When
all seven persons come to an agreement, we conduct the refinement
process by removing/adding the corresponding feedback entries.
Fig. 5 shows the refinement process for the clustering results via
HDP. The small circles present the user feedback entries which
are clustered into the three difference groups with the difference
colors. Note that A1 is far from the original cluster marked by the
black color and close to another cluster marked by the blue color.
We have the same finding for B1. When all seven persons also
vote for removing them from their original clusters and adding
them into other clusters, the refinement process is conducted.
For example, the user feedback entry “In other words, you cant
reverse sort or manually configure it either” describes the different
problem with other feedback entries such as “It doesn’t show
up on my phone except to say it’s been successfully installed”
in the same cluster. The former indicates a sorting problem of
AntennaPod while the latter entries describe the problems of
AntennaPod on installation and downloading. All seven persons
also agree to remove the former entry and add it into a new cluster.
In the new cluster, this entry describes the similar problem with
other ones such as “No sorting You aren’t able to sort podcast
subscriptions or podcast episodes”. These entries also describe
the sorting problem of AntennaPod.

After conducting the refinement process, we build the links
between the user feedback clusters and the appropriate issue
reports to produce the enriched versions of feedback clusters in
order to improve the accuracy of change request localization.

We compute the textual similarity between a cluster of user
feedback and an issue report by utilizing Word2Vec [10] which can
help to locate more source code classes related to change requests
for more user feedback than other similarity metrics such as Dice
coefficient [25], tf·idf [26], and Microsoft Concept Graph (MCG)
[27]. With regard to comparing process and result, please refer
to Section 5. Word2Vec aims to map a word into semantic word

embedding. It takes a large corpus of text as its input and produces
a vector space, with each unique word in the corpus being assigned
a corresponding vector in the space. We utilize Word2Vec with the
skip-gram model [28]. In k dimensions (k=100 in our work), each
word can be represented as the vector defined as follows:

−−−−−−−→
vec(word) = 〈v1, v2, . . . , vk〉 (1)

Thus, a document can then be mapped into the space by:

Cs = θT ·HW (2)

Here, θT is the vector of the TF-IDF weights of the words in
the document computed by the following formula:

TF − IDF weight = tft,d × log
N

nt
, (3)

where tft,d is a frequency of term t in the document d. log N
nt

presents the inverse document frequency which is a measure of
how much information the word provides. N is the total number
of documents while nt is the number of documents which contain
term t.

HW is the word vector matrix. In this matrix, the i-th line
represents the word vector of the word i. The matrix is constructed
by concatenating the word vectors of all words in the document.
Via matrix multiplication, a document is transferred to a vector of
semantic categories, denoted as Cs.

When we get the word vectors of the cluster of feedback
clusteri and the issue report IRj , we use the cosine similarity
to compute their semantic similarity, which is defined by:

CosineSim(clusteri, IRj) =

∑n
k=1 ωkiωkj√∑n

k=1 ω
2
ki ×

√∑n
k=1 ω

2
kj

,

(4)

where ωki and ωkj indicate the weight of kth word in clusteri
and IRj , respectively. They are computed by formula (2).

When the similarity score is more than the threshold, we treat
the issue report as the feedback-related issue report. Thus, the link
between the cluster of user feedback and the issue report is built.
Note that the feedback cluster may link to multiple issue reports.

After we get the links between the feedback cluster and the
issue reports, we use the issue reports to enrich the feedback
cluster. As a result, we can get the multiple enriched versions
of this cluster of feedback. For example, if we use the issue
report IR1 to enrich the feedback cluster clusteri, we can get
the enriched feedback cluster Eci1 which is one of the multiple
enriched versions.

3.5 Change request localization using enriched cluster
of user feedback

Before conducting change request localization through the en-
riched feedback clusters, we start a process of pre-processing
to remove noise data contained in source code. We implement
the same steps of pre-processing with user feedback and issue
reports. More precisely, we 1) separate composed identifiers using
the camel case splitting which separates words on underscores,
capital letters, and numerical digits base, 2) return capital letters
to lower case, and 3) remove special characters.
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Classical cosine similarity does not consider the influence
of different words’ weights on the performance when we use
it to implement change request localization. Undoubtedly, some
important words that may have low weights7 so that the accuracy
of change request localization is reduced.

In order to resolve this problem, we propose a weight
selection-based cosine similarity to select the best weight value
for each word in enriched cluster of user feedback and classes to
be changed so that we can obtain the best performance of change
localization. We present the new similarity metric in Algorithm 1.

Algorithm 1 Weight selection-based cosine similarity

Input: Ec: A set of enriched clusters of user feedback; C: A set
of potential classes that should be changed; Ir: A set of issue
reports; Winitji

: initial weight of word j in Ci; stepsize:
used to adjust the weight of words; K: the number of classes
we will recommend.

Output: A ranked list of top-K classes to be changed.
1: Wlastji

=Winitji
; //Initialization

2: While iteration times iter < 100 Do:
3: Wcurrentji

=Wlastji
;

4: For each issue report Iri in Ir:
5: CCi=correct classes to be changed (Ground Truth List);
6: Compute cosine similarity scores between Iri and all

classes using Wcurrentji
;

7: For Ci is ranked at top-K in the output list:
8: Wcurrenti is the weight of each word in Ci;
9: If Ci is in CCi: Do nothing;

10: Else the weight of all common words=Wcurrenti -
stepsize;

11: End For
12: For Ci is ranked at from K+1 to the maximal number of

classes:
13: Wcurrenti is the weight of each word in Ci.
14: If Ci is in CCi:
15: the weight of all common

words=Wcurrenti+stepsize;
16: Else Do nothing;
17: End For
18: End For;
19: Wlastji

=Wcurrentji
;

20: If the MRRcurrent > MRRprevious:
21: Wbestji

=Wcurrentji
;

22: End While and get Wbestji
23: Compute cosine similarity between Eci and all classes using

Wbestji
.

24: return A ranked list of top-K classes to be changed;

Since each enriched cluster of user feedback is generated
by linking them with issue reports, we first compute the textual
similarity scores between issue reports linked to user feedback
and source code classes to decide the best weights of words when
the number of iteration times achieves 1008. At each iteration,
when a top-K class Ci in the output list is not a correct class
to be changed, we reduce the weight of all common words by

7. Due to the fewer occurrence, some important words may have lower
weight than other unimportant words.

8. We find that the results are not almost changed when the number of
iteration times is more than 100, thus we set the number of iteration times is
100.

subtracting a stepsize (i.e., 0.05). In the other case, if Ci ranked
at behind top-K (i.e., ranked at from top K+1 to the maximal
number) is a correct class, we add the weight of all common words
by adding a stepsize. This process terminates till the MRR
score achieves the highest. MRR is a frequently-used evaluation
function in Information Retrieval-based Change Request (or Fault)
Localization. We show the detailed definition and explanation at
Section 5.1.

We use the best weight of each word to compute cosine
similarity between each feedback cluster and source code classes
in order to achieve the optimum performance of change request
localization so that it can ensure that more feedback clusters can
be linked to the correct classes that should be changed.

For each enriched version9 (i.e.,Ec11,...,Ec1i) of the feedback
cluster-cluster1, we can get the ranked list of classes to be
changed. For all enriched versions of the feedback cluster, we
get the final result as follows:

CL(cluster1) = CL(Ec11) ∩ CL(Ec12) ∩ ... ∩ CL(Ec1i),
(5)

where CL(cluster1) represents the final list of classes to be
changed for the cluster of user feedback cluster1. CL(Ec1i)
stands for the list of ranked classes to be changed for an enriched
version Ec1i of the feedback cluster. Note that Ec1i is enriched
by the issue report IRi.

To fairly compare the performance of our approach and
CHANGEADVISOR, for each class in the final ranking list of a
feedback cluster (e.g., cluster1), we choose the highest similarity
score between it and all enriched versions as the final ranking
score.

4 RESEARCH QUESTIONS

We evaluate the proposed change localization approach from four
aspects. First, we examine whether we have selected the best
approach for each step (i.e., user feedback clustering, feedback
cluster enrichment, and class ranking) in our approach using our
data set (i.e., RQ1). Second, we evaluate whether the proposed
approach performs better than the previous studies including
CHANGEADVISOR, BLUiR, and BLIA (i.e., RQ2). Next, we
analyze the importance of issue reports in our approach (i.e.,
RQ3). Finally, we explain why we select user feedback as queries
rather than issue reports to conduct change request localization
(i.e., RQ4).

We answer RQ1 and RQ2 in Section 5, and answer RQ3 and
RQ4 in Section 6.
• RQ1: For each step in our approach, do we select the best

method among alternative ones?
Motivation: 1) In the process of user feedback clustering,
we implement six clustering algorithms (i.e., LDA, sen-
tenceLDA, CopulaLDA, HDP, K-means, and DBSCAN) to
group them. Thus, we need to find which one performs the
best and use it to generate the clusters as the queries to
search the classes that need to be changed; 2) In the process
of user feedback enrichment, we introduce three similarity
metrics including Dice coefficient, tf·idf, and MCG to build
a link between a cluster of feedback and the issue reports by

9. Each enriched version is produced by a cluster of user feedback and each
issue report which links to the feedback cluster.
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replacing Word2Vec. Therefore, we need to evaluate whether
Word2Vec performs the best when we use it to enrich user
feedback clusters; 3) As a key part of Where2Change,
we propose the new similarity function named by weight
selection-based cosine similarity to measure the similarity
between an enriched user feedback cluster and the classes
to be changed. This novel similarity function considers the
influence of different weights of terms on the performance of
change localization so that the best weight values are used to
measure the similarity. It is necessary to verify whether the
newly proposed similarity metric performs better than classic
cosine similarity.
Method: For Motivation 1), we use the evaluation metrics
Homogeneity, Completeness, and V score [29] to com-
pare the results of clustering algorithms with gold standard
which consists of the clusters generated by the experienced
developers manually. Then we select the best one to cluster
the user feedback. For Motivation 2) and 3), we invite
experienced developers to manually build the ground truth
which reports the actual links between user feedback clusters
and the source code, then we can use these classes contained
in the ground truth to compare the Top − N , Precision,
Recall, MRR, MAP values for each project in our data
sets. According to the results of change localization, we can
know which metric is more suitable to find correct issue
reports for enriching user feedback clusters and whether the
weight selection-based cosine similarity performs better than
classic cosine similarity.

• RQ2: Does our approach outperforms others in terms of
the accuracy of change localization?
Motivation: 1) By using issue reports to enrich user feedback
contained in the clusters and utilizing the proposed weight
selection-based cosine similarity function, we successfully
implement Where2Change to locate classes to be changed
according to user reviews. We should evaluate whether these
new characteristics in Where2Change can lead to higher
accuracy of change localization than CHANGEADVISOR. 2)
In the literature [8], Palomba et al. compare the performance
of CHANGEADVISOR and BLUiR which is a structured
IR-based fault localization approach. Youm et al. proposed
BLIA which performs better than BLUiR. Therefore, it is
necessary to evaluate whether our approach performs better
than BLUiR and BLIA.
Method: We can answer this research question by comparing
the Top − N , Precision, Recall, MRR, MAP values
between our approach and the previous studies that include
CHANGEADVISOR, BLUiR, and BLIA for each project in
our data sets.

• RQ3: Does the incorporation of issue reports help to boost
the effectiveness of Where2Change?
Motivation: By using Where2Change, we can locate more
source code classes that should be changed for more user
feedback clusters. Researchers may be interested in the root
causes. Since we adopt issue reports to enrich user feedback
contained in the clusters, it is necessary to analyze how issue
reports can help to improve the performance of the proposed
approach.
Method: We analyze the compositions of issue reports in
order to show how these compositions can help to improve
the performance of change request localization. In order to
demonstrate the importance of issue reports in our approach,

TABLE 2: The scale of our data set

Project # RE # RP # CS # FB Period
AntennaPod 2,089 114 350 125 21/09/12-21/12/16
Automattic 1,404 95 66 225 18/06/13-29/11/16
Cgeo 4,480 1,488 790 414 18/07/11-05/02/17
Chrislacy 1,477 153 152 200 16/02/13-27/06/14
K-9 Mail 4,480 58 529 1,109 18/03/15-05/02/17
OneBusAway 2,107 271 293 306 14/08/12-25/01/17
Twidere 2,120 117 610 486 07/07/14-05/02/17
UweTrottmann 4,480 114 335 369 03/07/11-26/01/17
WhisperSystems 4,480 209 702 346 22/12/11-06/02/17
Wordpress 4,480 653 612 1,339 07/03/13-08/02/17
All 31,597 3,272 4,439 4,919

we compare the performance of change request localization
using our approach that utilizes the enriched user feedback
clusters via issue reports and the performance of the approach
that only adopts original user feedback.

• RQ4: Why do we adopt user feedback rather than issue
reports as queries to conduct change localization?
Motivation: In the previous studies, researchers tend to
utilize issue reports as queries to perform change request
localization. Even though CHANGEADVISOR also used user
feedback to implement the same goal, it does not give an
answer for this question. Thus, in our work, we should
investigate the reason by deeply analyzing the different
characteristics of user feedback and issue reports for mobile
apps.
Method: We analyze the different characteristics of user
feedback and issue reports, and investigate their generation
frequency in each mobile app. According to the result, we can
explain why we adopt user feedback as queries for locating
classes related to change requests.

5 EXPERIMENT

5.1 Experiment setup
We collect the user views, the issue reports, and the classes from
10 open-source mobile app projects in GitHub. Note that we
only consider the closed (i.e., fixed) issue reports because their
descriptions are confirmed and effective. We first download top-
100 popular open source mobile apps according to the stars’
ranking list in GitHub as our candidate projects, and then we
filter out the projects which have less than 50 issue reports and
1,400 reviews because a small number of issue reports and reviews
are not sufficient to evaluate the performance of our approach
and other methods. Finally, we select top-10 projects from the
remaining mobile apps. The scale of our data set is shown in
Table 2. In the first row, RE, RP, CS, and FB stand for user
reviews, issue reports, classes, and user feedback, respectively.
For Period, the format is day/month/year where “year” indicates
the time line in the CENTURY 21.

In our data sets, we have two projects (i.e., K-9 Mail and
WordPress) that have been used to evaluate CHANGEADVISOR.
We do not collect the data from other projects adopted by
CHANGEADVISOR because they do not meet our selection cri-
teria (e.g., small number of issue reports). The experimental
result shows that our approach outperforms CHANGEADVISOR
in both projects that have been used in the evaluation of
CHANGEADVISOR and new projects.

In order to fairly compare our approach-Where2Change and
the baselines that include CHANGEADVISOR [8], BLUiR [5], and
BLIA [6], we adopt the same user feedback in the categories
Problem Discovery and Feature Request to implement them.
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After we extracted user feedback from user reviews, we cluster
the user feedback as queries to implement the baselines. Specially
for CHANGEADVISOR, we do not adopt the default value defined
in the online appendix [30]. Instead, we adjust the threshold value
from 0.1 to 1 in order to compare the performance of our approach
and the best performance of CHANGEADVISOR on our data set.

To compare Where2Change and baselines, we should build
a benchmark data set (i.e., ground truth). Since Palomba et al. do
not open the ground truth at any forum10, it is difficult to compare
the results. Therefore, it is necessary to build a high-quality ground
truth which can be used to evaluate the performance of our
approach and baselines. Fortunately, we find the following way
to create the ground truth:

Building Ground Truth: We also adopt the manual veri-
fication method which is the same as the approach used in
CHANGEADVISOR. In detail, we invite four developers from
Zhuhai Duozhi Science and Technology Company Limited to
help us build the links between user feedback clusters and source
code classes. These developers have more than 10-years software
programming and testing experience. In addition, they are familiar
with the mobile apps’ software maintenance and testing process.
We pay 100 RMB (equal to 14.5 USD) to each developer per
working day. They rely on the summaries produced by SURF to
understand the user feedback and build the links. In addition, to
avoid the possible omission for the links, they also refer to the
contents of issue reports and commits which can help them under-
stand which issues were mentioned and which source code classes
were changed by developers in the historical software maintenance
process. After one month (22 working days), they had finished
the task. Then we invite the senior software test specialist from
Alibaba Company to verify whether these source code classes are
linked to the given user feedback clusters accurately. He has more
than 15-years software testing experience at Baidu and Alibaba.
He has the right to modify the errors by discussing with the above-
mentioned four developers. Finally, we get the ground truth for
these projects. Table 3 shows the scale of the ground truth. In
this table, CSlink shows the number of classes linked to the user
feedback clusters while CSoverall represents the total number of
classes in each app of our data set. CLHDP indicates the number
of user feedback clusters in each app. AvgCSlink is defined by
CSlink

CLHDP
, which stands for the average number of linked classes

per cluster. RAvgCSlink
shows the ratio of the average number

of linked classes per cluster to the overall number of classes in
each app, which is defined by AvgCSlink

CSoverall
. We note that the ratio

is less than 5% for most of apps except Chrislacy and WordPress
in which the ratio is less than 8%. This fact indicates that manual
change request localization is a difficult work because developers
should select the small number of ones linked to user feedback
from plenty of classes. Obviously, it is a time-consuming task,
fortunately, our approach can automate this process so that it
becomes easy for developers.

In order to guarantee the quality of the ground truth, we
invite the top-10 active developers who posted the greatest number
of comments in each app of our data set to verify the correct
links between user feedback clusters and source code classes. We
define two metrics that include hitting rate and missing rate to
evaluate the quality. The hitting rate indicates how many classes
are correctly linked to user feedback clusters in the ground truth,

10. These forums include journal articles, conference/workshop papers,
books, blogs, emails, etc.

which is defined by the ratio of the number of correct links to
the overall number of links in the ground truth; and the missing
rate presents how many links between classes and user feedback
clusters are missed, which is defined by the ratio of the number
of correct links missed by the developers when they build the
ground truth to the overall number of classes that should be
correctly linked to the user feedback clusters. As a result, only
one developer from Automattic gives a positive response and are
willing to help us verify whether all 34 classes are correctly linked
to 12 user feedback clusters produced by HDP in the ground truth.
Moreover, he also help to check whether the ground truth may
miss some links in the remaining 32 (66-34=32) classes which are
not linked to any clusters by the developers. In the letter of reply,
he wrote “I have very interested in your current work so that I am
willing to help you check these links in Automattic. I want to try
Where2Change as soon as possible.” In the end, he found that
33 classes are correct linked to the user feedback clusters (i.e.,
the hitting rate=33/34=97.06%). In the remaining 32 classes, he
found that there are 2 classes that should be linked to the clusters
(i.e., the missing rate=2/(33+2)=5.71%). Overall, the result is
acceptable and the low missing rate only has the slight influence
for the results produced by our approach. Therefore, we confirm
the developers’ capacity for building the ground truth. When we
invite the developer from Automattic to continue checking the
links in other apps, he told us he is very busy and he is not
familiar with other apps. Therefore, it may be a threat that we
are not sure what the hitting rate and the missing rate are in other
apps. However, because of the case of Automattic which has the
similar characteristics with other mobile apps [1], we believe that
the threat is not big.

TABLE 3: Data scale of ground truth

Project CSlink CSoverall CLHDP AvgCSlink RAvgCSlink
AntennaPod 140 350 36 3.9 1.1%
Automattic 34 66 12 2.8 4.2%

Cgeo 726 790 20 36.3 4.6%
Chrislacy 88 152 8 11.0 7.2%
K-9 Mail 71 529 8 8.9 1.7%

OneBusAway 235 293 34 6.9 2.4%
Twidere 264 610 30 8.8 1.4%

UweTrottmann 120 335 20 6.0 1.8%
WhisperSystems 185 702 16 11.6 1.7%

WordPress 577 612 12 48.1 7.9%

Pre-training Word2Vec: Mikolov et al. [10] point out that
Word2Vec should be trained on a large-scale data corpus. There-
fore, we cannot utilize our data set to train Word2Vec due to its
relatively small data scale (only 31,597 user reviews and 3,272
issue reports). In order to guarantee Word2Vec worked well, we
collect a 12.2G data corpus from Wikipedia 11 to train Word2Vec.
This large-scale data corpus includes abundant words and their
sematic forms. Then we use pre-defined Word2Vec to implement
cosine similarity measure which is used to build the links between
user feedback clusters and issue reports.

We evaluate the performance of our approach and baselines by
using the following metrics:

• Top-N: this metric counts the number of feedback clusters in
which at least one source code class related to change request
was found and ranked in top-N (N=1, 3, 5). For examples,
given a cluster of user feedback, if the top-N ranking results
contain at least one class in the ground truth, we regard that

11. https://dumps.wikimedia.org/enwiki/latest/
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the bug or the feature request has be localized successfully in
the top-N rank.

• Precision: the metric is defined by TP
TP+FP . TP (i.e., True

Positive instances) indicates the number of top-5 instances
(e.g., classes to be changed) recommended correctly, FP
(i.e., False Positive instances) represents the number of top-5
instances recommended incorrectly.

• Recall: the metric is defined by TP
TP+FN . FN (i.e., False

Negative instances) means the number of correct instances
that are not recommended at top-5 ranking list by the ap-
proach.

• Mean Reciprocal Rank (MRR): this metric is defined as the
multiplicative inverse of the rank of first correctly returned
class within the top-5 results. Therefore, MRR averages such
measures for all queries in the dataset, i.e., 1

|Q|
∑|Q|

i=1
1

Ranki
.

Here, Ranki is the rank of first correctly returned class
within the top-5 results. |Q| is the total number of queries
(i.e., clusters of user feedback). The higher the MRR value
is, the better the performance of change localization is.

• Mean Average Precision (MAP): this metric is different
with MRR because it considers all ranked classes rather
than the first correct class for each query. MAP is the mean
of the average precision values for all queries. The average
precision of a single query q is computed as AvgP (q) =∑M

i=1
P (j)×rel(j)
Npositive

. Here, j is the rank in the list of returned
top-5 results; M is the total number of retrieved classes;
rel(j) is a binary indicator to verify whether the ith class
is a correct object (i.e., the value is 1) or not (i.e., the value is
0); Npositive presents the number of positive instances (i.e.,
TP ); and P (j) is the precision at the given cut-off rank j,
which is defined as Npositive in top j ranks

j . Then, MAP is

defined as
∑|Q|

k=1 AvgP (qk)

|Q| where |Q| is the total number of
queries.

Among these evaluation measures, Top-N verifies whether an
approach can successfully locate the source code classes related
to change requests for more user feedback clusters while Recall
verifies whether an approach can successfully locate more correct
classes for the user feedback clusters. Precision, MRR, and MAP
also mention the accuracy at top-5 ranking results. In our work, we
care more about the Top-N and Recall values because the results
are related to our motivation to verify whether our approach can
locate more source code classes related to change request for more
user feedback clusters than CHANGEADVISOR.

Parameter adjusting: In order to avoid adjusting excessive
parameters that may increase additional computing cost, we de-
sign our approach with less parameters. In the first phase, we
adopt HDP which shows the best clustering performance (See
Section 5.2) to group user feedback. In HDP, we do not mention
(or set) the number of topics in advance because it can group
the elements based on their probability distribution. Therefore, we
need not to adjust the number of topics. In fact, in our algorithm,
we only tune one parameter, i.e., θfeedback which is a threshold
value to decide whether the issue reports should be selected to
link (or enrich) the user feedback. We adjust it in the light of the
performance (i.e., MRR) of change request localization. We set
the value to 0.4 for achieving the highest arithmetic mean of MRR
scores for all projects in our data set.

Our experiment includes two parts: pilot study (See Tables 6-
12) and real experiment (See Table 21). In pilot study, we
verify whether issue reports can link user feedback and whether

enriched user feedback can improve the performance of change
request localization. Thus, we do not group the data according
to the time frame. In real experiment, we focus on implementing
Where2Change in the real development environment. We utilize
the historical issue reports to enrich the newly submitted user
feedback in Where2Change. In the following sections, we show
the experimental results.

5.2 Answer to RQ1: best decision
In the process of user feedback clustering, we select the following
six popular clustering algorithms to cluster the user feedback:
• LDA: It is a type of topic model that uses groups of topic

words to explain sets of documents. In LDA, each document
in the corpus collection is presented as a mixture of latent
topics, and each topic is represented by a series of words and
their occurrence probability.

• SentenceLDA: It is an extension of LDA for incorporating
part of text structure in the topic model. LDA and Sen-
tenceLDA differ in that the latter assumes a very strong de-
pendence of the latent topics between the words of sentences,
whereas the former assumes independence between the words
of documents in general. In SentenceLDA, the text spans can
vary from paragraphs to sentences and phrases depending
on the different tasks’ purposes. Therefore it can control the
number of topics according to the different text spans in the
documents.

• CopulaLDA: It extends LDA to incorporate the topical
dependencies within sentences and noun-phrases using cop-
ulas which include a family of distribution functions which
can offer a flexible way to model the joint probability of
random variables using only their marginals. Using copulas
can result in decoupling the marginal distributions by the
underlying dependency so that it can help to improve the
performance of LDA by integrating simple text structure in
the topic model. Due to copulas that result in more flexibility
than assigning the same topic in each term of the sentence
which is illustrated in the performance difference between
CopulaLDA and SentenceLDA. The former is more flexible
and performs better.

• HDP: It is an extension of LDA. Different from LDA, HDP
does not need to confirm the number of topics before starting
a clustering process. It implements a nonparametric Bayesian
approach which iteratively groups documents based on a
probability distribution.

• K-means: As a classical clustering algorithm, it aims to
group the documents into k clusters in which each document
belongs to the cluster with the nearest mean.

• DBSCAN: It is a density-based clustering algorithm, which
groups the documents lied in high-density regions in the
vector space. Different from K-means, it does not require
a parameter to define the number of clusters before starting
a clustering process. Moreover, it can find irregular-shaped
clusters.

We implement the above-mentioned clustering algorithms and
apply them to our data set. Then, followed by the description at the
literature [29], we compare their clustering performance with gold
standard which consists of the clusters of user feedback generated
by the manual way. We first invite the developers who worked in
the appropriate app’s team to help us cluster the user feedback
via publicity mail addresses. However, no one is willing to do
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this work. We receive a developer’s response: “It looks like a very
complicated and time-consuming task, so I am afraid I cannot
complete it even though you can pay.” Therefore we adopt an
alternative solution. In detail, we invite the same four developers
who help us to create the ground truth (See Section 5.1). We also
pay 100 RMB (equal to 14.5 USD) to each developer per day.
After two weeks, they had clustered all selected user feedback.
Then we invite the senior software test specialist from Alibaba
Company to verify whether these user feedback entries were
clustered accurately. He has the right to modify the errors by
discussing with the above-mentioned four developers. Finally, the
clustering result is called “gold standard”.

For the evaluation process, we first use three external metrics
that include Homogeneity, Completeness, and V score [29] to
evaluate the algorithms’ performance. The metrics are introduced
as follows:
• Homogeneity, Completeness, and V score: Homogeneity is

the ratio of user feedback in a single cluster belonging to the
same cluster of gold standard. Completeness measures the ra-
tio of user feedback in a same cluster of gold standard which
are assigned to the same cluster produced by algorithms. The
lower bound is 0 and the upper bound is 1. V score is the
harmonic mean between Homogeneity and Completeness,
which is defined by 2× Homogeneity×Completeness

Homogeneity+Completeness .
Table 4 shows the best results of the different clustering

algorithms adopting the appropriate number of clusters shown in
Table 5. Note that all values keep one decimal place. For example,
the value of Homogeneity for DBSCAN in Automattic is 1.54e-
016, and we list its approximate value-0.0 in the table. The values
in the last line show the arithmetic means of all apps for each
algorithm. Since the arithmetic means consider the influence of
the different number of clusters to the performance of the different
clustering algorithms, we use it to evaluate which cluster algorithm
performs the best. Among the six clustering algorithms, HDP
and DBSCAN can automatically select the appropriate number
of clusters to group the user feedback. We find that HDP performs
better than DBSCAN. The values of Homogeneity and V score of
the former improve that of the latter by up to 10.9% and 5.9%, re-
spectively. For some projects such as Automattic, UweTrottmann,
and Wordpress, the values of Homogeneity are very close to 0
when DBSCAN is adopted. We find that this algorithm produces
only one cluster for each of the above-mentioned apps while HDP
produces relatively more number of clusters which result in better
clustering performance. By comparing the best performances of
other topic models that include LDA, SentenceLDA, CopulaLDA
when they select the appropriate numbers of clusters, HDP also
performs better than them. Specially, the values of Homogeneity,
Completeness, and V score of HDP improve that of LDA by up
to 11.9%, 7.3%, and 9.4%, which performs the lowest among all
clustering algorithms.

Based on the above analysis and the values in Table 4, we can
get a conclusion that HDP performs the best among six popular
clustering algorithms, we select it to group the user feedback.

Note that the arithmetic mean values of Homogeneity, Com-
pleteness, and V score are all less than 25%. This indicates that
for lots of user feedback, the results produced by the clustering
algorithms are different from manual classification results. For
example, the following two entries of user feedback “It doesn’t
show up on my phone except to say it’s been successfully installed”
(R1) and “In other words, you cant reverse sort order or manually
configure it either” (R2) for AntennaPod are grouped by HDP into

TABLE 5: The number of clusters when the clustering algorithms achieve the
best performance

Project The number of clusters
LDA SenLDA CopLDA HDP K-means DBSCAN

AntennaPod 6 16 10 36 24 10
Automattic 2 10 10 12 10 1

Cgeo 8 12 10 20 38 6
Chrislacy 16 6 14 8 14 15
K-9 mail 6 4 12 8 4 26

OneBusAway 4 16 16 34 16 14
Twidere 6 22 22 30 6 14

UweTrottmann 10 14 18 20 8 1
WhisperSystems 6 12 24 16 8 29

Wordpress 10 6 14 12 12 1

the same cluster while they belong to different groups in the gold
standard (i.e., produced by manual clustering). On the contrary, R1
and another entry of user feedback “Gpodder integration stopped
working long ago, and now episode auto download doesn’t work
anymore” (R3) are grouped by HDP into the same cluster in
the gold standard, however HDP does not group them together.
Thus, the results produced by the clustering algorithms are still
not optimal. The quality and style of user reviews vary greatly
[7], [24], [31], which makes automatic clustering of user feedback
a difficult problem. However, this finding does not influence our
conclusion on which clustering algorithm can produce the closest
result with the gold standard.

Although the clustering algorithms that we consider in this
work are not optimal, the use of HDP helps in improving the
accuracy of the main task that we investigate in this work, i.e.,
localization of change requests for app reviews.

In order to verify which metric is the best to build a link
between a cluster of user feedback and the issue reports, we first
conduct a pilot study described in Section 5.1. Specifically, we use
three metrics including Dice coefficient [25], tf·idf [26], and MCG
[27] to re-implement Where2Change by replacing Word2Vec.
Dice coefficient can be directly used to compute the similarity
between two documents, and other three metrics are introduced to
transfer the documents to different kinds of vectors so that they
can be input into cosine similarity measure [32] to compute the
similarity scores. We introduce them one by one as follows:
• Dice coefficient: Dice coefficient is a statistic used for

comparing the similarity of two samples, thus it can be used
to compute the similarity between a cluster of change-related
user feedback and an issue report. It is defined as follows:

Sim(clusteri, IRj) =
|Wordclusteri ∩WordIRj |

min(|Wordclusteri |, |WordIRj |)
,

(6)

where Wordclusteri is the set of words contained in the
cluster i, WordIRj

is the set of words contained in issue
report j, and the function min shown in the denominator
normalizes the similarity between the cluster of feedback and
the issue report via the number of words contained in the
shortest document containing the fewest words.

• tf·idf: tf·idf is a popular metric to represent documents
as vectors of words. The value for each word is its TF-
IDF weight which is computed by formula (3) shown in
Section 3.4. When we get all words’ TF-IDF weights, a
document can be transferred to a vector of the TF-IDF
weights. Then we can use the cosine similarity measure (i.e.,
formula (4)) to compute the textual similarity between the
cluster of feedback clusteri and the issue report IRj .
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TABLE 4: Homogeneity, Completeness, V score (x%) of different clustering algorithms

Project LDA SenLDA CopLDA HDP K-means DBSCAN
H% C% V% H% C% V% H% C% V% H% C% V% H% C% V% H% C% V%

AntennaPod 9.1 12.9 10.7 29.5 24.5 26.7 20.3 20.9 20.6 48.3 32.6 38.9 37.0 27.3 31.5 15.3 28.2 19.9
Automattic 2.9 8.5 4.3 15.8 13.9 14.8 13.6 12.5 13.1 15.3 16.1 15.7 14.8 13.2 14.0 0.0 100.0 0.0

Cgeo 5.3 6.9 5.9 10.0 8.4 9.1 7.4 6.8 7.1 13.7 10.6 12.0 23.9 14.2 17.8 2.9 7.5 4.1
Chrislacy 24.3 16.9 19.9 7.2 7.2 7.2 15.2 10.9 12.7 7.6 10.8 8.9 23.5 17.0 19.8 20.0 23.2 21.5
K-9 mail 2.3 3.1 2.6 1.5 2.2 1.8 3.7 3.3 3.5 2.8 3.1 2.9 1.1 2.1 1.4 4.5 10.0 6.2

OneBusAway 4.0 6.8 5.0 13.9 11.0 12.3 13.5 11.1 12.2 23.1 16.6 19.3 14.7 12.2 13.3 7.7 13.8 9.9
Twidere 4.9 5.8 5.3 14.2 10.3 11.9 15.2 11.4 13.0 17.9 13.9 15.7 4.1 6.1 5.0 4.5 9.8 6.1

UweTrottmann 7.5 7.7 7.6 12.7 10.1 11.3 13.0 10.1 11.3 15.5 12.3 13.7 6.6 7.0 6.8 0.0 100.0 0.0
WhisperSystems 6.0 7.5 6.6 11.1 9.8 10.4 22.3 16.5 18.9 13.7 12.4 13.0 8.7 9.5 9.1 15.4 20.0 17.4

Wordpress 2.6 3.1 2.8 1.7 2.3 1.9 4.1 3.9 3.9 2.8 3.3 3.1 3.2 3.4 3.3 0.0 100.0 0.0
Arithmetic mean 9.3 8.8 8.8 14.0 11.5 12.6 13.6 11.0 12.1 21.2 16.1 18.2 19.3 14.1 16.2 10.3 18.3 12.3

• MCG: MCG aims to map text format entities into semantic
concept categories with some probabilities. It can also over-
come the limitation in traditional token-based models such
as tf·idf that only compares lexical words in the document.
This metric captures the semantics of words by mapping
words to their concept categories. By using MCG, a word
can be represented as its semantic concept categories with
probabilities. For example, consider the word “Microsoft”,
which can be categorized into a large number of concepts
such as “company”, “developer”, and “software”. Therefore,
a word can be transferred to a concept vector so that a
document can then be mapped into the space by:

Cd = θT ·HM , (7)

where θT is the vector of the TF-IDF weights of the words
in the document computed by formula (2) and HM is the
concept matrix. A concept matrix is constructed by concate-
nating the concept vectors of all words in the document. Via
matrix multiplication, a document is transferred to a vector
of concept categories, denoted as Cd. In fact, the document
is mapped to the concept space by assigning a probability to
each concept category to which the document belongs. This
probability is estimated by summing up the corresponding
probabilities of all the words contained in the document.
After we get the concept vectors of the cluster of feedback
clusteri and the issue report IRj , we can also use the cosine
similarity defined by formula (4) to compute their concept
similarity.

According to these three similar metrics, our
approach produces three values: Where2ChangeDice,
Where2Changetf ·idf , and Where2ChangeMCG. We
evaluate the performance of change localization in order to find
the best metric. Table 6 shows the values of Top-N (N=1, 3,
5) while Table 7 shows the values of Precision, Recall, MRR,
and MAP for Where2Change and their varietas. Note that
the results are produced by evaluating the feedback clusters
which can link to issue reports. We do not consider the clusters
unmatched to issue reports, because in this section focuses on the
performance of our approach using the four similarity metrics to
build the links between feedback clusters and issue reports.

In Table 6, the arithmetic mean Top-N (N=1, 3, 5) val-
ues of Where2Change are larger than that of other vari-
etas . Where2ChangeMCG is the second-best due to their
arithmetic mean Top-N values which are close to the val-
ues of Where2Change. In Table 7, for the arithmetic
mean of recall values, Where2Change is the best while

Where2ChangeMCG is the second-best due to the slight dif-
ference (57.58%-54.66%=2.92%); for the arithmetic mean of
MRR and MAP values, Where2ChangeMCG is the best but
the differences with other metrics are not obvious. For Preci-
sion, Where2Changetf ·idf is the best but the differences with
Where2Change and Where2ChangeMCG are less than 9%.

We analyze the possible reasons for the evaluation results.
Since Word2V ec and MCG also preserve terms’ semantic and
syntactic relationships [10], [27], the feedback clusters can link
to more relevant issue reports. More detailed descriptions about
software faults and feature requests in these issue reports result in
that a greater number of change requests appearing in feedback
clusters are successfully located. Therefore, the Top-N values of
Where2Change and Where2ChangeMCG are much larger
than that of Where2ChangeDice and Where2Changetf i̇df

which do not consider the terms’ semantic concepts. The preci-
sion values of Where2ChangeDice and Where2Changetf i̇df

are slightly larger than that of Where2ChangeWord2V ec and
Where2ChangeMCG. The result reveals that our approach
using tf · idf and Dice can recommend more correct classes
in top-5 results than other metrics. This fact indicates that the
terms cannot always match to other terms with the same or similar
semantic concepts. In other words, some terms may match to
the wrong terms which have the different meaning with them.
This reason results from the fact that the precision values of our
approach using Word2V ec and MCG is not higher than that
using tf i̇df and Dice. However, according to our motivation
described in Section 2.2, we expect that the new change request
localization approach can locate more source code classes related
to change requests for more user feedback clusters. Much larger
Top-N and recall values demonstrate that Word2V ec and MCG
are appropriate candidate metrics to implement our goal.

For each app in our data set, we find that not all issue reports
are linked to the clusters of user feedback. Table 8 shows how
many issue reports can be actually linked to feedback clusters
when we use the different metrics. The data on last column shows
the total number of issue reports in our data set shown in Table 2.
In this table, we note that the numbers of issue reports linked to
the feedback clusters usingWord2V ec andMCG are larger than
that using Dice and tf · idf . Because the former metrics consider
the semantic information of issue reports and user feedback, a
greater number of issue reports are linked to the clusters of user
feedback. In addition, we find that the number of issue reports
linked to feedback clusters using Word2V ec is more than that
using MCG. This finding explains that why our approach using
Word2V ec can successfully locate a larger number of clusters of
user feedback than that using MCG (See Table 6).
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TABLE 6: Top-N (T1, T3, T5) values comparison using different similarity metrics for the feedback clusters linked to issue reports

Project Where2ChangeDice Where2Changetf ·idf Where2ChangeMCG Where2Change
T1 T3 T5 T1 T3 T5 T1 T3 T5 T1 T3 T5

AntennaPod 18 31 32 11 27 30 23 32 32 29 35 35
Automattic 3 5 7 4 7 9 10 10 10 12 12 12

Cgeo 20 20 20 20 20 20 20 20 20 20 20 20
Chrislacy 2 4 4 4 7 7 6 8 8 7 7 7
K-9 Mail 0 2 3 1 3 5 3 5 6 5 6 6

OneBusAway 32 32 32 29 29 29 31 31 31 33 33 33
Twidere 19 23 25 20 24 26 27 30 30 25 28 28

UweTrottmann 11 18 19 10 25 26 15 28 29 21 28 28
WhisperSystems 14 15 15 9 14 14 13 15 15 15 16 16

Wordpress 9 9 9 12 12 12 11 11 12 12 12 12
Arithmetic mean 16.6 20.8 21.6 14.8 21.2 22.3 19.8 24.0 24.2 22.2 24.8 24.8

TABLE 7: Precision (P), Recall (R), MRR (MR), and MAP (MA) values (%) comparison using different similarity metrics for the feedback clusters linked to
issue reports

Project Where2ChangeDice Where2Changetf ·idf Where2ChangeMCG Where2Change
P R MR MA P R MR MA P R MR MA P R MR MA

AntennaPod 55.91 47.28 22.82 61.09 58.73 33.64 21.94 59.12 51.43 65.46 23.20 61.14 50.99 69.99 21.45 57.50
Automattic 54.17 48.15 20.47 63.82 54.84 62.97 30.05 75.45 45.00 66.67 30.16 73.12 42.22 70.38 31.72 76.03

Cgeo 84.76 26.89 40.82 92.09 90.91 13.60 41.89 93.92 84.98 32.48 40.70 91.93 85.00 35.96 39.62 90.05
Chrislacy 68.75 13.93 29.25 75.47 67.50 34.18 28.01 71.84 81.09 75.95 30.46 75.01 75.00 83.55 31.68 76.46
K-9 Mail 22.58 9.86 4.59 18.18 33.33 9.86 10.62 35.44 37.68 36.63 7.42 25.04 36.67 46.48 10.65 34.48

OneBusAway 75.36 52.53 42.92 96.14 90.28 32.83 44.60 99.05 68.25 65.16 42.38 94.96 67.86 67.18 42.39 95.01
Twidere 34.29 18.54 25.46 66.83 41.96 18.15 23.35 61.97 34.78 27.80 29.63 74.37 37.14 30.12 29.91 74.04

UweTrottmann 52.00 39.01 20.45 55.84 47.31 44.01 18.37 51.09 48.30 71.00 18.43 51.32 46.36 70.00 16.92 48.37
WhisperSystems 75.61 33.52 33.20 81.07 73.02 24.87 33.55 82.30 63.64 56.76 31.52 77.66 62.36 60.00 32.17 78.73

Wordpress 87.64 17.07 41.73 92.95 92.77 16.85 43.79 96.93 78.32 38.74 43.06 96.17 76.33 40.92 41.83 94.13
Arithmetic mean 60.68 35.25 29.38 72.41 65.18 29.96 29.75 72.86 57.34 54.66 30.18 73.37 56.61 57.58 29.84 72.63

TABLE 8: Number of issue reports linked to feedback clusters when using
different metrics

Project # RP linked to feedback clusters # RP
Dice tf ·idf Word2V ec MCG

AntennnaPod 55 31 102 91 114
Automattic 7 20 70 45 95
Cgeo 541 89 1307 1115 1488
Chrislacy 5 24 127 44 153
K-9 Mail 7 7 52 41 58
OneBusAway 95 30 258 222 271
Twidere 34 33 108 84 117
UweTrottmann 30 26 107 89 114
WhisperSystems 56 21 199 171 209
Wordpress 37 37 506 396 653

In addition, we note that not all clusters can link to issue
reports. Table 9 shows the number of feedback clusters and the
ratio which cannot link to issue reports when using difference
metrics. When usingWord2V ec, the number of feedback clusters
unmatched to issue reports is the smallest while the number is
the largest when using Dice. Overall, the number of clusters
not linked to issue reports is much smaller than that linked to
issue reports. Therefore, the effect of their results to all evaluation
results is limited. Table 10 shows the Precision, MRR, and MAP
values of our approach using difference metrics for the feedback
clusters unmatched to issue reports. Our approach using Dice
shows the best performance than other metrics. The reason is that
there are largest number of feedback clusters not linked to issue
reports when using Dice. When using Word2V ec, our approach
performs the worst because there are 5 projects that have no
clusters unlinked to issue reports and other 5 projects that have
less than or equal to 3 clusters unmatched to issue reports. This
fact also demonstrates that Word2V ec can help user feedback
link more relevant issue reports so that more user feedback clusters
are linked to correct source code classes that should be changed.

TABLE 9: Number of feedback clusters (ratio) unmatched to issue reports
when using different metrics

Project # clusters (ratio) unmatched to issue reports # clusters
Dice tf ·idf Word2V ec MCG

AntennnaPod 4(11.1%) 6(16.7%) 1(2.8%) 4(11.1%) 36
Automattic 5(41.7%) 3(25.0%) 0(0.0%) 2(16.7%) 12
Cgeo 0(0.0%) 0(0.0%) 0(0.0%) 0(0.0%) 20
Chrislacy 4(50.0%) 1(12.5%) 0(0.0%) 1(12.5%) 8
K-9 Mail 4(50.0%) 3(37.5%) 2(25.0%) 2(25.0%) 8
OneBusAway 2(5.9%) 5(14.7%) 3(8.8%) 1(2.9%) 34
Twidere 3(10.0%) 2(6.7%) 0(0.0%) 2(6.7%) 30
UweTrottmann 11(36.7%) 2(6.7%) 1(3.3%) 1(3.3%) 30
WhisperSystems 1(68.8%) 2(12.5%) 1(6.3%) 0(0.0%) 16
Wordpress 2(16.7%) 0(0.0%) 0(0.0%) 0(0.0%) 12

Therefore, we select Word2V ec to find the relevant issue reports
for enriching user feedback clusters so that it can improve the
performance of change request localization.

In our approach, we propose weight selection-based cosine
similarity metric to compute textual similarity between enriched
user feedback clusters and classes to be changed instead of classic
cosine similarity metric. Therefore, we should verify whether our
approach using weight selection-based cosine similarity metric
(i.e., Where2Change) performs better than that using classic
cosine similarity metric (i.e., Where2Changecosine). We re-
implement our approach using classic cosine similarity metric
with four similar metrics introduced in Section 3. The result of
performance for each project in our data set is shown in Table 11.

In Table 11, we find that the Top-N values of our approach
using cosine similarity are slightly less than that using weight
selection-based cosine similarity (See Table 6). This result indi-
cates that the two similarity measures can successfully locate the
Top-N classes for the similar number of user feedback clusters.
However, we note that the Precision, Recall, MRR, and MAP
values of our approach using weight selection-based cosine simi-
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TABLE 10: Precision (P), MRR (MR), and MAP (MA) values (%) comparison using different similarity metrics for the feedback clusters unmatched to issue
reports

Project Where2ChangeDice Where2Changetf ·idf Where2ChangeWord2V ec Where2ChangeMCG

P MR MA P MR MA P MR MA P MR MA
AntennaPod 80.00 37.83 91.67 33.33 5.27 23.61 0.00 0.00 0.00 80.00 22.83 20.10
Automattic 100.00 20.00 80.00 0.00 0.00 0.00 0.00 0.00 0.00 80.00 20.83 33.96

Cgeo 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Chrislacy 90.00 22.83 66.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
K-9 Mail 100.00 11.42 25.00 20.00 2.23 11.11 10.00 5.01 5.00 20.00 3.34 10.00

OneBusAway 100.00 10.00 50.00 44.44 29.46 88.44 0.00 0.00 0.00 20.00 13.56 8.33
Twidere 25.00 5.56 19.44 25.00 10.00 50.00 15.00 4.99 5.00 0.00 0.00 0.00

UweTrottmann 65.00 20.79 67.77 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
WhisperSystems 0.00 0.00 0.00 40.00 5.33 18.33 0.00 0.00 0.00 0.00 0.00 0.00

Wordpress 100.00 22.83 50.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Arithmetic mean 76.94 19.43 59.40 25.51 9.01 31.41 6.25 2.50 2.50 44.62 13.87 14.87

TABLE 11: Performance of our approach using cosine similarity measure

Project Where2Changecosine

T1 T3 T5 P R MR MA
AntennaPod 30 32 34 22.86 36.37 4.29 19.60
Automattic 12 12 12 30.65 70.38 18.38 52.14

Cgeo 20 20 20 53.17 39.28 18.22 56.58
Chrislacy 7 7 7 48.65 68.36 13.52 45.13
K-9 Mail 2 5 6 10.26 16.91 2.50 10.25

OneBusAway 30 33 33 47.27 47.98 11.06 37.99
Twidere 21 26 27 13.20 10.04 5.95 27.21

UweTrottmann 21 26 28 21.14 41.00 4.37 18.48
WhisperSystems 13 16 15 25.18 37.84 7.63 27.12

Wordpress 12 12 12 38.71 26.26 17.01 60.65
Arithmetic mean 21.0 23.7 24.4 34.02 30.24 37.40 9.12

larity are much better than that using cosine similarity. This fact
indicates that weight selection-based cosine similarity measure
can help our approach recommend more accurate classes in top-5
ranking results than cosine similarity measure. The major reason
is that weight selection-based cosine similarity adopts the terms’
best weights to implement change request localization so that
it enhances the effect of important terms to the performance,
therefore, our approach using this metric can get the higher
accuracy (Precision, MRR, and MAP) and Recall values than that
using classic cosine similarity metric.

By comparing the evaluation results of our approach using
weight selection-based cosine similarity and classic cosine simi-
larity, we get a conclusion that using the proposed weigh selection-
based cosine similarity function can help to recommend more
accurate classes in top-5 ranking results than using classic cosine
similarity measure.

According to overall evaluation and analysis results for each
step of our approach, we answer RQ1 as follows:

Answer to RQ1: Our approach selects HDP, Word2Vec,
and the weight selection-based cosine similarity measure as
user feedback clustering, feedback cluster enrichment, and
class ranking algorithms, respectively due to their preferable
performance on change request localization.

5.3 Answer to RQ2: performance comparison
In order to fairly compare the performance of change request
localization using CHANGEADVISOR and our approach, we adopt
the user feedback selected by the classification approach intro-
duced in Section 3.2 to re-implement CHANGEADVISOR. In the
literature [33], Palomba et al. set the threshold value to 0.5
for all projects. To demonstrate whether our approach performs

better than CHANGEADVISOR, we adjust the threshold value from
0.1 to 1 to obtain all evaluation results of CHANGEADVISOR.
The following table (i.e., Table 12) show the best evaluation
results of CHANGEADVISOR. In addition, for our approach
Where2Change, not all clusters can link to issue reports used to
enrich them. We also consider the feedback clusters which cannot
link to issue reports to compare the performance of change request
localization between CHANGEADVISOR and our approach. Note
that the weight-selection cosine similarity measure is not suitable
for computing the similarity between these clusters and classes to
be changed. Because this algorithm depends on the linked issue
reports to get the best weights of terms. Therefore, we still use
the similarity metric-Word2V ec to compute the similarity scores
between these feedback clusters not linked to issue reports and
source code classes. Table 12 shows the Top-N values, Precision
& Recall values, and MRR & MAP values of Where2Change
and CHANGEADVISOR for all clusters in our data set.

Expect for the arithmetic mean values of MAP, we note
that Where2Change performs better than CHANGEADVISOR.
Especially for Top-N and Recall values, we find that the dif-
ferences reach up to 17 for Top-1, 18.1 for Top-3, 17.9 for
Top-5, and 50.08% for Recall. For the arithmetic mean MAP
values, Where2Change is not better than but very close to
CHANGEADVISOR. The difference is only 3.39% (75.89%-
72.50%=3.39%).

In order to verify whether our approach can successfully
locate more source code classes that should be changed for
more user feedback clusters, we use Wilcoxon test [34] in the
R environment [35] to further compare the performance between
CHANGEADVISOR and our approach. If a p-value is more than the
significance level, we accept the null hypothesis; otherwise, we
reject it. We adopt the default value (i.e., 0.05) as the significance
level. We define the null hypothesis as follows:

• Our approach shows no noteworthy difference against the
previous study CHANGEADVISOR.

Next, we introduce the Top-N, Recall, Precision, MRR, MAP
values of 10 projects as the input data and perform Wilcoxon test.
As a result, we get the corresponding p-values. We list them at
Table 13.

We note that the p-values of Top-N and Recall are less than
0.05. In this situation, we reject the null hypothesis. Therefore,
our approach can significantly improve the performance of change
request localization for user feedback by comparing with the
previous work CHANGEADVISOR. In other words, our approach
can successfully locate more source code classes to be changed for
more user feedback clusters than CHANGEADVISOR. In addition,
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TABLE 12: Performance comparison between Where2Change and CHANGEADVISOR

Project Where2Change CHANGEADV ISOR
T1 T3 T5 P R MR MA T1 T3 T5 P R MR MA

AntennaPod 29 35 35 50.99 69.99 21.45 57.50 7 8 9 56.52 11.82 30.37 87.14
Automattic 12 12 12 42.22 70.38 31.72 76.03 3 4 4 50.00 14.81 25.17 85.73

Cgeo 20 20 20 85.00 35.96 39.62 90.05 4 4 4 84.62 1.66 33.08 99.99
Chrislacy 7 7 7 75.00 83.55 31.68 76.46 1 5 6 46.67 8.86 19.00 60.00
K-9 Mail 5 8 8 31.19 47.89 10.31 33.02 5 9 9 28.57 11.27 19.30 64.28

OneBusAway 33 33 33 67.86 67.17 42.40 95.01 6 7 7 56.51 6.57 24.85 70.05
Twidere 27 31 31 35.59 30.50 29.71 73.47 5 8 8 36.00 3.47 20.14 69.18

UweTrottmann 21 28 28 46.36 70.00 16.92 48.37 8 11 11 54.55 12.00 26.63 78.89
WhisperSystems 15 16 16 62.36 60.00 32.17 78.73 4 4 4 21.05 2.16 11.30 44.44

Wordpress 12 12 12 76.33 40.92 41.83 94.13 5 7 7 85.71 3.93 31.88 78.28
Arithmetic mean 22.5 25.3 25.3 56.17 57.69 29.80 72.50 5.5 7.2 7.4 53.07 7.61 25.12 75.89

TABLE 13: The result of Wilcoxon test

Evaluation approach p-value Result
Top-1 0.00088 Reject
Top-3 0.00361 Reject
Top-5 0.00407 Reject
Recall 0.00016 Reject

Precision 0.65015 Accept
MRR 0.19876 Accept
MAP 1.00000 Accept

the p-values of Precision, MRR, and MAP are more than 0.05.
Thus, we accept the null hypothesis. This result indicates that
the accuracy in top-5 ranking results of our approach has no
significantly difference with CHANGEADVISOR.

According to the above experimental result, we get a con-
clusion that our approach can successfully locate more source
code classes that should be changed for more user feedback
clusters than the previous study CHANGEADVISOR and keep the
similar accuracy in top-5 ranking results. The major reason is
that issue reports can enrich user feedback clusters due to their
detailed descriptions for the software faults and feature requests
so that the performance of change request localization is improved.
In addition, we propose the weight selection cosine similarity
measure which adopts the best weights of terms to compute the
similarity between user feedback clusters and source code, which
results in that more source code classes related to change requests
are successfully located for more user feedback clusters.

The previous IR-based fault localization technologies utilize
issue reports as queries to search where should the bugs be fixed.
In this section, we utilize BLUiR [5] and BLIA [6] to resolve the
problem in our work. In the literature [8], Palomba et al. compared
the performance of CHANGEADVISOR and BLUiR. Therefore,
we also select is as one of our baselines. Moreover, we also select
BLIA as another baseline due to the two reasons. On the one hand,
Youm et al. indicate that BLIA outperforms the existing tools such
as BLUiR and BugLocator [4] because this approach considers
the multiple data resources that include texts and stack traces in
issue reports, structured information of source files, and source
code change histories; On the other hand, BLIA is an open source
tool, which is easily employed to implement our task.

To fairly compare the performance of our approach and the
baselines, it is necessary to guarantee that the same queries (i.e.,
user feedback clusters) are used to conduct change request local-
ization. In our work, we utilize the weight-selection cosine simi-
larity measure to compute the textual similarity scores between the
enriched feedback clusters and source code classes. Therefore, we
also use baselines to re-implement this task. Table 14 and Table 15

TABLE 14: Evaluation result of BLIA

Project BLIA
T1 T3 T5 P R MR MA

AntennaPod 21 31 32 43.21 55.80 18.76 52.11
Automattic 10 11 11 33.94 66.78 26.06 72.30

Cgeo 15 15 15 86.15 30.67 30.15 82.58
Chrislacy 6 8 8 70.19 80.22 28.79 70.13
K-9 Mail 2 4 4 27.56 40.21 16.78 31.08

OneBusAway 24 28 28 58.19 62.66 35.57 89.04
Twidere 22 22 25 33.10 25.89 25.84 61.13

UweTrottmann 20 22 22 44.34 61.26 11.13 42.15
WhisperSystems 13 13 14 59.88 55.36 30.15 77.21

Wordpress 10 11 11 83.15 33.14 37.21 89.76
Arithmetic mean 17.7 20.7 21.3 52.06 50.56 25.26 66.23

TABLE 15: Evaluation result of BLUiR

Project BLUiR
T1 T3 T5 P R MR MA

AntennaPod 21 30 31 40.21 51.36 13.16 46.68
Automattic 8 9 9 30.11 62.48 19.89 70.18

Cgeo 12 13 13 78.95 26.07 30.32 77.26
Chrislacy 4 5 7 63.20 72.19 23.57 63.19
K-9 Mail 3 4 4 22.30 31.26 14.67 28.77

OneBusAway 25 26 26 47.05 55.69 30.20 80.09
Twidere 20 23 24 30.15 19.14 22.15 62.46

UweTrottmann 17 18 20 40.18 58.88 10.32 33.68
WhisperSystems 11 11 11 52.35 49.13 22.46 68.48

Wordpress 9 10 11 79.31 27.51 30.22 82.57
Arithmetic mean 16.5 19.1 19.8 46.46 45.14 21.11 60.67

show the evaluation results of BLIA and BLUiR.
When we compare the result of our approach shown in Ta-

ble 12 with that of BLIA and BLUiR, we find that our approach
performs better than these baselines. This fact indicates that our
approach using weigh-selection approach can locate more correct
source code classes related to change requests for more user
feedback clusters with the higher accuracy in top-5 results. The
major reason is that selecting the best terms’ weight is the most
important factor than other data resources such as change history
and structure of source code when we conduct the task of change
request localization.

According to above results of evaluation and analysis, we can
answer the research question RQ2 as follows:

Answer to RQ2: Our approach can recommend more
source code classes related to change requests for more
user feedback clusters than the previous change request
localization approach-CHANGEADVISOR. In addition, by
re-implementing the previous fault localization approaches-
BLIA and BLUiR on user feedback clusters, our approach
also performs better than them.



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2956941, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 2018 17

6 DISCUSSION

6.1 Answer to RQ3: performance analysis

In Section 5.3, we demonstrate that our approach can locate more
source code classes that should be changed for more user feedback
clusters than the previous study CHANGEADVISOR. We analyze
the reason in this section.

In this work, we utilize issue reports to enrich user feedback
clusters for improving the performance of change request local-
ization. This is the difference with CHANGEADVISOR. In order
to demonstrate the importance of issue reports in our approach,
we compare the performance of change request localization using
our approach that utilizes issue reports and that removes issue
reports. We name the latter as “Where2Change−IR”. For
Where2Change−IR, we only compute the similarity between
a cluster of user feedback and source code by using the similarity
metrics that include tf · idf , Word2V ec, and MCG. We do
not use Dice because CHANGEADVISOR adopts it to conduct
the same task and the result is shown in Table 12. The weight-
selection cosine similarity measure cannot be used to conduct this
task because there are no issue reports that are used to training for
finding the terms’ best weights. Table 16 and Table 17 show the
result.

When we remove issue reports, usingWord2V ec can produce
the highest Top-N values while using MCG can get the highest
Precision, Recall, MRR, and MAP values. We note that our
approach using issue reports (See Table 12) performs better than
that removing issue reports due to the higher Top-N, Precision,
Recall, MRR, and MAP values. Specially for Top-1 and Recall
values, using issue reports improve 2.3 times (22.5/9.7=2.3) for
Top-1 while it improves 2.6 times (57.69/22.51=2.6) for Recall
values than our approach removing issue reports. In addition, when
we compare the performance of our approach removing issue
reports and CHANGEADVISOR, we find that Precision, MRR, and
MAP values of the latter one is higher than that of the former one.
Therefore, removing issue reports cut down the performance of
change request localization for user feedback. This result indicates
that issue reports can help our approach successfully locate more
classes to be changed for more user feedback clusters.

Cases: In Table 9, we show the ratio of feedback clusters
unmatched to issue reports when using different metrics. Note that
for K-9 Mail, the ratio is higher than others. Except for Recall, we
find that Top-N, MAP, and MRR values of CHANGEADVISOR are
also higher than that of our approach. Specially for MAP value
which is twice as much as that of our approach. For Precision,
there is no significant difference between two approaches. Other-
wise, for Cgeo, the unmatched ratio is 0%. We find that Top-N,
Precision, Recall, and MRR values of our approach are also higher
than that of CHANGEADVISOR, specially for Top-N and Recall
values. For MAP value, the difference between two approaches is
less than 10%.

The above-mentioned two cases demonstrated that our ap-
proach performs much better than CHANGEADVISOR when a
lot of user feedback clusters can link to historical issue reports.
Otherwise, if there are no enough historical issue reports which
can enrich user feedback clusters, our approach cannot locate more
accurate source code classes for more user feedback clusters by
comparing with CHANGEADVISOR.

We explain why issue reports can help to improve the perfor-
mance of change request localization. There are two reasons: 1)
According to our previous investigation for issue reports in mobile

apps [1], we find that issue reports contain the detailed information
such as stack traces, code examples, and patches. The important
information describes the clues why a bug appears or a feature
request is proposed. By enriching user feedback clusters, they can
assist our approach to locate more correct classes to be changed
for more user feedback; 2) Issue reports can help us get the best
terms’ weights used to compute the similarity scores between user
feedback clusters and source code classes so that our approach
can successfully locate more source code classes related to change
requests for more user feedback clusters.

According to above-mentioned experimental results and anal-
ysis, we can answer RQ3 as follows:

Answer to RQ3: Issue reports can help our approach locate
more source code classes related to change requests for
more user feedback due to their detailed information and
the contribution on finding the best terms’ weights used to
improve the performance of the cosine similarity measure.

6.2 Answer to RQ4: query verification
In this work, we adopt user feedback extracted from user reviews
rather than issue reports as queries to conduct change request lo-
calization for mobile apps. In Section 6.1, we demonstrate that our
approach using issue reports can locate more source code classes
to be changed for more user feedback clusters. Thus, the question
“why do not adopt issue reports as queries to conduct change
request localization if they can provide detailed information?” is
thrown out. We investigate the reasons in this subsection.

Different from issue reports, user reviews are posted by users
who may have no or less experience on software development
and debugging. However, user reviews reflect users’ requirements
for the next update of mobile apps. Especially for the user
reviews related to bugs and feature requests, the users expect that
developers can fix these bugs and add the appropriate features in
the next version. Comparing with traditional desktop software, the
update rate of mobile apps is more frequent. Users can choose
high-quality apps which have good user experience in the short
term. Therefore, satisfying users’ requirements is a lifeline of
mobile apps [36].

In the literature [7], Mcilroy et al. point out that mobile apps’
developers usually depend on user reviews to resolve the issues
and update the apps. This finding brings inspiration to us so that
we want to understand developers’ real behavior for resolving
issues in mobile apps. Thus we send a brief questionnaire to top
200 most active developers who have the maximum number of
times to resolve issues and to give the comments12 in top 100
popular mobile apps via public mail addresses. They are invited to
answer the question Q1 shown in Table 18.

As a result, we receive 98 responses (49% response rate).
Among them, 71 (72.4%) developers select Answer A while 13
(13.3%) developers choose Answer B. For Answer C, 14 (14.3%)
developers choose it. By analyzing the investigation result, we
have two findings. On the one hand, we note that most of develop-
ers (71+13=84) worked for mobile apps depend on user reviews
for finding and resolving issues. This finding is same as the report
at the literature [7]. On the other hand, we note that 72.4%
developers still depend on historical issue reports to help them
locate source code classes related to change requests. We send

12. Some active developers may act both of issue assignees and commenta-
tors
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TABLE 16: Top-N (T1, T3, T5) values of our approach when removing issue reports

Project Where2Changetf ·idf−IR Where2ChangeWord2V ec
−IR Where2ChangeMCG

−IR
T1 T3 T5 T1 T3 T5 T1 T3 T5

AntennaPod 12 17 18 16 32 36 10 24 32
Automattic 0 4 4 3 9 12 5 11 11

Cgeo 10 11 12 13 18 19 10 19 19
Chrislacy 0 2 2 6 8 8 4 5 7
K-9 Mail 1 2 2 2 3 4 3 3 7

OneBusAway 29 32 32 18 33 33 21 31 32
Twidere 3 7 10 5 14 20 6 13 20

UweTrottmann 3 4 7 6 23 28 10 20 25
WhisperSystems 0 6 8 4 12 12 3 11 12

WordPress 7 11 11 5 8 8 4 9 11
Arithmetic mean 9.2 12.4 13.7 9.7 20.5 23.1 9.5 18.3 22.0

TABLE 17: Precision (P), Recall (R), MRR (MR), and MAP (MA) values (%) of our approach when removing issue reports

Project Where2Changetf ·idf−IR Where2ChangeWord2V ec
−IR Where2ChangeMCG

−IR
P R MR MA P R MR MA P R MR MA

AntennaPod 31.71 11.82 2.93 13.00 43.01 36.36 16.48 49.15 40.45 32.73 21.40 62.70
Automattic 35.29 22.22 4.63 18.15 37.04 36.03 23.19 62.09 37.04 37.03 19.47 55.31

Cgeo 60.98 3.78 17.10 51.44 58.44 6.80 26.68 70.72 63.75 7.70 30.45 75.81
Chrislacy 50.00 7.59 4.54 13.07 48.15 16.46 18.75 52.43 73.33 27.85 34.25 84.58
K-9 Mail 11.11 2.82 3.33 16.67 23.53 11.27 12.46 46.32 16.22 8.45 8.21 31.32

OneBusAway 42.86 4.55 30.60 82.97 59.42 20.71 29.39 75.84 66.67 32.32 28.11 70.51
Twidere 18.00 3.47 4.49 18.56 22.52 9.65 8.31 33.31 17.58 6.18 9.19 32.15

UweTrottmann 20.59 7.00 2.93 13.00 40.51 32.00 15.42 48.39 36.08 35.00 15.96 48.48
WhisperSystems 16.13 2.70 4.25 19.17 27.27 9.73 12.17 40.35 28.17 10.81 13.40 43.19

WordPress 50.00 1.97 21.31 75.28 51.92 5.91 21.31 57.58 42.86 5.25 18.06 48.03
Arithmetic mean 32.75 6.73 10.45 33.64 42.26 20.77 18.53 53.81 42.40 22.51 19.87 55.58

TABLE 18: Questions and answers in the questionnaire

Q1: Which one is the real issue (i.e., software faults and feature
requests) resolution process among the following three options in
mobile apps that you worked?
A. I find the issues from user reviews, but I need to depend on historical
issue reports to locate source code classes related to change requests
so that I can resolve them.
B. I find the issues from user reviews, then I can directly locate source
code classes related to change requests and resolve them without
historical issue reports.
C. I do not refer to user reviews. I already wrote the issue reproducing
test cases in issue reports and other developers are responsible for
fixing the issues.
Q2: What is the process when you create an issue report?
A. I fix the bug and just create an issue report to record the maintenance
task.
B. I already wrote the fault reproducing test cases, locate the source
code classes related to change requests, and wrote the issue report.
C. I wrote the issue report just based on the user reviews and my own
knowledge about the system.
D. I just fix the bug and cannot write the issue report.

the emails for these developers to ask the reasons. One developer
worked at WordPress team told us: “I can find some relevant
source code files by utilizing some historical issue reports which
describe the similar faults with new user reviews.” Therefore, we
think that selecting user reviews as queries can help to develop a
full-automatic change request localization technology for saving
the developers’ time of reading and understanding thousands of
user reviews in mobile apps. Moreover, historical issue reports
can facilitate change request localization as the auxiliary role. We
also have interests on the produce of historical issue reports. Thus,
in the questionnaire, we require that the developers who select A
or B to answer the question Q2 shown in Table 18.

We note that 52 developers (61.9%=52/84) select answer
A while 30 developers (35.7%=30/84) select answer B. Only
2 developers select answer C and no one select answer D. In

summary, these developers can also write the issue reports in order
to help other developers use or refer to them for fixing the coming
issues. Therefore, historical issue reports can continually produce,
which can be used to improve the performance of our approach.

We also investigate the generation frequency (i.e., how much
time a new one is generated) of issue reports and user reviews.
Table. 19 shows a comparison result of the generation frequency
between issue reports and user reviews. We note that the gener-
ation frequency of user reviews is much faster than that of issue
reports. The average generation frequency of user reviews is less
than 1 day whereas that of issue reports reaches up to about 4 days.
Thus, in the real debugging process for mobile apps, user reviews,
which have high generation frequency, can facilitate developers
to localize the change requests quickly in order to improve apps’
performance timely.

TABLE 19: Comparison of generation frequency between issue reports and
user reviews

Project Generation frequency (days)
Issue report User Review

AntennaPod 2.8 0.79
Automattic 7.41 0.88

Cgeo 0.88 0.43
Chrislacy 2.41 1.23
K-9 Mail 3.47 0.26

OneBusAway 5.31 1.25
Twidere 3.86 0.86

UweTrottmann 9.72 0.47
WhisperSystems 2.98 0.02

WordPress 0.81 0.16
Average 3.97 0.64

In Table 19, we note that the generation frequency of user
reviews is much higher than that of issue reports. Therefore, a
new coming user review may describe a new bug or a new feature
request which is not described in historical issue reports even
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though the similar issue is reported. We should verify whether
historical issue reports can help to locate classes to be changed
for new user reviews. We perform a real experiment introduced
at Section 5.1 in order to achieve the goal. Before we start the
experiment, the issue reports and user reviews are divided into two
groups as the time frame. In detail, we collect the issue reports
submitted before the corresponding timeline into G1 and gather
the user reviews posted after this timeline into G2. Each project
has its own timeline. We decide each timeline as the following
rules:

1) We choose the submission time of the last submitted issue
report in each project as the reference point for deciding the
corresponding timeline. In other words, we want to utilize as
more historical issue reports as possible to locate changes for
newly posted user reviews.

2) We keep a certain number (minimum is 2) of user feedback
clusters to implement our approach. The major reasons is that
few number of feedback clusters can lead to a meaningless
results.

Table 20 shows the data scale of issue reports and user reviews
in G1 and G2. Actually, verifying the timeline for each project
as the above-mentioned rules is a trade-off problem. Utilizing
more number of historical issue reports can reduce the number
of user reviews used in our experiment so that the number of user
feedback clusters is decreased as well. For example, in Automattic,
when we put off the timeline from 01/2015 to 02/2015 to include
more number of historical issue reports as option 1), we can
only get one feedback cluster so that the evaluation result is
meaningless. For this case, we violate option 2). On the contrary,
if we bring forward the timeline from 01/2015 to 12/2014, the
number of clusters still is 4. But we waste quite a few number
historical issue reports so that we violate option 1). Therefore,
we select 01/2015 as the timeline for Automattic. By the same
token, we do not violate option 1) and option 2) when deciding
the timeline for other projects. There are three special cases that
include K-9 Mail, UweTrottmann, and WordPress. In these apps,
when we put off the timelines shown in Table 20 by one month
or more than one months, the number of clusters is decreased
to below 50% but it is great than or equal to 2 while less than
10% number of historical issue reports are added. Therefore, even
though these apps do not violate option 1) and option 2), we also
do not put off the timelines because we should consider the cost
performance. In other words, we must prevent the case that using
more than or equal to 50% number of feedback clusters to trade
less than 10% number of historical issue reports. According to the
options and the reason to explain the three special cases, we verify
the corresponding timeline for each project shown in Table 20.

When the experiment starts, we first extract the user feedback
entries and cluster them in G2 to generate the feedback clusters,
then use the issue reports in G1 to enrich the feedback clusters.
Next, we re-implement our approach described in Section 3.
For each project, we call our approach in this experiment as
Where2ChangeT which utilizes the issue reports generated
before the corresponding timeline to enrich the clusters of user
feedback produced after this timeline for locating the changes
appearing in the source code. T stands for the time frame. We
also utilize CHANGEADVISOR to conduct change localization for
the new coming user reviews in G2. The comparison results are
shown in Table 21.

Overall, for new coming user reviews, our approach still can

TABLE 20: Data scale of issue reports and user reviews in the specific time
frame

Project # reports # reviews # clusters Timelinein G1 in G2 in G2
AntennaPod 102 117 4 01/2016
Automattic 78 113 4 01/2015

Cgeo 460 367 2 01/2013
Chrislacy 45 79 2 07/2013
K-9 Mail 33 882 6 06/2016

OneBusAway 46 160 4 06/2015
Twidere 65 86 4 03/2016

UweTrottmann 87 324 6 01/2015
WhisperSystems 147 340 4 01/2016

WordPress 556 1,159 10 06/2015

recommend more correct classes to be changed due to much higher
recall values, the difference between Where2ChangeT and
CHANGEADV ISORT reaches to 28.48%. From Precision,
MRR, and MAP values, we find that there is no significant
difference between two approaches. This finding is same as the
comparison result shown in Section 5.3. For Top-N values, the
differences are less than 1 between two approaches. The major
reason is that few number of clusters can affect the performance
of our approach. The result also demonstrated that our approach
should be employed to more than 1400 user reviews which can
generate more than 60 feedback clusters. We also explain it in
Section 5.1.

Based on the evaluation result for new coming user reviews,
historical issue reports can help to locate more correct classes.
However, in the task of change localization for mobile apps, issue
reports are treated as the secondary role which cannot replace user
reviews as queries. Expect for the above-mentioned reasons, there
is also a reason: enriched issue reports describe the similar but not
same software faults or feature requests with user reviews. Thus
they can only be used to enrich the corresponding user feedback
clusters but cannot replace them. We list some examples shown in
Table 22 to explain this fact.

The three examples are real cases in WordPress. For Example
1, both the user review and the issue report describe the problem
of uploading. However, the former concerns the image while the
latter focuses on the posts; For Example 2, both the user review
and the issue report also describe the problem of uploading.
However, the former concerns that the user cannot upload the data
while the latter indicates that users may not see the uploaded data;
For Example 3, both the user review and the issue report describe
the problem of login. However, the former concerns that the user
cannot log in the app while the latter presents that some parts of
the app cannot work after login.

For each example, we note that the problem described in
the user review and the corresponding issue report is similar.
They are also related to the same source code class(es). We
take an example, for issue report-# 862, we find that the class
WordPress was changed for fixing the software fault reported
in -# 862 by checking the commit. By investigating the ground
truth, we find that there is a link between the feedback cluster
that includes the user review-A and WordPress. Therefore, the
historical issue reports indeed help to enrich the user reviews so
that more correct classes are recommended to more user feedback
clusters. However, issue reports cannot replace user reviews as
queries because they may describe the different problems with
reviews even though these problems are similar.
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TABLE 21: Performance comparison between Where2Change and CHANGEADVISOR for new coming user reviews

Project Where2ChangeT CHANGEADV ISORT

T1 T3 T5 P R MR MA T1 T3 T5 P R MR MA
AntennaPod 4 4 4 65.63 38.19 27.18 68.99 4 4 4 66.67 7.27 33.08 93.02
Automattic 3 4 4 70.00 51.86 37.19 86.57 2 2 2 96.99 22.22 18.92 50.00

Cgeo 2 2 2 80.01 4.23 43.07 95.81 1 1 1 99.01 0.76 22.83 49.98
Chrislacy 2 2 2 77.09 46.84 37.09 85.64 2 2 2 88.89 10.13 40.67 90.21
K-9 Mail 1 5 5 31.95 32.40 5.03 19.84 3 4 4 64.71 15.49 32.00 87.01

OneBusAway 3 3 3 85.25 52.53 43.01 96.01 2 2 2 87.50 3.54 25.33 70.10
Twidere 4 4 4 67.02 25.10 40.86 93.26 3 3 3 57.14 1.54 22.92 72.92

UweTrottmann 2 5 5 63.16 36.00 13.49 40.94 4 5 5 56.25 9.00 28.50 70.07
WhisperSystems 1 4 4 90.01 34.06 25.73 67.88 1 1 1 60.00 1.62 7.67 18.89

WordPress 10 10 10 80.30 35.67 44.36 98.02 10 10 10 96.00 5.25 41.01 96.78
Arithmetic mean 4.0 5.3 5.3 69.55 36.44 30.67 73.01 4.3 4.5 4.5 76.84 7.96 28.95 74.14

TABLE 22: Examples to show the similar but not same contents of user reviews and issue reports

No. User review Issue report Relevant class(es)
1 A: I’ve been trying for too long to upload an

image but it just won’t!
# 862: I’ve had support threads with two
users so far that can’t upload posts in 2.6...

WordPress

2 B: It shown that could not update data at this
time.

# 3607: If you update your site’s title and
then return to the main menu, you’ll still see
the old title at the top of the page until you
either tap Switch Site and re-select...

MySiteFragment
SiteSettingsFragment
BlogUtils

3 C: I love the site but hate this app because I
can’t log in to the app...

# 4798: ...When I log in with my email and
a magic link, some parts of the app do not
work...

ThemeWebActivity
StatsViewHolder
ReaderActivityLauncher

According to above results of evaluation and analysis, we can
answer the research question RQ6 as follows:

Answer to RQ4: We select user reviews as queries rather
than issue reports to conduct change localization due to the
three reasons: 1) They can help to develop full-automatic
change request localization technology; 2) They can help
to successfully locate source code classes related to new
change requests proposed by users, which are not found by
developers; 3) The problems described in user reviews and
issue reports may be similar but not same.

7 THREATS TO VALIDITY

In this section, we discuss some threats of our work from two
aspects: external validity and validity.

7.1 External validity
We have only collected the data from ten mobile apps managed
by GitHub to perform our experiments. These apps are selected
according to stars’ ranking in GitHub. In other words, we only
consider the popular projects which have more stars provided
by users. Thus our approach may not be generalizable to other
projects. Even though we think that these popular projects are
representative, we would like to further explore more projects
in our future work. In addition, we just choose the mobile apps
in GitHub as our experimental objects. Other mobile apps man-
agement systems such as Bitbucket also have the project hosting
services to manage issues of mobile apps. Therefore we are not
sure whether the proposed change localization approach can still
keep the effectiveness for these apps. However, we think that this
threat is reduced because Bitbucket mainly supports private (or
business) projects which are different from open source projects.

7.2 Internal validity
7.2.1 Topic modelling
In this study, we utilize topic model to cluster user feedback.
Topic modelling depends on data distributions in the data sets,

therefore different data sets may affect the performance of topic
modelling. However, the negative impact is small for our work.
In Table 2, we find that the number of user feedback is more
than 1000 for all projects (3 projects have more than 4000 user
feedback). Therefore, plenty of user reviews reduce this threat.

7.2.2 User feedback

In this work, we adopt a cluster of user feedback as a query to
search the corresponding classes that should be changed. Ideally, a
user feedback entry should be treated as a query. However, we find
that the accuracy is not acceptable (i.e., very low accuracy). The
major reason is that the information containing in single feedback
is not enough. Moreover, some feedback entries describe a same
or similar issue. Thus, considering clusters of user feedback
as queries also can get the correct classes to be changed for
developers so that they can reduce their workload.

7.2.3 Ground truth

We invite four developers who have more than 10 years software
programming and testing experience to build the ground truth that
includes the links between user feedback clusters and source code
classes. Obviously, this is a difficult and challenge task. In order
to ensure the credibility of the ground truth, we also invite the
senior software test specialist who has more than 15 years software
testing experience from Alibaba Company to verify whether these
source code classes are linked to the given user feedback clusters
accurately. Thus we believe that the threat for the credibility of the
ground truth is reduced. Moreover, in order to further assess the
quality of the ground truth, we invite the top-10 active developers
to verify what the hitting rate and the missing rate are. One
developer from Automattic helps to check the links in the app.
We find that the hitting rate is 97.06% while the missing rate is
5.71%. However, we are not sure what the hitting rate and the
missing rate are in other apps. It may be a threat, but we believe
that the threat is not large since Automattic has characteristics
similar to many other mobile apps [1].
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We open our ground truth for all developers and researchers
so that they can help to perfect it. In addition, we also expect
that more developers and researchers can join us to build more
links between user feedback clusters and source code classes for a
greater number of apps.

8 RELATED WORK

In this section, we introduce some previous studies related to our
work. These studies concern spectrum-based fault localization, IR-
based fault localization, spectrum and IR-based fault localization,
reviews-based fault localization, and software maintenance for
mobile apps.

8.1 Fault localization techniques

Fault localization is an important foregoing task of bug fixing.
Wong et al. [37] provide a systematic survey of such fault
localization techniques and discuss some key issues and future
directions. In this survey, they created a publication repository
that includes 331 papers and 54 Ph.D. and Masters theses on
software fault localization techniques, and analyzed the different
evaluation metrics for these techniques. Moreover, they found that
the factors such as overhead for computing the suspiciousness
of each program component, time and space for data collection,
human effort, and tool support should also be included in the
contributions of automated fault localization techniques.

8.1.1 Spectrum-based fault localization

Spectrum-based fault localization techniques can help developers
locate the software faults by testing a small portion of code.
These methods analyze a program spectra that includes a series
of program elements, and rank these elements so that they can
achieve the purpose of fault localization. Tarantula [38] and Ochiai
[39] are two early-stage automatic localization techniques, which
utilized the different suspiciousness formulas. Abreu et al. [39]
demonstrated that Ochiai performed better than Tarantula [38].
Xie et al. [40] analyzed the different suspiciousness score formulas
and proposed a new method which did not require the existence
of testing oracles to enhance the performance of spectrum-based
fault localization. Lucia et al. [41] incorporate data fusion methods
to design Fusion Localizer to normalize the suspiciousness scores
of different fault localization techniques, selects fault localization
techniques to be fused, and combines the selected techniques
using a data fusion method.This approach requires no training
data but improves the effectiveness of fault localization. Laghari
et al. [42] propose a variant of spectrum-based fault localization,
i.e., patterned spectrum analysis. In detail, they utilize patterns of
method calls by means of frequent itemset mining. The experimen-
tal results show that the proposed method is effective in localising
the faults. Perez et al. [43] proposed a metric named DDU to
increase the value generated by creating thorough test-suites so
that the proposed method can help widely-used spectrum-based
fault localization techniques to accurately pinpoint the location of
software faults.

In a word, the spectrum-based fault localization approaches
require program execution traces so that these methods increase
the computational cost and require more data resources.

8.1.2 IR-based fault localization
In recent years, IR-based fault localization techniques attract more
attention due to their low cost and easy-to-access data resources
(e.g., requiring only issue reports and source code files).

Lukins et al. [12] proposed a LDA-based approach to locate
the buggy files for over 300 bugs in 25 versions of Eclipse and
Rhino. Nguyen et al. proposed BugScout [3], a topic model-
based automatic localization technique to help developers reduce
the workload by narrowing the search space of buggy files. Rao
and Kak [13] compared the performance of different IR-models,
including Unigram Model (UM), VSM, Latent Semantic Analysis
Model (LSA), LDA, and Cluster Based Document Model (CBDM)
when performing the task of bug localization. Zhou et al. [4]
proposed BugLocator to rank all source code files based on the
textual similarity between a new issue report and the source code
using a revised VSM. They also consider to combine the similarity
between the given issue report and the similar bugs for improving
the accuracy of fault localization. Kim et al. [14] proposed a two-
phase recommendation model. In this model, they adopted Naive
Bayes to filter out the uninformative issue reports and predict
the buggy file for each submitted issue report. Thung et al. [15]
develop an online tool to support fault localization for helping
developers find where the bug is from the project’s source code
repository. Kochhar et al. [16] analyze the potential biases in
fault localization. Authors mainly focus on what content (e.g.,
bug, feature request, or code update) an issue report describes.
Lam et al. [17] proposed an information retrieval approach which
combines deep learning to locate the buggy files for issue reports.

Except for issue reports and source code, some studies also
consider the more data sources and the structure of source code.
Saha et al. develop BLUiR [5] which build AST to extract the
program constructs of each source code file, and utilize Okapi
BM25 to calculate the similarity between the given issue report
and the constructs of each candidate buggy file. Ye et al. [18]
leverages project knowledge through functional decomposition of
source code, API description of library components, the bug-fixing
history, the code change history, and the file dependency graph
to generate a ranking list of source files scored by a weighted
combination of an array of features. Wang et al. [19] utilize
version history, similar reports, and code’s structure to locate the
buggy files. Chaparro et al. [20] adopted observed behavior to
reformulate queries for improving the performance of information
retrieval-based fault localization. Youm et al. proposed BLIA [6]
which utilized texts and stack traces in issue reports, structured
information of source files, and source code histories to conduct
fault localization.

Our approach also utilizes IR-based localization technique to
locate changes. However, there are some differences with the
previous studies. First, our approach adopts user feedback clusters
as queries rather than issue reports to locate source code classes
that should be changed. Second, we focus on mobile apps rather
than desktop software. Finally, we propose a weight-selection
cosine similarity to compute the similarity scores between queries
and source code.

8.1.3 Spectrum and IR-based fault localization
Le et al. [21] build a multi-model technique that consider both
issue reports and program spectra to localize bugs. This work
addresses the limitation of existing studies by analyzing both issue
reports and execution traces. Because this method adopts more
data resources (i.e., issue reports and program spectra) to execute
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fault localization, the results show that it performs better than
the IR-based localization technique [18] and the spectrum-based
localization technique [44].

Even if the hybrid model can improve the performance of fault
localization. However, program spectrum should take as input a
faulty program and two sets of test cases (i.e., failed test cases
and passed test cases). Thus, this approach needs more computing
cost. Our approach is a lightweight method. In the one hand, the
data resources can be easily collected from Google Play Store and
GitHub; in the other hand, the algorithm contains fewer parameters
but gets good performance.

8.2 Reviews-based change localization

Palomba et al. [8] proposed a new approach that analyzes the
structure, semantics, and sentiments of sentences including in
user reviews to extract the useful information for localizing code
changes in mobile apps. The experimental results show that this
method presents higher accuracy than BLUiR [5].

To our best of knowledge, this is the only work that is similar
to our study. Both two studies also consider user reviews to
locate the code changes in mobile apps. However, there are some
differences presented as follows:
• We adopt issue reports to enrich user feedback extracted

from user reviews in order to improve the performance of
change localization. The experimental results shown that our
approach can successfully locate more changes for more user
feedback clusters than CHANGEADVISOR [8] due to higher
Top-N and Recall values.

• We propose an accurate similarity metric (i.e., weight
selection-based similarity function) to compute the similarity
between the queries and source code. It performs better than
classic cosine similarity metric due to the use of the best
terms’ weights.

8.3 Software maintenance for mobile apps

Software maintenance for mobile apps become an important task
in industry since an increasing number of mobile apps have been
developed, however, only few works in academia focus on this
topic. Syer et al. [45] analyzed 15 most popular open source
Android apps, and they found that the “best practices” of existing
desktop software development cannot apply to mobile apps due
to the different features. Bhattacharya et al. [46] conducted an
empirical analysis of bug reports and bug fixing in open source
Android apps. They investigated the quality of bug reports and
analyze the bug-fixing process. In addition, they showed how
differences in bug life-cycles of Bugzilla applications and Android
apps of Google Code can affect the bug-fixing process. Zhou et al.
[47] conducted a cross-platform analysis of bugs and bug-fixing
process in open source projects of different platforms, including
desktop, Android, and IOS. They analyzed the different attributes
(e.g., fixing time and severity) of bug-fixing process in these
different platforms.

These studies on empirical analysis of bug reports and bug-
fixing process of mobile apps provide the inspiration for starting
our work. In [46], [47], the researchers mainly studied the mobile
apps in Google Code. However, since Google Code is shutting
down at 2016 [48], a growing number of mobile apps select
GitHub as their management and issue tracking tool. Therefore,
we select the mobile apps of Github as our study objects. Under

the circumstances, the analysis results (e.g., the length of descrip-
tion) in [46], [47] cannot be appropriate for our data set. In [1],
we only performed an empirical analysis for the features of issue
reports in two different platforms. In our work, we mainly focus
on how to locate source code that should be changed for clusters
of user feedback in mobile apps.

8.4 Review analysis
With a great number of mobile apps appear in online app stores
such as Google Play Store, Apple App Store, or Windows Phone
App Store, users can rate the apps using stars rating and text
reviews. These reviews describe users’ impressions, comparisons,
and attitudes towards the apps. Thus, app store reviews can be used
by developers as a feedback to facilitate the development process.
Some studies tend to analyze users’ reviews for extracting the
useful information.

Chen et al. present AR-Miner [24], a novel computational
framework, to perform comrehensive analysis for user reviews.
They group the most of informative reviews by filtering noisy and
irrelevant ones. Panichella et al. [23] propose an intent classifier
to group the user reviews into the different categories: Feature
Request, Problem Discovery, Information Seeking, Information
Giving and Other. In their follow-up work, SURF [9] is proposed
to summary reviews and recommend the useful changes. Scal-
abrino et al. develop CLAP [49], a web application, to categorize
user reviews and cluster them. Moreover, this tool can also
prioritize the clusters of review. Grano et al. [50] analyze the
available information in user reviews and indicate what type of
user feedback can be actually adopted for testing apps. Palomba
et al. develop CRISTAL [33] to trace informative crowd reviews
onto source code changes, and use this relations to analyze the
impact of crowd reviews on the development process. Ciurumelea
et al. [51] analyze the reviews and classify them according to the
taxonomy and recommend for a particular review what are the
source code files that need to be modified to hander the issue.
Genc-Nayebi and Abran [52] introduce the proposed solutions for
mining online opinions in app store user reviews. In this systematic
literature review, they also describe the challenges, unsolved prob-
lems, and new contributions to software requirements evolution.
Sun et al. developed a novel system-PADetective [53] to detect
promotional attacks from a large number of user reviewers. Xie
et al. [54] proposed an effective approach to detect abused apps
and related collusive attachers by analyzing the user reviews and
corresponding raters in mobile app store. Chen et al. [55] proposed
an approach to identify attackers of collusive promotion groups in
an app store by exploiting the unusual ranking change patterns
from user reviews.

The above-mentioned previous studies focus on analyze, clas-
sify, and extract the useful information from user reviews. In our
work, we utilize SURF [9] to extract user feedback to locate
classes to be changed. However, we not only analyze and cluster
the user feedback from user reviews, but also build a link between
user feedback and issue reports. Moreover, we utilize enriched
clusters of user feedback as queries to recommend classes that
should be changed for satisfying users’ needs. This is a first work
to use issue reports for enriching user feedback clusters in order
to locate classes to be changed in mobile apps.

9 CONCLUSION

In this paper, we develop a new approach to locate source code
classes that should be changed for each cluster of user feedback in
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order to overcome the challenge when using the previous method
named CHANGEADVISOR. In the first phase of our approach,
we extract the user feedback from user reviews and cluster them
in two categories Discovery and Feature Request; in the second
phase, we build a link between a feedback cluster and the issue
reports by computing the textual similarity between them. Next
we utilize the issue reports to enrich the cluster of user feedback,
and treat the enriched version as a query to perform information
retrieval-based change request localization. In detail, we propose
a weight selection-based cosine similarity metric to compute the
similarity between the enriched cluster of user feedback and the
source code. Finally, our approach can return a ranked list of
classes that should be changed for each cluster of user feedback.

In order to demonstrate whether our approach performs better
than CHANGEADVISOR, we execute the proposed approach and
the baseline method CHANGEADVISOR on 31,597 reviews and
3,272 issue reports of 10 open source mobile apps in GitHub.
The experimental results show that our approach can locate more
source code classes related to change requests for more user feed-
back clusters produced by user reviews than CHANGEADVISOR
due to higher Top-N and Recall values. We also compare the
performance of our approach with two IR-based fault localization
approaches-BLUiR and BLIA. The results show that our approach
performs better than them. Moreover, we also conduct the empir-
ical study for analyzing user reviews and issue reports and the
results demonstrated that issue reports can help to improve the
performance of change request localization but cannot replace user
reviews to conduct this task for mobile apps.

In the future, we plan to explore a better way to select the
user feedback related to real faults and feature requests reported
in issue reports. Moreover, we are interested in developing a new
method to locate source code classes to be changed for each user
feedback entry rather than a cluster of user feedback.

Replication Package. We have publicly shared our
dataset at: https://github.com/ReviewBugLocalization/
ReviewBugLocalization. We will also publicly released
Where2Change source code at the same GitHub repository
when the work is published.
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