
 32 COMPUTER Published by the IEEE Computer Society 0018-9162/14/$31.00 © 2014 IEEE

COVER FE ATURE

Though popular for achieving full opera-
tion functionality, rooting Android phones
opens these devices to significant security
threats. RootGuard offers protection from
malware with root privileges while provid-
ing user flexibility and control.

V alued for its openness and wide application array,
Android is the world’s most popular smartphone
operating system, accounting for 78 percent of
global market share in 2013 (http://phys.org/

news/2014-02-android-gains-apple-windows.html). Still,
its security model prevents users and apps from exploit-
ing full system functionality. In particular, root privilege
is strictly limited: by default, Android Open Source Project
(AOSP) releases and stock Android phones allow only the
kernel and a small subset of core services to run with
root permissions. This root inaccessibility constrains how
people can use their devices and how apps realize Android
phones’ potential. For example, users cannot remove pre-
installed but rarely used bloatware, and security software
products do not have privileges to monitor and defeat
malware in real time. To overcome such limitations, users
must gain root access, or “root” their phones.

Interest in rooting Androids extends well beyond tech-
nology enthusiasts. According to Google, users install
non-malicious apps for rooting by a ratio of 494 per million

total installs (https://docs.google.com/presentation/d/1Y
DYUrD22Xq12nKkhBfwoJBfw2Q-OReMr0BrDfHyfyPw).
Of Google Play’s 10 best-selling paid apps, two require
root privilege—Titanium Backup at number 5 and Root
Explorer at number 8 (https://play.google.com/store/apps/
collection/topselling _paid). In addition, big IT companies
like Tencent have invested millions of dollars to develop
robust tools for rooting Android phones (http://technews.
cn/2014/02/15/tencent-invest-mgyun), while commu-
nity-built ROMs that provide root access have enjoyed
large-scale adoption: CyanogenMod has over 10 million
installs (http://stats.cyanogenmod.com), and in China 80
percent of Android phones retailing for less than US$660
include customized ROMs with root access (http://it.21cn.
com/focus/a/2013/0803/09/23210909.shtml).

While attractive, rooting involves significant security
threats. After gaining root privilege, an app has access to
the entire system and to low-level hardware. Benign apps
exploit such access to provide desirable features for users,
but malicious apps could abuse it to make themselves irre-
movable, bypass Android’s security measures,1,2 and infect
phones systemwide.

 Independent developers have created apps to manage
root privilege, but the root- management model under lying
these apps remains vulnerable. Security Enhanced An-
droid3 and its extensions4 might offer some protection, but
they do not give users root access and complicated policies
make them difficult to manage.

To address these issues, we propose RootGuard, a light-
weight, practical tool designed to protect rooted Android

RootGuard:
Protecting
Rooted Android
Phones
Yuru Shao, Xiapu Luo, and Chenxiong Qian,
The Hong Kong Polytechnic University

r6luo.indd 32 5/22/14 1:15 PM

 JUNE 2014 33

phones. Providing fine-grain
control, RootGuard lets users
grant an app the required op-
erational privileges according
to its invoked system calls and
parameters, while maintaining
default policies to guard itself
and the Android system against
malware attacks. In design-
ing RootGuard, we addressed
various challenges—determin-
ing which functions it should
monitor, placing appropriate
function hooks, using kernel
memory to store policies and
exposing them through a vir-
tual device driver, among
others. Still, performance
evaluations including both
real-world and proof-of-con-
cept malware and employing
the benchmark app AnTuTu
show that RootGuard can suc-
cessfully mitigate attacks by
malware having root access,
and impose low overhead.

ROOTING ANDROID
AND MANAGING ROOT PRIVILEGE
In Linux, the su command—referring alternately to
“substitute user,” “super user,” or “switch user”—allows
a device operator to switch from current user to root
(functionally the administrator). In Android, the su com-
mand enables only processes belonging to root or shell
to become root. The goal of rooting Android is to install
a customized and unrestricted su that allows any app
process to become root. While the mechanics vary de-
pending on device model, existing rooting methods fall
into two categories:

 • Exploiting system vulnerabilities. Using this approach,
a potentially exploiting program is deployed on an An-
droid device and then executed to perform privilege
escalation. When successful, the procedure opens a
root shell, and the system partition (that is, /system)
can then be remounted as readable/writable, allowing
the customized su to be copied there. Most Android
devices can be rooted in this way.

 • Flashing fastboot image. Fastboot allows users to
flash a complete file set or, alternately, a file system
bundled into a single file known as an “image” to
different locations of the file system, such as /boot
or /system. In fastboot mode, users can flash a
customized su into the system partition using the

command fastboot flash. Relatively few devices
support this rooting method.

For inexperienced users, many automated tools are avail-
able that make both types of rooting easier.

Once the customized su has been created, the next step
is installing an app to manage root privilege—that is, to
grant or deny other apps’ requests for root access. Such
apps, often designated Superuser, can be downloaded
from various sites (http://androidsu.com/superuser; www.
clockworkmod.com; www.chainfire.eu). Although some
differences exist among these apps, they all operate under
the basic root-privilege management model illustrated in
Figure 1. The original model, as shown on the left, changed
very little until Android 4.3 was introduced; more recently,
that model has required some modification to accommo-
date later Android versions’ added security features, as
shown on the right.

An app requesting root privilege first invokes su. Then,
su sends a privilege-elevation request—or, more simply,
a root request—via an Intent messaging object to Super-
user. Next, Superuser consults its policy database to decide
whether to grant the request. If no corresponding policy
exists in its database, Superuser pops up a window asking
the user to make this decision. Superuser then sends the
decision either granting or denying the initial request for
root privilege back to su through a local socket, and su
grants the requesting app root privilege or denies it based
on the Superuser message.

Policy
database

app

Lookup/Update

Succ/Fail

Invoke

Superuser

Root
request
intent

Grant/
Deny

su_daemonsu

Local socket

1

5

Before
4.3

4.3, 4.4

3

4

2

Figure.1. The root-privilege management model. The basic procedure, shown on the left,
applies to pre-Android 4.3 versions: when an app invokes su, a root request will be sent to
the Superuser app, which grants or denies root access. Android 4.3 and later versions have
additional security features; commands must be forwarded to an additional component,
su_daemon, for execution as shown on the right.

r6luo.indd 33 5/22/14 1:15 PM

 34 COMPUTER

COVER FE ATURE

To this basic root-management model an additional
component, su_daemon, has been incorporated to handle
Linux capability bounding (LCB), a set of security features
introduced beginning with Android 4.3. LCB, in part, pre-
vents an app from obtaining root privilege even if it can
switch to root; su_daemon is a root-privileged daemon
process started during device booting, without capability
bounding. When Superuser grants an app permission to
run commands as root, those commands are forwarded
to su_daemon for execution. This proxy-daemon model
requires only minimal revision of Superuser.

SECURITY FLAWS IN AVAILABLE
ROOT-MANAGEMENT TOOLS
Most available root-management tools raise two funda-
mental security issues.

First, in querying whether an app request for root privi-
lege should be granted or denied, they provide users with
only the app’s name. Malicious apps can easily circum-
vent this process by behaving like legitimate apps and
gaining user trust before conducting malicious activities;
once an app is granted root access, existing tools will not
monitor its privileged behaviors. Moreover, they provide
only coarse-grain control; users who grant an app root

privilege might in fact only want spe-
cific app functions that do not require
root privilege.

Second, currently available root-
management tools cannot defend
themselves against attacks from mal-
ware with root access; malware that
obtains root privilege can render such
systems useless.

Our examination of available
root-management mechanisms’ un-
derlying security model revealed four
attack surface vulnerabilities. While
apps without root privilege can launch
the first two attacks, the second two
result from a more serious concern:
malware gaining root privilege.

Attacking the
root request Intent
The fact that su sends root requests
through Intent renders the Intent
object vulnerable to spoofing and
hijacking.5 We found the following
vulnerabilities in two popular root-
management tools and reported them
to the developers.

Intent spoofing. The Superuser app
pre-installed in MIUI V2.3 (http://

en.miui.com), a popular third-party Android ROM, fails to
verify the source and the encapsulated data of root request
Intents. This creates two problems. First, attackers can
forge a root request from an app that does not require
root privilege and then fraudulently spoof Superuser
into warning the user that an app wants to access root.
Second, attackers can craft a root request to crash Super-
user because it cannot properly handle malformed data.

Intent hijacking and eavesdropping. Generally, su sends
root requests via a broadcast generated by /system/
bin/am, and Superuser registers a broadcast receiver for
receiving the requests. However, Superuser 3.1.4 from
developer ChainsDD (http://androidsu.com/superuser)
fails to protect the broadcast receiver it registers with
permissions. Consequently, another app can register an
alternate broadcast receiver that eavesdrops on the same
broadcast. Moreover, this fake receiver might have higher
priority and hijack the root request, aborting it without
Superuser’s awareness.

Attacking su
Written in C, su is vulnerable to common software at-
tacks. For example, one recent report (http://forum.xda

Superuser
policy

User space

app

Lookup/Update

Succ/Fail

Execute

SuperuserEx

Grant/
Deny

3

5

4

1

2

7

RootGuard
module

su

Local socket

Lookup

RootGuard
policiesRoot

request
intent

RootGuard

Kernel
Update

Run RootCmds

Allow/Deny

6

8

Figure 2. RootGuard-enhanced root-management model. All components within
the dashed line are protected by RootGuard; on top of basic root-privilege
procedures, the RootGuard module monitors apps executing root commands and
looks up policies to determine whether the operation is allowed.

r6luo.indd 34 5/22/14 1:15 PM

 JUNE 2014 35

-developers.com/showthread.
php?t=2525552) identified the
unsanitized environment vul-
nerability, the shell character
escape vulnerability, and su_
daemon compromises, which
could cause su to let any app
execute commands as root
without a user’s permission.

Attacking Superuser’s
policy storage
Superuser records a user’s
decision to grant an app root
privilege in its policy data-
base. However, malware with
root privileges can access and
then modify this database to
identify itself and colluding
malware as trusted. Collud-
ing malware can thus obtain
root privilege without user
notification, rendering the root-
management system invalid.

Attacking the local socket file
Superuser uses Local Socket to send decisions granting
or denying root access back to su, which creates a tem-
porary socket file in its private data directory. Then, su
changes the socket file’s ownership to Superuser and sets
its access mode as private readable/writable—meaning
that apps other than Superuser cannot access this socket
file. However, attackers that know its location can ma-
nipulate the socket file to grant or deny any other apps’
root requests.

ROOTGUARD
RootGuard is an enhanced root-management system that
both protects rooted Android phones and grants root
privileges to apps flexibly and robustly. Two features dis-
tinguish it from existing tools. First, RootGuard provides
fine-grain control that gives more up-front information,
allowing users to grant root privilege to an app’s opera-
tions based on its invoked system calls and parameters,
as well as default policies that protect lay users. Second,
RootGuard defends itself against attacks from malware
that has gained root privileges. Figures 2 and 3 show the
system’s architecture and design.

Overview
As Figure 2 suggests, RootGuard provides compatibility
by allowing apps to request root privileges using the same
basic procedure as the current root-management model
in Figure 1 (steps 1–5). However, RootGuard protects all

components within the dashed line. When an app executes
root commands (step 6), the RootGuard kernel module
interposes to monitor the operation, and then looks up
policies (step 7) to determine whether the operation is
allowed (step 8). In addition, it sanitizes environmental
variables and parameters in su to defend against path
manipulation and attacks on shell escape characters.

Design and implementation
Figure 3 depicts RootGuard’s three major components.

SuperuserEx. This component is built on top of the open
source Superuser (https://github.com/koush/Superuser)
adopted by CyanogmenMod. We add new modules that
offer users a GUI for reviewing and updating RootGuard
policies, but keep other parts of the original Superuser
intact to achieve compatibility.

Policy storage database. RootGuard policies are perma-
nently stored in the file /etc/rootguard. To speed up
policy querying and updating, RootGuard maintains policy
copies in kernel memory, and exposes them to the user
space as a virtual device file, /dev/rootguard. In the
device driver, we export a function lookup() to our Secu-
rity Server, which resides in the kernel module discussed in
the following section, to look up existing policies.

Meanwhile, the driver defines file operations in its
file_operations structure to support SuperuserEx
access. When the user adds a new policy into /etc/

syscall
hook

LSM hooks

Allow/Deny

Process/thread (root)

App

1. SuperuserEx

SyscallUserspace

Kernel

Update/
Lookup

Lookup Subject (UID)Command
parameters

3. RootGuard
kernel

module

Operations

/dev/
rootguard

Security Server

RootGuard
policy

/etc/rootguard

Map/
Writeback

2. Policy
storage

Task tree

Figure 3. RootGuard’s three main components consist of SuperuserEx, which allows users to
review and update policies; a policy storage database; and the kernel module, which grants
or denies root access by means of Linux Security Module (LSM) hooks, a system call hook,
and a Security Server.

r6luo.indd 35 5/22/14 1:15 PM

 36 COMPUTER

COVER FE ATURE

rootguard, the driver will be notified by SuperuserEx
through Netlink (http://man7.org/linux/man-pages/man7/
netlink.7.html) to synchronize the new policy into kernel
memory. We also add a command in Android’s initializa-
tion script /init.rc to map data of /etc/rootguard
into kernel memory at boot-up. Moreover, to avoid over-
loading kernel memory, we design a compact policy format
that minimizes RootGuard policies’ size.

Kernel module. The RootGuard kernel module identifies
operations from apps that have root privilege and decides
whether they can be executed based on existing policies.
It is made up of Linux Security Module (LSM) hooks, a
system call hook, and Security Server.

LSM hooks. LSM supports use of its API to mediate
kernel object access by placing hooks in the kernel code

immediately prior to access.6 We use such hooks to hold
off apps’ root operations, first querying RootGuard poli-
cies through the Security Server. For example, when an
app tries to mount the system partition as writable, the
system call sys_mount is invoked. Before the mounting
operation is performed, the execution path enters our
LSM hook, rg_mount (“rg” is short for RootGuard), which
queries the Security Server to determine whether or not
the operation is allowed. Because we focus on functions
mostly related to root operations, we only use a small
number of LSM hooks.

System call hook. Collecting information in LSM hooks
is sometimes insufficient because the low-level operations
involved in manipulating kernel objects might not provide
thorough semantic knowledge regarding an app’s high-
level behaviors. To overcome this problem, we install a
hook to interpose the system call sys_execve, which
helps identify operations more accurately by inspecting
the parameters of each shell command.

The traditional method for hooking a system call is to
substitute the corresponding syscall table entry with the
a customized function’s address. However, unlike other
syscalls, the actual address of sys_execve is not stored
in the syscall table. Instead, it is invoked indirectly via a
wrapper written by the ARM assembly.

A method for hooking Apple’s iOS functions has been
reported,7 but it is not compatible with Android system
calls. The wrapper code utilizes a relative jump instruc-
tion, which enables RootGuard to use an inline hooking

technique to modify this jump’s target location.
Security Server. Security Server is designed specifically

to enforce RootGuard policies, providing an interface,
as previously described, through which LSM hooks can
query Security Server for RootGuard decisions. In addi-
tion, Security Server uses the information collected in the
sys_execve hook to identify app operations, determine
an operation’s subject, and grant or deny root access ac-
cording to RootGuard policies.

We use a unique identifier (UID) to distinguish app and
nonapp operations because each Android app is assigned
a UID number greater than 10,000, while UID numbers
lower than 10,000 are reserved for system usage. Because
apps can execute a single root command every time or,
alternately, open a root shell to run a set of commands,
we identity the subject (or UID) in each case by tracing
ancestors in the privileging process, following the parent
pointers (parent and real_parent) in its task_
struct structure until an app process is found.

Default policies
RootGuard has a set of default policies to protect inexpe-
rienced users and defend against attacks from malware
with root privileges.

We analyzed the most popular root-required apps in
Google Play and defined four major groups:

 • apps for browsing the entire file system and editing
files,

 • apps for backing up files,
 • security apps providing real-time detection and pro-
tection, and

 • apps for accessing and configuring hardware settings.

When installing an app, RootGuard asks the user to
specify one of these groups according to the app’s func-
tion. The app will be subject to policies corresponding
to that group; otherwise, a more general set of conserva-
tive policies apply. We assume that a legitimate app will
use root privileges only to accomplish what its descrip-
tion advertises and nothing else. For example, an app
requesting root access for browsing files will not alter
hardware configurations.

To help users monitor and customize how apps use root
privileges, RootGuard records every operation in detail—
including time, target, and so forth—and presents these in
SuperuserEx. Users can inspect this log and, if they wish,
modify an app’s policies.

RootGuard’s overall default policies cover seven sub-
ject areas: partitions, devices, system files, private data,
processes, apps, and app components. These vary depend-
ing on the requesting app’s assigned group, and provide
three options:

Security Server is designed specifically
to enforce RootGuard policies,
providing an interface through which
LSM hooks can query Security Server for
RootGuard decisions.

r6luo.indd 36 5/22/14 1:15 PM

 JUNE 2014 37

 • allow the operation without user interaction,
 • deny the operation without user interaction, or
 • ask for user permission.

Some examples, focusing on file browsing tools, illus-
trate how these default policies work in practice.

Mounting system partitions. The /system partition
is mounted as read-only by default: allowing apps
to mount system partitions as writable is dangerous
because malware can leave back doors there. Only file-
browsing apps are automatically granted permission to
mount system partitions because when users want to
edit files there, /system must be writable.

Accessing hardware devices. Devices are exposed in
the user space as files located in the directory /dev.
Once malware gains root privileges, it can steal sensi-
tive data by accessing hardware devices—the GPS, for
example—directly. Moreover, unexpected writings to
these devices could crash the whole system. Therefore,
apps not designed to manipulate hardware, such as
file-browsing apps, are not allowed to read and write
hardware devices.

Accessing system files or other apps’ private data. Linux’s
discretionary access control cannot prevent apps with
root privileges from accessing system files and the private
data of other apps. RootGuard’s default policies only allow
file-browsing and backup tools to access system files and
apps’ private data.

Manipulating process memory. Behaviors of a process
can be completely changed if its memory is altered.
An app with root access can inject code into another
process’s memory and thereby interpose its functions;
malware with such access can inject a malicious pay-
load into a legitimate process and then conceal its
behaviors. Therefore, RootGuard prevents apps other
than security tools from manipulating the memory of
other running processes; moreover, it prohibits any
attempt to access SuperuserEx’s memory in case of
code-injection attacks.

EVALUATION
For evaluation purposes, we implemented RootGuard in
Android 4.2 with Linux kernel 3.4.0. The tool has 4,762
lines of C/C++ code and 1,327 lines of Java code, measured
by cloc 1.6, and a few XML files. We first describe potential
threats posed by malware with root privileges and pres-
ent four case studies that demonstrate how RootGuard
mitigates such threats. We then discuss RootGuard’s per-
formance for users running popular apps and evaluate its
overhead using a well-known benchmark app.

Threats posed by malware with root privileges
Android’s application sandbox restricts apps’ ability to
access the file system and other system resources. Thus,
while malware with user-granted permissions could create
problems, the damage is generally limited because the op-
erations do not have sufficient privilege to hide and inflict
permanent infection. Malware granted root privileges,
however, can circumvent all Android security measures,
in addition to those of existing root-management tools.
Six malware threats stand out.

Threat 1: Silent installation and uninstallation. Prior
to installing an app, users are shown all permissions
that app is requesting8 and can cancel the installation

if any are suspicious. However, after gaining root privi-
lege, malware can install or uninstall any nonsystem
apps directly by running pm install or pm unin-
stall commands. Consequently, new malware can
be installed and legitimate apps might be uninstalled
without user awareness.

Threat 2: Antimalware tool termination. By default, apps
do not have the privileges necessary to terminate other
apps. However, any malware with root privilege can run
a kill command to terminate antimalware apps and
make itself undetectable. Moreover, malware can dis-
able key antimalware app components, such as services
and broadcast receivers, thereby invalidating detection
functionality. Even worse, some antimalware apps will
continue to run even after key components have been
disabled, because the main thread remains untouched;
users have no idea the security function is compromised.

Threat 3: Irremovability. System apps in the /system/
app directory cannot be uninstalled because the system
partition they reside in is not writable. After gaining root
privileges, however, malware can temporarily remount
the system partition as writable, delete those apps, and
insert itself in /system/app. Users cannot remove mal-
ware system apps in /system/app.

Threat 4: Access to other apps’ private data. Generally,
an app’s private data cannot be read or altered by other

RootGuard prevents apps other than
security tools from manipulating the
memory of other running processes;
moreover, it prohibits any attempt to
access SuperuserEx’s memory in case of
code-injection attacks.

r6luo.indd 37 5/22/14 1:15 PM

 38 COMPUTER

COVER FE ATURE

apps, or is permission-protected and available only to
apps with corresponding permissions. For example, to
read or write contacts data, an app has to request READ_
CONTACTS or WRITE_CONTACTS permissions. However,
no such restriction applies to malware with root privi-
leges, which can alter the access mode of the contacts
database file to “global readable” and “global writable”
and so steal the other app’s data. In the most severe
cases, malware directly modifies the signature database
of security software to bypass any scanning, making
itself undetectable.

Threat 5: Back doors. Malware with root privileges can
create a back door in the infected system that allows it to
bypass normal authentication. When it needs root permis-
sions, the malware can leverage this back door to elevate
privileges directly, without running exploit programs or
requesting permission from su again.

Threat 6: Rootkits and bootkits. Rootkits are par-
ticularly surreptitious malware designed to bypass
normal detection methods and enable privileged
access without a system’s awareness; bootkits are
a kind of rootkit that first takes control during the
boot process. Both user-mode and kernel-mode root-
kits and bootkits can be implemented on the Android
platform (https://viaforensics.com/mobile-security/
dude-droid-sys-call-table-rootedcon-2013.html), but
installing them requires root privilege. For example, the
first bootkit found on Android, DKFBootKit (www.csc.
ncsu.edu/faculty/jiang/DKFBootKit), needs root privileges
to install the bootkit payload.

Case studies showing RootGuard’s effectiveness
To demonstrate RootGuard’s effectiveness in mitigating
malware attacks, we chose three real-world malware sam-
ples and built a malicious proof-of-concept (PoC) app that,
together, represent the six threats described above. We
assume here that RootGuard operates only according to
its default policies.

RootSmart (Threats 1, 3, and 5). RootSmart (www.csc.
ncsu.edu/faculty/jiang/RootSmart) can download other
malware from remote servers and install them silently.
To install an app without the user’s awareness, RootSmart
executes the pm install command. Similarly, to unin-
stall an app, such as an antimalware tool, RootSmart
executes pm uninstall. RootGuard can prevent these
operations because its policies do not allow an app to run
pm install/uninstall without the user’s permis-
sion. RootGuard also prohibits RootSmart from creating
a backdoor (/system/xbin/smart/sh) into the system
partition because RootGuard does not allow an app to
remount the system partition as writable.

AVPass (Threat 4). AVPass (http://contagiominidump.
blogspot.hk/2014/01/android-avpass.html) uses root privi-
leges to modify the signature databases of many popular
antimalware apps. RootGuard can stop AVPass because
an app is not allowed to modify another app’s private files
without permission.

DKFBootKit (Threat 6). As the first bootkit targeting
Android, DKFBootKit mounts the system partition as
writable, copies itself into the /system/lib directory,

Table 1. AnTuTu benchmark results measuring RootGuard’s runtime performance
against the basic Android Operating System Project (AOSP) build.

AnTuTu test case

AOSP RootGuard

Average
Standard
deviation Average

Standard
deviation

Multitask 525.05 7.04 519.28 17.21

Dalvik 228.47 2.76 223.33 8.18

CPU integer 346.84 2.36 349.38 1.62

CPU floating point 81.47 0.84 79.47 2.60

RAM operation 269.21 1.51 261.05 11.09

RAM speed 584.84 13.71 574.43 32.87

Storage I/O 765.05 74.44 742.48 70.92

Database I/O 420.84 50.50 399.52 40.71

Total 3,221.79 76.74 3,148.95 143.51

r6luo.indd 38 5/22/14 1:15 PM

 JUNE 2014 39

replaces several commonly used utility programs (for
example, ifconfig and mount), and alters bootstrap-
related daemons, like vold and debuggerd, and scripts.
However, one of its primary steps—remounting system
partition as writable—cannot be performed accord-
ing to RootGuard policy, which immediately prevents
bootkit installation.

PoC app (Threat 2). We built a PoC malware app specifi-
cally to demonstrate Threat 2. This app first enumerates
system processes. When it finds antimalware software,
it terminates that process by executing the kill <pid>
command, using root privilege. RootGuard denies this
operation because an app is not allowed to kill other pro-
cesses without the user’s permission. In addition, our PoC
malware can query key components of an antimalware
tool and disable them by executing pm disable. Root-
Guard policy also prohibits this action.

RootGuard-enhanced device user experience
We ran five popular Android apps from Google Play that
require root privilege—Titanium Backup, CPU Tuner, Root
Explorer, LBE Privacy Guard, and Root App Delete—in a
RootGuard-enhanced device. Our results show that when
a user specifies the proper group during installation, the
app will function normally and fully; the user need not
add any additional configurations to the default policy. If
an inappropriate group is specified, the app’s root pay-
load will not function normally, but the user can inspect
its operation log in SuperuserEx and then modify the
policy as needed.

Performance overhead
To measure RootGuard’s runtime performance overhead,
we ran the widely used benchmark app AnTuTu (www.
antutu.net) in two Google Nexus S devices, one having the
basic AOSP build installed and the other with RootGuard.
For both devices, we confirmed that the same number of
apps were loaded and running at any time.

Table 1 shows the results for 50 runs of the AnTuTu
benchmark for AOSP and for RootGuard. In general, Root-
Guard introduces only very low added overhead, within
one standard deviation of the AOSP result. RootGuard has
a number of checks in read and write operations, so the
performance loss in the storage I/O and database I/O tests
are reasonable. RootGuard’s RAM operation and RAM
speed scores are a little lower than AOSP’s, but within
an acceptable range. The CPU integer and CPU floating-
point test scores should not be affected because they do
not involve operations RootGuard has interests in, so the
differences here might result from measurement noise.
Multitask and Dalvik scores measure user experience
performance and are influenced only slightly because
RootGuard monitors operations.

OTHER SECURITY CONSIDERATIONS
Attackers might employ kernel-mode rootkits or exploit
kernel vulnerabilities to attack RootGuard. Operating at
the same security level as the OS, kernel-mode rootkits
can invalidate RootGuard’s hooks through direct kernel
object modification (DKOM). To mitigate kernel-mode
rootkit incursions, we disabled support for the Linux load-
able kernel module (LKM) when compiling the kernel. In
future work, we will enhance RootGuard’s ability to moni-
tor and manage kernel module loading. Note that a few
kernel-mode rookits are loaded by manipulating kernel
memory via the device file /dev/mem; because RootGuard
prevents apps from reading or writing /dev/mem, these
do not pose a problem.

RootGuard has components in the user space—
specifically, SuperuserEx and the policy storage
database—that adversaries may attack. Although we
adopt additional measures to protect them—for exam-
ple, denying any access to SuperuserEx’s memory by
other apps to defeat potential code-injection attacks—as
a kernel-level mechanism RootGuard cannot mitigate all
kernel attacks and so could be disabled if attackers suc-
cessfully exploit kernel vulnerabilities. In future work,
we will explore using virtualization techniques to pro-
vide better protection.

In addition, an attacker who knows RootGuard’s default
policies can design a malicious app specifically so that it
fools the user into categorizing it as a file-browsing tool,
thus allowing the app to steal sensitive data. Although
RootGuard cannot directly defeat such attacks, it can
inform the user that root operations are being executed
by showing a message in the notification bar. If the user
did not trigger the root operation, he or she can check the
SuperuserEx records for details. Moreover, RootGuard and
antimalware apps complement one another; it is possible
to use them in tandem to defeat advanced malware.

O verall, RootGuard improves the security of rooted
Android phones, effectively mitigating attacks by
malware with root privileges without affecting app

performance and at the same time achieving low overhead.
Future work will extend RootGuard’s ability to collect addi-
tional context information, including the sequence and
the pattern of system calls, so as to further facilitate user
decision making and prevent malicious app behaviors,
particularly by those using native code.

Acknowledgments
This work is supported in part by the Hong Kong GRF (No.

PolyU 5389/13E); the National Natural Science Foundation

of China (No. 61202396); the Open Fund of Key Laboratory of

Digital Signal and Image Processing, Guangdong Province; the

r6luo.indd 39 5/22/14 1:15 PM

 40 COMPUTER

COVER FE ATURE

Shenzhen City Special Fund for Strategic Emerging Industries

(No. JCYJ20120830153030584); and the Hong Kong Innovation

and Technology Fund (No. ITS/073/12).

References
1. A. Shabtai et al., “Google Android: A Comprehensive

Security Assessment,” IEEE Security & Privacy, vol. 8,
no. 2, 2010, pp. 35–44.

2. E . Wi l l i a m, M. Ong t a ng , a nd P. McDa niel ,
“Understanding Android Security,” IEEE Security &
Privacy, vol. 7, no. 1, 2009, pp. 50–57.

3. S. Smalley and R. Craig, “Security Enhanced (SE)
Android: Bringing Flexible MAC to Android,” Proc. 20th
Annual Network & Distributed System Security Symp.
(NSDD 13), 2013; www.internetsociety.org/doc/security-
enhanced-se-android-bringing-flexible-mac-android.

4. S. Bugiel, S. Heuser, and A. Sadeghi, “Flexible and
Fine-grained Mandatory Access Control on Android
for Diverse Security and Privacy Policies,” Proc. 22nd
Usenix Security Symp. (Security 13), 2013, pp. 131–146.

5. E . Chin et a l ., “A na lyz ing Inter-appl ica t ion
Communication in Android,” Proc. 9th Int’l Conf. Mobile
Systems, Applications, and Services (MobiSys 11), 2011,
pp. 239–252.

6. C. Wright et al., “Linux Security Modules: General
Security Support for the Linux Kernel.” Proc. 11th
Usenix Security Symp. (Security 02), 2002, pp. 17–31.

7. D. Damopoulos et al., “Exposing Mobile Malware from
the Inside (Or What Is Your Mobile App Really Doing?),”

Peer-to-Peer Networking and Applications, Dec. 2012;
doi:10.1007/s12083-012-0179-x.

8. A. Felt et al., “Android Permissions Demystified,” Proc.
18th ACM Conf. Computer and Comm. Security (CCS 11),
2011, pp. 627–638.

Yuru Shao is a research assistant in the Department of
Computing at the Hong Kong Polytechnic University. His
research focuses on smartphone security. Shao received
a BEng in information security from Wuhan University,
China. Contact him at csyshao@comp.polyu.edu.hk.

Xiapu Luo is a research assistant professor in the Depart-
ment of Computing at the Hong Kong Polytechnic University
and is affiliated with the Shenzhen Research Institute of the
Hong Kong Polytechnic University. His research interests in-
clude smartphone security, network security and privacy,
and Internet measurement. Luo received a PhD in computer
science from the Hong Kong Polytechnic University and was
a postdoctoral research fellow at the Georgia Institute of
Technology. He is a member of IEEE. Contact him as corre-
sponding author at csxluo@comp.polyu.edu.hk.

Chenxiong Qian is a research assistant in the Department
of Computing at the Hong Kong Polytechnic University. His
research focuses on security and privacy, particularly in
mobile environments. Qian received a BEng in software en-
gineering from Nanjing University, China. He is a member
of IEEE. Contact him at cscqian@comp.polyu.edu.hk.

IEEE Software seeks practical,

readable articles that will appeal

to experts and nonexperts alike.

The magazine aims to deliver reliable

information to software developers

and managers to help them stay on

top of rapid technology change.

Author guidelines:
www.computer.org/software/author.htm
Further details: software@computer.org
www.computer.org/software

Call for Articles

r6luo.indd 40 5/22/14 1:15 PM

