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ROSF: Leveraging Information Retrieval and 
Supervised Learning for Recommending 

Code Snippets  
He Jiang*, Liming Nie, Zeyi Sun, Zhilei Ren, Weiqiang Kong, Tao Zhang, and Xiapu Luo 

Abstract—when implementing unfamiliar programming tasks, developers commonly search code examples and learn usage 

patterns of APIs from the code examples or reuse them by copy-pasting and modifying. For providing high-quality code 

examples, previous studies present several methods to recommend code snippets mainly based on information retrieval. In this 

paper, to provide better recommendation results, we propose ROSF, Recommending cOde Snippets with multi-aspect Features, 

a novel method combining both information retrieval and supervised learning. In our method, we recommend Top-K code 

snippets for a given free-form query based on two stages, i.e., coarse-grained searching and fine-grained re-ranking. First, we 

generate a code snippet candidate set by searching a code snippet corpus using an information retrieval method. Second, we 

predict probability values of the code snippets for different relevance scores in the candidate set by the learned prediction model 

from a training set, re-rank these candidate code snippets according to the probability values, and recommend the final results 

to developers. We conduct several experiments to evaluate our method in a large-scale corpus containing 921,713 real-world 

code snippets. The results show that ROSF is an effective method for code snippets recommendation and outperforms the-

state-of-the-art methods by 20% - 41% in Precision and 13% - 33% in NDCG. 

Index Terms—Code snippets recommendation, information retrieval, supervised learning, topic model, feature.  

——————————      —————————— 

1 INTRODUCTION 

NTERNETWARE is a software paradigm consisting 
of self-contained, autonomous entities in Internet 

computing environment [30]. As mentioned in 
previous work, both desktop software and mobile 
applications (apps) are possible entities in 
Internetware systems [30], [22]. In the development 
process for these software, developers often have to 
implement unfamiliar programming tasks. They either 
reuse code examples by copy-pasting and modifying 
[23], or learn the correct ways to employ an unfamiliar 
Application Programming Interface (API) relying on 
code examples [54]. As one of the most common ways 
for reuse, code reuse can save time and resources and 
reduce redundancy [32]. 

A code snippet refers to a piece of code, which can 
accomplish one or more specific programming tasks 
[17]. Typically, a programming task, for example 
“record sound audio”, is a short text that describes the 
requirements on the program to be constructed. To 

find high-quality code examples for programming 
tasks, developers may search the publicly available 
code repositories on the Internet or locally available 
projects [28]. Some Internet-scale code search engines, 
such as Open Hub [4], can provide code examples for a 
given task. However, the dominant measure used by 
these engines is textual similarity [11]. Previous studies 
show that these results are usually complicated and 
not sufficient [17].  

In recent years, some researchers propose several 
methods to recommend code snippets for free-form 
queries[7], [17], [29]. These methods rank the code 
snippets in a corpus and return Top-K related code 
snippets to developers. An earlier study [23] shows 
that the performance of these methods has room for 
improvement. The possible reasons may include that a 
signal feature is used for ranking and the weights of 
features cannot be adjusted automatically. The features 
employed in these methods contain textual similarity 
between a query and code snippets [29], code metrics 
such as the lines of code [36], etc. For achieving better 
performance, it is necessary to employ multiple 
features and assign different weights for these features 
automatically [7], [36]. Supervised learning can handle 
this scenario above, which is the machine learning task 
of inferring a model from labeled training set. Using 
the learned prediction model, one can determine the 
class labels for unseen instances in a test set for a new 
query [31], [50], and further recommend relevant code 
snippets. 
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In this paper, we propose Recommending cOde 
Snippets with multi-aspect Features (ROSF). Our 
method combines both information retrieval and 
supervised learning to improve the performance of 
code snippets recommendation. In this method, we 
explore two stages, i.e., coarse-grained searching and 
fine-grained re-ranking, to recommend code snippets. 
First, for a new free-form query, a candidate set is 
generated by using an information retrieval method. 
This stage tries to collect as many as possible relevant 
code snippets in the candidate set. Then, we re-rank 
the candidate set by a learned prediction model. This 
stage tries to re-rank the relevant code snippets to the 
top of the results by the supervised learning method. 
Here, the problem of code snippets recommendation is 
viewed as a multi-class classification. The prediction 
model is learned on the instances of a training set by 
utilizing multinomial logistic regression [6]. Each 
instance refers to a candidate code snippet, and is 
represented with a vector containing multi-feature 
values and a label. These features reflect three aspects 
of code snippets, i.e., text, topic, and structure. The 
label reflects the relevance score between a code 
snippet and the query. 

To evaluate the effectiveness of our method, we 
propose three Research Questions (RQs) and conduct 
several experiments to answer them. As code reuse is 
relatively common in mobile apps [32], our 
experiments are based on a code snippet corpus with 
more than 920,000 real-world code snippets from 1,538 
open source app projects on the Android platform. 
Moreover, we employ 35 queries and their candidate 
set to create the training and the test set. Among them, 
20 queries are randomly selected as testing queries, the 
others are treated as training queries. We label each 
candidate set for each query. Totally, 3,500 instances 
related to 35 queries are labeled by assessors. The 
results of experiments show that (1) ROSF can 
optimize the ranking of the candidate set to achieve 
better results. (2) ROSF is a better method for code 
snippets recommendation than comparative methods, 
which outperforms Portfolio [29] and VF [17] by 20% - 
41% in Precision@10 and 13% - 33% in Normalized 
Discounted Cumulative Gain (NDCG)@ 10. 

This paper makes the following contributions: 
1. We propose ROSF, a new hybrid code 

recommendation method based on information 
retrieval and supervised learning. Our method 
considers full advantage of text, topic, and structure 
aspects of code snippets. 

2. We evaluate the performance of ROSF against 
several comparative methods in terms of Precision and 
NDCG. 

3. We explore the impact of features on the 
performance of ROSF, and present the influential 
features for supervised learning method to 
recommend code snippets. 

4. We construct a code snippet corpus segmented 
from open source app projects, and label a set with 
3,500 instances for 35 real world free-form queries. 

Next section outlines the architecture of our method 
and a prototype. Section 3 elaborates on the data 
processing. The steps of training and recommendation 
are proposed in Section 4. Section 5 provides details 
about the experimental design. Experimental results 
are presented in Section 6. Section 7 states the threats 
to validity. The related works are shown in Section 8. 
In Section 9, we conclude this paper and introduce the 
future work.  

2 ARCHITECTURE AND PROTOTYPE 

This section first introduces the overall architecture of 
our framework, and then shows the whole process 
using a prototype.  

2.1 Architecture 

Fig. 1 shows two phases of our framework: Data 
Processing and recommendation (i.e., ROSF).  

In the Data Processing phrase, we input the open 
source app projects collected from the website F-droid  
[1], and output a code snippet corpus. First, we extract 
the Java files from app projects and store them in a 
Repository. Then, Segmentation parses each of the Java 
files to generate the code snippet corpus. Each method in 
the Java file is segmented to a code snippet [17]. In the 
phase of recommendation, the input contains the new 
query and the collected code snippet corpus. The output 
is a list with K ranked code snippets. As it is a time-
consuming work to label relevance scores for all code 
snippets in the code snippet corpus, following Niu et 
al. [36], we explore two stages to recommend code 
snippets: coarse-grained searching and fine-grained re-
ranking [37].  

Specifically, for a new query, we first identify a 
candidate set that contains N code snippets using an 
information retrieval method (e.g., BM25). Then, the 
candidate code snippets are represented as instances 
by Vector builder as a test set. Finally, by the learned 
prediction model from a training set, we predict the 
probability values belonging to different relevance 
scores for each instance in the test set. According to the 

 
Fig. 1. Code snippets recommendation framework. Two phases: 

Data Processing and recommendation (ROSF). The blue arrows 

indicate the process of training. The orange arrows indicate the 

process of recommending for a new query. 
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probability values, we identify the predicted relevance 
score, and recommend a list with K (K<N) code 
snippets by the module of Ranker.  

For learning a prediction model from the training 
set, we first prepare several training queries and their 
candidate sets following the steps above. Then, we 
construct the instances for each training query to 
generate the training set. One difference from the test 
set is that the relevance score for each instance is 
labelled manually by assessors. Finally, we employ 
multinomial logistic regression [6] to train and 
generate the prediction model. Recently, there are 
more applications of IR in software engineering (e.g., 
for regression test prioritization [41]), it seems that the 
proposed technique may also be possible to applied to 
those new areas. It would be interesting to discuss 
such potentials. 

2.2 Prototype 

To display our method in a more visually appealing 
manner, we implement a prototype. As shown in Fig. 2, 
there are two windows: the main user interface (a) and 
the code snippet display window (b).  

When a developer enters a free-form query in the 
search bar of the main user interface, for 
example, ”record audio sound”, ROSF returns a list with 
10 code snippets below the search bar. Suppose the 
code snippet on the second position is selected, by 
clicking the “code” button on the right, the text content 
of this code snippet will be displayed in the code snippet 
display window.  Then, the developer can check the 
details about this code snippet and get inspiration 
from it.  

The purpose of our work is saving developers' time 
for searching more relevant code snippets according to 
their programming tasks. After achieving these code 
snippets, developers still need to manually modify 
these code snippets and further test. In other words, 
we only provide relevant code snippets to developers 
without considering integration with a code context. 

3 DATA PROCESSING 

In this section, we show the data and the process to 
acquire them. Then, we present some techniques used 
in the process, such as BM25, topic model. As 
mentioned by Mei et al. [30], in the Internet computing 
environment, mobile apps are possible entities in 
Internetware systems [22], [53]. Code reuse is relatively 
common in mobile apps [32], and mobile apps are 
becoming more popular, we use the data on the 
Android platform to evaluate our method.  

3.1 Open Source App Projects 

The code snippets recommended in our 
experiments come from open source app projects. 
These projects are collected from F-droid [1]. F-droid is 

 

(a)                                                                                                                      (b) 

Fig. 2. Prototype of ROSF. Two interfaces are contained: the main user interface (a), and the code snippet display interface (b). 

 
Fig. 3. An example for code segmentation. 

TABLE 1 

THE FEATURES AND THEIR CATEGORIES 

ID Categories Features 

f1 

Text 

The textual similarity between a query and the 
content of a candidate code snippet (i.e., code text 
and comments). 

f2 
The textual similarity between a query and the full 
title of a candidate code snippet (i.e., package name 
of app, class name, and code snippet name). 

f3 
The textual similarity between a query and the 
simple title (only contains code snippet name) of a 
candidate code snippet. 

f4 
The textual similarity between a query and the 
sibling method names contained in a same Java file 
with a candidate code snippet. 

f5 
The textual similarity between a query and the 
import statements of Android library in the Java 
file that contains a candidate code snippet. 

f6 
The textual similarity between a query and the 
import statements of the Java standard library in 
the Java file that contains a candidate code snippet. 

f7 
The textual similarity between a query and the 
import statements of other libraries in the Java file 
that contains a candidate code snippet. 

f8 Topic  
The topic similarity between a query and the 
content of a candidate code snippet. 

f9 Structure The number of lines in a candidate code snippet. 
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a Website with free and open source apps on the 
Android platform. For each one of the app projects, 
there are several versions. We only focus on the latest 
version in our experiments. Until July 2015, we 
collected all 1,538 Android app projects from F-droid. 
Following the steps of [35], we extract 921,713 code 
snippets from these app projects. 

3.2 Feature Extraction 

For each Java file in the app project, we parse it using 
the module Segmentation, and extract three aspects of 
code snippets: text, topic, and structure. These aspects 
are used to calculate three types of feature values of 
instances to train the prediction model, some of these 
features are used in earlier studies  [17], [34], [54]. 
Table 1 shows some details about these features. 
Specifically, the text and topic aspects are used to 
calculate the query-dependent textual similarity 
features and topic similarity features [21], respectively. 
A code snippet is considered as a textual document 
describing one or more technical issues/topics. Each of 
them is represented by certain words or terms. 
Intuitively, the terms are textual, visible, while the 
topics are semantic, latent. They can complement each 
other to achieve better performance for text matching 
tasks [24]. Moreover, the structure aspect is employed 
as query-independent feature. Fig. 3 shows a Java file 
that implements a programming task "record sound 
audio". Next, we show how to segment Java files and 
collect these aspects using this example. 

(1) Text 
Content: In Fig. 3, there are four methods in the Java 

file "RecorderService". The tool Eclipse Abstract Syntax 
Tree (AST) is exploited to parse each Java file [17]. 
Totally, we can segment four code snippets from this 
Java file. Each method in the Java file can be 
segmented as a code snippet, which contains the code 
text and comments. Following the process, we can 
generate a code snippet corpus. As shown in Table 2, 
the first row provides the statistical information about 
the number of code snippets in our code snippet 
corpus. Here, “Max/Min” refers to the maximum and 
minimum number of code snippets that an app project 
contains. The max value reaches 22,234, which means 
that project is quite large. The feature f1 in Table 1 is 
the textual similarity between a query and the content 
of a candidate code snippet. 

The title of code snippet: We name each code snippet 
using a fixed format. In this example, we set the title of 
the method "localStartRecording" as "net.micode. 
soundrecorder_1_src@RecorderService#localStartReco
rding.txt", where "net.micode.soundrecorder_1_src” 
refers to the package name of the app, and 
“RecorderService” is the name of the Java file. We 
employ two types of titles to calculate the features f2 
and f3 in Table 1. The differences are the usages of 
package names and Java file names. 

The names of sibling methods: Except for the title of the 

candidate method, other sibling methods in this Java 
file also show helpful information. The feature f4 
provides the textual similarity between the queries and 
the names of these sibling methods. 

The import statements: Beside above information, we 
also take into account the import statements of Java 
files [7]. The import statements in Fig. 3 direct the Java 
compiler to include the android and Java APIs in the 
compilation. We divide these import statements into 
three categories: Android, Java, and other libraries. 
The features f5 - f7 are the textural similarity between a 
query and the import statements. 

(2) Topic 
In Table 1, f8 is the topic feature. In our experiments, 

except for the textual similarity above, we also 
calculate the topic similarity between queries and code 
snippets using Latent Dirichlet Allocation (LDA) [8]. 
Given a collection of code snippets and queries, we 
first generate a term-by-document matrix M. A generic 
entry 𝜔𝑖𝑗  of this matrix denotes a measure of the 
weight (i.e., relevance) of the  𝑖𝑡ℎ  term in the  𝑗𝑡ℎ 
document. Then, LDA takes the term-by-document 
matrix as an input to identify the latent variables 
(topics) hidden in the data and generates as output a 
matrix 𝜃 , denoted as topic-by-document matrix. A 
generic entry 𝜃𝑖𝑗 of this matrix denotes the probability 
of the  𝑗𝑡ℎ  document to belong to the  𝑖𝑡ℎ  topic. The 
number of topics is usually much smaller than the 
number of terms. Finally, the topic similarity between 
queries and code snippets can be calculated based on 
their topic-by-document matrix [38]. In this process, 
we use the collapsed Gibbs sampling on Mallet [3]. 
Moreover, following [38], we set the topic number as 
100, and the number of iterations as 100. 

(3) Structure 
The number of lines: In our preliminary experiments, 

we observe that the number of lines in code snippets is 
also an important type of information. Too much or 
too little line numbers will unsuitable to implement 
programming tasks. The second row of Table 2 
provides the statistical information about the line 
numbers of code snippets in our code snippet corpus. 
Because the number of lines in code snippets is query-
independent, we use it as feature f9 directly.  

3.3 Index and Search 

By the module Index and Search on Lucene, we index 
the text aspects (i.e., the content, the titles, the sibling 
method names, and the import statements) of code 
snippets. Meanwhile, the text features f1 - f7 can be 
calculated when the query is entered. Lucene is a free 
and open-source information retrieval engine [2]. We 

TABLE 2 

THE STATISTICAL INFORMATION FOR CODES AND LINES 

 Total Max Min Mean StdDev 

Codes 921,713 22,234 1 600 1623 

Lines 11,445,768 2,222 1 12 22 
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employ Lucene as it can provide high quality and fast 
services for indexing and searching. Moreover, in our 
work, we also use Lucene to generate the candidate set 
for a given query.  

Before indexing the text aspects of a code snippet, 
we need to preprocess each of them. The text pre-
processing is important in the text mining community 
[47], [49], [51], which contains tokenization, stop words 
removal, and stemming.  Before tokenization, we split 
the identifiers to terms by Camel-case. For example, 
the identifier "MediaRecorder" can be split into 
"Media" and "Recorder" [29]. After above steps, the text 
aspects the code snippet are now represented as 
several bags of terms. Then, we store them on Lucene 
to generate a document. In other words, a document 
corresponds to a code snippet and consists of a 
number of fields. Each field stores the content of each 
processed text aspects.  

3.4 BM25 

On Lucene, we generate the candidate set and 
calculate the features against a query with the BM25 
textual similarity by Lucene automatically. BM25 is a 
bag-of-words ranking function implemented in Okapi 
system [40], which has provided very effective 
retrieval performance in previous TREC experiments 
[52]. As the queries with several keywords are often 
short, BM25 can facilitate the retrieval of documents 
relevant to a short query [13].  

Given a query q with terms 𝑡1, 𝑡2, ..., 𝑡𝑛 , the BM25 
similarity between a document D and the query q  is 
[25], [44] : 

𝑠𝑖𝑚(𝐷, 𝑞) = ∑ 𝐼𝐷𝐹(𝑡) ∙
𝑡𝑓(𝑡,𝐷)(𝑘1+1)

𝑡𝑓(𝑡,𝐷)+𝑘1(1−𝑏+𝑏
|𝐷|

𝑎𝑣𝑔𝑑𝑙
)

𝑡∈𝑞∩𝐷     (1) 

where, 𝑡𝑓(𝑡, 𝐷)  is the term frequency of 𝑡  in the 
document D,  |𝐷|  is the length of document D, and 
𝑎𝑣𝑔𝑑𝑙 is the average of document lengths in the whole 
corpus. The parameters 𝑘1 and b control the scale of 
term frequency and document length, respectively. In 
our experiments, the values of k1, b are 1.2 and 0.75, 
respectively, which are the recommended values in  
[40].  

The Inverse Document Frequency (IDF) of term t in 
the whole corpus is calculated as: 

𝐼𝐷𝐹(𝑡) = 𝑙𝑜𝑔
1+(𝑁−𝑛(𝑡)+0.5)

𝑛(𝑡)+0.5
                     (2) 

where, 𝑁 is the total number of documents, 𝑛(𝑡) is the 
number of documents that contain the term 𝑡. 0.5 is a 
smoothing constant to deal with the situation that 𝑛(𝑡) 
is set to 0.  

4 TRAINING AND RECOMMENDATION 

This section details our method. For a given query 
from a developer, ROSF is responsible for 
recommending a list of potential relevant code 

snippets. There are two stages in this process: coarse-
grained searching and fine-grained re-ranking. 
Specifically, the first stage is achieving Top-N code 
snippets as the candidate set. The second stage is 
optimizing the ranking of this set using a learned 
prediction model and recommending Top-K code 
snippets to the developers. 

4.1 Achieving the Candidate Set 

To collect Top-N code snippets as the candidate set, we 
score each snippet in the corpus with a BM25 
similarity for the given query by using formula (1) on 
Lucene. 

After scoring, the snippets are ranked based on their 
values. Snippets with high scores are ranked in the top 
of the final result, which means these snippets are 
more relevant to the query. Finally, we can get the 
candidate set with Top-N code snippets. It should be 
noted that in the comparative method BM25, the Top-
K code snippets out of Top-N code snippets are 
returned as the final result. 

In the process, we employ two strategies to filter the 
results. The first one, following [7], is to remove the 
code snippets with less than five lines in the results of 
our method. Another is the removal of potentially 
duplicate code snippets in the results. Two code 
snippets are considered potentially duplicated if they 
have a same method name and a BM25 similarity.  

4.2 Vector Builder 

Vector Builder module is employed to construct the 
instances of the training set or the test set in our 
experiments. Each instance corresponds to a candidate 
code snippet for a query. It is represented as a vector 
with the form < q, Fc, L>, where q refers to the given 
query; Fc contains different feature values of a 
candidate code snippet c; L refers to the relevance 
score between the query and the candidate code 
snippet. In a real scenario, we only need to evaluate 
the relevance score for each instance in the training set 
manually. The labels for the instances in the test set are 
predicted by the learned prediction model. However, 
in our experiments, for generating the golden set, we 
evaluate all instances in the candidate set for 35 
queries. Totally, we label 3,500 instances. 

4.3 Prediction model and Ranker 

In this subsection, we show the re-ranking process 
using the module Prediction model and Ranker in Fig. 1. 
In our work, we view the problem of code snippets 
recommendation as a multi-class classification. A 
candidate code snippet may be labeled with four 
possible scores. Meanwhile, multinomial logistic 
regression is a classification method that generalizes 
logistic regression to multiclass problems [6]. 
Therefore, multinomial logistic regression is a suitable 
analytic approach to our problem.  

Given a set of feature values of an instance, this 
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classification method constructs a linear predictor 
function to predict the probabilities of several possible 
labels for this instance. The linear predictor function is 
represented with a linear combination of the features 
and the weights of the features [6].  

 𝑠𝑐𝑜𝑟𝑒 (𝐹𝑐, 𝐿) = 𝛽𝐿 ∙ 𝐹𝑐                            (3) 

where, 𝐹𝐶  is the feature vector of instance c,  𝛽𝐿  is a 
vector of weights (or regression coefficients) 
corresponding to relevance score L, and s𝑐𝑜𝑟𝑒 (𝐹𝑐, 𝐿) is 
the probability belonging to relevance score L for the 
instance c. The best values of the weights for our 
problem are determined from the training set by using 
stochastic gradient descent algorithm according to the 
relevance scores labeled manually. 

For each instance of the candidate set for a new 
query, we employ the learned linear predictor function 
to predict the probabilities of four possible relevance 
scores. In other words, each instance has four 
probability values corresponding to four relevance 
scores. Then, the relevance score with the maximum 
probability value is selected as the predicted relevance 
score for the instance. Among the candidate set, we 
first sort the subset containing the code snippets with 
predicted score 4 according to the predicted probability 
values in descending order. Then, we select Top-K 
code snippets as the final results. If the size of this 
subset is less than K, we consider the subset with score 
3, until we collect K code snippets. 

For example: In Table 3, there are five instances, i.e., a, 
b, c, d, e, in a candidate set for a query. Assume we 
need to recommend Top-3 code snippets. Using the 
learned predictor model, first, we can generate the 
probability values of four relevance scores for each 
instance. Then, we identify the predicted score for each 
instance by the probability values. For the instance a, 
the maximum value is 0.9 which belongs to the score 3. 

We set the predicted score as 3. Finally, we can achieve 
four lists corresponding to four scores. We start to 
select from the list with score 4, until we collect 3 
instances. Finally, the result is: b, c, and a.  

5    EXPERIMENTAL DESIGN 

In this section, we evaluate the effectiveness of our proposed 

method by three research questions based on a large-scale 

real-world data set. Our experiments are conducted on a 3.60 

GHz CPU (Intel i5) PC running windows 8.1 OS with 8G 

memory. We implement our method using Java in Eclipse. 

All data used in our experiments can be found on our 

website for comparison [5]. 

5.1 Research Questions 

We explore the following Research Questions (RQs). In 
the section 6, we conduct several experiments to 
answer three RQs.   

RQ1: Will the performance of ROSF be affected by the 
size of the candidate set?  

As mentioned before, in ROSF, we use two stages to 
recommend code snippets, i.e., coarse-grained 
searching and fine-grained re-ranking. In coarse-

TABLE 4 
QUERIES FOR TEST 

ID Query Tag Viewed times 

1 Record audio sound android 4783 
2 Get screen dimensions in pixels android, layout, screen 720031 
3 Take a screenshot on Android android, screenshot 107071 
4 Get the memory used android, memory, memory-management 217026 
5 Get the list of activities/applications installed android 180820 
6 Import the system time android, operating-system 36113 
7 Open a URL in Android's web browser  android, url, android-intent, android-browser 342424 
8 Use android Timer in Android activity android, multithreading, timer,  scheduled-tasks 18998 
9 Capture Image from Camera and Display in Activity android, image, camera, capture 157947 
10 Handle right to left swipe gestures android, swipe, gesture-recognition 152674 
11 Converting pixels to dp android 264672 
12 Draw a line in android android 182837 
13 Get cpu usage android, cpu-usage 72209 
14 Detect network connection status android, networking, wifi, connectivity 69553 
15 Check if an application is installed or not in Android android, apk 46174 
16 Convert an image into Base64 string android, Base64 80049 
17 Get the web page contents from a WebView android, android-webwiew 52124 
18 Cancel an executing AsyncTask android, android-asynctask 85973 
19 Detect if a Bluetooth device is connected android 39245 
20 Retrieve incoming call's phone number android, telephonymanager,  phone-state-listener 50134 

 

TABLE 3 
AN EXAMPLE FOR RE-RANKING THE CANDIDATE SET 

 Relevance Scores  

Instances 1 2 3 4 Predicted Score 

a 0.1 0.0 0.9 0.0 3 

b 0.0 0.2 0.1 0.7 4 

c 0.4 0.1 0.0 0.5 4 

d 0.0 0.0 0.6 0.4 3 

e 0.8 0.0 0.1 0.1 1 

Code snippet with predicted score 4: b (0.7), c (0.5); 
Code snippet with predicted score 3: a (0.9), d (0.6); 
Code snippet with predicted score 2: null; 
Code snippet with predicted score 1: e (0.8); 
Top-3 recommendation results: b, c, and a. 
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grained searching, we identify a candidate set with N 
code snippets. Here, we propose RQ1 to explore the 
impact of the parameter N on the performance of our 
method. 

RQ2: Will the performance of ROSF be better than 
comparative methods?  

Different from previous methods mainly using 
information retrieval method, we are trying to employ 
both information retrieval and supervised learning to 
recommend code snippets. In this research question, 
we want to explore the performance of our method by 
comparing with several state-of-the-art methods. 

RQ3: How does each of the features affect the 
performance of our method?  
This research question is proposed to evaluate the 
impact of each feature on the performance of our 
method. Before that, we first explore the correlation 
between these features. 

5.2 Queries 

A query refers to a programming task. In order to 
simulate the real scenario, following the method in [23], 
we collect real-world programming tasks from Stack 
Overflow [4] as queries. We totally employ 35 queries 
in our experiments. Among them, 20 queries are 
randomly selected for test, the others are treated as 
training queries. In other words, the instances of the 
test set refer to the candidate sets of 20 test queries. 
Meanwhile, the instances of the training set refer to the 
candidate sets of 15 training queries. We use the same 
test queries for all methods in the following 
experiments.  

Table 4 shows some details about the test queries. 
All 35 queries can be found in our webpage [5]. The 
column “Tag” shows the categories of the queries. 
Note that these queries share the tag “android”, which 
means that they are related with mobile apps 
development. The column “Viewed times” indicates the 
number of times a query has been viewed by visitors. 
These values are all comparatively large, which means 
that the visitors desire to achieve the solutions of these 
programming tasks. 

For collecting these programming tasks, we first 
manually rank the posts with the “android” tag on 
Stack Overflow. Then, we check the posts one by one 
following some criteria until we collect 35 tasks. 
Following [29], the criteria are that the tasks should 
belong to Android app development and be viewed 
many times. Meanwhile, there are solutions (i.e., the 
accepted answers) along with these programming 
tasks in the same webpages. These solutions can assist 
in evaluating the relevance scores of code snippets. 
Finally, we extract the titles of these tasks as queries.  

5.3 Evaluation 

For evaluating the relevance score between a code 
snippet and a query, we conduct the following 
evaluation process [55]. First, for each test query, we 

obtain the Top-K code snippets from each comparative 
method. Then, we merge all code snippets into a pool 
which includes only unique code snippets. For each 
code snippet in this pool, we recruit two assessors to 
evaluate the relevance score between a code snippet 
and the query. As regards the inconsistencies of 
labeling, we recruit an expert to arbitrate the score. 
Finally, we employ two metrics to measure the 
performance of each method.  

Two assessors are graduate students from Dalian 
University of Technology, and the expert is a doctoral 
student from the same school. Both the two assessors 
and the expert have at least three years of Android app 
development experience. Meanwhile, two assessors 
have at least four years of Java development 
experience, and the expert has more than nine years of 
Java development experience. Before the evaluating, 
we give them a 30-minutes training about labeling. 

Following the method in [29], we label the relevance 
scores with a Four-level Likert scale. Meanwhile, the 
solutions together with the programming tasks in the 
Stack Overflow are used to assist labeling. In other 
words, the assessors can check the descriptions about 
the programming tasks and their solutions in 
evaluating. Here, we present the guidelines for 
labeling as follows:  Score 4: Highly relevant. The code 
snippet is perfectly suitable for the programming task. 
Score 3: Mostly relevant. The code snippet or the APIs 
used in this snippet can be reused for the 
programming task with some changes. Score 2: Mostly 
irrelevant. The code snippet only contains a few 

TABLE 5 
RECOMMENDATION PERFORMANCE OF ROSF WHEN 

N EQUALS TO DIFFERENT VALUES 

Top-N Precision@10 NDCG@10 

BM25 57.5% 0.7551 
20 60.5% 0.7777 
30 60% 0.8167 
40 61.5% 0.8140 
50 62.5% 0.7942 
60 63% 0.8248 
70 66.5% 0.8448 

80 64% 0.8427 
90 62% 0.8081 
100 60.5% 0.8158 

 

 

 

Fig. 4. The trends of Precision@10 and NDCG@10 when the size of 

the candidate set equals to different values. 
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relevant code lines, which is not enough to solve the 
programming task. Score 1: Completely irrelevant. The 
code snippet cannot solve the programming task. To 
put it simply, if the relevance score of a code snippet is 
equal to or greater than 3, i.e., 3 or 4, the code snippet 
should contain useful code lines or APIs to solve the 
programming task. 

5.4 Metrics 

An ideal recommendation method should hit more of 
the relevant records and place them at the top of the 
results. Following the previous methods[17], [29], we 
evaluate the performance of each method using two 
metrics, i.e., Precision@K and Normalized Discounted 
Cumulative Gain (NDCG)@K. Because we know 
nothing about the number of relevant code snippets 
not retrieved for a given query, following the previous 
method [29], it is impractical to calculate the metric 
recall.  

Specifically, the Precision@K is defined as the 
proportion of the true positives (i.e., the code snippets 
with score 3 or 4) in Top-K recommended results (both 
true positives and false positives) [29].  

The Precision@K is calculated as:  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝐾 =  
|𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒|

|𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑|
                    (4) 

where the numerator |Relevance| is the number of 
relevant code snippets in the result. The denominator 
|Retrieved|is the total number of results recommended 
by a method, which equals to 10 in our study. 

The metric NDCG is commonly used in information 
retrieval to measure the ranking capability of a 
recommendation method. A method is more useful 
when there are more relevant results in higher 
positions in the hit list than irrelevant results. We 
calculate NDCG@K of each method for given queries.  

𝑁𝐷𝐶𝐺@𝐾 =  
𝐷𝐶𝐺@𝐾

𝐼𝐷𝐶𝐺@𝐾
                           (5) 

𝐷𝐶𝐺@𝐾 = 𝑅1 + ∑
𝑅𝑖

𝑙𝑜𝑔2𝑖

𝐾
𝑖=2                      (6) 

where 𝑁𝐷𝐶𝐺@𝐾  is the 𝐷𝐶𝐺@𝐾  normalized by 
𝐼𝐷𝐶𝐺@𝐾 . 𝐼𝐷𝐶𝐺@𝐾 is the ideal 𝐷𝐶𝐺@𝐾 , where the 
results are sorted by relevance scores. 𝑅1 is the 
relevance score at the first position in the list. 𝑅𝑖 is the 
relevance score at the ith position.  

In the experiments, we observe that the value of 
NDCG cannot show the real performance for 
recommendation. For example, there are two results 

from different methods for a given query. The result A 
is 4, 1, 1, and 1. The result B is 2, 2, 2, and 2. We 
recommend 4 code snippets in these results. The 
values of NDCG for two results are all equal to 1. 
However, we find that there are no relevant code 
snippets in the result B (a snippet with score 3 or 4 was 
considered to be relevant). To solve this problem, we 
set the score 1 and score 2 to score 0 in the returned 
results. Then, the NDCG value of the result B equals to 
0. The NDCG value of the result A still equals to 1. 

6 EXPERIMENTAL RESULTS 

This section presents the results of several experiments 
to answer the three RQs proposed in section 5.1. 

6.1 Answer to RQ1 

To answer RQ1, we explore the impact of the 
parameter N for recommendation, i.e., the size of the 
candidate set. In this experiment, we use the result 
generated by BM25 as a baseline, which refers to the 
result without the re-ranking process. Then, we 
achieve several results when parameter N equals to 
different values using our method. Finally, the metrics 
based on these results are calculated and compared. 

Table 5 summaries the numerical results of two 
metrics. In the column Top-N, Lines 20 to 100 refer to 
several results of ROSF when N equals to these values. 
When N equals to these values, the performance of 
ROSF is greater than BM25. We also find that, when N 
equals 70, ROSF obtains the best performance, where 
the value of Precision@10 is 66.5%, and the value of 
NDCG@10 is 0.8448. ROSF improves BM25 by up to 16% 
in Precision, and 12% in NDCG. The results show that 
ROSF has the ability to improve the positions of the 
relevant code snippets in the candidate set. 

In a more intuitive way, Fig. 4 shows the trends of 
two metrics. In the figure, we note that the values of 
two metrics first all rise and then descend. They all 
reach their peaks when N equals to 70. The possible 
reason may be that more irrelevant code snippets will 
be added in the candidate set than relevant ones, as the 
N value gradually increases. Finally, we chose 70 as 

 
 
 

 

 
 
 

 

Fig. 5. Comparisons for average ranking of five methods for 

Friedman’s test 
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Fig. 6. The statistical results of Precision@10 (a) and NDCG@10 (b) 
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methods. The y axes indicate the range for two metrics, respectively. 
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the default value of the parameter N in the following 
experiments. In this experiment, we only discuss the 
situations when the values of parameter N are less 
than 100. We still do not know the trends in other cases. 
This will be a threat to our conclusions. 

Answer to RQ1: The performance of ROSF varies 
when the size of the candidate set takes different 
values. When the N is less than 100, ROSF consistently 
outperforms BM25 in terms of both Precision@10 and 
NDCG@10. ROSF achieves the best performance when 
the value equals to 70. 

6.2 Answer to RQ2 

RQ2 is examined in our second experiment, which was 
designed to compare our proposed method ROSF with 
the comparative methods. Four comparative methods 
used are: BM25, BM25F, Portfolio [29], and VF [17]. 
The reason why these methods are selected is that they 
take free-form queries as inputs and output code 
snippets for the queries. Specifically, BM25F refers to 
the strategy that searches multiple fields on Lucene 
like SSI [7], where BM25 is used to calculate the 
similarities. BM25F is employed to illustrate the 
advantage of adjusting automatically for the weights 
of various features in our method. VF refers to the 
work of Keivanioo et al. [17], which employs VSM and 
frequent item-set mining. We also compare our 
method with Portfolio [29] that combines VSM, 
PageRank, and SAN.  

For drawing confident conclusions whether one 
algorithm outperforms another, we conduct statistical 
tests to compare the average results of two metrics for 
ROSF and the comparative methods. Specifically, first, 
Friedman’s test is employed to detect the potential 
differences in the performance among the methods. 
Then, to analyze both the strength and the weakness of 

the method, we conduct the two-sided Wilcoxon’s 
signed rank tests between ROSF and the other 
methods. For two statistical tests, when comparing 
each pair of methods, the primary null hypothesis is 
that there is no statistical difference in the performance 
between two methods. In this section, for both 
Friedman’s test and Wilcoxon’s test, we adopt the 95% 
confidence level, i.e., the p−values below 0.05 are 
considered significant. 

Fig. 5 shows the average ranking with respect to the 
Friedman’s test [12] of Precision@10 and NDCG@10. In 
the subfigures, each column represents the ranking of 
the corresponding method (higher values indicate 
better performance). In Fig. 5, we can observe that, for 
both metrics, ROSF obtains all the best rankings. The 
Friedman’s test detects significant differences in the 
performance among the methods (with p-values = 0.001, 
and 0.048 for the Precision and NDCG, respectively). 

Table 6 presents the results of Wilcoxon’s tests 
between ROSF and the comparative methods. Table 7 
shows the details of extremal values, median, mean, 
and standard deviation of Precision and NDCG. Fig. 6 
shows the statistical summary of Precision or NDCG.  

For Precision, among the pairwise comparisons in 
Table 6, we can observe that the p-values are all less 
than 0.05. We reject the null hypothesis and accept the 
alternative hypothesis that there is a statistically 
significant difference in the mean value of Precision 
and NDCG between ROSF and the comparative 
methods (BM25, Portfolio, VF, or BM25F). In Table 7 
and Fig. 6, we can observe that ROSF consistently 
outperforms the comparative methods in terms of 
Precision. Specifically, the improvement of ROSF over 
BM25 is 16%, BM25F is 80%, Portfolio is 20%, and VF is 
41%. Considering the family-wise error rate [12], we 
can deduce that ROSF performs the best among BM25, 
BM25F, Portfolio, and VF with a p−value less than 1− 
(1−0.012)×(1−0.0059)×(1−0.0147)×(1−0.0019) < 0.035. 

For NDCG, we observe a similar phenomenon 
except for ROSF vs BM25, where the p-value is 0.062. 
Here, the confidence level is 90%, rather than 95%. In 
the other pairwise comparisons, ROSF Specifically 
outperforms the comparative methods with a p−value 
less than 1 − (1 − 0.0486) × (1 − 0.0057) × (1 − 0.0333) < 
0.09. Specifically, the improvement of ROSF over BM25 

TABLE 6 
RESULTS OF WILCOXON’S TESTS BETWEEN ROSF AND 

OTHER COMPARATIVE METHODS FOR TWO METRICS 

Metrics R vs B R vs P R vs VF R vs BF 

Precision@10 0.0120 0.0059 0.0147 0.0019 
NDCG@10 0.0620  0.0486 0.0057 0.0333 

R refers to ROSF, B refers to BM25, P refers to Portfolio, and BF refers 
to BM25F. The first column indicates the two metrics. In other columns, 
the results of Wilcoxon’s tests are reported for each metric. The 
comparison results consist of the p−value. 

TABLE 7 
THE STATISTICAL SUMMARY OF THE SECOND EXPERIMENT 

 Approach Samples Min Max Median Mean StdDev 

Precision@10 

ROSF 20 20% 100% 70% 66.5% 0.2390 
BM25 20 0% 100% 60% 57.5% 0.2552 
Portfolio 20 0% 90% 60% 55.5% 0.2350 
VF 20 0% 100% 50% 47% 0.3278 
BM25F 20 0% 100% 30% 37% 0.2755 

NDCG@10 

ROSF 20 0.3082 1 0.9041 0.8448 0.1646 
BM25 20 0 1 0.7772 0.7551 0.2407 
Portfolio 20 0 1 0.7795 0.7445 0.2325 
VF 20 0 0.9816 0.8220 0.6347 0.3526 
BM25F 20 0 1 0.7316 0.6819 0.2922 
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on NDCG is 12%, BM25F is 24%, Portfolio is 13%, and 
VF is 33%.  

In summary, ROSF improves Portfolio and VF by 
20%-41% in Precision@10 and 13%-33% in NDCG@10. 
The reason may be due to the two stages in ROSF, i.e., 
coarse-grained searching and fine-grained re-ranking. 
The first stage focuses on selecting as many as possible 
relevant code snippets in the candidate set. The second 
stage tries to rank the relevant code snippets to the top 
of the recommendation result. Meanwhile, our method 
also benefits from that the weights of nine features are 
adjusted automatically by the prediction model. 

Answer to RQ2: Based on the above observations, we 
can argue that ROSF is a better method for code 
snippets recommendation than the comparative 
methods. This results clearly validate the ability of 
ROSF for recommending more relevant code snippets 
in the result, and putting the relevant snippets on 
higher positions than the irrelevant ones. 

6.3 Answer to RQ3 

Following the previous work [36], we first analyze 
the correlation between nine features using 
Spearman's rank correlation coefficient (Spearman's 
rho) to manage these features. It is appropriate to use 
Spearman's rho when the relationship between the 
variables is not linear. High correlation between 
features makes it difficult to determine the effect of 
each feature on performance [45]. It is beneficial to 
minimize the correlated features for speeding up the 

training process. The values of Spearman's rho range 
from -1 and +1. Generally, the absolute value greater 
than 0.6 is considered to be a high level of correlation. 
If the value of two features is greater than 0.8, it is 
necessary to remove one of them [9].  

Table 8 shows the values of Spearman's rho between 
nine features of 1050 instances in the training set. This 
table shows that almost all correlation values between 
two features are less than 0.6, which means that these 
features are uncorrelated between them [9]. In this 
table, we also find that the value between the features 
f2 and f3 (The textual similarity between a query and 
the full title and the simple title of a candidate code 
snippet) is 0.718, which indicates there is a high level 
of correlation (0.6 - 0.8) between them, but not a very 
high level (over 0.8) [9]. Moreover, the following 
experiment also shows that the impacts of the features 
f2 and f3 on the performance are different. They can't 
replace each other.  

For determining the impact of each feature on the 
performance of our method, we regard our method 
with nine features as the baseline. Then, we construct 
an alternative method for each of nine features by 
removing that feature. Totally, we build nine 
alternative methods for nine features. By comparing 
the performance of the alternative methods against the 
baseline, we can analyze the impact of each feature on 
the performance.  

Table 9 shows the comparison results between the 
alternative methods and the baseline in terms of 
Precision@10 and NDCG@10. We observe that two 
features, the feature f9 (the number of lines in the code 
snippets) and the feature f1 (the textual similarity 
between a query and the content of a candidate code 
snippet) decrease the performance in terms of 
Precision@10 significantly. The feature f9 decreases the 
performance in terms of NDCG@10 significantly. 
However, other features have slight impacts on the 
performance. Among them, the features f6 (the textual 
similarity between a query and the import statements 
of the Java standard library) and f8 (the topic similarity) 
have more impacts than others. 

Answer to RQ3: The impact on the performance is 
different for nine features. The following features are 
influential on the performance of ROSF: f9, f1, f6, f8, i.e., 
the number of lines (f9), the textual similarity between 
queries and contents (f1), the textural similarity 
between a query and the import statement of Java 
library (f6), and the topic similarity between a query 
and the content of a candidate code snippet (f8).  

7 THREATS TO VALIDITY 

This section discusses threats to validity of our work. 
The query set: The first major factor that influences 

the performance is the query set. Different methods 
may have different performance for the same query. In 
order to reduce bias in comparing these different 

TABLE 9 
THE IMPACT OF EACH FEATURE IN THE PERFORMANCE 

OF OUR METHOD 

Ranking Methods 
Precision@10 NDCG@10 

Avg. Impact Avg. Impact 

ROSF 66.5% - 0.844821 - 

ROSF(except f1) 59.0% -11.28% 0.833229 -1.37% 

ROSF(except f2) 66.0% -0.75% 0.847242 +0.29% 

ROSF(except f3) 66.0% -0.75% 0.848619 +0.45% 

ROSF(except f4) 65.5% -1.50% 0.852132 +0.87% 

ROSF(except f5) 66.0% -0.75% 0.848438 +0.43% 

ROSF(except f6) 64.0% -3.76% 0.868522 +2.81% 

ROSF(except f7) 65.5% -1.50% 0.845687 +0.10% 

ROSF(except f8) 64.0% -3.76% 0.830116 -1.74% 

ROSF(except f9) 57.0% -14.29% 0.757598 -10.32% 

 

TABLE 8 
THE VALUES OF SPEARMAN’S RHO BETWEEN NINE 

FEATURES 

 f1 f2 f3 f4 f5 f6 f7 f8 f9 

f1 1 0.158 0.119 0.152 0.310 0.436 0.350 0.588 -0.041 

f2  1 0.718 0.558 0.091 0.085 0.063 0.124 -0.151 

f3   1 0.492 0.156 0.017 0.044 0.118 -0.132 

f4    1 0.095 0.133 0.059 0.120 -0.113 

f5     1 0.274 0.295 0.209 -0.008 

f6      1 0.157 0.402 0.029 

f7       1 0.274 0.016 

f8        1 0.003 

f9         1 

 



1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2016.2592909,
IEEE Transactions on Services Computing

HE JIANG ET AL.: ROSF: LEVERAGING INFORMATION RETRIEVAL AND SUPERVISED LEARNING FOR RECOMMENDING CODE SNIPPETS PAGE11 

 

methods, 20 same queries are used in our experiments. 
This size is similar to previous work [17], [7], [10]. 
However, this may still threaten the validity of the 
results. Moreover, the performance of a method also 
relies on how good the keywords in the queries are. It 
is also our further work for choosing adequate words 
as queries. 

Code snippet corpus: Our several experiments are all 
conducted on a real-world code snippet corpus of open 
source mobile app projects. Although this corpus has a 
certain scale, in comparison to the millions of apps in 
Google play, it is relatively small. Meanwhile, the 
features used in our method can also be identified in 
other desktop software. But we have not tested it by 
ourselves. We plan to evaluate the effectiveness of our 
method on different size of corpora for different 
Internetware software. Moreover, in our future work, 
we also plan to recommend different granularities of 
code artifacts (e.g., Java files) for the same query.  

Comparative methods: In the second experiment, we 
reproduce several previous methods for comparison. 
There are certain gaps in the performance between the 
reproduced methods and the original ones. The 
possible reason may be the difference in the code 
snippet corpora. The corpora in previous studies were 
collected from desktop software, and our corpus is 
collected from Android app projects. The methods 
may be unfit for our code snippet corpus. For example, 
the traditional static control-flow analysis cannot be 
directly applied to Android apps, because the apps are 
framework-based and event-driven [43]. Moreover, the 
effectiveness of the call graph [43] and the usage 
similarity [7] for our method will be explored in our 
next work. 

8. RELATED WORK 

In this section, we show the related studies with our 
work. In recent years, several studies are presented to 
support the automatic recommendation of code 
examples for different types of inputs. Table 10 
provides the comparisons between ROSF and other 
methods from several different angles.  

Free-form query: Similar to the following studies, our 
work also uses the free-form queries as inputs. 
However, these studies are mainly based on 
information retrieval techniques, while our method 
combines both information retrieval and supervised 
learning to recommend code snippets. For example, 
Bajracharya et al. [7] propose a structural Semantic 
Indexing (SSI) to recommend source code entities 
(classes, methods, etc.) based on the similarities of 
APIs usage. This technique is implemented on Lucene, 
where the boost values of index fields need to be set 
manually before searching. In contrast to our method, 
the weights of several features employed in our 
experiments are adjusted automatically by the 
prediction model. McMillan et al. [29] propose a code 
search system called Portfolio, which can find relevant 
functions that implement the given queries, and show 
the visualizing dependencies of the retrieved functions. 
This system combines NLP, PageRank, and SAN 
algorithms. Keivanloo et al. [17] present a method for 
spotting working code examples by combining p-
strings and VSM with frequent item-set mining. Lv et 
al. [23] propose CodeHow, a code search technique by 
considering both API understanding and textual 
similarity matching. The evaluation results based on 
C# projects show that CodeHow achieves a precision 
score of 0.794. In this method, the online documents of 

APIs are used to expand query. However, these 

TABLE 10 
COMPARISON OF ROSF WITH OTHER RELATED METHODS 

Approach Year Input 
Type 

Output 
Type 

Information Search 
Method 

Tool Reference 

SSI 2010 FQ C FCC, FQN, T, TU, J WM, MF L [7] 
Portfolio 2013 FQ C, CC FCC, CG PR, SA, WM L [29] 
VF 2014 FQ C FCC WM, FIM - [17] 
MAPO 2009 N C, UP CS WM, FIM - [54] 
Baker 2014 N C SC DL iAST [46] 
MUSE 2015 N C SE,CS SS, CD, H - [33] 
PARSEWeb 2007 OT C FCC, CS WM, Q AST [27] 
Strathcona 2005 C C SC H - [14] 
Xsnippet 2006 C C SC, CG T, W, PT - [42] 
Ichi Tracker 2012 C C FCC, CH CD, CHT S, G, K, CCF [15] 
ROSF - FQ C FCC, FQN, T, NSM, SC WM, TM, LR L, W - 

Column Input specifies the input type for each method (Free-form query (FQ), API name (N), Code Snippet (C), or the object type of source and 
Destination (OT)). Column Output specifies the output type for each method (Code Snippet (C), call chains (CC), or API Usage Patterns (UP)). Column 
Information specifies the information used for each method (Full text of the Code and Comments (FCC), Fully Qualified Name (FQN), Javadoc (J), Title 
of entities (T), Title of other entities that have similar Usage of API (TU), Names of Sibling Methods (NSM), Call Graph (CG), Structural 
Characteristics (SC), API method call sequences (CS), similar examples (SE), or Code History (CH)). Column Search Method specifies the methods used 
for each method (PageRank (PR), Spreading Activation Network (SA), Word Matching (WM), Parameter Type matching (PT), Query expansion 
techniques (Q), Multiple Fields searching (MF), Frequent Item-set Mining (FIM), Heuristics(H), Deductive Linking(DL), Static Slicing(SS), Clone 
Detection (CD), Code History Tracking(CHT), Topic Model(TM), Logistic Regression(LR)). Column Tool specifies the tool or platform used for each 
method (Lucene (L), incomplete Abstract Syntax Tree (iAST), Abstract Syntax Tree (AST), SPARS/R (S), Google Code Search (G), Koders (K), 
CCFinder (CCF), or WEKA (W)). 
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documents are not always available [16].  
API name: Moreover, several studies focus on 

solving API usage problem [46]. They take API 
method names as inputs, and output code examples 
[36], concise method usages [33], or API usage patterns 
for special API methods [26], [54]. For example, In 2009, 
Zhong et al. [54] present an API usage mining 
framework called MAPO, which mines and 
recommends API usage patterns and code snippets for 
given requests from developers. In 2014, Subramanian 
et al. [46] propose a method, Baker, to enhance 
traditional API documentations with up-to-date code 
examples. The purpose of recommendation is to 
provide reusable code snippets for developers. For 
showing how to use a specific method, Moreno et al. 
[33] present a method named MUSE by combining 
static slicing and clone detection technology to provide 
concise examples for that method. Each example 
contain the sequence of relevant steps to invoke the 
method, and the less relevant code is pruned out. In 
2016, Niu et al. [36] propose a code example search 
approach applying a machine learning technique (i.e., 
learning to rank) to recommend code examples taking 
method names and class names as inputs. Different 
from these studies, our method takes free-form queries 
as inputs and outputs the original code snippets to 
developers.  

Others: Moreover, some studies employ other forms 
of queries as input to recommend code examples, such 
as the pair of types  [27], the code samples [42], and 
test cases [19]. For example, Mandelin et al. [27] 
provide a code search engine called PARSEWeb using 
the query in the form "Source-Destination". Holmes et al. 
[14] propose Strathcona Example Recommendation 
Tool to assist developers. Strathcona can employ 
structural characteristics of both the past projects and 
the developers’ current context to automatically 
recommend relevant examples. To decrease the 
number of irrelevant results, Xsnippet [42] improve 
Strathcona by employing the graph mining technique. 
Meanwhile, a combination of popularity, size, and 
context is employed to improve the ranking. In 2012, 
Inoue et al. [15] propose a prototype named Ichi Tracker, 
which takes a code fragment as its input, and returns 
the code fragments. Except for the studies 
recommending code examples, there also exists some 
work to recommend the method call sequences and the 
relevant APIs, such as Sourcerer [20], and Export [49]. 

Except the above studies for recommending code 
snippets and APIs, our work is also related with 
automatic patch generation [18], [48] and automated 
program repair [39]. These studies all generate 
promising results. For example, Kim et al. [18], 
propose PAR, an automated patch generation 
technique, by leveraging the fix patterns learned from 
existing human-written patches. Tao et al. [48], 
conduct a large-scale human study to investigate the 
usefulness of automatically generated patches as 

debugging aids. Different from the studies above, 
which automatically generate patches or repair bugs 
according to code context or bugs, our method only 
provides relevant code snippets to developers for 
reuse according to the free-form queries.  

9. CONCLUSION AND FUTURE WORK 

In this paper, we propose a method called ROSF based 
on information retrieval and supervised learning to 
recommend relevant code snippets for the given free-
form queries. We identify nine features to generate the 
instances in the training set and the test set. To 
evaluate the effectiveness of our method, several 
experiments are conducted on a real-world code 
snippet corpus. These code snippets come from 1,538 
open source app projects. The results of these 
experiments state that our method is effective for code 
search, and outperforms the previous state-of-the-art 
methods by 20%-41% in Precision@10 and 13%-33% in 
NDCG@10. 

We consider two aspects as our future work. The 
first is providing more resources for app development. 
In addition to code snippets, other entities (e.g., 
permissions, screenshots) and relations (e.g., call graph, 
API usages) are also important for implementing the 
programming tasks. The second is exploiting more 
domain features. Our method employs nine features to 
characterize code snippets. These features can also be 
extracted in desktop software. In the future work, for 
improving the performance of recommendation, we 
plan to identify other special information in the field of 
mobile apps, such as user reviews and the descriptions 
of apps, and other features of Internetware software. 
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