
Programmable In-Network Security for Context-aware BYOD Policies

Qiao Kang

Rice University

Lei Xue

The Hong Kong Polytechnic

University

Adam Morrison

Rice University

Yuxin Tang

Rice University

Ang Chen

Rice University

Xiapu Luo

The Hong Kong Polytechnic

University

Abstract

Bring Your Own Device (BYOD) has become the new norm

for enterprise networks, but BYOD security remains a top con-

cern. Context-aware security, which enforces access control

based on dynamic runtime context, is a promising approach.

Recent work has developed SDN solutions to collect device

contexts and enforce access control at a central controller.

However, the central controller could become a bottleneck

and attack target. Processing context signals at the remote

controller is also too slow for real-time decision change.

We present a new paradigm, programmable in-network

security (Poise), which is enabled by the emergence of pro-

grammable switches. At the heart of Poise is a novel security

primitive, which can be programmed to support a wide range

of context-aware policies in hardware. Users of Poise specify

concise policies, and Poise compiles them into different con-

figurations of the primitive in P4. Compared with traditional

SDN defenses, Poise is resilient to control plane saturation

attacks, and it dramatically increases defense agility.

1 Introduction

BYOD refers to the practice where enterprise employees

could use privately owned tablets, phones, and laptops at

work [32]. This practice has become the new norm in many or-

ganizations [7, 13, 14, 17, 23, 29], and its market is projected

to grow and exceed $73 billion by 2021 [17].

One of the top concerns, however, is BYOD security. As

BYOD devices are generally less well-managed than their

enterprise counterparts, they are easier targets to compro-

mise [6, 8, 47, 101]. This is further exacerbated by the fact

that such devices are used to access sensitive enterprise re-

sources as well as untrustworthy services in the wild [4, 22].

At its core, BYOD security represents a concrete instance

of a fundamental challenge, sometimes known as the “end

node problem” [11, 12]. The “end nodes” are not subject

to the same level of centralized control, management, and

protection as the enterprise infrastructure. We can easily up-

date the access control lists on the gateway router, or patch

newly discovered vulnerabilities on a server, but ensuring that

Kang, Xue, and Morrison contributed to this work equally; Chen and

Luo are the corresponding authors.

the individual end points are properly patched is much more

difficult. As such, insecure end devices tend to become the

weakest link in the security chain [25].

One promising approach to BYOD security is to use

context-aware policies, which enforce access control based

on devices’ runtime contexts [58]. For instance, a policy may

deny access from devices whose TLS libraries have not been

updated [98], or grant access to devices that are physically

located in the enterprise boundary [88], or allow the use of

a sensitive service only if administrators are online [56, 87].

In each of these scenarios, the policy makes security deci-

sions based on additional “threat signals”, such as the device

location, library version, or even the status of other devices

in the network. Context-aware policies are in a class of their

own—they are much more dynamic, as contexts can change

frequently (e.g., GPS location), and they require global visi-

bility of the entire network (e.g., administrators online).

Supporting context-aware policies in enterprise networks

presents interesting research challenges. Some traditional sys-

tems operate at the server side [89, 94], which enables easier

management and update of security policies; others operate at

the client side [91], making it easier to access device context.

A common limitation, however, is that the individual nodes—

clients or servers—only have local visibility. Such a “tunnel

vision” hinders the ability to make synchronized security deci-

sions network-wide [86]. Latest proposals address this using

OpenFlow-based SDN, where a software controller collects

context signals from all devices and enforces network-wide

access control [58]. However, the central controller is vulner-

able to control plane saturation attacks [82], and processing

threat signals in a remote software controller incurs delay and

decreases agility.

Our contribution. We present a novel design called Poise,

or programmable in-network security, whose goal is to ad-

dress the limitations of OpenFlow-based SDN defense. Poise

has a new security primitive that runs in switch hardware, and

it can change defense decisions at hardware speeds. Clients

embed context signals in network traffic, and Poise parses

these signals and enforces security policies without involv-

ing a remote software controller. This primitive is also re-

programmable in a declarative language to support a wide

range of context-aware policies. These declarative policies are

USENIX Association 29th USENIX Security Symposium 595

compiled by Poise into different configurations of the security

primitive as P4 programs. Compared with traditional SDN

defenses [58, 75, 82], this new paradigm results in defenses

that are highly efficient, agile, and resilient to control plane

saturation attacks [82].

The key enabler for Poise is the emerging programmable

data planes developed by the latest networking technol-

ogy. New switches, such as Intel FlexPipe [16], Cavium

XPliant [9], and Barefoot Tofino [3], can be programmed

in P4 [19] to support user-defined network protocols, cus-

tom header processing, and sophisticated state in hard-

ware. P4-programmable networks represent a major step be-

yond OpenFlow-based SDN. OpenFlow switches have fixed-

function hardware, and they can only support programmable

forwarding by occasionally invoking remote software con-

trollers. P4 switches, on the other hand, offer hardware-based

programmability, which can be applied to every single packet

without performance slowdown. The novelty of Poise lies

in leveraging these new hardware features for context-aware

security—we encode context signals with user-defined proto-

cols, compute access control decisions using programmable

packet processing, and support stateful, network-wide policies

by designing hardware data structures.

After motivating our problem further in §2, we present:

• The concept of programmable in-network security (§3);

• A language and compiler for context-aware policies (§4);

• A novel in-network security primitive (§5);

• The Poise orchestration service and device module (§6);

• Discussions and limitations of Poise (§7);

• Prototype and evaluation of Poise that demonstrate its

practicality, as well as its higher resilience to control

plane saturation attacks and increased defense agility

compared with OpenFlow-based SDN defense (§8);

We then describe related work in §9, and conclude in §10.

2 Background and Motivation

Context-aware security (CAS) stands in stark contrast to con-

ventional security mechanisms—existing mechanisms can

only support static policies, but CAS uses dynamic policies

based on runtime contexts. For instance, NAC (network ac-

cess control) mechanisms such as IEEE 802.1x [33] and

Cisco Port/VLAN/IOS ACLs [10, 26] statically configure

access control policies, whether for a device, an IP prefix, or

a VLAN ID. Role- or attribute-based access control mech-

anisms [52, 53, 76] also perform access control based on

statically-defined roles or attributes.

CAS, on the other hand, uses the runtime contexts of a re-

quest as threat signals (e.g., location/time of access, status of

the network); whenever the signals change, the security deci-

sions would adapt accordingly. The theoretical underpinnings

of CAS have been studied more than a decade back [41], but

it recently found an array of new applications in securing IoT

and mobile devices [39, 51, 58, 60, 91]. These devices, just

like the BYOD clients in our scenario, suffer from the “end

node problem” [11, 12]. CAS has proven to be effective for

such scenarios, because it can enable a more precise protec-

tion based on threat signals collected from the end nodes.

2.1 Design space

The concept of CAS by itself does not necessitate a client-,

server-, or network-based design; rather, these design points

have different tradeoffs. First off, purely server-side solutions

are often ineffective, as we desire to collect context signals

from client devices at runtime. Therefore, typical CAS sys-

tems [58, 91] need to install a context collection module at the

clients. In terms of policy enforcement, one could co-locate

enforcement with context collection, resulting in a purely

client-based solution [91]. The main drawbacks, however,

are that a) individual devices only have local views, making

network-wide decisions hard to come by, and that b) policy

management is much harder, as policies are distributed to each

device; this might raise additional concerns if some policies

are themselves sensitive data. Another option is to enforce

the policies inside the network. The network has a global

view for holistic protection, and it enables centralized policy

management and update. Poise adopts this design option.

2.2 Traditional networks are not enough

However, traditional network devices (i.e., switches and mid-

dleboxes) are not up to the task, because they are built with

fixed-function hardware that is customized for specific pur-

poses. For instance, traditional switch hardware is optimized

for a fixed set of protocols (e.g., TCP/IP), but it does not un-

derstand context information, such as GPS location, time of

access, or library versions. Similarly, hardware middleboxes

also come with fixed functions, e.g., firewalls or deep packet

inspection (DPI); function updates are typically constrained

by the speed of hardware upgrades, which is much slower than

the need for defense adaptation. As a result, traditional in-

network security mechanisms merely provide fixed-function

security, such as static access control lists, firewalls, and traf-

fic filters. There is a fundamental gap between the dynamic

nature of CAS and the static nature of the network devices.

2.3 How about OpenFlow-based SDN?

Software-defined networking (SDN) [67] can partially ad-

dress this by the use of a software controller for control plane

programmability. Although the OpenFlow switch hardware

remains fixed in function, switches can send PacketIn mes-

sages to the central controller for programmable decisions.

This paradigm underlies many recent developments in net-

work security [58, 75, 77, 80, 81, 82]. In particular, a recent

work PBS [58] supports context-aware security by running

596 29th USENIX Security Symposium USENIX Association

M
e
m
o
ry

ALU Match/

Action	

Table

Match/

Action	

Table

Match/

Action	

Table

Programmable

Parser

Programmable

Deparser

Switch	control	plane

PCIe bus

Stages Stages

Figure 1: P4 switches are programmable in hardware. Packets

first go through a programmable parser, which supports user-

defined protocols. Packet headers are then streamed through

a number of hardware stages, each of which contains stateful

registers, arithmetic logic units (ALUs), and match/action

tables. Packets can be recirculated to go through the stages

multiple times to trigger different programmable elements.

the policy enforcement module as an “SDN app” in a central-

ized controller. This app can collect context signals from all

devices and enforce access control in a global manner.

However, in traditional SDN, programmability comes at

a great cost, as it resides in a centralized software controller.

First, PacketIn messages incur a round-trip time delay be-

tween the switch and the remote controller, whereas packets

in the data plane are processed at hardware speeds. As such,

we can only programmatically process a small set of packets—

typically one packet per flow (e.g., the first packet). Second,

traditional SDNs are vulnerable to control plane saturation at-

tacks [82], where an adversary can cause high-volume traffic

to be sent to the software controller. A recent work OFX [84]

has further highlighted that, for security applications that re-

quire dynamic, fine-grained decisions, centralized SDN con-

trollers would pose a severe bottleneck. The key goal of Poise

is to address the limitations of traditional SDN defenses by

enforcing CAS in switch hardware.

2.4 Opportunity: Programmable data planes

Data plane programmability represents the latest step in the

networking technology. In contrast to OpenFlow-based SDN,

P4-programmable networks provide new features that can be

reconfigured in hardware (Figure 1). The key novelty of Poise

is to leverage them for in-network policy enforcement.

1. Customized header support for CAS. P4 switches can

recognize customized protocols and headers beyond TCP/IP

via the use of a programmable parser, without the need for

hardware upgrades. Our observation is that this allows us

to programmatically define context signals as special header

fields, and embed them in network traffic. P4 switches can

directly parse context signals from client traffic.

2. Security decision changes at hardware speeds. Each

hardware stage is integrated with ALUs (Arithmetic Logic

Units) that can perform computation over header fields at line-

speed. The implication for security is that, without involving

a remote software controller, switches can evaluate context

values (e.g., GPS locations) and make security decisions (e.g.,

location-based access control) directly in hardware.

3. Cross-packet state for network-wide security. Last but

not least, the hardware stages also have persistent memory

in read/write registers, and they can process packets based

on persistent state. We observe that this enables the network

to make coordinated security decisions in a network-wide

manner—decisions for one client could depend on past net-

work behaviors, or activities from other parts of the network.

These hardware features are programmable in P4 [19, 43].

Switch programs can be compiled and installed from the

switch control plane (Figure 1), which typically runs a cus-

tomized version of Linux and has general-purpose CPUs. The

P4 compiler maps a switch program to the available hardware

resources [64]. Programs that successfully compile on a target

are guaranteed to run at linespeed, due to the pipelined nature

of the hardware. Programs that exceed available hardware

resources would be rejected by the P4 compiler.

2.5 Trust model

Poise shares the same trust model as existing CAS solu-

tions [58, 91]—the context collection module at the clients

and policy enforcement module at the switch are both trusted.

As a network-based design, Poise also trusts the network

infrastructure (switches and access points). The context col-

lection module can be installed as a pre-positioned Android

kernel module with OEM support; this is common in Enter-

prise Mobility Management solutions [5, 27, 31, 91]. It only

collects and propagates context signals when devices are con-

nected to the enterprise network; standard BYOD frameworks

such as Android for Work [2] or Samsung Knox [24] can sup-

port this. Users can install unmodified Android apps. CAS

specifically protects against malicious apps, and following

existing work [58, 91], we assume that malicious apps cannot

compromise the kernel or obtain root privileges. It is possible

to further relax these assumptions by directly establishing

the root of trust in hardware [28, 30, 74]. In the case where

untrusted devices may connect to the network, Poise needs to

perform authentication on context signals before using them

for decision making, e.g., by adding support for cryptography

in P4 switches. We discuss this in more detail in §7.

3 Programmable In-Network Security

We call this new paradigm programmable in-network security.

Scenario. Consider the enterprise network shown in Figure 2,

which hosts several types of private data, such as employee

records and sales records, and also provides connectivity to

the Internet. The operator wants to enforce dynamic access

control of sensitive enterprise data in the presence of BYOD

clients. For instance, the policy might specify that a) sales

records should only be accessed by devices belonging to

the sales department; b) during regular work hours; c) from

devices that are properly patched to address some recently

discovered vulnerability; and, d) a device can only access the

sales records if the sales manager is online. Poise is designed

for context-aware security policies such as these.

USENIX Association 29th USENIX Security Symposium 597

Access

Point

Internet

Employee database

Sales records
Device

configurations

Switch
programs

Context
packets

Figure 2: Poise compiles high-level policies into a) switch

programs, and b) device configurations. The clients send peri-

odic context packets to the network, and Poise enforces the

policy in the switches.

The Poise system. At the heart of Poise is a novel switch

primitive that can enforce CAS policies in hardware. The de-

sign of this primitive also tackles a practical challenge. Since

P4 programs specify low-level packet processing behaviors,

they are akin to “assembly-level” programs, and one often

needs to hand-optimize P4 programs to reduce resource usage.

Therefore, we allow network operators to specify CAS poli-

cies in a declarative language that is much higher-level than

P4. Our compiler can then generate optimized P4 programs

automatically, which are different versions of the security

primitive. The Poise compiler also generates configurations

for the context collection module at the clients. It collects con-

text signals based on the configuration, and sends out periodic

context packets to the network. Policy changes can be easily

supported by a recompilation. Client configurations need not

be affected by policy updates, unless the new policies require

new types of context signals to be collected.

Next, we first describe the Poise language and compiler,

then the switch primitive, and finally, the client module and

how these components work together.

4 The Poise Language and Compiler

The policy language in Poise is inspired by the Frenetic family

of SDN programming languages [38, 54, 68, 69, 79], but we

adapt them a) from an OpenFlow setting to P4, which supports

richer header operations and state, and b) from a network man-

agement setting to security, by supporting security contexts.

Specifically, we have designed the Poise language based on

Pyretic NetCore [69], where network policies are written as a

series of match/action statements. In terms of the semantics

of the language, a policy represents a function that maps an in-

coming packet to zero (i.e., drop), one (i.e., unicast), or more

(i.e., multicast) outgoing packets. A policy could be as simple

as drop, which drops all packets, although practically, the pol-

icy would make a decision based on the context a packet car-

ries, such as if match(dip==66.220.144.0) then drop,

which blacklists a block of destination IP addresses, or if

match(0800<=time<=1800) then drop, which denies ac-

cess depending on the time of day. Figure 3 summarizes the

Primitive Actions

A ::= drop | fwd(port) | flood | log
Expressions

E ::= v | e1+ e2 | e1− e2| e1 ∗ e2 | M

Constant Lists

L ::= nil | v,L
Predicates

P ::= match(e1 ◦ e2) | match(h◦ e) |

match(h in l) | P&P | (P|P) | !P

Monitors

M ::= count(P)
Policies

C ::= A | if P then C else C | (C|C)

Figure 3: The language syntax for Poise policies. Context

fields are represented as h. Expressions are represented as e,

or v (constants). The ◦ operator indicates comparisons.

language syntax, and the highlighted portions show the differ-

ences from NetCore, which we explain more below.

4.1 Key language constructs

Security contexts. Poise encodes context fields in cus-

tomized headers, such as time or dev. When a policy refers

to multiple context fields, Poise structures the context headers

in the order in which they appear in the policy program.

Context operations. Poise also supports sophisticated oper-

ations over context headers, as indicated in the expressions

and predicates in Figure 3. An expression could be a constant,

an arithmetic operation over header fields, or a complex ex-

pression over subexpressions. Security decisions are made

based on predicates over expressions, where the ◦ operator

indicates comparisons such as >, <, and so on. Contexts can

also be tested against constant lists, which are pre-defined

in the policy to encode membership relations. For instance,

one could define a list of devices with administrative roles

as def adminlst = ["dev1", "dev2"]. Then, the policy

could refer to the lists as part of the decision-making process,

such as if match(!dev in adminlst) then fwd(mbox),

which forwards traffic from non-admin devices to a middle-

box for traffic scrubbing. We note that the original NetCore

does not support the use of contexts or sophisticated context

operations; rather, Poise adds such extensions based on the

extra processing power in P4 for security support.

Stateful monitors. Unlike NetCore, Poise supports stateful

policies which make security decisions based on network-

wide state. This is done via monitor expressions, which moni-

tor activities of interest in persistent state. A monitor expres-

sion is written as count(pred), which counts the number

of packets that satisfy the predicate pred in the current time

window; for instance, count(match(is_admin)) counts the

number of packets generated from a device with an adminis-

trative role. The counters are periodically reset to zero when

a new time window begins. These monitors enable program-

mers to write network-wide policies. This is different from

598 29th USENIX Security Symposium USENIX Association

stateless NetCore policies, where monitors passively collect

traffic statistics, but do not affect forwarding decisions.

Actions. The decision of a Poise policy is represented by its

action field. Currently, Poise supports four types of actions.

The drop decision denies access. The fwd decision allows ac-

cess, and can be further parameterized by an outgoing switch

port, so that it can actuate further processing—e.g., sending

packets through an DPI device that can be reached via a par-

ticular port. The flood decision broadcasts a packet. The log

decision sends a packet to a logger that detects potentially

suspicious activity; this is achieved by aliasing the fwd deci-

sion and specifying a special port for the local switch CPU.

Packets sent for logging will be pumped to the control plane

of the switch, which runs a logging component. This can be

easily generalized to enable remote logging, e.g., by wrapping

the packet inside another IP header, where the destination IP

represents a network activity logger.

Composing policies. Similar as NetCore, Poise can compose

multiple policies P1|P2|...|Pn and compile them into a

single switch program. This is useful, e.g., when Pi and Pj

check different context signals and the enterprise wants to

apply them in combination. The Poise compiler rejects the

composition of conflicting policies at compilation time.

4.2 Example policies

The Poise language is expressive enough to capture a wide

range of existing and new policies, and it is much more con-

cise than low-level languages such as P4. Next, we describe

seven practical BYOD policies, where the first two are adapted

from existing work [58] and the rest are new policies sup-

ported by Poise. Variables dev, time, lat, lon, and usr are

customized header fields.

P1: Block certain services in work hours [58]: A com-

mon BYOD policy is to block access from certain devices to

entertainment websites during work hours:

def businesslst = ["dev1", "dev2"]

if match(dip==66.220.144.0 &

dev in businesslst &

(time >=0800)&(time <=1800))

then drop

P2: Direct traffic from guest devices through a middle-

box [58]: Another useful policy is to distinguish traffic from

authorized devices and guest devices, and direct guest traffic

through a middlebox for traffic scrubbing:

def authlst = ["dev1", "dev2"]

if match(dev in authlst)

then fwd(server)

else fwd(mbox)

New policies. There are also useful policies in Poise that

cannot be easily supported in traditional networks; they are

implementable in Poise due to the use of programmable data

planes, which can perform arithmetic operations over context

headers, and maintain network-wide state to make coordi-

nated security decisions. We give an example of each below.

P3: Distance-based access control: This policy grants ac-

cess to a service only if the user is within a certain distance

from a physical location (e.g., the server room); this requires

performing arithmetic operations over GPS coordinates em-

bedded in the packet header:

if ((lat-x)*(lat-x)+(lon-y)*(lon-y) < D)

then fwd(server)

else drop

P4: Allow access only if admin is online: Poise can support

coordinated, network-wide policies by monitoring security

events of interest and making decisions based on the result.

For instance, a policy might grant access to a service only if

the admin is online:
def adminlst = ["Bob", "Alice"]

c = count(match(usr in adminlst))

if match(c>0) then fwd(server)

Advanced policies. Inspired by the literature of “continuous

authentication” [37, 49, 50, 92], we propose a set of advanced

policies that use device context to detect subtle but important

indicators of potential attacks. Due to space constraints, we

only describe the high-level policies, but not the programs. P5:

Block requests without explicit user interaction, which denies

access to a sensitive service if all apps are running in the back-

ground and there is no user interaction with the touchscreen

to trigger the request; such requests are likely generated by

malware. P6: Scrub traffic if UIs are overlapping, which for-

wards traffic through a middlebox if the context information

shows that app UIs are overlapping—a potential sign for UI

hijacking [55]. P7: Conduct deep packet inspection if cam-

era/recorder is on, which detects if sensitive information is

being leaked through an active camera/recorder app [36].

4.3 Compilation

Next, we discuss how the Poise compiler processes the key

language constructs and generates P4 implementations.

Compiling security contexts. The Poise compiler generates

P4 headers for each context. Context packets have special IP

protocol numbers (143 for TCP, 144 for UDP), and they have

no payload. Context headers follow the TCP/UDP headers

(e.g., Eth|IP|TCP|Ctxt). Poise switches recognize the context

headers by the IP protocol number, whereas legacy switches

forward these packets based on destination IPs. User traffic

is not modified by Poise in any way. (See Figure 13 in Ap-

pendix.) As a concrete example, Figure 4(a) shows the P4

headers for the gps signals: latitude and longitude.

Compiling context operations. The Poise compiler distin-

guishes between five classes of context operations: arithmetic

operations, bitwise operations, comparisons, context matches,

and membership tests. The first three classes are simpler to

handle, as they can be directly translated into their P4 coun-

terparts; the latter two require the compiler to generate ad-

ditional code components in P4. First off, all context fields

are compiled into header definitions and references to these

USENIX Association 29th USENIX Security Symposium 599

header gps_t {

bit<32> lat;

bit<32> lon;

} //ctxt def.

struct headers {

ethernet_t ether;

ipv4_t ipv4;

tcp_t tcp;

gps_t gps;

} //ctxt stack def.

control Ingress {

//switch ingress def.

apply {

bit<32> d;

d=lat^2+lon^2;

if (d < thresh)

fwd (1)

else

drop

} //context operations

…

}

//part of control Ingress.

table admin {

key = {dev: exact}

actions = {allow, deny}

const entries = {

“Bob”: allow

”Alice”: allow

} //other users denied

}

…

apply(admin)

//part of control Ingress

register<32> monitor;

register<32> ts;

if (admin.isValid()) {

//update monitor result

monitor++;

} else if (NOW-ts > timeo){

//timeout

monitor=0;

}

ts = NOW;

(a)	Security	context (b)	Context	operations (c)	Constant	lists	+	membership	tests (d)	Network-wide	monitors

Figure 4: The Poise compiler processes the key language constructs and generates P4 implementations. The P4 snippets shown

are simplified for clarity of presentation. For instance, in (b), the instantiation of the thresh register is not shown; in (d), the

timestamp of a packet is obtained via the ingress_global_timestamp field instead of a variable called NOW.

headers, as discussed above. Then, for arithmetic, bitwise, or

comparison operations over header fields, such as lat*lat,

sensors&0x01, or time<10, our compiler forms expressions

using the corresponding P4 operations over the headers. For

arithmetic operations, the current P4 specification supports ad-

dition, subtraction, and multiplication, which are all supported

by the Poise compiler. Notably missing from the list are di-

vision and modulo operations, which tend to be expensive to

implement in switch hardware (although sometimes they can

be approximated by bit shifts if the divisor is a power of two).

If a Poise program involves operations unimplementable in

P4, our compiler would reject the policy during compilation.

As an example, Figure 4(b) shows simplified P4 snippets

that our compiler generates for computing the distance be-

tween a pair of GPS coordinates to a pre-defined center (as-

sumed to be (0,0)). Our compiler also generates conditional

statements based on the policy, e.g., if-else branches to

test if the distance exceeds a threshold. Context operations

are performed within an apply block at control Ingress,

which means the switch ingress pipeline.

Context matches, on the other hand, are compiled into

match/action tables in P4. A match can be an exact match,

which requires matching a context field against a list of keys

bit by bit. It could be a range match, which compares a con-

text field against a range of values in TCAM (Ternary Content

Addressable Memory). By default, Poise uses 4-byte headers

for exact matches, and 2-byte headers for range matches. Con-

text matches can also be performed against a user-specified

constant list that defines membership, e.g., a set of devices

owned by the sales department. For a list with k items [a1,

a2,· · ·, ak], our compiler will construct a match/action table

with k entries, where each entry corresponds to an item in

the list. The actions associated with the entries depend on the

mode of access defined in the policy program.

For instance, consider the P4 snippet in Figure 4(c), which

shows a match/action table generated from a constant list of

two entries: Bob and Alice. The table implements an exact

match on the device ID field. If the context match is suc-

cessful, then the device will be granted access; unsuccessful

matches indicate that the context fails the membership test,

and these requests will be denied access.

Compiling stateful monitors. The Poise compiler generates

a read/write register for each stateful monitor in the policy, as

well as code components for detecting monitored events and

updating the monitor values. Such monitors are implemented

as a number of registers in P4, which are supported in switch

SRAM. Updates to the registers are linespeed, so they can

be performed on a per-packet basis. Specifically, for each

incoming packet, the generated code checks whether this cor-

responds to an event of interest, using either a context match,

or a match over a membership list. If this event should be

monitored, the code additionally updates the monitor register

and records the event timestamp. If a long time has elapsed

after the previous event took place, then this register is cleared

to indicate that the monitored event is absent. As discussed

before, monitors enable network-wide policies that make co-

ordinated security decisions—a policy can test if a monitored

event is detected, and make decisions accordingly.

Concretely, the snippet in Figure 4(d) shows an example.

It instantiates a 32-bit register to hold the monitor value, and

updates the register when the admin context is active in a

packet. The code associates a timestamp to this monitor, and

resets the monitor upon timeout.

Compiling actions. An action will be taken on each packet

to represent the final decision made on its context. In P4, de-

cisions are represented by attaching special metadata fields to

a packet, which will be recognized and processed by a traffic

manager, which schedules packets to be sent on the correct

outgoing port(s) or dropped. Logging a packet is achieved by

setting the outgoing port to be the switch CPU.

Compiler optimizations. Programmable data planes have

three types of notable constraints. Stages: There is a fixed

number of hardware stages, and a packet can only match

against one single context table per stage. Tables: A single

stage can only hold a fixed number of tables. Memory: Each

stage has a limited amount of memory.

The Poise compiler performs two types of optimizations,

which are particularly useful when Poise needs to compose

many policies together. (a) If multiple policies check against

the same context signal, our compiler will perform table dedu-

600 29th USENIX Security Symposium USENIX Association

plication to eliminate redundant context tables and save mem-

ory. (b) If a policy performs more context checks than the

number of available stages, Poise will collapse the policy by

recirculating context packets to traverse the stages multiple

times, triggering different tables at each recirculation. This

addresses the switch constraint that a packet can only trigger

a single table per stage. Our optimization creates the illusion

of a larger number of stages with the cost of slightly increased

latency for recirculated packets. We refer interested readers

to Appendix A.2 for more details.

Summary. So far, we have described the basic compilation

algorithm as if each packet is tagged with context information.

This makes it easy for a switch to access a packet’s context

without keeping state, but it results in high traffic overhead.

Next, we will relax this assumption by the design of a stateful,

efficient, programmable in-network security primitive.

5 The In-Network Security Primitive

Poise has a security primitive that runs in a programmable

switch, which is dynamic, efficient, and programmable.

Goal: A dynamic and efficient security primitive. The in-

network primitive should ideally allow the level of protection

to be adjusted between per-packet and per-flow granularities,

by supporting a tunable frequency of context packets for each

connection. At one end of the spectrum, per-flow granularity

of protection degenerates into a static security mechanism that

does not support context changes within a connection. Thus

the protection is very coarse-grained, especially for long-lived

connections that persist for an extended period of time (e.g.,

push-based mobile services, such as email [93]). At the other

end, per-packet granularity is extremely fine-grained, but it

may incur unnecessary resource waste unless context changes

from packet to packet. As a concrete example, if there are

20 context fields across policies, then each client needs to

send 20×4/500 = 16% extra traffic, assuming typical 500-

byte packets and 4-byte context fields. The Poise primitive

supports a property that we call subflow-level security, which

achieves a tunable tradeoff between security granularity and

overhead when enforcing context-aware security.

Property: Subflow-level security. We state this property

more formally below. Consider a sequence of packets in the

same flow ci, pi1 , · · · , pik ,ci+1, where c represents a context

packet and p a data packet. Subflow-level security requires

that decisions made on the context packet ci should be applied

to subsequent data packets pi j
, i j ∈ [i1, ik], but fresh decisions

should be made for data packets that follow ci+1. The deci-

sion granularity can be tuned by f , the frequency of context

packets. This results in an overhead of s · f , where s is the size

of context packets. For instance, assuming 80-byte context

packets and a frequency of one context packet per ten seconds,

the overhead would be as low as 8 bytes per second.

Challenges. Designing a primitive that supports subflow-

level security, however, requires tackling three key challenges.

Key (3-tuple) Val

10.0.0.2:22:TCP 1

10.0.0.9:80:UDP 2

10.0.0.7:ff:TCP 0

10.0.0.6:80:UDP 3

Idx Decision

0 1	(Allow)

1 0	(Drop)

2 1	(Allow)

3 2	(DPI)

M/A	tables

FullConn Decision

Hash 3-tuple	 Decision	

0xFE32 10.0.0.1:80:TCP 0	(Drop)

0x88EA 10.0.0.2:22:TCP 1	(Allow)

0xBC42 10.0.0.7:52:UDP 1	(Allow)

0x4A52 10.0.0.9:A7:UDP 2	(DPI)

Cache

Registers

Figure 5: The key/value store with example entries.

(a) Keeping per-flow state requires a prohibitive amount of

memory, but modern switches only have O(10MB) SRAM.

Poise addresses this by approximating per-flow state using a

on-chip key/value store. (b) Buffering control plane updates is

necessary for handling new flows. Although context changes

can be entirely handled by the data plane, new flows require

installing match/action entries from the switch CPU, which

takes time. Before updates are fully populated, Poise uses

another hardware data structure akin to a cache to make con-

servative decisions for buffered flows. (c) Mitigating DoS

attacks that could arise due to the interaction between data

and control planes. This defends against malicious clients that

craft special context packets to degrade the performance of

selected clients, or even the entire network. In the next three

subsections, we detail each of these techniques.

5.1 Approximating per-flow state

The key problem in the first challenge stems from the fact

that the switch needs to process data packets without contexts

attached to them. Therefore, when a switch processes a con-

text packet, it needs to remember the decision and apply it to

subsequent data packets in the same connection, until the next

context packet refreshes the decision. A naïve design would

require keeping per-flow state on the switch, which leads to

high memory overhead.

To address this, Poise approximates per-flow state using a

key/value store consisting of two data structures, FullConn

and Decision, as shown in Figure 5. The FullConn schema

is [sip, sport, proto]→idx. The match key is the

source IP/port and protocol for the client, and the value is an

index to a register array R. The indexed register R[idx] holds

the decision made on the latest context packet within this

connection, and it can be refreshed entirely in the data plane.

Insertions to this key/value store require control plane involve-

ment, but they are relatively infrequent and only needed for

new connections. Since the match key does not include the

destination IP/port, this introduces some inaccuracy when

a client reuses a source port across connections. Therefore,

for short-lived connections, data packets may see slightly

outdated decisions. To ensure that such inaccuracy does not

USENIX Association 29th USENIX Security Symposium 601

DecisionFullConn

BF

Switch Control Plane

Cache
Miss

Evicted deny entry

Insert new connection

Context
packet in Make BYOD

decision

Hit: update decision

Match-action tables

Stateful registers

Update
Cache

(a) The logic for processing context packets

DecisionFullConn

BF

Cache
Miss

HitData packet in

Collision

Miss: recirculate

Hit
Drop

Enforce BYOD
decision

Drop

Hit

Miss

(b) The logic for processing data packets

Figure 6: Poise uses a combination of match/action tables and

stateful registers to process context and data packets.

misclassify a “deny” as an “allow”, we blacklist the source IP

addresses that have recently violated the enterprise policy: all

connections from these clients would be blocked temporarily.

5.2 Buffering control plane updates

Insertions to FullConn requires control plane involvement, so

they take much longer than updating policy decisions for an

existing connection. As a result, when data packets in a new

connection arrive at the switch, the FullConn match/action

table may not have been populated with the corresponding

entry yet. To address this, Poise uses a level of indirection

by creating a small hardware Cache to buffer decisions for

pending table updates, which resides on the data plane and

can be updated at linespeed. All decisions in Cache are up-to-

date, since writes to this cache are immediately effective; but

this table has a smaller capacity. The FullConn table takes

more time to update, but it holds more connections.

The cache design. As shown in Figure 5, Cache has a

fixed number of entries. Our implementation uses 216 entries,

which corresponds to the output size of a CRC-16 hash func-

tion. Each entry is of the form h→[sip,sport,proto,dec],

where h is the CRC hash of the flow’s three tuple, i.e.,

h=CRC(sip,sport,proto), and dec is the decision made

based on the context packet. The size of Cache is 216 × (7+
1)=0.38 MB memory. When Poise receives a context packet

from a new connection (Figure 6a), it immediately adds the

entry to Cache, and then invokes the control plane API to

insert the match/action entry in FullConn. Since CRC func-

tions are not collision resistant, different connections may be

mapped to the same entry; hence, we evict old entries upon

collision. When a data packet comes in (Figure 6b), Poise

first matches it against the FullConn table and applies the

decision upon success. If there is no entry for this packet,

then Poise indexes the Cache table instead. Upon a cache

hit, the corresponding decision is applied to the data packet.

Upon a cache miss, one of two situations has happened: a)

the switch has not seen a context packet from this client, or

b) the entry for this client has been evicted due to collision.

Poise distinguishes between these cases using the following

cache eviction algorithm.

Handling cache evictions. Upon collision, we always re-

place the existing entry with the new one. This is because

Poise has already invoked the control plane to install the cor-

responding entry in FullConn, which will complete in time.

Therefore, if a packet does not match any entry in FullConn

and experiences a collision in Cache, we use a special instruc-

tion to recirculate the packet inside the data plane to delay its

processing. Recirculated packets are sent back to the switch

ingress to be matched against the FullConn table one more

time. This recirculation is repeated up to k times, where the

latency is chosen to be larger than the expected time for the

control plane to populate an entry. If a packet has reached

this threshold, and the FullConn table still has not been pop-

ulated, then we consider this to be case a) above and drop the

packet.

Early denies. To reduce the amount of recirculated packets,

we make early decisions to drop a packet if its context is

evaluated to a “deny”. Specifically, when evicting an entry

from Cache, we add its source IP address into a blacklist

Bloom filter (BF in Figure 6) if the decision is to drop. Source

addresses in BF represent devices that have violated the policy

recently and need to be blacklisted for a period of time. If a

packet cannot find an entry in either Cache or FullConn, but

hits BF, we drop it without recirculation. Since Bloom filters

can only produce false positives, but never false negatives, we

will always correctly reject an illegal connection. However, we

might err on the conservative side and reject legal connections

as well, if the BF produces a false positive. This is a rare

case, however, as this will only happen during the window in

which FullConn has not been populated, the Cache entry has

been evicted, and the BF happens to produce a false positive.

Nevertheless, Poise periodically clears this Bloom filter to

reduce false positive rates, which grow with the number of

contained elements. When the BF is being cleared, packets

will be recirculated until the operation completes.

5.3 Handling denial-of-service attacks

Since Poise requires extra processing inside the network, we

need to ensure that it does not introduce new attack vectors.

Specifically, we have identified two potential denial-of-service

attack vectors and hardened the primitive against them.

Total residency attacks. Different from stateless, IP-based

routing, Poise keeps state in the FullConn table. Therefore,

an attacker could initiate many new connections and try to

a) overwhelm the FullConn table and b) constantly involve

the switch CPU to install new entries. A defense, for instance,

602 29th USENIX Security Symposium USENIX Association

could rate limit the number of active connections and to con-

trol the growth of the FullConn table. In addition, the Poise

control plane periodically scans through the FullConn table

and expires inactive entries (using hardware support) to make

room for new connections.

Cache eviction attacks. The above algorithm defends against

a malicious attacker that generates many connections to over-

whelm the FullConn table. However, an attacker can also

launch targeted DoS attacks without initiating a suspiciously

large number of connections. Specifically, she could send

context packets more frequently than usual, and try to evict

cache entries from Cache that are mapped to the same bucket.

Although the attacker may not know the hash seed, therefore

cannot predict who would be the victim of the attack, she

could degrade the performance of the connection that shares

the same hash entry, if one exists. To prevent such attacks,

we enhance the cache eviction strategy. When replacing an

old entry eo with a new entry en, we check whether these two

entries are from the same source IP. If so, we immediately

replace the entries. If not, we opportunistically perform the

replacement. By doing so, we limit the amount of damage an

attack can cause by sending frequent context packets.

6 Orchestrating Poise

Next, we explain how we orchestrate the Poise in-network

primitive using a software controller, and describe the client

module that runs on the mobile devices for context collection.

The Poise controller. Poise has a controller that hosts the

compiler and distributes the generated data plane programs

to the switches. Unlike an OpenFlow-based SDN controller,

which actively makes decisions on behalf of the data plane, the

Poise controller is not involved in packet processing, so it does

not create any software bottleneck. The main controller runs

in a remote server, and uses well-defined RPC calls to com-

municate with programmable switches’ local control planes.

Each switch has a local control plane running on the switch

CPUs, and it configures the switch data plane by installing

match/action table entries, loads new switch programs, and

serves as the primary logging component.

The Poise client module. Our client module PoiseDroid is in-

stalled at BYOD devices to collect context signals and embed

them into packets. PoiseDroid does not require modification

of existing Android apps, but rather acts as a pre-positioned

kernel module. When the device connects to the enterprise

network, it needs to go through an authentication phase (e.g.,

using WPA3 [95], or additionally using two-factor authenti-

cation [71]). The module stops propagating context signals

when the device leaves the network. Figure 7 shows the archi-

tecture of PoiseDroid with three submodules.

The context submodule. It collects context information from

the Android system services [97] using usermode-helper

APIs [34, 63], and it registers a virtual device to redirect

the context data to our kernel module. The information to be

Usermode

Helper API

Context Sub-module Network Sub-module

Sensor Information
Collector

System Information
Collector

Packet Monitor

Context Tagger

User Space Kernel Space (kernel layer)

Android

System Services

(e.g., location)

Netfilter

Kernel
SocketVirtual

Device

LSM-based Security Sub-module

LSM-based Guard Extended LSM

Figure 7: The architecture of the PoiseDroid client module.

collected is specified by a BYOD client configuration, which

includes a) app information, such as UIDs of active apps, b)

system information, such as screen light status, and c) device

status, such as accelerometer and gyroscope readings.

The protection submodule. It protects the registered virtual de-

vice, the system tools (e.g., dumpsys), and the system services

using LSM hooks in Android kernel [40, 72]. It monitors in-

vocations of selected system calls, such as ptrace(), open(),

mprotect() and chown(), and prevents any other processes to

write false data to these protected components.

The network submodule. It crafts and sends special context

packets with signals needed for the enterprise policies, using a

frequency specified in the configuration. When an app opens

a new socket, or when an existing socket sends packets after

being dormant for a while, it also generates a context packet.

7 Limitations and Discussions

Authentication. As an access control mechanism, Poise fo-

cuses on resource authorization and should be used with an

authentication method, e.g., the SAE (simultaneous authenti-

cation of equals) protocol [57] in WPA3 [95], or two-factor

authentication with TOTP [71]. Only authenticated users can

further access enterprise resources in Poise.

Context integrity and privacy. One limitation of the cur-

rent Poise prototype is that it relies on external cryptographic

mechanisms to secure context packets. This is because today’s

P4 switches do not have built-in support for cryptography.

Adding cryptography support in P4 switches can be achieved

in two ways. First, the P4 standard allows cryptographic mod-

ules to be added as “externs”. The main Poise program can

invoke such an extern module to encrypt, decrypt, and authen-

ticate context packets. Second, a recent project SPINE [48]

shows that the current P4 language is expressive enough to

implement a keyed hash function. SPINE further leverages

this to generate one-time pads to encrypt/decrypt IP and TCP

headers at linespeed. Poise could use a similar design, where

clients encrypt context packets and the switch decrypts them

using shared keys. To protect integrity, Poise can additionally

use the keyed hash function to generate a MAC (message

authentication code) of the context fields at the clients, and

verify the MAC at the switch. To protect against replay at-

tacks, the context packets also need to include timestamps or

sequence numbers. Either way, the Poise switch or the “ex-

tern” module needs to be configured with key pairs with each

enterprise client.

USENIX Association 29th USENIX Security Symposium 603

Existing security mechanisms in enterprise networks can

also offer some support. Typically, client devices connect

to the network via wireless access points (APs), and then

to the wired network. Communication between clients and

APs can be protected by WPA3 [95], and communication

between the APs and the wired network by MACsec [15];

both can protect the integrity and confidentiality of packets

and are secure against replay attacks [15, 95]. Under these

protections, context packets are always encrypted on (wired

and wireless) network links, therefore secure against network

reconnaissance attacks. However, supporting cryptography in

P4 switches would provide stronger, end-to-end guarantees.

8 Evaluation

In this section, we describe the experimental results obtained

using our Poise prototype. Our experiments are designed to

answer five research questions: a) How well does the Poise

compiler work? b) How efficiently can Poise process the

security contexts inside the network? c) How well does Poise

scale to complex policies? d) How much overhead does the

Poise client incur on mobile devices? and e) How does Poise

compare with traditional SDN-based security?

8.1 Prototype implementation

We have implemented the Poise prototype using 5918 lines

of code in C/C++ and Python [20]. The Poise compiler is

implemented in C++, using Bison 2.3 as the syntax parser,

and Flex 2.5.35 as the lexer. It can generate switch programs

in P4 for the Tofino hardware. The PoiseDroid client module

is implemented in C as a pre-positioned kernel module on

Linux 3.18.31. It extends the default LSM framework, SEAn-

droid, to implement the protection submodule. For evaluation,

PoiseDroid runs on a Pixel smartphone with a Qualcomm

Snapdragon 821 MSM8996 Pro CPU (4 cores) and Android

v7.1.2. The Poise control plane is implemented in Python,

and runs as part of the control plane software suite for the

Tofino switch. It manages the match/action table entries and

reconfigures the data plane programs. It can also be config-

ured to invoke the hardware-based packet generator on the

switch to send traffic at linespeed (100 Gbps per port), which

we have used to test the latency and throughput of Poise.

8.2 Experimental setup

We set up a testbed with one Wedge 100BF Tofino switch and

two servers. The Tofino switch has a linespeed of 100 Gbps

per port, and 32 ports overall, achieving an aggregate through-

put of 3.2 Tbps when all ports are active. It also has a

200 Gbps pipeline—separate from the 32 regular ports—for

handling packet recirculation. Each server is equipped with

six Intel Xeon E5-2643 Quad-core CPUs, 128 GB RAM, 1 TB

hard disk, and four 25 Gbps Ethernet ports, which collectively

can emulate eight forwarding decisions (one per server port).

The servers are connected to the Tofino switch using breakout

0

10

20

30

P1 P2 P3 P4 P5 P6 P7

C
o
m
p
ila
ti
o
n

 t
im
e

 (
m
s
)

Policy

Figure 8: Poise compiles the policies efficiently.

cables from the 100 Gbps switch ports to the 25 Gbps server

Ethernet ports. At linespeed, the testbed should achieve full

100 Gbps bandwidth per switch port.

On the first server, one of its ports is configured to be an

enterprise server, and other ports are configured to emulate

a DPI device, a traffic scrubber, and a logger, respectively.

The other server functions as an enterprise client. The mobile

traces are first collected from our Pixel smartphone, and then

“stretched” to higher speeds to be replayed. The replay can

be initiated from a) the enterprise client, or b) the hardware

generator for Poise at linespeed.

8.3 Compiler

We start by evaluating the performance of the Poise compiler

and its generated programs. All programs support one million

connections in the FullConn table.

Compilation speed. In order to understand the performance

of our compiler, we measured the time it took to generate

switch programs for each of the seven policies. We found that

compilation finished within one second across all policies. P1

and P3 took slightly more time than the rest, because they

involve more context fields and our compiler needs to generate

more logic for header processing. Figure 8 shows the results.

Generated P4 programs. The generated P4 programs have

855-975 lines of code, which are significantly more complex

than the original policy programs that only contain a few

lines of code. For one million connections across policies,

the utilization of Poise for SRAM (used for exact match) is

roughly 43%, for TCAM (used for longest-prefix match) is

below 1.1%, and for VLIWs (Very Long Instruction Words,

used for header modifications) is below 7%.

8.4 In-network processing overhead

Next, we turn to evaluate the overhead of Poise in terms of

packet processing latency and switch throughput.

Packet processing latency. Poise increases the overhead of

packet processing, because it needs to process context headers

and approximate per-flow state. To quantify this overhead,

we have tested the latency for Poise to process a) a context

packet, b) a data packet, and compared them with c) the la-

tency for directly forwarding a packet without any processing.

Figure 9 shows that for all tested policies, the extra latency

on average is 72 nanoseconds for processing data packets,

604 29th USENIX Security Symposium USENIX Association

 0

 100

 200

 300

 400

 500

 600

 700

P1 P2 P3 P4 P5 P6 P7

L
a
te
n
c
y
 (
n
a
n
o
s
e
c
o
n
d
s
)

Policy

Baseline
Context

Data

Figure 9: The amount of processing latency of Poise is small.

0

50

100

P1 P2 P3 P4 P5 P6 P7P
e
r-
p
o
rt

 t
h
ro
u
g
h
p
u
t
(G
b
p
s
)

Policy

Figure 10: Poise achieves full linespeed programmability.

and 189 nanoseconds for processing context packets. In an

enterprise network where the round-trip times are on the order

of milliseconds, such a small extra latency is negligible.

Switch throughput. Next, we measured the throughput per

switch port using the hardware packet generator for stress

testing. The generator ingested mobile traces collected from

our phone, and stretched the trace to be 100 Gbps. Figure 10

shows the per-port throughput for all policies. As we can

see, although there is additional processing delay in Poise,

the pipelined nature of the switch hardware makes it achieve

full bandwidth nevertheless. In other words, Poise leverages

programmable data planes to enforce context-aware security

at linespeed, a key goal that we have designed for.

8.5 Scalability

Next, we evaluate how well Poise scales to complex policies.

As policies may perform different numbers of checks on dif-

ferent numbers of contexts, we define a “unit policy” to be

one that performs a single check on a single context. We then

create many unit policies, and use the Poise compiler to com-

pose them together. We characterize the complexity of the

composed policy in two dimensions: a) the number of checks

per context, and b) the number of contexts. For a), we further

distinguish between exact vs. range checks, and for b), we

distinguish between regular (i.e., non-monitor) vs. monitor

contexts. For instance, consider the following unit policies:

if match (usr==Bob) then fwd(mbox)

if match (lib==1.0.2) then fwd(server)

We say that the composed policy has two regular contexts and

performs two exact checks—one check per context.

Number of checks. Poise compiles each check into a

match/action entry, so the number of checks a switch can sup-

port depends on its available memory (SRAM and TCAM).

Exact checks (e.g., X==1) are supported by SRAM and range

checks (e.g., 10<X<20) by TCAM, so they are bottlenecked

by the SRAM and TCAM sizes, respectively. We first mea-

sured the maximum number of exact checks Poise can per-

form on a single context, by asking the compiler to compose

more and more unit policies until the compilation failed. We

found that our switch can support 1.2 million checks, which

are spread across 5 hardware stages. We then modified all

unit policies to perform range checks, and found that Poise

can perform 55 k checks, as the TCAM size is smaller.

Number of contexts. Poise compiles each regular context

into a match/action table, so the number of contexts is bot-

tlenecked by the number of tables a switch can support. We

increased the number of contexts (e.g., time, library version)

from one to the maximum until compilation failed, and found

that Poise can support a maximum of 40 contexts—each of

the 5 stages can support 8 context tables.

For each data point, we also measured the number of checks

Poise can perform per context. We found that the number of

checks per context decreases as we add more contexts, as

the context tables need to multiplex switch memory. With 40

contexts, Poise can perform 21 k exact checks or 0.8 k range

checks per context (Figure 11a). In other words, Poise can

support at least 21 k distinct context values (e.g., user IDs for

per-user policies) or 0.8 k distinct context intervals (e.g., time

intervals for time-based access control).

We then modified all unit policies to check against network-

wide monitors. A monitor is compiled into two tables—one

for monitor updates, and another for monitor checks. Poise

supports a maximum of 20 monitors in 40 tables. Policies

can also use a mix of monitors and regular contexts. The con-

straint on the number of monitors m and the number of regular

contexts c is 2×m+ c ≤ 40, as they are all compiled into ta-

bles under the hood. In terms of the number of checks per

monitor, the results for a policy with m monitors are similar as

those for a policy with 2×m regular contexts (Appendix A.3).

Overhead. We define a “baseline” to be the latency and

throughput for a unit policy, where a context packet traverses

the hardware stages exactly once without recirculation. A

packet with k contexts would be recirculated to traverse the

stages ⌈ k
5⌉ times, every time matching against 5 tables, one in

each stage. At the maximum, Poise supports 7 recirculations

for 40 contexts at a latency of 6.5µs (Figure 11b), which is still

orders of magnitude lower than typical enterprise RTTs (ms).

Recirculation also causes extra traffic overhead. We measured

the overhead using 1 million connections and one context

packet per second per connection. As Figure 11c shows, the

maximum recirculation overhead is 0.37 Gbps per port. A

monitor policy with m monitors has similar results as a policy

with 2×m regular contexts (Appendix A.3). Exact and range

checks have similar results, as the types of checks do not

affect the number of recirculations.

USENIX Association 29th USENIX Security Symposium 605

100

1k

10k

100k

1M

1 2 5 10 20 40

C
h
e
c
k
s
 p
e
r
c
o
n
te
x
t

Number of contexts

Exact
Range

(a) Num. of contexts vs. num. of checks

 0
 1
 2
 3
 4
 5
 6
 7

1 2 5 10 20 40

L
a
te
n
c
y
 (
u
s
)

Number of contexts

Context packet
Data packet

(b) Num. of contexts vs. latency

0

0.5

90

100

1 2 5 10 20 40

T
h
ro
u
g
h
p
u
t
(G
b
p
s
)

Number of contexts

Data traffc
Recirculation

(c) Num. of contexts vs. traffic overhead

Figure 11: Poise can perform 1.2 million exact checks for a single context, or 21k exact checks for a maximum of 40 contexts.

Context packets with more than 5 contexts need to be recirculated multiple times; Poise supports a maximum of 7 recirculations,

which leads to a latency of 6.5µs and an additional 0.37 Gbps traffic per port in a dedicated recirculation pipeline. Poise supports

fewer range checks (55 k for one context, 0.8 k for 40 contexts) than exact checks, as the former are supported in TCAM, which

is smaller than SRAM; but the latency and bandwidth overheads are similar, as they do not depend on the types of checks. Data

packets are not affected by policy complexity, as they simply look up the decisions from the connection table.

We note that recirculation traffic is contained in a dedicated

200 Gbps switch pipeline—it does not compete with normal

user traffic. Also, recirculation only incurs latency on context

packets, as data packets simply look up previous decisions in

a single stage traversal. Therefore, even when recirculating

context packets, Poise still processes data packets at baseline

latency and full linespeed (Figures 11b-11c).

Discussion: Per-user policies. Poise supports per-user poli-

cies by including the user ID as a context. Therefore, per-user

policies merely reduce the number of total contexts by one,

from 40 to 39. The number of user IDs Poise can check against

is 21k, assuming the policy has 39 contexts. As another di-

mension of constraint, assuming each user may launch 1k con-

current connections, then Poise would support a maximum

of 1M/1k=1k users. To put this into perspective, Microsoft

headquarter reports 80 k employees in 125 buildings [18];

assuming that each building has its own access control switch,

then every switch needs to support 0.64 k users.

8.6 Client overhead

We now evaluate the overhead of the client module, using

vanilla Android without PoiseDroid as the baseline system.

CPU overhead. We tuned the frequency at which the client

module sends context packets, and measured the CPU over-

head for each frequency. In a naïve design where PoiseDroid

tags every packet with context information, the CPU over-

head is as much as 11%. With an optimized design where

the client module sends one context packet per second, the

CPU overhead is drastically reduced to 1.3%. Figure 15a in

Appendix A.4 shows the results.

Traffic overhead. Next, we measured the traffic overhead due

to the context packets. This experiment assumes four context

fields (16 bytes). We found that, at one context packet per

second, the traffic overhead is less than 0.01%, a negligible

amount. Figure 15b in Appendix A.4 shows the results.

Battery overhead. We used PCMark [35], a battery life

benchmark tool to test smartphones and tablets, to quantify the

amount of battery overhead. Table 1 in Appendix A.4 shows

the results. The overall overhead across benchmarked activi-

ties introduced by PoiseDroid is only 1.02%, and even for the

activities that introduce the highest overhead (i.e., writing),

the overhead is only 2.87%.

Overall benchmark. Next, we used CF-Bench, a comprehen-

sive benchmark tool designed for multicore mobile devices,

to quantify the overall overheads of PoiseDroid. This tool can

further measure the overheads introduced by native code, Java

code, and an overall benchmark score, where higher scores

mean better performance. Figure 16 in Appendix A.4 shows

that PoiseDroid only introduces 5%, 4%, and 5% additional

overhead for the native, Java, and overall scores.

8.7 Poise vs. OpenFlow-based SDN

Last but not least, we compare the paradigm of programmable

in-network security, as embodied in Poise, against the

paradigm of OpenFlow-based SDN security, in terms of a)

the speed for security decision change, and b) resilience to

control plane saturation attacks [82]. As we motivated before,

one key advantage of Poise over traditional SDN security so-

lutions is the avoidance of software-based packet processing

on a remote controller, because Poise uses programmable data

planes to directly process context signals in hardware.

Setup. We set up a Floodlight v1.2 SDN controller on a sep-

arate server, and configured other servers to use the controller

via OpenFlow as implemented in OpenvSwitch v2.9.2. We

implemented our example policies (P1-P7) as software “SDN

apps” in the controller. These apps listen for client context

updates, and push OpenFlow rules to the clients for access

control. This closely mirrors the setup in state-of-the-art secu-

rity solutions based on OpenFlow-based SDN [58, 75, 82].

Defense agility. We quantify the defense agility of a secu-

rity system by measuring δ, the time it takes to change its

access control decision after seeing a new context packet. For

OpenFlow-based SDN, this includes the round-trip time delay

606 29th USENIX Security Symposium USENIX Association

100

101

102

0 1K 10K 100K 1M

A
v
g
.
la
te
n
c
y
 (
m
s
)

Attack strength

OpenFlow SDN
Poise

(a) New connection latency

0

50

100

0 1K 10K 100K 500K 1M

P
e
rc
e
n
ta
g
e
 (
%
)

Attack strength

OpenFlow SDN
Poise

(b) Successful connections

Figure 12: Poise is resilient to control plane saturation attacks.

Attack strength is measured by the number of context changes

per second that the attacker generates. In the OpenFlow-based

solution, new connections and context changes would gen-

erate PacketIn and FlowMod events between the OpenFlow

switch and the central controller.

for the context packet to reach the controller and for the con-

troller to push new OpenFlow rules back to the OpenvSwitch.

(We did not include the additional latency of OpenvSwitch

because a hardware OpenFlow switch can reduce this signif-

icantly.) We found that, depending on the network load, the

agility of the baseline system is δ =5 ms–2.47 s. In compari-

son, Poise directly processes context changes on the fast path,

achieving δ < 500 ns in all cases, which is three to seven

orders of magnitude faster than the baseline.

Control plane saturation attacks [82]. An attacker can also

create high loads on the channel between the data plane and

the control plane by generating a large number of context

changes. This effectively degrades the performance of legiti-

mate users for establishing new connections, as the PacketIn

messages go through the same channel. As Figure 12 shows,

the central controller struggles to keep up with the amount of

context changes that it needs to process. At an attack strength

of 1M context changes per second, legitimate clients clients

were not able to establish new connections (99%+ connec-

tion requests from legitimate clients were dropped; the rest

experienced a latency 30× higher than normal on average).

Poise, on the other hand, processes context changes entirely

in the data plane at hardware speeds. The performance for

legitimate clients stays almost constant during the attacks.

9 Related Work

SDN/NFV security. SDN/NFV-based solutions for enterprise

security started with SANE [46] and Ethane [45]. Recent

work also includes PSI [98], FortNox [77], PBS [58], Pivot-

Wall [75], OFX [84], and CloudWatcher [80]. Existing work

has also considered new attack vectors in SDNs [59, 82, 83,

96], such as control plane saturation attacks [82]. Poise lever-

ages the recent development of programmable data planes,

and develops defenses that are resilient to control plane satu-

ration attacks with much higher agility.

Context-aware security. Security researchers have recog-

nized the need for context-aware security to support fine-

grained, dynamic policies. Barth et al. [41] propose a logic

framework for contextual integrity. Recent work has devel-

oped various applications leveraging this concept. Contex-

IoT [60] analyzes UI activities, app information, and con-

trol/data flow information, and prompts users for runtime

permissions. FlowFence [51] runs applications in sandboxes

and enforces information flow control across IoT applications.

PBS [58] uses OpenFlow-based SDN for BYOD security. Yu

et al. [99] sketch a vision for using network function virtual-

ization for context-aware IoT security. DeepDroid [91] traces

IPC and system calls to achieve fine-grained security. Com-

pared to existing work, Poise designs a network primitive for

security enforcement, and has an end-to-end framework for

specifying, compiling, and enforcing declarative policies.

Policy languages. Most domain-specific languages for net-

working [38, 42, 69, 78, 79, 90, 98, 100] are not targeted

at security. Policy languages for network security also exist,

but we are not aware of an existing language that can sup-

port context-aware policies on programmable data planes.

For instance, PSI [98] uses finite state machines to specify

security policies, but it assumes that the policies are imple-

mented by general-purpose software; PBS [58] assumes a

traditional SDN environment. Poise builds upon an existing

SDN language (NetCore [69]), but adapts it for enforcing

context-aware security on programmable data planes.

Programmable data planes. Poise builds upon the emerging

trend of using data plane programmability [43, 44, 85] for in-

network computation, e.g., load balancing [65], network mon-

itoring [73], key-value cache [62, 66], and coordination [61],

but it focuses on a very different goal: security. The closest to

our work is a recent workshop paper [70], but it neither has a

full system implementation nor evaluation.

10 Conclusion

We have described Poise, a system that can enforce context-

aware security using a programmable, efficient, in-network

primitive. In Poise, administrators can express a rich set of

policies in a high-level language. Our compiler then compiles

the policies down to switch programs written in P4. These

programs run inside modern switches with programmable

data planes, and can enforce security decisions at linespeed.

Our evaluation shows that Poise has reasonable overheads,

and that compared to OpenFlow-based defense, it is highly

agile and resilient to control plane saturation attacks.

Acknowledgments: We thank our shepherd Adwait Nad-

karni, the anonymous reviewers, Vladimir Gurevich, Kuo-

Feng Hsu, Dingming Wu, and Jiarong Xing for their insight-

ful comments and suggestions. This work was supported in

part by a Hong Kong RGC Project (No. PolyU 152279/16E,

CityU C1008-16G) and an NSF grant CNS-1801884.

USENIX Association 29th USENIX Security Symposium 607

References

[1] AndFTP. http://www.lysesoft.com/products/andftp.

[2] Android for Work. https://www.android.com/enterpri

se/employees/.

[3] Barefoot Tofino. https://www.barefootnetworks.com/t

echnology/#tofino.

[4] The benefits and risks of BYOD. https://goo.gl/ym9ATg.

[5] Blackberry EMM. https://www.blackberry.com/us/en

/solutions/enterprise-mobility-management-emm.

[6] Bring your own risk with BYOD. https://goo.gl/bn1rN4.

[7] BYOD: A global perspective. https://goo.gl/BTrSm4.

[8] BYOD: Mobile devices threats and vulnerabilities. https:

//goo.gl/phTav6.

[9] Cavium XPliant. https://www.cavium.com/xpliant-e

thernet-switch-product-family.html.

[10] Cisco Port ACLs (PACLs) and VLAN ACLs (VACLs).

https://www.cisco.com/c/en/us/td/docs/switches

/lan/catalyst6500/ios/12-2SX/configuration/gui

de/book/vacl.html.

[11] End node. https://goo.gl/D99C39.

[12] How to solve the end node problem. https://goo.gl/9wW

qJr.

[13] IBM Mobile: BYOD. https://goo.gl/zafGxN.

[14] IBM opens up smartphone, tablet support for its workers.

https://goo.gl/WBn3vP.

[15] IEEE 802.1AE: MAC security. https://1.ieee802.org/

security/802-1ae/.

[16] Intel FlexPipe. https://www.intel.com/content/www/

us/en/products/network-io/ethernet/switches.ht

ml.

[17] Market reports. https://goo.gl/25SX7K.

[18] Microsoft headquarters. https://www.builtinseattle.c

om/2018/11/12/microsoft-redmond-campus-headqua

rters.

[19] P4 language repositories. https://github.com/p4lang.

[20] The Poise code repository. https://github.com/qiaokan

g92/poise.

[21] Protocol numbers. https://www.iana.org/assignments

/protocol-numbers/protocol-numbers.xhtml.

[22] The rise and risk of BYOD. https://www.druva.com/bl

og/the-rise-and-risk-of-byod/.

[23] Samsung BYOD solutions. https://goo.gl/GmZ1io.

[24] Samsung Knox. http://www.samsung.com/global/bus

iness/mobile/solution/security/samsung-knox.

[25] Securing your weakest link: Your mobile devices. https:

//goo.gl/Z769MG.

[26] Security configuration guide: Access control lists, Cisco IOS

XE Release 3S. https://goo.gl/zTJaUL.

[27] Symantec EMM. https://www.symantec.com/content

/dam/symantec/docs/data-sheets/endpoint-protec

tion-mobile-for-emm-en.pdf.

[28] A technical report on TEE and ARM TrustZone.

https://community.arm.com/developer/ip-produ

cts/processors/b/processors-ip-blog/posts/a-te

chnical-report-on-tee-and-arm-trustzone.

[29] Top 21 companies in the BYOD market. https://goo.gl

/MuRr66.

[30] Verified Boot: Android Open Source Project. https://sour

ce.android.com/security/verifiedboot/.

[31] VMware Airwatch. https://www.air-watch.com/capa

bilities/enterprise-mobility-management/.

[32] What is BYOD and why is it important? https://goo.gl

/H71Nji.

[33] IEEE 802.1x remote authentication dial in user service (RA-

DIUS) usage guidelines, RFC 3580. 2003. https://www.rf

c-editor.org/info/rfc3580.

[34] dumpsys. https://developer.android.com/studio/c

ommand-line/dumpsys, 2018.

[35] Pcmark for android benchmark. https://play.google.

com/store/apps/details?id=com.futuremark.pcmar

k.android.benchmark, 2018.

[36] P. Aditya, R. Sen, P. Druschel, S. Joon Oh, R. Benenson,

M. Fritz, B. Schiele, B. Bhattacharjee, and T. T. Wu. I-pic:

A platform for privacy-compliant image capture. In Proc.

MobiSys, 2016.

[37] A. Alzubaidi and J. Kalita. Authentication of smartphone

users using behavioral biometrics. IEEE Communications

Surveys& Tutorials,, 18:1998–2026, 2016.

[38] C. J. Anderson, N. Foster, A. Guha, J.-B. Jeannin, D. Kozen,

C. Schlesinger, and D. Walker. NetKAT: Semantic founda-

tions for networks. In Proc. POPL, 2014.

[39] N. Apthorpe, Y. Shvartzshnaider, A. Mathur, D. Reisman, and

N. Feamster. Discovering smart home Internet of Things

privacy norms using contextual integrity. Proc. IMWUT,

2018.

[40] M. Backes, S. Bugiel, S. Gerling, and P. von Styp-Rekowsky.

Android security framework: Extensible multi-layered access

control on android. In Proc. ACSAC, 2014.

[41] A. Barth, A. Datta, J. C. Mitchell, and H. Nissenbaum. Privacy

and contextual integrity: Framework and applications. In Proc.

IEEE S&P, 2006.

[42] R. Beckett, R. Mahajan, T. Millstein, J. Padhye, and D. Walker.

Don’t mind the gap: Bridging network-wide objectives and

device-level configurations. In Proc. SIGCOMM, 2016.

[43] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rex-

ford, C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and

D. Walker. P4: Programming protocol-independent packet

processors. ACM SIGCOMM CCR, 44(3), 2014.

[44] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown,

M. Izzard, F. Mujica, and M. Horowitz. Forwarding meta-

morphosis: Fast programmable match-action processing in

hardware for SDN. In Proc. SIGCOMM, 2013.

[45] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown,

and S. Shenker. Ethane: Taking control of the enterprise. In

Proc. SIGCOMM, 2007.

[46] M. Casado, T. Garfinkel, A. Akella, M. Freedman, D. Boneh,

N. McKeown, and S. Shenker. SANE: A protection archi-

tecture for enterprise networks. In Proc. USENIX Security,

2006.

[47] D. Dang-Pham and S. Pittayachawan. Comparing intention

to avoid malware across contexts in a BYOD-enabled Aus-

tralian university: A protection motivation theory approach.

Computers & Security, 48:281–297, 2015.

[48] T. Datta, N. Feamster, J. Rexford, and L. Wang. SPINE:

Surveillance protection in the network elements. In Proc.

FOCI, 2019.

608 29th USENIX Security Symposium USENIX Association

[49] S. Eberz, K. B. Rasmussen, V. Lenders, and I. Martinovic.

Evaluating behavioral biometrics for continuous authentica-

tion: Challenges and metrics. In Proc. AsiaCCS, 2017.

[50] M. Ehatisham-ul-Haqa, M. A. Azama, U. Naeemb, Y. Amina,

and J. Looc. Continuous authentication of smartphone users

based on activity pattern recognition using passive mobile

sensing. Journal of Network and Computer Applications,

109:24–35, 2018.

[51] E. Fernandes, J. Paupore, A. Rahmati, D. Simionato, M. Conti,

and A. Prakash. FlowFence: Practical data protection for

emerging IoT application frameworks. In Proc. USENIX

Security, 2016.

[52] D. F. Ferraiolo, D. R. Kuhn, and R. Chandramouli. Role-

Based Access Control. Artech House, 2007.

[53] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and

R. Chandramouli. Proposed NIST standard for role-based

access control. ACM Transactions on Information and System

Security (TISSEC), 4(3):224–274, 2001.

[54] N. Foster, R. Harrison, M. Freedman, C. Monsanto, J. Rexford,

A. Story, and D. Walker. Frenetic: A network programming

language. In Proc. ICFP, 2011.

[55] Y. Fratantonio, C. Qian, P. Chung, and W. Lee. Cloak and

dagger: From two permissions to complete control of the UI

feedback loop. In Proc. IEEE S&P, 2017.

[56] C. K. Georgiadis, I. Mavridis, G. Pangalos, and R. K. Thomas.

Flexible team-based access control using contexts. In Proc.

SACMAT, 2001.

[57] D. Harkins. Simultaneous authentication of equals: A secure,

password-based key exchange for mesh networks. In Proc.

SensorComm, 2008.

[58] S. Hong, R. Baykov, L. Xu, S. Nadimpalli, and G. Gu. To-

wards SDN-defined programmable BYOD (bring your own

device) security. In Proc. NDSS, 2016.

[59] S. Hong, L. Xu, H. Wang, and G. Gu. Poisoning network

visibility in software-defined networks: New attacks and coun-

termeasures. In Proc. NDSS, 2015.

[60] Y. J. Jia, Q. A. Chen, S. Wang, A. Rahmati, E. Fernandes,

Z. M. Mao, and A. Prakash. ContexIoT: Towards providing

contextual integrity to appified IoT platforms. In Proc. NDSS,

2016.

[61] X. Jin, X. Li, H. Zhang, N. Foster, J. Lee, R. Soule, C. Kim,

and I. Stoica. NetChain: Scale-free sub-RTT coordination. In

Proc. NSDI, 2018.

[62] X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster, C. Kim,

and I. Stoica. NetCache: Balancing key-value stores with fast

in-network caching. In Proc. SOSP, 2017.

[63] M. T. Jones. Invoking user-space applications from the

kernel. https://www.ibm.com/developerworks/libra

ry/l-user-space-apps/index.html, 2018.

[64] L. Jose, L. Yan, G. Varghese, and N. McKeown. Compiling

packet programs to reconfigurable switches. In Proc. NSDI,

2015.

[65] N. Katta, M. Hira, C. Kim, A. Sivaraman, and J. Rexford.

HULA: Scalable load balancing using programmable data

planes. In Proc. SOSR, 2016.

[66] M. Liu, L. Luo, J. Nelson, L. Ceze, A. Krishnamurthy, and

K. Atreya. IncBricks: Toward in-network computation with

an in-network cache. In Proc. ASPLOS, 2017.

[67] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,

L. Peterson, J. Rexford, S. Shenker, and J. Turner. OpenFlow:

Enabling innovation in campus networks. ACM SIGCOMM

Computer Communication Review, 38(2):69–74, 2008.

[68] C. Monsanto, N. Foster, R. Harrison, and D. Walker. A

compiler and run-time system for network programming lan-

guages. In Proc. POPL, 2012.

[69] C. Monsanto, J. Reich, N. Foster, J. Rexford, and D. Walker.

Composing software-defined networks. In Proc. NDSI, 2013.

[70] A. Morrison, L. Xue, A. Chen, and X. Luo. Enforcing context-

aware BYOD policies with in-network security. In Proc.

HotCloud, July 2018.

[71] D. M’Raihi, S. Machani, M. Pei, and J. Rydell. Time-based

one-time password algorithm. RFC 6238.

[72] A. Nadkarni and W. Enck. ASM: A programmable interface

for extending Android security. In Proc. USENIX Security,

2014.

[73] S. Narayana, A. Sivaraman, V. Nathan, P. Goyal, V. Arun,

M. Alizadeh, V. Jeyakumar, and C. Kim. Language-directed

hardware design for network performance monitoring. In

Proc. SIGCOMM, 2017.

[74] M. Nauman, S. Khan, X. Zhang, and J.-P. Seifert. Beyond

kernel-level integrity measurement: Enabling remote attesta-

tion for the Android platform. In Proc. TRUST, 2010.

[75] T. OConnor, W. Enck, W. M. Petullo, and A. Verma. Pivot-

Wall: SDN-based information flow control. In Proc. SOSR,

2018.

[76] B. Parducci. eXtensible Access Control Markup Language

(XACML) specification. 2005.

[77] P. Porras, S. Shin, V. Yegneswaran, M. Fong, M. Tyson, and

G. Gu. A security enforcement kernel for OpenFlow networks.

In Proc. HotSDN, 2012.

[78] M. Reitblatt, M. Canini, A. Guha, and N. Foster. Fattire:

Declarative fault tolerance for software-defined networks. In

Proc. HotSDN, 2013.

[79] C. Schlesinger, M. Greenberg, and D. Walker. Concurrent

NetCore: From policies to pipelines. In Proc. ICFP, 2014.

[80] S. Shin and G. Gu. Cloudwatcher: Network security moni-

toring using OpenFlow in dynamic cloud networks. In Proc.

ICNP, 2012.

[81] S. Shin, P. Porras, V. Yegneswaran, M. Fong, G. Gu, and

M. Tyson. Fresco: Modular composable security services for

software-defined networks. In Proc. NDSS, 2013.

[82] S. Shin, V. Yegneswaran, P. Porras, and G. Gu. AVANT-

GUARD: Scalable and vigilant switch flow management in

software-defined networks. In Proc. CCS, 2013.

[83] R. Skowyra, L. Xu, G. Gu, T. Hobson, V. Dedhia, J. Landry,

and H. Okhravi. Effective topology tampering attacks and

defenses in software-defined networks. In Proc. DSN, 2018.

[84] J. Sonchack, A. Aviv, E. Keller, and J. Smith. Enabling prac-

tical software-defined networking security applications with

OFX. In Proc. NDSS, 2016.

[85] H. Song. Protocol-oblivious forwarding: Unleash the power

of SDN through a future-proof forwarding plane. In Proc.

HotSDN, 2013.

[86] Sophos. Synchronized security: Best-of-breed defense that’s

more coordinated than attacks. https://www.sophos.com

/en-us/medialibrary/gated-assets/white-papers/

sophos-security-heartbeat-wpna.pdf.

USENIX Association 29th USENIX Security Symposium 609

[87] W. Tolone, G.-J. Ahn, and T. Pai. Access control in collabo-

rative systems. ACM Computing Surveys, 37:29–41, 2005.

[88] N. Ulltveit-Moe and V. Oleshchuk. Enforcing mobile security

with location-aware role-based access control. Security and

Communication Networks, 9:429–439, 2016.

[89] VMware. Next generation security with VMware NSX and

Palo Alto Networks VM-series. In White Paper, 2013.

[90] A. Voellmy, A. Agarwal, P. Hudak, N. Feamster, S. Burnett,

and J. Launchbury. Don’t configure the network, program

it! Domain-specific programming languages for network sys-

tems. Technical report, Yale University, 2010.

[91] X. Wang, K. Sun, Y. Wang, and J. Jing. Deepdroid: Dynami-

cally enforcing enterprise policy on Android devices. In Proc.

NDSS, 2015.

[92] X. Wang, T. Yu, O. Mengshoel, and P. Tague. Towards con-

tinuous and passive authentication across mobile devices: an

empirical study. In Proc. WiSec, 2017.

[93] Z. Wang, Z. Qian, Q. Xu, Z. M. Mao, and M. Zhang. An

untold story of middleboxes in cellular networks. In Proc.

SIGCOMM, 2011.

[94] R. Ward and B. Beyer. BeyondCorp: A new approach to

enterprise security. USENIX ;login:, 39:6–11, 2014.

[95] Wi-Fi Alliance introduces Wi-Fi Certified WPA3 security.

https://www.wi-fi.org/news-events/newsroom/wi-

fi-alliance-introduces-wi-fi-certified-wpa3-se

curity.

[96] L. Xu, J. Huang, S. Hong, J. Zhang, and G. Gu. Attacking

the brain: Races in the SDN control plane. In Proc. USENIX

Security, 2017.

[97] R. Ye. Android System Programming: Porting, customizing,

and debugging Android HAL. Packt Publishing, 2017.

[98] T. Yu, S. K. Fayaz, M. Collins, V. Sekar, and S. Seshan. PSI:

Precise security instrumentation for enterprise networks. In

Proc. NDSS, 2017.

[99] T. Yu, V. Sekar, S. Seshan, Y. Agarwal, and C. Xu. Handling

a trillion (unfixable) flaws on a billion devices: Rethinking

network security for the Internet-of-Things. In Proc. HotNets,

2016.

[100] Y. Yuan, D. Lin, R. Alur, and B. T. Loo. Scenario-based

programming for SDN policies. In Proc. CoNEXT, 2015.

[101] N. Zahadat, P. Blessner, T. Blackburn, and B. Olson. BYOD

security engineering: A framework and its analysis. Comput-

ers & Security, 55:81–99, 2015.

A Appendix

In this appendix, we include more discussions and results.

A.1 Poise protocol format

In this subsection, we extend the discussion in §4.3 and de-

scribe the Poise protocol format in more detail. The Poise

client module periodically sends context packets for each ac-

tive connection. Context packets have the same flow tuples

(source IP, destination IP, source port, destination port) with

data packets from the same TCP/UDP flows. The only differ-

ences are that a) context packets have a special IP protocol

number (IPProto=143 for TCP, IPProto=144 for UDP; both

are unassigned protocol numbers [21]), b) context headers

come after the transport-layer (TCP/UDP) header, and c) con-

text packets do not have payload. Poise never propagates

context packets to external networks but rather drops them

at the switch, and it does not modify data packets. Figure 13

shows the format for TCP flows.

Ethernet IP (proto=143) TCP Context

Data packet

Ethernet IP (proto=6) TCP Payload

Context packet

Figure 13: Context packets have a special IP protocol number.

Data packets from Poise clients have unchanged headers.

A.2 Compiler optimizations

This subsection extends §4.3 and describes in more detail the

compiler optimizations.

Table deduplication. Suppose that we would like to compose

two policies that perform checks on the same context type.

A naïve compiler would simply compile each check into a

separate match/action table. With this approach, the number of

policies that can be supported would be limited by the number

of match/action tables in a switch. Depending on the switch

model, this number is on the order of O(10), which is quite

small. Our compiler can recognize that policies share the same

context type, and it merges checks on the same context type

by creating one table for each unique context across policies.

Then, it compiles each check into a match/action table entry

instead of a separate table. This optimization allows Poise

to scale the number of context types to the number of table

entries a switch can support, not the number of unique tables.

This number is on the order of O(1M).

Policy collapsing. Consider now a policy that checks many

context fields one by one, and only arrives at the final decision

afterwards. The key challenge for handling such a policy is

that these checks create “dependent tables”, which due to P4

constraints must reside in separate stages. In essence, such a

policy would result in a long chain of tables, which might ex-

ceed the number of available stages (O(1-10)) in a switch. Our

optimization collapses a chain of tables of length k into multi-

ple shorter chains k1,k2, ..,kt , each of which stays within the

number of available stages. Due to another P4 constraint—a

packet can only match against a single table per stage, match-

ing against all subchains k1,k2, ..,kt would require recircu-

lating the packet t times, each for a subchain. Recirculation

of context packets would cause additional latency, as such

packets now need to traverse the switch multiple times before

finishing processing, and also additional recirculation traffic

in a dedicated switch pipeline.

A.3 Scalability

This subsection includes more results for §8.5. Figure 14

shows the scalability of Poise for monitor policies, in terms

of a) the number of monitors, and the number of checks per

610 29th USENIX Security Symposium USENIX Association

100

1k

10k

100k

1M

1 2 5 10 20

C
h
e
c
k
s
 p
e
r
m
o
n
it
o
r

Number of monitors

Exact
Range

(a) Num. of monitors vs. num. of checks

 0
 1
 2
 3
 4
 5
 6
 7

1 2 5 10 20

L
a
te
n
c
y
 (
u
s
)

Number of monitors

Context packet
Data packet

(b) Num. of monitors vs. latency

0

0.5

90

100

1 2 5 10 20

T
h
ro
u
g
h
p
u
t
(G
b
p
s
)

Number of monitors

Data traffc
Recirculation

(c) Num. of monitors vs. traffic overhead

Figure 14: The scalability of Poise with monitor policies. The high-level takeaways are similar as those for regular, non-monitor

policies (Figure 11 in §8.5). The only difference is that a monitor uses two tables, whereas a regular context uses one table.

monitor (Figure 14a), b) the latency of context and data pack-

ets (Figure 14b), and c) the throughput of recirculated context

traffic and data traffic (Figure 14c).

Policies could also use a mix of monitor and regular context

types. At a high level, a monitor is just another type of context,

except that it uses two tables instead of one. Figures 17, 18,

19, and 20 present the scalability results assuming 1, 2, 5, and

10 monitors in the policies; the rest of the available tables are

used for regular contexts.

A.4 Client overhead

This subsection includes the full results for §8.6 on the client

overhead due to the extra PoiseDroid module.

0

5

10

15

1 10 20 30 all

C
P
U

 o
v
e
rh
e
a
d
 (
%
)

Frequency

(a) CPU overhead

10-4

10-3

10-2

10-1

100

101

1 10 20 30 all

T
ra
ffc

 o
v
e
rh
e
a
d
 (
%
)

Frequency

(b) Traffic overhead

Figure 15: CPU and traffic overheads of PoiseDroid under

different frequencies of context packets. Baseline: Android.

 0

 10000

 20000

 30000

 40000

 50000

Native Java Overall

S
c
o
re

Android

PoiseDroid

Figure 16: The overall overhead of PoiseDroid, as measured

using the CF-bench benchmark tool (higher is better).

Table 1: The battery overhead of PoiseDroid (lower is better).

Attribute Overall Browsing Video Writing Photo Data

Android 5493 4278 5458 4530 11432 4136

PoiseDroid 5591 4303 5597 4660 11746 4145

Overhead 1.02% 0.06% 2.55% 2.87% 2.75% 0.22%

CPU and traffic overheads. Figures 15a and 15b show the

CPU and traffic overheads at different frequencies of con-

text packets. For each data point, we uploaded a video file

of 1.73 GB to a remote FTP server using the mobile app

AndFTP [1], and measured the CPU overhead as collected

from the /proc/loadavg file. As we can see, if Poise were

to tag each data packet with context information, then the CPU

and traffic overheads are prohibitive (∼10%). Because the in-

network primitive is stateful, it can remember past decisions

for each connection; this enables an optimized design where

client modules can send out context packets periodically. The

Poise primitive can look up its stateful data structure and

apply access control decisions accordingly. For instance, at

the frequency of one context packet per second, the CPU and

traffic overheads are both low enough to be practical.

Battery overhead. Table 1 shows the battery overhead of the

PoiseDroid client, as measured by PCMark [35]. PCMark

tests capture a wide variety of activities, such as browsing,

video playback, photo editing, writing, and data manipulation.

In the beginning of the experiment, the phone was charged

with full capacity (100%), and the tests ran until the battery

dropped to less than 20%. We can see that, the highest over-

head across all scenarios is only 2.87%.

Overall benchmark. Figure 16 shows the results obtained

by CF-Bench, a comprehensive benchmark tool for testing

multicore mobile devices. PoiseDroid introduces 5%, 4%, and

5% additional overheads for the native code, Java code, and

overall scores, compared to the baseline system of a vanilla

Android system without PoiseDroid installed.

USENIX Association 29th USENIX Security Symposium 611

100

1k

10k

100k

1M

1 2 5 10 20 38

N
u
m
b
e
r
o
f
c
h
e
c
k
s

Number of regular contexts

Exact
Range

(a) Num. of contexts vs. num. of checks

 0

 1

 2

 3

 4

 5

 6

 7

1 2 5 10 20 38

L
a
te
n
c
y
 (
u
s
)

Number of regular contexts

Context packet
Data packet

(b) Num. of contexts vs. latency

0

0.5

90

100

1 2 5 10 20 38

T
h
ro
u
g
h
p
u
t
(G
b
p
s
)

Number of regular contexts

Data traffc
Recirculation

(c) Num. of contexts vs. traffic overhead

Figure 17: Scalability results for policies with one monitor and 1–38 regular contexts. The number of (exact or range) checks

Poise can perform is the same for a regular or monitor context. Similarly for all figures below.

100

1k

10k

100k

1M

1 2 5 10 20 36

N
u
m
b
e
r
o
f
c
h
e
c
k
s

Number of regular contexts

Exact
Range

(a) Num. of contexts vs. num. of checks

 0

 1

 2

 3

 4

 5

 6

 7

1 2 5 10 20 36

L
a
te
n
c
y
 (
u
s
)

Number of regular contexts

Context packet
Data packet

(b) Num. of contexts vs. latency

0

0.5

90

100

1 2 5 10 20 36

T
h
ro
u
g
h
p
u
t
(G
b
p
s
)

Number of regular contexts

Data traffc
Recirculation

(c) Num. of contexts vs. traffic overhead

Figure 18: Scalability results for policies with two monitors and 1–36 regular contexts.

100

1k

10k

100k

1M

1 2 5 10 20 30

N
u
m
b
e
r
o
f
c
h
e
c
k
s

Number of regular contexts

Exact
Range

(a) Num. of contexts vs. num. of checks

 0

 1

 2

 3

 4

 5

 6

 7

1 2 5 10 20 30

L
a
te
n
c
y
 (
u
s
)

Number of regular contexts

Context packet
Data packet

(b) Num. of contexts vs. latency

0

0.5

90

100

1 2 5 10 20 30

T
h
ro
u
g
h
p
u
t
(G
b
p
s
)

Number of regular contexts

Data traffc
Recirculation

(c) Num. of contexts vs. traffic overhead

Figure 19: Scalability results for policies with five monitors and 1–30 regular contexts.

100

1k

10k

100k

1M

1 2 5 10 15 20

N
u
m
b
e
r
o
f
c
h
e
c
k
s

Number of regular contexts

Exact
Range

(a) Num. of contexts vs. num. of checks

 0

 1

 2

 3

 4

 5

 6

 7

1 2 5 10 15 20

L
a
te
n
c
y
 (
u
s
)

Number of regular contexts

Context packet
Data packet

(b) Num. of contexts vs. latency

0

0.5

90

100

1 2 5 10 15 20

T
h
ro
u
g
h
p
u
t
(G
b
p
s
)

Number of regular contexts

Data traffc
Recirculation

(c) Num. of contexts vs. traffic overhead

Figure 20: Scalability results for policies with ten monitors and 1–20 regular contexts.

612 29th USENIX Security Symposium USENIX Association

	Introduction
	Background and Motivation
	Design space
	Traditional networks are not enough
	How about OpenFlow-based SDN?
	Opportunity: Programmable data planes
	Trust model

	Programmable In-Network Security
	The Poise Language and Compiler
	Key language constructs
	Example policies
	Compilation

	The In-Network Security Primitive
	Approximating per-flow state
	Buffering control plane updates
	Handling denial-of-service attacks

	Orchestrating Poise
	Limitations and Discussions
	Evaluation
	Prototype implementation
	Experimental setup
	Compiler
	In-network processing overhead
	Scalability
	Client overhead
	Poise vs. OpenFlow-based SDN

	Related Work
	Conclusion
	Appendix
	Poise protocol format
	Compiler optimizations
	Scalability
	Client overhead

