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Abstract
Monitoring network services and diagnosing their prob-
lems often require active probing methods. Current prob-
ing methods, however, are becoming unreliable, because
of interferences from various middleboxes, and inad-
equate due to their limited path metrics support. In
this paper, we present the design and implementation
of OneProbe, a new TCP probing method for reliable
and metric-rich path monitoring. We have implemented
HTTP/OneProbe (i.e., OneProbe for HTTP) which sends
TCP data probes containing legitimate HTTP requests to
induce HTTP responses for path measurement. Since the
probing method is based on TCP’s basic data transmis-
sion mechanisms, OneProbe works correctly on all major
operating systems and web server software, and on 93%
of the 37,874 websites randomly selected from the Inter-
net. We also successfully deployed HTTP/OneProbe to
monitor a number of network paths for over a month and
obtained interesting and useful measurement results.

1 Introduction
The ability of measuring a network path’s quality is im-
portant for monitoring service level agreement, choos-
ing the best route, diagnosing performance problems,
and many others. This paper considers active measure-
ment methods that do not require the remote endpoint’s
cooperation in terms of setting up additional software.
A non-cooperative method therefore measures the path
quality solely based on the response packets induced
by its probes. Compared with cooperative methods,
non-cooperative methods offer the potential advantage of
monitoring a large number of paths from a single system.

The design and implementation of a reliable non-
cooperative method is very challenging for the Internet
landscape today. A main challenge is to obtain reliable
measurement in the midst of interferences from various
middleboxes. By reliability, we mean three specific re-
quirements. First, the method can always induce the ex-
pected response packets from the remote endpoints, re-

gardless of their operating systems, for path measure-
ment. Second, the method can measure the path qual-
ity experienced by data packets. Third, the method can
support an adequate sampling rate and sound sampling
patterns for obtaining reliable measurement samples.

However, the most practiced measurement methods
are not reliable according to our definition. Most no-
tably, routers and end hosts do not always respond to
ICMP Ping and Traceroute [24]. Even when ICMP pack-
ets are returned, the Ping measurement results may not
be trustworthy [38], because the ICMP packets and TCP
data packets are processed on different paths in routers.
The same can also be said for the probe and response
packets that are TCP SYNs, TCP RSTs, and TCP ACKs
(pure TCP acknowledgment packets). Other middle-
boxes, such as accelerators, traffic shapers, load balan-
cers, and intrusion detection systems, can further in-
crease the measurement inaccuracy. A related problem
is that their sampling rates cannot be too high.

Another motivation for this work is that an existing
non-cooperative method usually supports a very limited
number of path metrics. As the quality expected from
network paths could be different for various applications,
it is necessary to measure the path quality using as many
metrics as possible. There are three specific shortcom-
ings responsible for the current limitation. First, many
methods, such as Ping, can only measure round-trip path
quality. Second, almost all methods (with the exception
of tulip [26]) only support one or two types of metrics
(e.g., sting [34] for packet loss and POINTER [25] for
packet reordering). Third, all methods cannot measure
path metrics with different response packet sizes (e.g.,
sting measures reverse-path packet loss using only TCP
ACKs).

1.1 A new non-cooperative measurement approach

Our approach to tackling the reliable path monitoring
problem is to conduct measurement in a legitimate TCP
application session and to use TCP data packets for the



probe and response packets. We avoid using the TCP
ACKs returned from the remote endpoints for measure-
ment, because some systems do not return them. More-
over, TCP ACKs are not reliable, and their packet size
cannot be changed. Using TCP data packets for the probe
and response packets resolves all three problems.

The new TCP data probe is also capable of measuring
multiple path metrics—round-trip time (RTT), forward-
path and reverse-path packet loss rates, and forward-path
and reverse-path packet reordering rates—all at the same
time from the same probe. Therefore, we call this new
TCP probing method OneProbe: the same probe for mul-
tiple path metrics. Although tulip also measures multiple
metrics, it cannot measure some packet loss scenarios
[26]. Moreover, the tulip probes are different for loss
and reordering measurement.

We have implemented HTTP/OneProbe (i.e., One-
Probe for HTTP/1.1) which sends legitimate HTTPGET
requests in the TCP data probes to induce HTTP re-
sponse messages for path measurement. Our validation
results have shown that the TCP data probes work cor-
rectly on all major operating systems and web server
software. It also worked on 93% of the 37,874 web-
sites randomly selected from the Internet. We have also
enhanced the basic HTTP/OneProbe by using concur-
rent TCP connections and TCP timestamps option, and
improving the process of obtaining sufficient HTTP re-
sponses for continuous measurement.

TCP Sidecar [35, 36], a measurement platform based
on TCP, is closest to our work regarding the requirement
of evading middleboxes’ interferences. TCP Sidecar’s
approach is to inject probes into an externally generated
TCP flow. Since the focus of TCP Sidecar is to pro-
vide a platform for unobtrusive measurement, it does not
provide a new probing method to its “passengers.” One-
Probe, on the other hand, establishes a new TCP flow for
measurement and customizes TCP data probes for mea-
suring multiple path metrics.

1.2 Contributions of this work

1. This paper explains why the existing non-
cooperative measurement methods are becoming
unreliable and inadequate for the Internet today and
proposes to use TCP data probes for reliable and
metric-rich path measurement.

2. This paper proposes a new TCP probing method
called OneProbe which sends two TCP data packets
to measure multiple path metrics. The correctness
of the probe responses was validated on operating
systems, web server software, and websites.

3. This paper describes the implementation details of
HTTP/OneProbe, such as the method of obtain-
ing suitable http URLs for measurement and using
HTTP/1.1’s request pipelining to facilitate continu-

ous measurement in a persistent HTTP connection.
4. This paper prescribes three enhancements to the

basic HTTP/OneProbe: improving the process of
inducing HTTP responses, using TCP timestamps
option to enhance the measurement, and employ-
ing concurrent TCP connections to support a higher
sampling rate and different sampling patterns.

5. This paper presents testbed experiment results
for evaluating HTTP/OneProbe’s performance and
measurement accuracy, and our measurement expe-
rience of monitoring network paths for over a month
using HTTP/OneProbe and other tools.

2 Related work

Since OneProbe measures RTT, packet loss, and packet
reordering in an legitimate TCP session, it is mostly
related to several non-cooperative measurement tools:
sting, POINTER, tulip [26], and TCP sidecar.

OneProbe overcomes sting’s two main shortcomings
for loss-only measurement: unreliability due to anoma-
lous probe traffic and a lack of support for variable re-
sponse packet size. The probe packets in sting may be fil-
tered due to their highly unusual patterns (a burst of out-
of-ordered TCP probes with zero advertised window).
The reverse-path loss measurement based on TCP ACKs
may be under-estimated for a larger packet size [15]. We
recently evaluated sting on the set of 37,874 websites
with the two probe packet sizes considered in [34]. With
the 41-byte probes, the sting measurement was unsuc-
cessful for 54.8% of the servers; the non-success rate for
the 1052-byte probes was even close to 100%.

OneProbe overcomes POINTER’s two similar short-
comings for reordering-only measurement. The first
two POINTER methods (ACM and SAM1) send TCP
probe packets with unacceptable acknowledgment num-
bers (ANs) and sequence number (SNs) to induce TCP
ACKs for measurement. Therefore, the probes could be
considered anomalous, and the response packet size can-
not be changed. The third method (SAM2), on the other
hand, sends probes with acceptable SNs but the ANs be-
come unacceptable if the probe packets are reordered.

Tulip, being a hop-by-hop measurement tool, was de-
signed to localize packet loss and reordering events on
network paths, and to measure queueing delay. Tulip’s
loss and reordering measurement, however, is based on
the unwarranted assumption that the remote hosts and
routers support consecutive IPID (IP’s identification) val-
ues. We tested tulip using the same set of web servers for
sting. In our experiments, tulip measured the last hops
of the paths. The tests were unsuccessful for 80% of
the servers for loss and reordering measurement—50%
of them failed to respond to tulip’s UDP probes, and an-
other 30% failed to return consecutive IPID values.

TCP Sidecar provides support for injecting measure-



ment probes in a non-measurement TCP connection. The
probes are limited to TCP ACKs and replayed TCP data
packets, because they must not interfere with the normal
data transmissions in the TCP connection. As a result,
the probes do not measure all packet loss scenarios and
packet reordering. Due to the same reason, the sampling
pattern and rate cannot be controlled, because a probe is
sent only after the connection is idle for some time (e.g.,
500 milliseconds in [36]).

3 OneProbe

OneProbe is a new probing method operating at the TCP
layer. Each probe consists of two customized TCP data
packets to induce at most two new TCP data packets from
the remote endpoint for path measurement. Moreover,
the probe and response packets carry legitimate applica-
tion data, so that the remote side will perceive the probe
traffic as coming from a legitimate application session.
In a client-server application protocol, the probes usu-
ally carry application requests, and the response packets
contain the requested objects. Therefore, an OneProbe
implementation comprises two main components: One-
Probe and a TCP application-dependent component.

OneProbe can be implemented for any TCP appli-
cation protocol that provides support for requesting
data from the remote endpoint. This paper presents
HTTP/OneProbe (HTTP/OP in short), an OneProbe im-
plementation for HTTP/1.1 [33]. Figure 1 shows the
main components of HTTP/OP. An HTTP/OP user inputs
an http URL, and the probe and response packet sizes
(measured in terms of the IP packet size). The HTTP
helper, an application-dependent component, first comes
up a set of qualified URLs for the specified packet sizes
and then prepares the corresponding HTTPGET mes-
sages. The user may also specify the sampling pattern
and rate which, together with the HTTPGET messages,
are used for OneProbe measurement at the TCP layer.

3.1 The probe design

The probe is the result of several design choices. The first
advantage of using TCP probes (instead of application-
layer probes) is that the same probing mechanism could
be implemented for many TCP application protocols.
TCP probes can also provide more accurate measure-
ment about the network path quality than higher-layer
probes. Moreover, using two packets is a minimum
requirement for packet reordering measurement. For
loss measurement, the second packet can help determine
where—the forward path (from OneProbe to the remote
endpoint) or the reverse path—the first packet is lost.

Another key issue in the probe design is what kind of
response packets to induce from the remote endpoint. To
measure the reverse-path quality with the same types of
metrics, the probe is designed to induce at most two new
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Figure 1: The main components of HTTP/OneProbe.

TCP data packets from the remote endpoint. These two
response packets are used for measuring the reverse-path
quality in a similar way as the two probe packets for the
forward-path quality. Furthermore, the response packets
are distinguishable for almost all possible delivery sta-
tuses of the probe and response packets. As a result,
OneProbe can measure both forward-path and reverse-
path quality primarily based on the response packets.

3.2 The probing process

HTTP/OP sends a sequence of probes in a persistent
HTTP connection (over a single TCP connection). Each
probe packet contains a legitimate HTTP request, and
each response packet contains legitimate data requested
by HTTP/OP. To focus on the probing process in this
section, we temporarily ignore the application-level is-
sues and assume that the TCP server always has enough
application data to send back to HTTP/OP. We also post-
pone the explanation on how OneProbe can set the user-
specified packet sizes to section 4.

We use Figure 2 to explain the probing process. De-
note a probe packet byCm|n and a response packet by
Sm|n. Both packets are TCP data packets, andm andn

are the TCP data segment’s SN and AN, respectively. All
the TCP data segments considered in this paper are of full
size (i.e., the maximum segment size, MSS). Therefore,
we simply usem = 1, 2, · · · to enumerate the server’s
TCP data segments and1′, 2′, · · · OneProbe’s TCP data
segments. For example, OneProbe sends its fourth data
segment inC4′|2 that also acknowledges the first two
data segments from the server. Moreover, when the AN
is not important, we just useCm andSm.

OneProbe customizes and dispatches the successive
probes according to the following three rules:



P1. (Dispatching a new probe) A new probe is dis-
patched only after receiving two new data segments
from the server and the acknowledgment for the
data segments in the probe.

P2. (Acknowledging one data segment) Each probe
packet acknowledgesonly onedata segment from
the server, although both have been received by the
time of sending the first probe packet.

P3. (Controlling the send window size) The probe pack-
ets advertise a TCP receive window of two segments
in an attempt to constrain the server’s TCP send
window size to two segments.

Figure 2 depicts two successive probe rounds (the first
round denoted by dotted lines and the second by solid
lines). According to P1, OneProbe sends a new probe of
{C3′|1, C4′|2} (for a new probe round) after receiving
S1|1′ andS2|2′. Therefore, the packet transmissions in
the first round do not overlap with that in the next. More-
over, if the server’s congestion window size (cwnd) is at
least two segments, P3 will ensure that its send window
size is set to two segments. Finally, based on P2 and P3,
the server can send only one new data segment after re-
ceiving a probe packet if the probe packets are received
in the original order.

Server

C3'|1 C4'|2

S1|1' S2|2' S3|3' S4|4'

OneProbe
C1 C2 Time

...

' '

Figure 2: Two successive probe rounds in OneProbe.

Although OneProbe manipulates the TCP packet
transmissions according to P1-P3, there are no apparent
anomalies existing in the probe packets. It only appears
to the server that the client has a low receive buffer, and
its send window is always full. Moreover, according to
our measurement experience, the OneProbe transmission
pattern was not construed for an anomalous TCP flow.
We received only a couple of complaints about our mea-
surement activities for the past two years; one of them
came from a website that normally received very few ex-
ternal requests.

3.3 Measuring RTT

OneProbe measures the RTT based on a probe packet
and its induced new data packet (e.g.,C3′|1 andS3|3′ in
Figure 2). Therefore, in the absence of packet loss, One-
Probe normally obtains two RTT observations in a probe
round. However, OneProbe uses only the first-probe-
packet-RTT for measurement, because the second probe
packet’s RTT may be biased by the first packet [10].

3.4 Detecting packet loss and reordering events

There are five possible path events regarding the two
probe packets on the forward path:

F0. Both probe packets arrive at the server with the
same order.

FR. Both probe packets arrive at the server with a re-
verse order.

F1. The first probe packet is lost, but the second arrives
at the server.

F2. The first probe packet arrives at the server, but the
second is lost.

F3. Both probe packets are lost.

There are also five similar events for the two new re-
sponse packets on the reverse path: R0, RR, R1, R2,
and R3 (by replacing “probe” with “response” and “the
server” with “OneProbe” in the list above). As a result,
there are 18 possible loss-reordering events, as shown in
Table 1: the 17 events indicated

√
and one event for F3

(there is no
√

, because this is a forward-path-onlyevent).
Others indicated by – are obviously not possible.

Table 1: The 18 possible loss-reordering events for the two probe pack-
ets and two response packets.

R0 RR R1 R2 R3

F0
√ √ √ √ √

FR
√ √ √ √ √

F1
√ √ √ √ √

F2
√

–
√

– –

F3 – – – – –

OneProbe can detect almost all the 18 path events
based on the response packets. Considering the
{C3′|1, C4′|2} probe in Figure 2, Table 2 summarizes
the response packets induced for the 18 cases based on
RFC 793 [20]. In addition to the new data segments 3
and 4, the server may retransmit old data segments 1,
2, and 3, and we usêSm|n to refer to a data retrans-
mission. Since the server responses are based on TCP’s
two basic mechanisms: acknowledgment-clocked trans-
missions and timeout-based retransmissions, all operat-
ing systems are expected to produce the same responses.

Figure 2 has already illustrated the event F0×R0; Fig-
ure 3 (C1′ and C2′ are omitted) illustrates four other
cases: FR×R0, F1×R0, F2×R0, and F3. The rest can
be easily constructed from the illustrations for these five
events. Note that, because of P1, the server retransmits
old data segments in all four cases. The main purpose for
withholding a new probe, even after receiving two new
data segments (e.g., in the events FR×R0 and F1×R0), is
to induce retransmissions for path event differentiation.
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Figure 3: OneProbe’s packet transmissions for the path events FR×R0, F1×R0, F2×R0, and F3×R0.

Table 2: The response packets induced by the{C3′|1, C4′|2} probe
for the 18 path events according to RFC 793.

Path events 1st response 2nd response 3rd response
packets packets packets

1. F0×R0 S3|3′ S4|4′ –
2. F0×RR S4|4′ S3|3′ –
3. F0×R1 S4|4′ Ŝ3|4′ –
4. F0×R2 S3|3′ Ŝ3|4′ –
5. F0×R3 Ŝ3|4′ – –

6. FR×R0 S3|2′ S4|2′ Ŝ3|4′

7. FR×RR S4|2′ S3|2′ Ŝ3|4′

8. FR×R1 S4|2′ Ŝ3|4′ –
9. FR×R2 S3|2′ Ŝ3|4′ –
10. FR×R3 Ŝ3|4′ – –

11. F1×R0 S3|2′ S4|2′ Ŝ3|2′

12. F1×RR S4|2′ S3|2′ Ŝ3|2′

13. F1×R1 S4|2′ Ŝ3|2′ –
14. F1×R2 S3|2′ Ŝ3|2′ –
15. F1×R3 Ŝ3|2′ – –

16. F2×R0 S3|3′ Ŝ2|3′ –
17. F2×R1 Ŝ2|3′ – –

18. F3 Ŝ1|2′ – –

3.4.1 Distinguishability of the path events

The different combinations of the SN and AN in the re-
sponse packets enable OneProbe to distinguish almost all
the 18 path events. It is not difficult to see, by sorting Ta-
ble 2 according to the three response packets, that each
sequence of the response packets matches uniquely to a
path event, except for the following three cases:
A1. F1×R2 and F1×R3: These two events cannot be

distinguished based on the response packets, be-
causeS3|2′ andŜ3|2′ are identical, and the server
may retransmit more than once.

A2. F1×RR and F1×R1: The reasons for their indistin-
guishability are similar to that for A1.

A3. F0×R3 and FR×R3: Both events have the same re-
sponse packet̂S3|4′.

The ambiguities in A1 and A2 make the delivery sta-
tus of S3|2′ uncertain. The ambiguity in A3, on the
other hand, makes the probe’s order of arrival uncertain.
Our current implementation disambiguates A1 and A2
by measuring the time required forS3|2′ (or Ŝ3|2′) to
arrive. It usually takes a much longer time to receive

Ŝ3|2′, the retransmission ofS3|2′.
3.5 Assistance from TCP ACKs

Recall that an important design choice for OneProbe is
not to rely on TCP ACKs. However, some ACKs, if
received by OneProbe, can assist in detecting the path
events. There are two such ACKs: out-of-ordered-packet
ACK (OOP-ACK) and filling-a-hole ACK (FAH-ACK).
Referring to Figure 3(a), the early arrival ofC4′|2 could
immediately trigger an OOP-ACK, whereas the late ar-
rival of C3′|1 could immediately trigger an FAH-ACK.
According to our measurement, some systems did not
return the OOP-ACK, but all the systems tested returned
the FAH-ACK.

Even though the system responses regarding the FAH-
ACK are uniform, OneProbe still does not rely on it for
measurement, because it could be lost. Instead, One-
Probe exploits these ACKs, if received, to enhance its
measurement. The first is using the FAH-ACK to accel-
erate the detection of the forward-path reordering events
(i.e., FR×∗) without waiting for the data retransmissions.
The second is using the FAH-ACK to disambiguate A3
that is the only unresolved case. An arrival of FAH-ACK,
in addition toŜ3|4′, clearly signals an FR×R3 event.

3.6 Starting a new probe round

Out of the 18 path events, only the path events 1-2 ful-
fill the conditions for dispatching a new probe in P1 im-
mediately after receiving two response packets. More-
over, path events 3 and 6-8 fulfill the conditions imme-
diately after receiving a data retransmission. However,
the condition is not met for the rest (i.e., events 4-5 and
9-18). Another related problem is that the server’scwnd
is dropped to one segment for all the path events that
involve timeout-based retransmissions (i.e., path events
3-18).

To address the two problems that prevent OneProbe
from starting a new probe round, OneProbe will first
send one or more new TCP ACKs to increase the server’s
cwnd back to two for path events 3-18. After re-
ceiving two new data segments, OneProbe dispatches a
new probe:{C5′, C6′} for events 3-10,{C4′, C5′} for
events 16-17, and{C3′, C4′} for event 18. Handling
events 11-15 is more complicated. If a new probe of



{C3′, C4′} were used, the server will dropC4′, because
it has already been received. The current implementa-
tion restarts the connection when encountering these path
events. A better approach is to retransmitC3′ with the
respective ANs and to use a new probe of{C5′, C6′}.

3.7 Sampling the packet loss and reordering rates

OneProbe samples the packet loss and reordering rates
from consecutive probe rounds. Similar to the RTT mea-
surement, OneProbe uses only the first packet for the loss
measurement. After conducting a number of consecutive
probe rounds, say 120, over one minute, OneProbe com-
putes the forward-path (and reverse-path) loss rate by di-
viding the number of the first-probe-packet-loss events
(and the first-response-packet-loss events) by 120. One-
Probe computes the packet reordering rates in a similar
manner.

4 HTTP/OneProbe
We have implemented HTTP/OP as a user-level tool
(around 8000 lines ofC code) on unmodified Linux 2.6
kernel. As shown in Figure 1, HTTP/OP consists of two
main components: HTTP helper andOneProbe. HTTP
helper handles the issues concerning the HTTP 1.1 pro-
tocol, whereasOneProbe implements OneProbe. This
section considers a basic HTTP/OP that utilizes a persis-
tent HTTP/1.1 connection.

4.1 The HTTP helper

The HTTP helper’s main tasks include finding one or
more qualified http URLsfor the user-specified packet
sizes and preparing the HTTPGET requests for them.
Figure 4 shows that HTTP/OP sends an initial HTTP
GET request for a qualified url-1 inC0′. The server
replies with an HTTP response message sent inS1, S2,
· · ·. HTTP/OP also sends the same request in all subse-
quent probe packets. Note that before sending the first
probe{C1′, C2′}, HTTP/OP sends an ACK to ramp up
the server’scwnd to two segments. Therefore,C0′ and
S1-S3 are not used for OneProbe measurement.
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Figure 4: HTTP/OP sends HTTPGET requests for url-1 for OneProbe
measurement.

4.1.1 Finding qualified http URLs

An http URL is considered qualified if its HTTPGET
request can be retrofitted into a probe packet, and the
GET request can induce at leastfive response packets
from the server. A minimum of five response packets is
required because of the three additional response pack-
ets for thecwnd ramp-up. LetZp andZr be the user-
specified probe packet size and response packet size,
respectively. Therefore, the length of the HTTPGET
request for a qualified URL will not exceedZp − 40
bytes (assuming a 40-byte TCP/IP header). Moreover,
the length of corresponding HTTP response message, in-
cluding the response header and message body, must be
at least5 × (Zr − 40) bytes.

Checking the length of theGET request is simple. Ver-
ifying whether a user-specified URL meets the size re-
quirement for the response packets, however, requires
some work. If theContent-Length header field is
present in the HTTP response message, the length is just
a sum of the field value and the response header’s length.
Otherwise, the helper will download the entire HTTP re-
sponse message to determine the length. If no qualified
URL can be obtained, the helper will perform web crawl-
ing to retrieve all the available URLs, starting at the root
of the web server and down to a certain depth level (five
for our case). Our implementation for the web crawling
process is based on the recursive retrieval technique im-
plemented in Wget [17].

Besides, the HTTPGET request for a qualified URL
must induce a200(OK) response. We purposely do not
use those with404(Not Found) responses in order
not to cause security alerts on the site. We also avoid us-
ing HTTP response messages that do not have a message
body (e.g.,304(Not Modified)).

4.1.2 Preparing the HTTPGET requests

To craft aZp-byte probe packet for an HTTP request,
the helper expands the packet size through theReferer
field. Since some web servers only accept requests re-
ferred from their own web pages, the helper first appends
the requested URL to theReferer field to avoid block-
ing. If the packet size still falls short, the helper further
appends a customized string consisting of a probe ID and
an email address for our project (for lodging a complaint
[18]) repeatedly until reaching the packet size. More-
over, to reduce the delay in dispatching the probes due
to possible context switching, the HTTP helper has pre-
pared the HTTPGET requests for the qualified http URLs
before starting the OneProbe measurement.

HTTP/OP exploits HTTP/1.1’s request pipelining to
include aGET message in each probe packet for path
measurement. The pipelined HTTPGET requests could
be for a single or multiple URLs. There are also other al-
ternatives, such as sending a largeGET message in sev-



eral probe packets or including multipleGET messages
in a probe packet. But we did not adopt them, because
they are either delaying the return of the response packets
or introducing too many request messages.

Moreover, an HTTP response message usually will not
fully occupy the last response packet. Therefore, a full-
sized response packet may contain data from two HTTP
response messages. However, we have also observed
that some response packets are not full-sized packets, be-
cause they contain only the last chunks of the response
messages. Our current implementation will close the
connection whenever detecting a small segment and ig-
nore the probe rounds involving small segments. A bet-
ter approach is perhaps to continue the next probe round
using the next HTTP response message in the same con-
nection.

4.2 An implementation of OneProbe

OneProbe manages the measurement in two levels:
session and TCP connection. AnOneProbe session
could involve concurrent TCP connections (see section
5.3 for this enhancement). Figure 5 showsOneProbe’s
main tasks for a TCP connection in two consecutive
phases:preparationandprobing. The preparation phase
is for performing the ground works for the probing phase.
In the probing phase,OneProbe dispatches the probes
containing the HTTPGET requests that have been pre-
pared by the HTTP helper, analyzes the response pack-
ets, and terminates the connection when the session ends
or encounters exceptions.OneProbe also includes a di-
agnosis module to detect self-induced packet losses.

Ramping up 
the server's 
cwnd

Configuring 
the probe and 

response 
packet sizes

Sending the 
probe and 

analyzing the 
results

No probe task

Getting the 
next probe 

task

Preparing for 
the next probe 

task

No exception

Terminating 
the TCP 

connection

Exception or Done

OK

Preparation phase Probing phase

Start

Figure 5: OneProbe’s major tasks in the preparation and probing
phases for a TCP connection.

4.2.1 Session management

There are two mains tasks in the session management.
The first task is thatOneProbe establishes and main-
tains a system-configurable number of TCP connections
for a measurement session (one connection for the ba-
sic HTTP/OP). As a second task,OneProbe prepares a
probe scheduleaccording to the user-specified sampling
pattern and rate before starting the measurement. The

schedule contains a list ofprobe tasks, each of which in-
cludes a dispatch time and a probe number. The probe
tasks are enqueued to aprobe-schedule queueas soon as
they are generated.OneProbe currently supports peri-
odic and Poisson sampling, and it is not difficult to admit
others. For the Poisson sampling, our implementation is
based on the method 3 in RFC 2330 [31] which elimi-
nates possible timing errors in dispatching the probes.

4.2.2 The preparation phase

OneProbe configures the probe and response packet
sizes during the TCP three-way handshake.OneProbe
advertises its MSS (sayMSSc) in the TCP SYN seg-
ment to control the size of the server’s response pack-
ets. From the TCP SYN/ACK segment returned by
the server,OneProbe learns the server’s advertised
MSS (sayMSSs). As a result,Zp must be less than
MSSs +40 bytes, andZr = min{MSSc, MSSs}+40
bytes. Therefore,OneProbe can dictate the server’s re-
sponse packet size by advertising anMSSc < MSSs.

Another purpose of this phase, as already shown in
Figure 4, is to ramp up the server’scwnd to two seg-
ments for starting the first probe round. If the server’s
initial cwnd is at least two segments (detected by receiv-
ing two response packets after the initial HTTPGET re-
quest), then the first probe round can be started without
sending the ACK.

4.2.3 The probing phase

Preparing for the probes The probing phase starts as
soon as receiving two response packets from the server
(see Figure 4). To dispatch a probe,OneProbe first
retrieves a probe task from the probe-schedule queue.
Moreover, any slipped probe task, for which its dispatch
time has already passed the current time, will be removed
from the queue and discarded. When the probe schedule
is empty,OneProbe closes the TCP connection.

After obtaining a probe task,OneProbe uses
clock nanosleep() in time.h to perform a high-
resolution sleep until reaching the dispatch time. Upon
waking up,OneProbe draws a pair of HTTPGET re-
quests randomly from the list of theGET requests already
prepared by the HTTP helper and sends each in a probe
packet. To ensure a successful delivery of the probe to
the network,OneProbe captures each dispatched probe
packet usinglibpcap.
Dispatching the probesSimilar to other measuring sys-
tems, such as Scriptroute [37], we have used Linux
raw socket to craft and send the probe packets, and the
libpcap 1.0.0 library to capture the probe and response
packets. As a result of bypassing Linux’s normal TCP/IP
processing, the kernel is unaware ofOneProbe’s TCP
connections and will therefore respond with a TCP RST
for each response packet received. Our implementation



blocks the RST traffic using Linux’siptables.
Another important issue is to timestamp each probe

and response packet accurately for the RTT measure-
ment. Since we have already usedlibpcap to capture
packets, we use the timestamp from thepcap pkthdr
structure of each probe and response packet to measure
the RTT with microsecond resolution. An alternative is
to use the recently proposed TSC clock [14] that provides
a highly accurate timing information through the kernel
timestamping, but accessing it requires a kernel patch.
The user-level timestamp fromgettimeofday(), on
the other hand, is unreliable, because its accuracy can be
affected by system’s context switching.
Analyzing the response packetsOneProbe cap-
tures the response packets (and probe packets) using
libpcap and writes all the captured packets to a dump
file (which can be opened bypcap dump offline()
available in the libpcap library) for analysis.
OneProbe determines the path event based on the se-
quence of response packets in Table 2 and the assistance
of TCP ACKs discussed in section 3.5. It also measures
the first-probe-packet-RTT from the packet timestamps.
In processing the response packets,OneProbe also fil-
ters packets irrelevant to the measurement, such as TCP
window updates. Furthermore,OneProbe computes
from a consecutive number of probe rounds the statis-
tical metrics (in terms of, e.g., mean and median) for the
RTT, loss rates, and reordering rates.
OneProbe supports both online and offline process-

ing of the response packets. The online processing is
possible, becauseOneProbe only needs to identify the
TCP data packet received from the server. However, we
have set the default processing to offline mainly for pre-
venting the processing workload from influencing the
probing process. Another advantage of the offline ap-
proach is to facilitate a more accurate (as compared with
the online approach) disambiguation of A1 and A2 based
on the RTT samples collected in the measurement (as
discussed in section 3.4).

4.2.4 Diagnosing self-induced packet losses

OneProbe performs a self-diagnosis to confirm that the
measurement is free of self-induced packet losses. For
the forward-path measurement, failures of sending out
the probe packets are still possible, despite that the im-
plementation always validates the successful invocation
of thesendto() function. To detect these self-induced
losses,OneProbe useslibpcap to verify the deliv-
ery of each outgoing probe packet to the network. For
the reverse-path measurement, self-induced losses could
also occur to the response packets due to insufficient
buffer space.OneProbe monitors theps drop vari-
able returned by thelibpcap’s pcap stats() func-
tion to detect such losses.

5 Enhancements
This section describes three enhancements to the basic
HTTP/OP presented in the last section. The first en-
hancement is to improve the process of inducing suffi-
cient HTTP responses. We have implemented additional
mechanisms to prevent web servers from compressing
the requested objects and to use unqualified URLs for
measurement. The second is to disambiguate A3 using
TCP timestamps option. The third enhancement is using
multiple TCP connections in a measurement session to
satisfy the user-specified sampling rate and pattern. With
a single TCP connection, the sampling rate is constrained
to at most one per RTT, and the RTT variations also make
it difficult to realize the user-specified sampling pattern.

5.1 Improving the HTTP response solicitation

Avoiding message compressionThe first improvement
is to prevent web servers from compressing HTTP re-
sponses which, for example, is performed by Apache
server’smod deflate module [1]. The compressed
responses could affect OneProbe measurement, be-
cause the expected number of response packets for
a qualified URL may be reduced. Therefore, each
HTTP GET request specifiesAccept-Encoding:
identity;q=1, *;q=0, where identity;q=1
indicates that theidentity encoding (i.e., no trans-
formation) should be performed on the entity of the
response, and*;q=0 means avoiding other encoding
methods.
Using unqualified URLs for measurementAs a sec-
ond improvement, HTTP/OP exploits the range request
feature in HTTP/1.1 to use unqualified URLs for path
measurement. A range request can be used to request
multiple overlapped ranges of the same web object from
a web server that accepts range requests. Therefore, even
an unqualified URL can be “expanded” to fulfill the min-
imum size requirement for the response packet.

We have implemented this enhancement in the HTTP
helper which can verify whether the server supports the
range request via theAccept-Ranges header field in
the HTTP response message. If the HTTP helper cannot
find any qualified URL but discover that the server sup-
ports the range request feature, it will craft a range re-
quest as discussed above to induce HTTP response mes-
sages for OneProbe measurement.

5.2 Using TCP timestamps to disambiguate A3

In addition to the FAH-ACK, we have proposed and im-
plemented a method to disambiguate A3 using the TCP
timestamps option [21]. In this enhancement, each probe
packet contains a distinct timestamp in the TCP option
field. If the server also supports the TCP timestamps op-
tion, it will retain the timestamp received from themost
recentprobe packet that advances its receive window and



echo it in its next response packet. Therefore, the server
retainsC4′’s timestamp for the case of F0×R3 andC3′’s
timestamp for the case of FR×R3. As a result, the two
path events can be distinguished based on the different
timestamps in̂S3|4′.
5.3 Using multiple TCP connections

To extend the basic HTTP/OP to usingN TCP connec-
tions, we have used the POSIX Threads (pthreads)
library to create and manage multiple threads. A sin-
gle thread is used for managing the measurement ses-
sion, andN worker threads are created for managing the
TCP connections separately.OneProbe also monitors
the health of the connections to ensure that there are al-
waysN TCP connections available throughout the mea-
surement session.

Since some web servers may limit the number of con-
current TCP connections initiated from an IP address,
OneProbe assigns randomly selected source IP ad-
dresses from an address pool to theN connections. Our
experience shows thatN = 10 is sufficient for support-
ing periodic sampling with a rate of two probes per sec-
ond. A higherN , however, is expected for Poisson sam-
pling because of the high inter-probe delay variability.

6 Evaluation
This section presents three sets of evaluation results. The
first one evaluates whether different systems and web
servers respond to OneProbe’s probes correctly. The sec-
ond evaluates how the latency induced by web servers
will affect the accuracy of the HTTP/OP measurement.
The final set evaluates the effect of the HTTP/OP mea-
surement on the system resource consumption in the
measuring system and web servers.

6.1 Validation of OneProbe

We have designed a small, but just sufficient, suite of val-
idation tests (called Validator) for OneProbe. A system
or web server that passes all the tests can be used by One-
Probe for path measurement. Table 3 describes the four
validation tests V0-V2 that “simulate” the forward-path
events F0-F2, respectively. Same as OneProbe, Validator
constrains the server’scwnd to two segments. Moreover,
Validator does not acknowledge the response data pack-
ets in order to simulate reverse-path losses. Therefore,
the data retransmissions are expected to be the same as
in Table 2. Note that these tests for reverse-path losses
have already covered the test for F3, because withholding
the next probe is the same as losing it.

6.1.1 Results for operating systems and web servers

We applied Validator to test the major operating systems
and web server software listed in Table 4. Three tri-
als were performed for each system and server. A test
was considered successful if all four validation tests were

Table 3: A suite of four validation tests performed by Validator.

Tests Testing Expected packets Expected data
probes induced from server retransmissions

V0. {C3′, C4′} {S3|3′, S4|4′} Ŝ3|4′

VR. {C4′, C3′} {S3|2′, S4|2′} Ŝ3|4′

V1. C4′ only {S3|2′, S4|2′} Ŝ3|2′

V2. C3′ only S3|3′ Ŝ2|3′

passed in at least one trial. The validation results were all
successful.

Table 4: The 39 systems and 35 web server software that passed the
OneProbe validation tests.

Systems tested
in our lab.:

FreeBSD v4.5/4.11/5.5/6.0/6.2, Linux kernel
v2.4.20/2.6.5/2.6.11/2.6.15/2.6.18/2.6.20, MacOSX
10.4 server, NetBSD 3.1, OpenBSD 4.1, Solaris
10.1, Windows 2000/XP/Vista

Systems tested
in the Internet:

AIX, AS/400, BSD/OS, Compaq Tru64, F5 Big-
IP, HP-UX, IRIX, MacOS, NetApp NetCache, Net-
Ware, OpenVMS, OS/2, SCO Unix, Solaris 8/9,
SunOS 4, VM, Microsoft Windows NT4/98/Server
2003/2008

Servers tested
in our lab.:

Abyss, Apache, Lighttpd, Microsoft IIS, Nginx

Servers tested
in the Internet:

AOLserver, Araneida, Apache Tomcat, GFE, GWS-
GRFE, IBM HTTP Server, Jetty, Jigsaw, LiteSpeed,
Lotus-Domino, Mongrel, Netscape-Enterprise, Om-
niSecure, Oracle HTTP Server, Orion, Red Hat Se-
cure, Redfoot, Roxen, Slinger, Stronghold, Sun Java
System, thttpd, Twisted Web, Virtuoso, WebLogic,
WebSiphon, Yaws, Zeus, Zope

6.1.2 Results for web servers in the Internet

In spite of the successful results above, OneProbe may
still not be supported on some Internet paths because
of middleboxes and customized TCP/IP stacks. We
therefore extended the validation tests to websites in
the Internet. We ran the Larbin web crawler [6] with
slashdot.org as the starting URL (the same method
used in [35]) to obtain 241,906 domain names and then
randomly selected 38,069 websites from them. Based on
the Netcraft database [29], the web servers came from 87
geographical locations, covering the 39 systems in Table
4 and 117 web server software. After excluding 195 of
them that reset the TCP connections, we report the re-
sults from the remaining 37,874 websites below.
Successful (93.00%)These servers passed all tests.
Failures in the preparation phase (1.03%)These web-
sites failed to return the expected{S1, S2}. Therefore,
OneProbe could not start the probing phase.
Failures in test V0 (0.26%) Most websites in this
set replied with{S3|4′, S4|4′}, instead of the expected
{S3|3′, S4|4′}. That is, they sent response packets after
receiving both probe packets.
Failures in test VR (5.71%) Some websites appeared



to have received an order-intact probe because of
two kinds of response packets received from them:
{S3|3′, S4|4′} and{S3|4′, S4|4′}. Another set replied
with {S3|3′, S4|3′}; such behavior is similar to the prob-
lem of “failure to retain above sequence data” reported in
[30]. The final set replied with{S3|2′, S4|2′}, showing
that they did not receive the reorderedC3′, possibly due
to packet drop by firewalls and intrusion detection sys-
tems. For example, Cisco IOS firewall drops reordered
packets before release 12.4(11)T [13].

Since all the websites that failed test V1 also failed test
VR, these failures are classified only under test VR.

6.2 Latency introduced by web servers

A common problem for non-cooperative measurement
tools is that their delay measurement could be affected by
the remote endpoint’s loading. In particular, a busy web
server can introduce substantial latency during HTTP
transaction processing [8].

6.2.1 Testbed and experiment setup

We setup a testbed to evaluate the impact of server-
induced latency on the HTTP/OP measurement. The
testbed consisted of a web server running Apache v2.2.3
and a probe sender where HTTP/OP and other measure-
ment tools resided. Both machines were connected to
each other through a router, which ran Click v1.6 [22]
in kernel mode to emulate a fixed RTT of 25 millisec-
onds between them. Each machine, including the router,
was equipped with a 1.7GHz Pentium 4 processor with
256MB memory running Linux v2.6.18 and connected
to a 100Mbits/s LAN.

By adopting the approach described in [8], we set up
two Surge web load generators [7] in separate machines
that were directly connected to the web server. We ex-
perimented with a light load (20 Surge users from each
generator) and a heavy load (260 Surge users from each
generator). Each generator generated requests for objects
selected from a set of 2000 distinct static files with size
ranging from 78 bytes to 3.2MB. We conducted the same
set of experiments for HTTP/OP and httping [19]. We
included httping, because it is a common HTTP-based
ping tool which uses HTTPHEAD andGET requests as
probes to induce HTTP responses for RTT and round-trip
loss measurement.

We restricted both HTTP/OP and httping to request-
ing five static text files of 20KB, 200KB, 2MB, 10MB,
and 100MB available in the web server. We launched
HTTP/OP using 30 TCP connections and periodic sam-
pling with a rate of 20Hz (one probe every 50 millisec-
onds). All probe and response packets were 240 bytes in
length. For httping, we used the default sampling rate of
1Hz andHEAD requests and responses for measurement.
The httping’s probe and response packet sizes depended

on the URL specified in the HTTP request and the corre-
sponding response.

For each load environment, we obtained the server-
induced latency by measuring the difference between the
arrival time of a probe packet at the server and the time of
sending out the response packet that it has induced. Be-
sides for HTTP/OP and httping, we measured the server-
induced latency also for the initial HTTP request sent
out in the HTTP/OP’s preparation phase. As discussed
in section 4.1, this request is used for ramping up the
server’scwnd, therefore not used for measurement. We
installedtcpdump at the server to capture all network
traffic to and from the probe sender until we had obtained
150 latency samples for each experiment.

6.2.2 Server-induced latency

Figure 6 plots the cumulative distribution function (CDF)
of the server-induced latency for HTTP/OP, httping, and
HTTP/OP’s initial HTTPGET request under the light and
heavy loads. The figure shows a significant latency oc-
curred to both httping and the initial HTTPGET request.
This start-up latency was reported for the Apache 1.3.0
architecture [8]. A similar delay of several milliseconds
was also observed for a Google server to send out the
first response packet for a request [12].

For the httping and initial HTTPGET request measure-
ment, the server is required to invoke several expensive
system calls (such as,read() andstat()) for process-
ing the first request. Using thestrace utility [4], we
confirmed that the system calls invoked in the user space
before sending out the response message was responsi-
ble for the start-up latency [2]. Besides, the start-up la-
tency could last even longer because of additional back-
end server operations (e.g., the query delay of a Google
search [12]).

HTTP/OP, on the other hand, avoids the substantial
start-up latency, because it does not use the initial HTTP
GET request for measurement. Moreover, when the
first probe round starts, the response packets can be in-
duced immediately after receiving a new TCP acknowl-
edgment in a probe packet. Therefore, the overhead for
the HTTP/OP measurement mainly comes from the data
copying between the kernel space and devices. Accord-
ing to thestrace results, the overhead of the data copy
operations was low, because it was performed by invok-
ingsendfile() to copy data from the file descriptor for
the response message directly to a socket interface within
the kernel.

Figure 6 also shows a much higher server-induced la-
tency under heavy load for the httping and initial HTTP
GET request measurement. The reason is that the server
has less system resources for the start-up processing of
httping’s HEAD request and the initial HTTPGET re-
quest. By avoiding the start-up latency, the HTTP/OP
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Figure 7: CDFs of the server-induced latency experienced by
HTTP/OP.

measurement is also much less susceptible to the server
load, as shown in Figure 6.

6.2.3 Effect of object size on server-induced latency

To evaluate the effect of the object size on the server-
induced latency, we plot in Figure 7(a) (for light load)
and Figure 7(b) (for heavy load) the CDFs of the server-
induced latencies for the HTTP/OP measurement based
on 4500 samples. For the sake of clarity, we show the re-
sults only for 20KB, 2MB, and 10MB. The observations
obtained from them also hold for 200KB and 100MB.

Both figures show that the server-induced latency dur-
ing the HTTP/OP measurement was very small:80% of
the samples were less than 30 microseconds. Therefore,
the server-induced latency had negligible effect on the
RTT measurement accuracy. Moreover, under a heavy
server load, the latency was higher for a smaller object
size, because HTTP/OP requested the server to load the
requested objects more often. Under a light server load,
however, the latency differences for the three object sizes
were not significant. As a result, the server loading had
more impact on the HTTP/OP measurement for small ob-
jects. Similar observations were reported in [8].

6.3 Resource consumptions of HTTP/OneProbe

6.3.1 System resources

Another important evaluation concerns the amount of
system resources consumed by the HTTP/OP measure-
ment in the probe sender and web server. We employed
the same testbed but with different parameter settings.
The web server hosted ten 61MB tarballs for retrieval.
We ran HTTP/OP on the probe sender to randomly re-
quest the ten tarballs for 240 seconds using 1, 10, and 100

TCP connections and periodic sampling with five differ-
ent rates:{1, 5, 10, 50, 100, 150}Hz. The probe and re-
sponse packets had the same packet size of 1500 bytes.

We usedvmstat [3] to measure the CPU and mem-
ory utilizations consumed by all Apache processes in
the web server every second. At the same time, we
measured the utilizations consumed by HTTP/OP in the
probe sender. During the measurement, we ensured that
no other routine processes were executed on both ma-
chines. Table 5 shows that the CPU utilizations were
very low in all cases. Even when HTTP/OP used 100
concurrent TCP connections with a fine sampling rate of
150Hz, the average CPU utilizations of the probe sender
and web server were still below 0.9% and 1.2%, respec-
tively. The average memory utilizations (not shown here)
of the probe sender and web server were also less than
2% and 6.3%, respectively, in all cases.

Table 5: The CPU utilizations consumed in the probe sender and web
server during the HTTP/OP measurement.

Number of TCP Sampling Average CPU utilizations (%)
connections rates (Hz) Probe sender Web server

1 1 <0.01 0.03
1 5 0.07 0.07
10 10 <0.01 0.27
10 50 0.07 0.70
100 100 0.17 0.77
100 150 0.87 1.17

We also performed similar experiments for three op-
erating systems used by the web server: FreeBSD 6.2-
RELEASE, Linux v2.6.18, and Microsoft Windows XP
(SP2), and for three popular web server software with
default settings: Lighttpd 1.4.18, Microsoft IIS 5.1,
and Nginx 0.5.34. The CPU utilizations consumed by
them during the HTTP/OP measurement ranged between
0.08% and1.05%.

HTTP/OP incurs a small overhead to the probe sender,
because it inspects only the TCP headers of the probe and
response packets, and does not require saving the entire
packet’s payload to the disk. Moreover, HTTP/OP ap-
plieslibpcap’s packet filters to capture packets rele-
vant to the path measurement and limits the amount of
data captured from a packet.

6.3.2 Network I/O

To measure the network I/O for the HTTP/OP mea-
surement, we conducted the measurement on the same
testbed using five TCP connections and periodic sam-
pling with a rate of 5Hz. HTTP/OP requested files of
2MB, 10MB, and 100MB for 240 seconds. The probe
and response packet sizes were 1500 bytes. We used the
sar utility [5] to measure the network I/O from the web
server side in terms of the number of packets per second
(pkts/s) and bytes per second.



The results in Table 6 are very close to the expected
results of 10 pkts/s (5Hz×2 packets) and 15000 bytes/s
(10 pkts/s×1500 bytes/pkt) for both reception (Rcv) and
transmission (Tmt). The results are slightly higher than
the expected results, because of the additional packets
for the TCP connection establishment and termination.
Table 6 also shows that the network I/O stays almost the
same for different object sizes, because it depends only
on the probe and response packet sizes.

Table 6: Network I/O for the HTTP/OP measurement.

Object Rcv Tmt Rcv Tmt
sizes (MB) (pkts/s) (pkts/s) (bytes/s) (bytes/s)

2 11.36 11.52 15598 16508

10 11.35 11.52 15598 16511

100 11.34 11.48 15590 16485

7 Measurement experiences

This section reports our recent experience of deploying
HTTP/OP for Internet path measurement. All the mea-
surement results reported here were obtained from an
HTTP/OP deployment at a Hong Kong data center. The
full set of results and the measurement setup are available
from [11].

7.1 Diurnal RTT and loss patterns

This set of measurement results was obtained from a set
of web servers hosting the last Summer Olympic Games.
HTTP/OP sent a probe every 500 milliseconds, contin-
uously for one minute, and the same probing pattern re-
peated after idling for four minutes. The entire measure-
ment was smoothly conducted for over a month.

Figure 8 shows the RTT and round-trip loss rate mea-
surement for one of the paths. The HTTP/OP mea-
surement captured clear diurnal RTT and round-trip loss
patterns. The peak loss rates also coincided with the
daily high RTT periods. A positive correlation between
RTT and loss rate was also reported by observing packet
losses at bottleneck queues in a ns-2 simulation study
[9]. For temporal correlation, the high RTT periods were
longer and the intensity of the peak loss rates were higher
on weekends.

Studying the correlation of RTT and packet loss rate
is important for predicting network congestion from end
hosts [9]. HTTP/OP provides a more accurate measure-
ment of their correlation, because it can sample an Inter-
net path with more fine-grained and uniform sampling,
and over a long duration. HTTP/OP’s intrusion to the
path is also minimal, thus minimizing the self-induced
bias. For the purpose of comparison, the measurement in
[27] was conducted for five days and for each day each
run was executed every two hours, and it introduced be-
tween 6 and 20 MB in each run.

7.2 Discrepancy between Ping and OneProbe RTTs

This set of results is also part of the Olympic Games
measurement. Besides HTTP/OP, we also deployed
ICMP Ping and other tools for path measurement. To
compare their results accurately, the tools were config-
ured to measure the same path at the same time. Figure 9
shows the RTT measurement obtained by HTTP/OP and
Ping for one of the paths. The figure shows that for the
first few days their RTTs consistently differed by around
100 milliseconds on the peaks, but they were similar on
the valleys. As a result, the Ping measurement under-
estimated the actual RTT experienced by TCP data pack-
ets by as much as70%! Moreover, due to an (possi-
bly network configuration) event unseen to Traceroute,
their RTTs “converged” at 12 Aug. 2008 16:39 UTC. At
the same time, the forward-path loss rate dropped signif-
icantly after this convergence point. Therefore, non-data
probes may not measure the actual path quality experi-
enced by data packets.
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Figure 9: Discrepancy in the RTT measurement obtained by HTTP/OP
and Ping for a Summer Olympics web server.

7.3 Asymmetric loss rates and loss-pair RTTs

This set of results is also part of the Olympic Games
measurement. For all the paths in this set of measure-
ment, the reverse-path losses dominated the round-trip
loss rates, and in some cases the packet losses occurred
only on the reverse paths. These results are consistent
with web’s highly asymmetric traffic profile. Moreover,
we conducted a parallel measurement to the same servers
but with different reverse paths, but we did not observe
packet losses from this set of measurement. Therefore,
the packet losses were believed to occur on the reverse
paths close to the web servers but not in the web servers.

Moreover, HTTP/OP can measure the loss-pair RTT.
A probe packet-pair or a response packet-pair is con-
sidered aloss pair if only one packet is lost to the pair
[23]. Loss-pair analysis has been shown useful in es-
timating bottleneck buffer sizes of droptail routers and
characterizing packet dropping behavior [23]. However,
in the absence of a suitable measurement tool, the loss-
pair analysis has so far been analyzed using simulations
and restricted to round-trip loss pairs.

Figure 10 shows the forward-path and reverse-path
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Figure 8: Time series of RTT and round-trip loss rates obtained by HTTP/OP for a Summer Olympics web server.

loss-pair RTTs for one of the paths, and the RTT was
measured for the first packet in the pair (and the second
was lost). The loss-pair RTTs are superimposed with the
corresponding RTT time series to identify which parts
of the RTT time series the loss pairs were located. The
figure shows that almost all the loss-pair RTTs on the
forward path were clustered on the RTT peaks, suggest-
ing that the packets were dropped in a drop-tail router
on the forward path. However, the reverse-path loss-pair
RTTs behaved very differently. While many loss pairs
saw the highest RTT, there were also many others seeing
other RTT values, including the lowest RTT. Therefore,
the packet dropping behavior is more similar to that ex-
hibited by a random-early-drop router.

7.4 Effect of packet size on reordering rates

This set of measurement results was obtained from a
PlanetLab node [32]. The HTTP/OP measurement re-
vealed that this path experienced persistent, high re-
ordering rates on both forward and reverse paths over
one week. We experimented with three combinations of
packet sizes:{280, 280}, {280, 1420}, and{1420, 280},
where the first is the probe packet size in bytes and the
second response packet size in bytes. Note that the cur-
rent non-cooperative tools cannot measure the reverse-
path reordering rate for different packet sizes.

Figure 11(a) depicts how the packet size affected the
reordering rate for the forward path. The reordering pat-
tern for {280, 280}, which is not included in the fig-
ure, is similar to that for{280, 1420}. A comparison of
the three results therefore concludes that a smaller probe
packet is more prone to packet reordering. This finding
is consistent with the results obtained from a cooperative
measurement study [16] and TBIT measurement [28].

Figure 11(b) shows the distinctive reordering rates on
the reverse path for the three packet size combinations.
Same as the forward-path reordering, a smaller response
packet size is more prone to packet reordering. Thus, the
case of{280, 1420} suffered from the least reordering.
Surprisingly though, the reordering rate for{280, 280}
was distinctively higher than that of{1420, 280}, al-
though they had the same response packet size. A pos-

sible explanation is that smaller probe packets will reach
the server with a smaller inter-packet interval. They will
therefore induce two response packets also with a smaller
interval, and the occurrence of packet reordering gener-
ally increases with a shorter inter-packet interval.
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Figure 11: Time series of forward-path and reverse-path packet re-
ordering rates obtained by HTTP/OP for a PlanetLab node.

8 Conclusions
In this paper, we presented OneProbe, a new TCP prob-
ing method, and HTTP/OneProbe, an implementation of
OneProbe for HTTP/1.1 to induce sufficient HTTP data
for continuous measurement. HTTP/OneProbe’s path
measurement is reliable, because the probes and induced
response packets are legitimate HTTP/TCP data pack-
ets, and the probes are based on TCP’s basic fundamen-
tal transmission mechanisms. OneProbe can also sample
RTT, packet loss rates on the forward and reverse paths,
and packet reordering rates on the forward and reverse
paths at the same time using the same probe. We per-
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Figure 10: Time series for the loss-pair RTTs obtained by HTTP/OP for a Summer Olympics web server.

formed extensive experiments to validate the correctness
of the probe responses, to evaluate the performance and
accuracy of HTTP/OneProbe, and to monitor network
paths for over a month. We are currently introducing new
path metrics, such as capacity and available bandwidth,
to OneProbe.
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