Design and implementation of TCP data probes for reliable ad
metric-rich network path monitoring

Xiapu Luo, Edmond W. W. Chan, and Rocky K. C. Chang
The Hong Kong Polytechnic University, Hong Kong
{csxlugcswweharcsrchang @comp.polyu.edu.hk

Abstract gardless of their operating systems, for path measure-
Monitoring network services and diagnosing their prob-mem' Sgcond, the method can measure the path qual-
lems often require active probing methods. Current problty experienced by data pacl_<ets. Third, the method can
ing methods, however, are becoming unreliable, becausi-PPOrt an adequate sampling rate and sound sampling

of interferences from various middleboxes, and inad-Patterns for obtaining reliable measurement samples.
equate due to their limited path metrics support. In However, the most practiced measurement methods

this paper, we present the design and implementatiof"® NOt reliable according to our definition. Most no-
of OneProbe, a new TCP probing method for reliablef@Ply, routers and end hosts do not always respond to
and metric-rich path monitoring. We have implemented!CMP Ping and Traceroute [24]. Even when ICMP pack-
HTTP/OneProbe (i.e., OneProbe for HTTP) which sendstS are returned, the Ping measurement results may not
TCP data probes containing legitimate HTTP requests t&€ trustworthy [38], because the ICMP packets and TCP
induce HTTP responses for path measurement. Since tfta packets are processed on different paths in routers.
probing method is based on TCP’s basic data transmisl "€ same can also be said for the probe and response
sion mechanisms, OneProbe works correctly on all majoPackets that are TCP SYNs, TCP RSTs, and TCP ACKs
operating systems and web server software, and on 934pure TCP acknowledgment packets). ~Other middle-
of the 37,874 websites randomly selected from the InterP0OXes, such as accelerators, traffic shapers, load balan-
net. We also successfully deployed HTTP/OneProbe t&€rs: and intrusion detection systems, can further in-
monitor a number of network paths for over a month andcréase the measurement inaccuracy. A related problem

obtained interesting and useful measurement results. 1S that their sampling rates cannot be too high.
Another motivation for this work is that an existing

1 Introduction non-cooperative method usually supports a very limited
The ability of measuring a network path’s quality is im- number of path metrics. As the quality expected from
portant for monitoring service level agreement, choos-nhetwork paths could be different for various applications,
ing the best route, diagnosing performance problemsl is necessary to measure the path quality using as many
and many others. This paper considers active measuré#aetrics as possible. There are three specific shortcom-
ment methods that do not require the remote endpoint'#1gs responsible for the current limitation. First, many
cooperation in terms of setting up additional software.methods, such as Ping, can only measure round-trip path
A non-cooperative method therefore measures the patfjuality. Second, almost all methods (with the exception
quality solely based on the response packets inducedf tulip [26]) only support one or two types of metrics
by its probes. Compared with cooperative methods(€e.g., sting [34] for packet loss and POINTER [25] for
non-cooperative methods offer the potential advantage apacket reordering). Third, all methods cannot measure
monitoring a large number of paths from a single systempath metrics with different response packet sizes (e.qg.,
The design and implementation of a reliable non-sting measures reverse-path packet loss using only TCP
cooperative method is very challenging for the InternetACKS).
landscape today. A main challenge is to obtain reliable
measurement in the midst of interferences from various
middleboxes. By reliability, we mean three specific re-Our approach to tackling the reliable path monitoring
quirements. First, the method can always induce the exproblem is to conduct measurement in a legitimate TCP
pected response packets from the remote endpoints, repplication session and to use TCP data packets for the

.1 A new non-cooperative measurement approach

probe and response packets. We avoid using the TCP ous measurement in a persistent HTTP connection.
ACKs returned from the remote endpoints for measure- 4. This paper prescribes three enhancements to the
ment, because some systems do not return them. More- basic HTTP/OneProbe: improving the process of
over, TCP ACKs are not reliable, and their packet size inducing HTTP responses, using TCP timestamps
cannot be changed. Using TCP data packets for the probe option to enhance the measurement, and employ-
and response packets resolves all three problems. ing concurrent TCP connections to support a higher
The new TCP data probe is also capable of measuring sampling rate and different sampling patterns.
multiple path metrics—round-trip time (RTT), forward- 5. This paper presents testbed experiment results
path and reverse-path packet loss rates, and forward-path ~ for evaluating HTTP/OneProbe’s performance and
and reverse-path packet reordering rates—all at the same measurement accuracy, and our measurement expe-
time from the same probe. Therefore, we call this new rience of monitoring network paths for over a month
TCP probing method OneProbe: the same probe for mul- using HTTP/OneProbe and other tools.
tiple path metrics. Although tulip also measures multiple
metrics, it cannot measure some packet loss scengri(?s Related work
[26]. Moreover, the tulip probes are different for loss Since OneProbe measures RTT, packet loss, and packet
and reordering measurement. reordering in an legitimate TCP session, it is mostly
We have implemented HTTP/OneProbe (i.e., One+elated to several non-cooperative measurement tools:
Probe for HTTP/1.1) which sends legitimate HTGET sting, POINTER, tulip [26], and TCP sidecar.
requests in the TCP data probes to induce HTTP re- OneProbe overcomes sting’s two main shortcomings
sponse messages for path measurement. Our validatidar loss-only measurement: unreliability due to anoma-
results have shown that the TCP data probes work cotous probe traffic and a lack of support for variable re-
rectly on all major operating systems and web servesponse packet size. The probe packets in sting may be fil-
software. It also worked on 93% of the 37,874 web-tered due to their highly unusual patterns (a burst of out-
sites randomly selected from the Internet. We have als@f-ordered TCP probes with zero advertised window).
enhanced the basic HTTP/OneProbe by using concuffhe reverse-path loss measurement based on TCP ACKs
rent TCP connections and TCP timestamps option, andhay be under-estimated for a larger packet size [15]. We
improving the process of obtaining sufficient HTTP re- recently evaluated sting on the set of 37,874 websites
sponses for continuous measurement. with the two probe packet sizes considered in [34]. With
TCP Sidecar [35, 36], a measurement platform baset¢he 41-byte probes, the sting measurement was unsuc-
on TCP, is closest to our work regarding the requiremengessful for 54.8% of the servers; the non-success rate for
of evading middleboxes’ interferences. TCP Sidecar'she 1052-byte probes was even close to 100%.
approach is to inject probes into an externally generated OneProbe overcomes POINTER'’s two similar short-
TCP flow. Since the focus of TCP Sidecar is to pro-comings for reordering-only measurement. The first
vide a platform for unobtrusive measurement, it does notwo POINTER methods (ACM and SAM1) send TCP
provide a new probing method to its “passengers.” Oneprobe packets with unacceptable acknowledgment num-
Probe, on the other hand, establishes a new TCP flow fdpers (ANs) and sequence number (SNs) to induce TCP
measurement and customizes TCP data probes for meACKs for measurement. Therefore, the probes could be
suring multiple path metrics. considered anomalous, and the response packet size can-
not be changed. The third method (SAM2), on the other
hand, sends probes with acceptable SNs but the ANs be-
1. This paper explains why the existing non- come unacceptable if the probe packets are reordered.
cooperative measurement methods are becoming Tulip, being a hop-by-hop measurement tool, was de-
unreliable and inadequate for the Internet today andigned to localize packet loss and reordering events on
proposes to use TCP data probes for reliable andghetwork paths, and to measure queueing delay. Tulip’s
metric-rich path measurement. loss and reordering measurement, however, is based on
2. This paper proposes a new TCP probing methodhe unwarranted assumption that the remote hosts and
called OneProbe which sends two TCP data packetgouters support consecutive IPID (IP’s identification}val
to measure multiple path metrics. The correctnessies. We tested tulip using the same set of web servers for
of the probe responses was validated on operatingting. In our experiments, tulip measured the last hops
systems, web server software, and websites. of the paths. The tests were unsuccessful for 80% of
3. This paper describes the implementation details ofhe servers for loss and reordering measurement—50%
HTTP/OneProbe, such as the method of obtain-of them failed to respond to tulip’s UDP probes, and an-
ing suitable http URLs for measurement and usingother 30% failed to return consecutive IPID values.
HTTP/1.1’s request pipelining to facilitate continu- TCP Sidecar provides support for injecting measure-

1.2 Contributions of this work

ment probes_ ina non-measurement TCP connection. The Probe and Sampling rate (6.9)
probes are limited to TCP ACKs and replayed TCP data | response packe Ul?t_t (?/)9-» 2Hz) and samplin
packets, because they must not interfere with the normal | sizes(e.g., 1500 P pattern (e.g.,

data transmissions in the TCP connection. As a result, _and 240 bytes) Usenix.org) Poisson)

the probes do not measure all packet loss scenarios andJser

packet reordering. Due to the same reason, the sampling v

pattern and rate cannot be controlled, because a probe is ¢ Find qualified URLS) | T

sent only after the connection is idle for some time (e.g., B 3 E

500 milliseconds in [36]). HTTP ¢ Prepare HTTRET % | T 3

L requests)T =

3 OneProbe | e . %
. . . HTTP GET requests)

OneProbe is a new probing method operating atthe TCP @~ —m— — — —&5 — — — — — r= 3

layer. Each probe consists of two customized TCP data (OneProbe)‘ =

packets to induce at most two new TCP data packets from TCP

the remote endpoint for path measurement. Moreover, Probe packety | Response packets

the probe and response packets carry legitimate applica- Network

tion data, so that the remote side will perceive the probe
traffic as coming from a legitimate application session.
In a client-server application protocol, the probes usu-
ally carry application requests, and the response packets
contain the requested objects. Therefore, an OneProbECP data packets from the remote endpoint. These two
implementation comprises two main components: Onefesponse packets are used for measuring the reverse-path
Probe and a TCP application-dependent component. ~ quality in a similar way as the two probe packets for the
OneProbe can be implemented for any TCP appliforward-path quality. Furthermore, the response packets
cation protocol that provides support for requesting@re distinguishable for almost all possible delivery sta-
data from the remote endpoint. This paper presenté!ses of the probe and response packets. As a result,
HTTP/OneProbe (HTTP/OP in short), an OneProbe im-OneProbe can measure both forward-path and reverse-
plementation for HTTP/1.1 [33]. Figure 1 shows the Path quality primarily based on the response packets.
main components of HTTP/OP. An HTTP/OP user ian_JtS3'2 The probing process
an http URL, and the probe and response packet sizes
(measured in terms of the IP packet size). The HTTPHTTP/OP sends a sequence of probes in a persistent
helper, an application-dependent component, first comeld TTP connection (over a single TCP connection). Each
up a set of qualified URLSs for the specified packet sizegprobe packet contains a legitimate HTTP request, and
and then prepares the corresponding HTGET mes- €ach response packet contains legitimate data requested
sages. The user may also specify the sampling patterdy HTTP/OP. To focus on the probing process in this
and rate which, together with the HTTBET messages, Section, we temporarily ignore the application-level is-

are used for OneProbe measurement at the TCP layer. sues and assume that the TCP server always has enough
application data to send back to HTTP/OP. We also post-

3.1 The probe design pone the explanation on how OneProbe can set the user-

The probe is the result of several design choices. The firstpecified packet sizes to section 4.
advantage of using TCP probes (instead of application- We use Figure 2 to explain the probing process. De-
layer probes) is that the same probing mechanism couldote a probe packet b§m|n and a response packet by
be implemented for many TCP application protocols.Sm|n. Both packets are TCP data packets, andndn
TCP probes can also provide more accurate measurere the TCP data segment’s SN and AN, respectively. All
ment about the network path quality than higher-layerthe TCP data segments considered in this paper are of full
probes. Moreover, using two packets is a minimumsize (i.e., the maximum segment size, MSS). Therefore,
requirement for packet reordering measurement. Fowe simply usem = 1,2,--- to enumerate the server's
loss measurement, the second packet can help determif€P data segments and 2/, - - - OneProbe’s TCP data
where—the forward path (from OneProbe to the remotesegments. For example, OneProbe sends its fourth data
endpoint) or the reverse path—the first packet is lost. segment inC4’|2 that also acknowledges the first two
Another key issue in the probe design is what kind ofdata segments from the server. Moreover, when the AN
response packets to induce from the remote endpoint. Tt not important, we just us€m andSm.
measure the reverse-path quality with the same types of OneProbe customizes and dispatches the successive
metrics, the probe is designed to induce at most two nevprobes according to the following three rules:

Figure 1: The main components of HTTP/OneProbe.

P1. (Dispatching a new probe) A new probe is dis-3.4 Detecting packet loss and reordering events

patched only after receiving two new data segments _) _
from the server and the acknowledgment for theThere are five possible path events regarding the two

data segments in the probe. probe packets on the forward path:
P2. (Acknowledging one data segment) Each probeF0. Both probe packets arrive at the server with the

packet acknowledgesnly onedata segment from same order.
the server, although both have been received by th&R. Both probe packets arrive at the server with a re-
time of sending the first probe packet. verse order.

P3. (Controlling the send window size) The probe pack-F1. The first probe packet is lost, but the second arrives
ets advertise a TCP receive window of two segments at the server.
in an attempt to constrain the server's TCP sendF2. The first probe packet arrives at the server, but the
window size to two segments. second is lost.
Figure 2 depicts two successive probe rounds (the firs&3. Both probe packets are lost.
round denoted by dotted lines and the second by solid There are also five similar events for the two new re-
lines). According to P1, OneProbe sends a new probe ofponse packets on the reverse path: RO, RR, R1, R2,
{C3'|1,C4'|2} (for a new probe round) after receiving and R3 (by replacing “probe” with “response” and “the
S1]1” and S2|2’. Therefore, the packet transmissions in server” with “OneProbe” in the list above). As a result,
the first round do not overlap with that in the next. More- there are 18 possible loss-reordering events, as shown in
over, if the server’s congestion window sizenid) isat Table 1: the 17 events indicatgdand one event for F3
least two segments, P3 will ensure that its send windowthere is no/, because this is a forward-path-only event).
size is set to two segments. Finally, based on P2 and P®thers indicated by — are obviously not possible.
the server can send only one new data segment after re-

ceiving a probe packet if the probe packets are received , _
Table 1: The 18 possible loss-reordering events for the two probk-pac

in the original order. ets and two response packets.
RO RR RI R2 RS3
Server —SL SAZ SIS oV v v v v
R vV Vv vV Vv
| v Vv v VY
Oneprobe 01 cz 53|1 cap Time z A

Figure 2: Two successive probe rounds in OneProbe.

Although OneProbe manipulates the TCP packet OneProbe can detect almost all the 18 path events
transmissions according to P1-P3, there are no appareRfised on the response packets. — Considering the
anomalies existing in the probe packets. It only appear§C3’|1,C4’[2} probe in Figure 2, Table 2 summarizes
to the server that the client has a low receive buffer, andhe response packets induced for the 18 cases based on
its send window is always full. Moreover, according to RFC 793 [20]. In addition to the new data segments 3
our measurement experience, the OneProbe transmissiéfd 4, the server may retransmit old data segments 1,
pattern was not construed for an anomalous TCP flow2, and 3, and we us&m|n to refer to a data retrans-
We received only a couple of complaints about our meaMmission. Since the server responses are based on TCP’s
surement activities for the past two years; one of thenfwo basic mechanisms: acknowledgment-clocked trans-
came from a website that normally received very few ex-missions and timeout-based retransmissions, all operat-
ternal requests. ing systems are expected to produce the same responses.

. Figure 2 has already illustrated the evenfiRD; Fig-
3.3 Measuring RTT ure 3 C1’ and C2' are omitted) illustrates four other
OneProbe measures the RTT based on a probe packedses: FRRO, FIxR0, F2xR0, and F3. The rest can
and its induced new data packet (e@3/|1 andS3|3 in be easily constructed from the illustrations for these five
Figure 2). Therefore, in the absence of packet loss, Onesvents. Note that, because of P1, the server retransmits
Probe normally obtains two RTT observations in a probeold data segments in all four cases. The main purpose for
round. However, OneProbe uses only the first-probewithholding a new probe, even after receiving two new
packet-RTT for measurement, because the second prololata segments (e.g., in the events& and FXk RO0), is
packet’'s RTT may be biased by the first packet [10]. to induce retransmissions for path event differentiation.

<Timeout> <Timeout> <Timeout—> <Timeout>
Server Sl|1 52|2 S312' A2 S3|4 - Sl|1 SZ|2 S312' 42 53|2 Sl|1‘ S22 S33S23. S11 S22 S1p2

c3|1 c42 Time ~ c3|1c4 12 C3|L C4)2 C3|L C4)2
(8) FRXRO (b) F1XR0 (c) F2xR0 @) F3

Figure 3: OneProbe’s packet transmissions for the path eventsFR F1x R0, F2x R0, and FX RO.

Table 2: The response packets induced by {i83'|1, C4’|2} probe §3|2’, the retransmission (ﬂ3|2’_
for the 18 path events according to RFC 793. .
3.5 Assistance from TCP ACKs

Path events 1stresponse 2ndresponse 3rd response

packets packets packets Recall that an important design choice for OneProbe is
> EXRO giii; ggiéﬁ - not to rely on TCP ACKs. However, some ACKs, if
3.FOxRL S4l4’ 3|4/ _ received by OneProbe, can assist in detecting the path
4. FOxR2 S3[3 S3]4’ - events. There are two such ACKs: out-of-ordered-packet
5.FOxR3 534 - - ACK (OOP-ACK) and filling-a-hole ACK (FAH-ACK).
6. FR<RO S3|2/ 542/ 83|14/ Referring to Figure 3(a), the early arrival 6#|2 could
7. FRxRR 54I2i 53|2: S3)4/ immediately trigger an OOP-ACK, whereas the late ar-
g' Eiig ggl;, gg}i, B rival of C'3'|1 could immediately trigger an FAH-ACK.
10. ER<R3 Saja’ - _ According to our measurement, some systems did not

return the OOP-ACK, but all the systems tested returned

11. FIxRO S3|2 S4)2/ 832’ the FAH-ACK.
12. FIxRR S4/2/ 532’ 532/ .
13. FIxR1 S4]2/ 32/ _ Even though the system responses regarding the FAH-
14. FIxR2 S3J2/ S3j2/ - ACK are uniform, OneProbe still does not rely on it for
15. FIxR3 §3]2' - - measurement, because it could be lost. Instead, One-
16. F2<R0 S3|3’ 523/ - Probe exploits these ACKs, if received, to enhance its
17. FxR1 52|83/ - - measurement. The first is using the FAH-ACK to accel-
18. F3 512/ - - erate the detection of the forward-path reordering events

(i.e., FRxx) without waiting for the data retransmissions.
The second is using the FAH-ACK to disambiguate A3
3.4.1 Distinguishability of the path events thatis the only unresolved case. An arrival of FAH-ACK,

/
The different combinations of the SN and AN in the re- In addition t053|4 clearly signals an FRR3 event.

sponse packets enable OneProbe to distinguish almost &6 ~ Starting a new probe round

the 18 path events. Itis not difficult to see, by sorting Ta-Qut of the 18 path events, only the path events 1-2 ful-

ble 2 according to the three response packets, that eagly the conditions for dispatching a new probe in P1 im-

sequence of the response packets matches uniquely tongediately after receiving two response packets. More-

path event, except for the following three cases: over, path events 3 and 6-8 fulfill the conditions imme-

Al. FIxR2 and FXkR3: These two events cannot be diately after receiving a data retransmission. However,
distinguished based on the response packets, behe condition is not met for the rest (i.e., events 4-5 and
causeS3|2’ andS3|2’ are identical, and the server 9- -18). Another related problem is that the serversd

may retransmit more than once. is dropped to one segment for all the path events that
A2. F1IxRR and FXkR1: The reasons for their indistin- involve timeout-based retransmissions (i.e., path events
guishability are similar to that for Al. 3-18).
A3. FOxR3 and FR«R3: Both events have the same re- To address the two problems that prevent OneProbe
sponse packe§3|4’. from starting a new probe round, OneProbe will first

The ambiguities in A1 and A2 make the delivery sta- send one or more new TCP ACKSs to increase the server’s
tus of S3|2" uncertain. The ambiguity in A3, on the cwnd back to two for path events 3-18. After re-
other hand, makes the probe’s order of arrival uncertainceiving two new data segments, OneProbe dispatches a
Our current implementation disambiguates A1 and A2new probe:{C5’,C6'} for events 3-10{C4’,C’5'} for
by measuring the time required féi3|2’ (or S3|2’) to events 16-17, andC3’,C4'} for event 18. Handling
arrive. It usually takes a much longer time to receiveevents 11-15 is more complicated. If a new probe of

{C3',C4’} were used, the server will dr@p4’, because 4.1.1 Finding qualified http URLs
it has already been received. The current |mplementaAn http URL is considered qualified if its HTTRET

tion restarts the connection when encountering these paw-)quest can be retrofitted into a probe packet, and the
events. A better approach is to retransgiit’ with the GET request can induce at leafte response p:'alckets

H i /
respective ANs and to use a new probg 6%', C'6'}. from the server. A minimum of five response packets is

3.7 Sampling the packet loss and reordering rates required because of the three additional response pack-

: ets for thecwnd ramp-up. LetZ, andZ, be the user-
OneProbe samples the packet loss and reordering rates™
. o Specified probe packet size and response packet size,

from consecutive probe rounds. Similar to the RTT mea- .
: respectively. Therefore, the length of the HTGET

surement, OneProbe uses only the first packet for the loss

. - request for a qualified URL will not exceed, — 40

measurement. After conducting a number of consecutiv .
: ytes (assuming a 40-byte TCP/IP header). Moreover,
probe rounds, say 120, over one minute, OneProbe conj: ; :
he length of corresponding HTTP response message, in-
putes the forward-path (and reverse-path) loss rate by di-, ~ .
- . cluding the response header and message body, must be
viding the number of the first-probe-packet-loss events
at least x (Z, — 40) bytes.

(and the first-response-packet-loss events) by 120. One- Checking the length of tHeET request s simple. Ver-

Probe computes the packet reordering rates in a similar, . - .
manner P P 9 Ifying whether a user-specified URL meets the size re-

quirement for the response packets, however, requires
4 HTTP/OneProbe some work. If theCont ent - Lengt h header field is
We have implemented HTTP/OP as a user-level toc)Present in the HTTP response message, the length is just

a sum of the field value and the response header’s length.

(around 8000 I|ne_s O@ code) on unmodified L_|nux 2.6 Otherwise, the helper will download the entire HTTP re-
kernel. As shown in Figure 1, HTTP/OP consists of two : o
sponse message to determine the length. If no qualified

main components: HTTP helper a@dePr obe. HTTP ; .

. . URL can be obtained, the helper will perform web crawl-
helper handles the issues concerning the HTTP 1.1 PI%g to retrieve all the available URLS, starting at the root
tocol, wherea®nePr obe implements OneProbe. This 9 K 9

section considers a basic HTTP/OP that utilizes a persi%(-);rtgirv\:;bszf r\(/)el:rairr:fl (Ijeor;vgnt; Soze;é?lphgevsgll) Ice::/;vl\ll(ifrl]ve
tent HTTP/1.1 connection. | P 9

process is based on the recursive retrieval technique im-
4.1 The HTTP helper plemented in Wget [17].

The HTTP helper's main tasks include finding one or Besides, the HTTRET request for a qualified URL

more qualified http URLdor the user-specified packet must induce _2200(OX) response. We purpose_ly do not
sizes and preparing the HTTEET requests for them, US€ those witht04(Not Found) responses in order
Figure 4 shows that HTTP/OP sends an initial HTTP_nOt to cause security alerts on the site. We also avoid us-
GET request for a qualified url-1 il€0’. The server ing HTTP response messages that do not have a message
replies with an HTTP response message sesstins2, ~ Pody (6.9.304(Not Modi fi ed)).

---. HTTP/OP also sends the same request in all subset.1.2 Preparing the HTTP GET requests

guent probe packets. Note that before sending the fir
probe{C1’,C2'}, HTTP/OP sends an ACK to ramp up
the server'sswnd to two segments. Therefor€0’ and
S1-53 are not used for OneProbe measurement.

S{'o craft aZ,-byte probe packet for an HTTP request,
the helper expands the packet size throughrtfeer er

field. Since some web servers only accept requests re-
ferred from their own web pages, the helper first appends
the requested URL to theef er er field to avoid block-

ing. If the packet size still falls short, the helper further
appends a customized string consisting of a probe ID and

HTTP response message for url-1 ...

w . . . X
Ser?,ber S S 22 > an email address for our project (for lodging a complaint
I [18]) repeatedly until reaching the packet size. More-

O . over, to reduce the delay in dispatching the probes due
£l5 to possible context switching, the HTTP helper has pre-
* 7] pared the HTTRSET requests for the qualified http URLs

HTTH > before starting the OneProbe measurement.

oP cCo ACK cr c2 C3 c4

€—Preparation phase Probing phase—» _ HTTP/OP exploits HTTP/l.l's request pipelining to
include aGET message in each probe packet for path

Figure 4: HTTP/OP sends HTTEET requests for url-1 for OneProbe measurement. The pipelined HTTET requests could
measurement. be for a single or multiple URLs. There are also other al-
ternatives, such as sending a laf@€T message in sev-

eral probe packets or including multip8T messages schedule contains a list pfobe taskseach of which in-

in a probe packet. But we did not adopt them, becauseludes a dispatch time and a probe number. The probe

they are either delaying the return of the response packetasks are enqueued tgpebe-schedule quews soon as

or introducing too many request messages. they are generatednePr obe currently supports peri-
Moreover, an HTTP response message usually will nopdic and Poisson sampling, and it is not difficult to admit

fully occupy the last response packet. Therefore, a full-others. For the Poisson sampling, our implementation is

sized response packet may contain data from two HTTased on the method 3 in RFC 2330 [31] which elimi-

response messages. However, we have also observedtes possible timing errors in dispatching the probes.

that some response packets are not full-sized packets, bﬁ’z 2 The preparation phase

cause they contain only the last chunks of the response™

messages. Our current implementation will close theOnePr obe configures the probe and response packet

connection whenever detecting a small segment and igsizes during the TCP three-way handshaBeePr obe

nore the probe rounds involving small segments. A betadvertises its MSS (say/5S.) in the TCP SYN seg-

ter approach is perhaps to continue the next probe roundhent to control the size of the server’s response pack-

using the next HTTP response message in the same coats. From the TCP SYN/ACK segment returned by

nection. the server,OneProbe learns the server's advertised

MSS (sayM SS,). As a result,Z, must be less than

MSS; + 40 bytes, andZ, = min{ M SS., MSS;} + 40

OnePr obe manages the measurement in two levels:bytes. ThereforeOnePr obe can dictate the server’s re-

session and TCP connection. AmePr obe session sponse packet size by advertisingdib.S, < M SS,.

could involve concurrent TCP connections (see section Another purpose of this phase, as already shown in

5.3 for this enhancement). Figure 5 shaWeePr obe’s Figure 4, is to ramp up the servecsmnd to two seg-

main tasks for a TCP connection in two consecutivements for starting the first probe round. If the server’s

phasespreparationandprobing The preparation phase initial cwnd is at least two segments (detected by receiv-

is for performing the ground works for the probing phase.ing two response packets after the initial HTGET re-

In the probing phasednePr obe dispatches the probes quest), then the first probe round can be started without

containing the HTTRGET requests that have been pre- sending the ACK.

pared by the HTTP helper, analyzes the response pack- ,

ets, and terminates the connection when the session enfi?-3 The probing phase

or encounters exceptior@nePr obe also includes a di- Preparing for the probes The probing phase starts as

agnosis module to detect self-induced packet losses. soon as receiving two response packets from the server

(see Figure 4). To dispatch a probl@ePr obe first

4.2 Animplementation of OneProbe

Start retrieves a probe task from the probe-schedule queue.
| Moreover, any slipped probe task, for which its dispatch
tﬁg;ﬁ'f;::r?d : Ssrf:iggjflze\ Exception or Done time has already pass.ed the current time, will be removed
eponse. ||| enlyng e I } from the queue and discarded. When the probe schedule
packet sizes |

the next probe the TCP

Remping Up | Gce)thtiﬁg o) tak connection lAftir Obtalnllng a .prol.)e taﬁk,O’]ePfl’ obe E-Sehs

[thesewer,s ot b Noexception T cl ock_nanos eep_() inti ne. to perform a high-
cwnd task resolution sleep until reaching the dispatch time. Upon

waking up,OnePr obe draws a pair of HTTRGET re-
quests randomly from the list of t&T requests already
Figure 5. OnePr obe’s major tasks in the preparation and probing prepared by the HTTP helper and sends each in a probe
phases for a TCP connection. packet. To ensure a successful delivery of the probe to
the networkOnePr obe captures each dispatched probe
packet usind i bpcap.
Dispatching the probesSimilar to other measuring sys-
There are two mains tasks in the session managementems, such as Scriptroute [37], we have used Linux
The first task is thaOnePr obe establishes and main- raw socket to craft and send the probe packets, and the
tains a system-configurable number of TCP connectionti bpcap 1.0.0 library to capture the probe and response
for a measurement session (one connection for the baackets. As a result of bypassing Linux’s normal TCP/IP
sic HTTP/OP). As a second taskpePr obe preparesa processing, the kernel is unaware@fePr obe’s TCP
probe schedulaccording to the user-specified sampling connections and will therefore respond with a TCP RST
pattern and rate before starting the measurement. Thi®r each response packet received. Our implementation

resuts [Preparingfor} [Terminating] is empty,OnePr obe closes the TCP connection.

/ No probe task

Preparation phasel Probing phase

4.2.1 Session management

blocks the RST traffic using Linuxispt abl es. 5 Enhancements

Another important issue is to timestamp each proberyg section describes three enhancements to the basic
and response packet accurately for the RTT measur§yrrp/op presented in the last section. The first en-
ment. Since we have already udeidbpcap to capture pancement is to improve the process of inducing suffi-
packets, we use the timestamp from geap_pkt hdr jent HTTP responses. We have implemented additional
structure of each probe and response packet to measuf€achanisms to prevent web servers from compressing
the RTT with microsecond resolution. An alternative is 4 requested objects and to use unqualified URLS for
to use the recently proposed TSC clock [14] that provides, e asyrement. The second is to disambiguate A3 using
a highly accurate timing information through the kernel 1cp timestamps option. The third enhancement is using
timestamping, but accessing it requires a kernel patchy, iple TCP connections in a measurement session to
The user-level timestamp froget ti meof day(), on gagisfy the user-specified sampling rate and pattern. With
the other hand, is u,nrehable, because its accuracy can begingle TCP connection, the sampling rate is constrained
affected by system’s context switching. to at most one per RTT, and the RTT variations also make

Analyzing the response packetsOneProbe cap- _it difficult to realize the user-specified sampling pattern.
tures the response packets (and probe packets) usin

| i bpcap and writes all the captured packets to a dump®-1 Improving the HTTP response solicitation

file (which can be opened hycap_dunp_of fline() Avoiding message compressiofihe first improvement
available in the libpcap library) for analysis. s to prevent web servers from compressing HTTP re-
OnePr obe determines the path event based on the sesponses which, for example, is performed by Apache
quence of response packets in Table 2 and the assistanggrver'snod_def | at e module [1]. The compressed

of TCP ACKs discussed in section 3.5. It also measuregesponses could affect OneProbe measurement, be-
the first-probe-packet-RTT from the packet timestampscause the expected number of response packets for
In processing the response pack€rsePr obe also fil- g qualified URL may be reduced. Therefore, each

ters packets irrelevant to the measurement, such as TORTTP GET request specifief\ccept - Encodi ng:
window updates. FurthermorénePr obe computes jdentity; q=1, *;q=0, whereidentity;q=1

from a consecutive number of probe rounds the statisindicates that thé dent i t y encoding (i.e., no trans-
tical metrics (in terms of, e.g., mean and median) for theformation) should be performed on the entity of the
RTT, loss rates, and reordering rates. response, and; q=0 means avoiding other encoding
OnePr obe supports both online and offline process- methods.
ing of the response packets. The online processing igJsing unqualified URLs for measurementAs a sec-
possible, becaugenePr obe only needs to identify the ond improvement, HTTP/OP exploits the range request
TCP data packet received from the server. However, weeature in HTTP/1.1 to use unqualified URLs for path
have set the default processing to offline mainly for pre-measurement. A range request can be used to request
venting the processing workload from influencing the multiple overlapped ranges of the same web object from
probing process. Another advantage of the offline ap-a web server that accepts range requests. Therefore, even
proach is to facilitate a more accurate (as compared witlan unqualified URL can be “expanded” to fulfill the min-
the online approach) disambiguation of A1 and A2 basedmum size requirement for the response packet.
on the RTT samples collected in the measurement (as \We have implemented this enhancement in the HTTP
discussed in section 3.4). helper which can verify whether the server supports the
range request via th&ccept - Ranges header field in
the HTTP response message. If the HTTP helper cannot
OnePr obe performs a self-diagnosis to confirm that the find any qualified URL but discover that the server sup-
measurement is free of self-induced packet losses. Fgorts the range request feature, it will craft a range re-
the forward-path measurement, failures of sending outjuest as discussed above to induce HTTP response mes-
the probe packets are still possible, despite that the imsages for OneProbe measurement.
plementation always validates the successful invocatio
of thesendt o() function. To detect these self-induced
losses,OnePr obe usesl i bpcap to verify the deliv- In addition to the FAH-ACK, we have proposed and im-
ery of each outgoing probe packet to the network. Fomplemented a method to disambiguate A3 using the TCP
the reverse-path measurement, self-induced losses couliinestamps option [21]. In this enhancement, each probe
also occur to the response packets due to insufficienpacket contains a distinct timestamp in the TCP option
buffer space.OnePr obe monitors theps_dr op vari- field. If the server also supports the TCP timestamps op-
able returned by thei bpcap’s pcap_st at s() func- tion, it will retain the timestamp received from theost
tion to detect such losses. recentprobe packet that advances its receive window and

4.2.4 Diagnosing self-induced packet losses

%.2 Using TCP timestamps to disambiguate A3

echo it in its next response packet_ Therefore, the server Table 3: A suite of four validation tests performed by Validator.

retaInSC4"S tlmeStamp fOI‘ the case Of |>_<CR3 al’ldC?)/'S Tests Testmg Expected packets Expected data
timestamp for the case of BER3. As a result, the two probes induced from server retransmissions
path events can be distinguished based on the different o 103 cay (53137, 54147} S3)4’
timestamps ir3|4". VR. {C4,C3'} {S32,54]2'} 5314/

Vi. C4' only {S3|2/, S4|2} S3|2/

5.3 Using multiple TCP connections

To extend the basic HTTP/OP to using TCP connec-
tions, we have used the POSIX Threags Ifr eads)
library to create and manage multiple threads. A sin-passed in at least one trial. The validation results were all
gle thread is used for managing the measurement sesuccessful.

sion, andN worker threads are created for managing the

TCP connections separatelgnePr obe also monitors Table 4: The 39 systems and 35 web server software that passed the
the health of the connections to ensure that there are af2"eProbe validation tests.

ways N TCP connections available throughout the mea- Systems testedFreeBSD v4.5/4.11/5.5/6.0/6.2, Linux kernel

V2. C3 only 53|38 S2|3/

surement session in our lab.: v2.4.20/2.6.5/2.6.11/2.6.15/2.6.18/2.6.20, MacOSX
.) - 10.4 server, NetBSD 3.1, OpenBSD 4.1, Solaris
Since some web servers may limit the number of con- 10.1, Windows 2000/XP/Vista

current TCP co_nnections initiated from an IP addres:.,Systems testedAIX, AS/400, BSD/OS, Compaq Tru64, F5 Big-
OnePr obe assigns randomly selected source IP ad-inthe Internet: IP, HP-UX, IRIX, MacOS, NetApp NetCache, Net-
dresses from an address pool to ffieconnections. Our Ware, OpenVMS, OS/2, SCO Unix, Solaris 8/9,
experience shows thal = 10 is sufficient for support- 3'5’835‘035\’“”’ Microsoft Windows NT4/98/Server
ing periodic sampling with a rate of two probes per sec _ _ _

ond. A higherN, however, is expected for Poisson sam- Servers testedAbyss, Apache, Lighttpd, Microsoft 1IS, Nginx

. Lo T in our lab.:
pllng because of the hlgh mter-pmbe delay Vanablhw' Servers testedAOLserver, Araneida, Apache Tomcat, GFE, GWS-

6 Evaluation in the Internet: GRFE, IBM HTTP Server, Jetty, Jigsaw, LiteSpeed,
Lotus-Domino, Mongrel, Netscape-Enterprise, Om-

This section presents three sets of evaluation results. The niSecure, Oracle HTTP Server, Orion, Red Hat Se-
first one evaluates whether different systems and web Z@ﬁéﬁ?iﬂﬁﬁ@?&g?'@%ﬁ? \S/frrtz';%go'svei‘igéi"a
servers respond to OneProbe’s probes correctly. The sec- WebSiphon, Yaws, Zeus, Zope

ond evaluates how the latency induced by web servers
will affect the accuracy of the HTTP/OP measurement.

The final set evaluates the effect of the HTTP/OP mea6.1.2 Results for web servers in the Internet
surement on the system resource consumption in th
measuring system and web servers.

fh spite of the successful results above, OneProbe may
still not be supported on some Internet paths because
6.1 Validation of OneProbe of middleboxes and customized TCP/IP stacks. We

We have designed a small, but just sufficient, suite of valtherefore extended the validation tests to websites in
idation tests (called Validator) for OneProbe. A systemthe Internet. We ran the Larbin web crawler [6] with
or web server that passes all the tests can be used by Orig-@shdot . or g as the starting URL (the same method
Probe for path measurement. Table 3 describes the folfS€d in [35]) to obtain 241,906 domain names and then
validation tests VO-V2 that “simulate” the forward-path "andomly selected 38,069 websites from them. Based on

events FO-F2, respectively. Same as OneProbe, Validatdpe Netcraft database [29], the web servers came from 87
constrains the serversand to two segments. Moreover, geographical locations, covering the 39 systems in Table

validator does not acknowledge the response data pack: @nd 117 web server software. After excluding 195 of
ets in order to simulate reverse-path losses. Thereford1€Mm that reset the TCP connections, we report the re-
the data retransmissions are expected to be the same $i4ts from the remaining 37,874 websites below.

in Table 2. Note that these tests for reverse-path lossesuccessful (93.00%Jhese servers passed all tests.

have already covered the test for F3, because withholdinfailures in the preparation phase (1.03%)These web-
the next probe is the same as losing it. sites failed to return the expect¢d1, S2}. Therefore,

. OneProbe could not start the probing phase.
6.1.1 Results for operating systems and web servers Failures in test VO (0.26%) Most websites in this
We applied Validator to test the major operating systemsset replied with{ S3|4’, S4|4'}, instead of the expected
and web server software listed in Table 4. Three tri-{53|3’, 54|4'}. That is, they sent response packets after
als were performed for each system and server. A testeceiving both probe packets.
was considered successful if all four validation tests werd-ailures in test VR (5.71%) Some websites appeared

to have received an order-intact probe because obnthe URL specified inthe HTTP request and the corre-
two kinds of response packets received from themsponding response.

{53]3",54|4'} and {S3]4’, S4[4'}. Another set replied For each load environment, we obtained the server-
with {S3|3’, S4[3'}; such behavior is similar to the prob- induced latency by measuring the difference between the
lem of “failure to retain above sequence data” reported inarrival time of a probe packet at the server and the time of
[30]. The final set replied wit§ 53|2’, 54/2'}, showing sending out the response packet that it has induced. Be-
that they did not receive the reorder€d’, possibly due sides for HTTP/OP and httping, we measured the server-
to packet drop by firewalls and intrusion detection sys-induced latency also for the initial HTTP request sent
tems. For example, Cisco IOS firewall drops reorderecbut in the HTTP/OP’s preparation phase. As discussed

packets before release 12.4(11)T [13]. in section 4.1, this request is used for ramping up the
Since all the websites that failed test V1 also failed testserver'scwnd, therefore not used for measurement. We
VR, these failures are classified only under test VR. installedt cpdunp at the server to capture all network

traffic to and from the probe sender until we had obtained
150 latency samples for each experiment.
A common problem for non-cooperative measurement6 29 Server-
tools is that their delay measurement could be affected by ™
the remote endpoint’s loading. In particular, a busy webFigure 6 plots the cumulative distribution function (CDF)
server can introduce substantial latency during HTTPof the server-induced latency for HTTP/OP, httping, and
transaction processing [8]. HTTP/OP’s initial HTTPGET request under the light and
heavy loads. The figure shows a significant latency oc-
curred to both httping and the initial HTTEET request.
We setup a testbed to evaluate the impact of serverThis start-up latency was reported for the Apache 1.3.0
induced latency on the HTTP/OP measurement. Thearchitecture [8]. A similar delay of several milliseconds
testbed consisted of a web server running Apache v2.2.®/as also observed for a Google server to send out the
and a probe sender where HTTP/OP and other measurérst response packet for a request [12].
ment tools resided. Both machines were connected to For the httping and initial HTTBET request measure-
each other through a router, which ran Click v1.6 [22] ment, the server is required to invoke several expensive
in kernel mode to emulate a fixed RTT of 25 millisec- system calls (such asgad() andst at ()) for process-
onds between them. Each machine, including the routeing the first request. Using th&t r ace utility [4], we
was equipped with a 1.7GHz Pentium 4 processor withconfirmed that the system calls invoked in the user space
256MB memory running Linux v2.6.18 and connectedbefore sending out the response message was responsi-
to a 100Mbits/s LAN. ble for the start-up latency [2]. Besides, the start-up la-
By adopting the approach described in [8], we set uptency could last even longer because of additional back-
two Surge web load generators [7] in separate machinegnd server operations (e.g., the query delay of a Google
that were directly connected to the web server. We exsearch [12]).
perimented with a light load (20 Surge users from each HTTP/OP, on the other hand, avoids the substantial
generator) and a heavy load (260 Surge users from eadtart-up latency, because it does not use the initial HTTP
generator). Each generator generated requests for objedBET request for measurement. Moreover, when the
selected from a set of 2000 distinct static files with sizefirst probe round starts, the response packets can be in-
ranging from 78 bytes to 3.2MB. We conducted the samaluced immediately after receiving a new TCP acknowl-
set of experiments for HTTP/OP and httping [19]. We edgment in a probe packet. Therefore, the overhead for
included httping, because it is a common HTTP-basedhe HTTP/OP measurement mainly comes from the data
ping tool which uses HTTMEAD and GET requests as copying between the kernel space and devices. Accord-
probestoinduce HTTP responses for RTT and round-tripng to thest r ace results, the overhead of the data copy
loss measurement. operations was low, because it was performed by invok-
We restricted both HTTP/OP and httping to request-ingsendf i | e() to copy data from the file descriptor for
ing five static text files of 20KB, 200KB, 2MB, 10MB, the response message directly to a socket interface within
and 100MB available in the web server. We launchedhe kernel.
HTTP/OP using 30 TCP connections and periodic sam- Figure 6 also shows a much higher server-induced la-
pling with a rate of 20Hz (one probe every 50 millisec- tency under heavy load for the httping and initial HTTP
onds). All probe and response packets were 240 bytes iGET request measurement. The reason is that the server
length. For httping, we used the default sampling rate ohas less system resources for the start-up processing of
1Hz andHEAD requests and responses for measuremenhttping’s HEAD request and the initial HTTIET re-
The httping’s probe and response packet sizes dependegiest. By avoiding the start-up latency, the HTTP/OP

6.2 Latency introduced by web servers

induced latency

6.2.1 Testbed and experiment setup

HTTlFi/roép. (Ilgh:)/ ‘.‘ HITP/OP (heavy) TCP connections and periodic sampling with five differ-

0.8 e " ' ent rates:{1, 5, 10, 50, 100, 150}Hz. The probe and re-

% 0.6 sponse packets had the same packet size of 1500 bytes.
O
8:‘2‘7 HTTPIOP's initial GET (heavy) We usedvrist at [3] to measure the CPU and mem-

HTTP/OP's initial GET (light) ory utilizations consumed by all Apache processes in
0. 1 15 2 2.5 i
Srver-induced latency (millseconds) the web server every second. At the same t|m_e, we
Figure 6: Server-induced latency experienced by HTTP/OP, httping, measured the utllIZ_atlonS consumed by HTTP/OP in the
and HTTP/OP’s initial HTTRGET request under light and heavy loads. probe sender. During the measurement, we ensured that

no other routine processes were executed on both ma-

%

1 1 e chines. Table 5 shows that the CPU utilizations were
08 08 _;.e'""‘ very low in all cases. Even when HTTP/OP used 100
y 06 S R concurrent TCP connections with a fine sampling rate of
o4 Reh I T 150Hz, the average CPU utilizations of the probe sender
02 v 02 M and web server were still below 0.9% and 1.2%, respec-
si"rver-mlé’uced 2 ey Brorosonas® chver_igguced I D tively. The average memory utilizations (not shown here)
of the probe sender and web server were also less than
(@) Light server load (b) Heavy server load 2% and 6.3%, respectively, in all cases.
Figure 7: CDFs of the server-induced latency experienced by
HTTP/OP. Table 5: The CPU utilizations consumed in the probe sender and web
server during the HTTP/OP measurement.

Number of TCP Sampling Average CPU utilizatiors)(
measurement is also much less susceptible to the server connections rates (Hz) Probe sender Web server
load, as shown in Figure 6. 1 1 <0.01 0.03
6.2.3 Effect of object size on server-induced latency io 51’0 2'(%1 8.'377

10 50 0.07 0.70

To evaluate the effect of the object size on the server- 100 100 0.17 P
induced latency, we plot in Figure 7(a) (for light load) 109 150 0.87 117
and Figure 7(b) (for heavy load) the CDFs of the server-
induced latencies for the HTTP/OP measurement based

on 4500 samples. For the sake of clarity, we show the re- We also performed similar experiments for three op-
sults only for 20KB, 2MB, and 10MB. The observations erating systems used by the Wek_) SEIver. EreeBSD 6.2-
obtained from them also hold for 200KB and 100MB. RELEASE, Linux v2.6.18, and Microsoft Windows XP

Both figures show that the server-induced latency dur-(SPZ)’ and for three popular web server software with

ing the HTTP/OP measurement was very smif of default settings: Lighttpd 1.4.18, Microsoft IS 5.1,

. and Nginx 0.5.34. The CPU utilizations consumed by
the samples were less than 30 microseconds. ThereforﬁLiem during the HTTP/OP measurement ranged between
the server-induced latency had negligible effect on th

RTT measurement accuracy. Moreover, under a hea\fU'OS% and1.05%.
Y- X Y HTTP/OP incurs a small overhead to the probe sender,

server load, the latency was higher for a smaller objec g
size, because HTTP/OP requested the server to load trg)eecause itinspects only the TCP headers of the probe and

requested obiects more often. Under a light server load €SPO"Se packets, and does not require saving the entire
q) . j 9 : . E)acket’s payload to the disk. Moreover, HTTP/OP ap-
however, the latency differences for the three object size

were not significant. As a result, the server loading haleIeSl | bpcap's packet filters to capture packets rele-

more impact on the HTTP/OP measurement for small Obyant to the path measurement and limits the amount of

jects. Similar observations were reported in [8]. data captured from a packet.
6.3.2 Network I/O

To measure the network 1/O for the HTTP/OP mea-
surement, we conducted the measurement on the same
Another important evaluation concerns the amount oftestbed using five TCP connections and periodic sam-
system resources consumed by the HTTP/OP measureling with a rate of 5Hz. HTTP/OP requested files of
ment in the probe sender and web server. We employedMB, 10MB, and 100MB for 240 seconds. The probe
the same testbed but with different parameter settingsand response packet sizes were 1500 bytes. We used the
The web server hosted ten 61MB tarballs for retrieval.sar utility [5] to measure the network 1/0 from the web
We ran HTTP/OP on the probe sender to randomly reserver side in terms of the number of packets per second
guest the ten tarballs for 240 seconds using 1, 10, and 10(kts/s) and bytes per second.

6.3 Resource consumptions of HTTP/OneProbe

6.3.1 System resources

The results in Table 6 are very close to the expected@.2 Discrepancy between Ping and OneProbe RTTs
results of 10 pkts/s (5Hz2 packets) and 15000 bytes/s
(10 pkts/s< 1500 bytes/pkt) for both reception (Rcv) and
transmission (Tmt). The results are slightly higher than
the expected results, because of the additional packe
for the TCP connection establishment and termination

This set of results is also part of the Olympic Games
measurement. Besides HTTP/OP, we also deployed
ICMP Ping and other tools for path measurement. To
mpare their results accurately, the tools were config-
ured to measure the same path at the same time. Figure 9

on the probe and response packet sizes. first few days their RTTs consistently differed by around

100 milliseconds on the peaks, but they were similar on

Table 6: Network I/O for the HTTP/OP measurement. the valleys. As a result, the Ping measurement under-

Object Rev Tmt Rev Tmt estimated the actual RTT experienced by TCP data pack-
sizes (MB) _ (pkis/s) (pkis/s) (bytesis) (bytes/s) ets by as much ag0%! Moreover, due to an (possi-

2 11.36 11.52 15598 16508 bly network configuration) event unseen to Traceroute,
10 1135 11.52 15598 16511 their RTTs “converged” at 12 Aug. 2008 16:39 UTC. At

100 11.34 11.48 15590 16485 . L
the same time, the forward-path loss rate dropped signif-

icantly after this convergence point. Therefore, non-data

7 Measurement experiences probes may not measure the actual path quality experi-
enced by data packets.

This section reports our recent experience of deploying
HTTP/OP for Internet path measurement. All the mea-
surement results reported here were obtained from a _ -
HTTP/OP deployment at a Hong Kong data center. The 2

full set of results and the measurement setup are availab! § 200|
from [11]. ’

OneProbe RTT
Ping RTT 12 Aug 16:39 UTC 130

RTT (mill
=
o
o

7.1 Diurnal RTT and loss patterns e
This set of measurement results was obtained from a s¢ 0" 9Aug 10Aug 11Aug 12Aug 13Aug 14Aug 15AUg
of web servers hosting the last Summer Olympic Gamesrigure 9: Discrepancy in the RTT measurement obtained by HTTP/OP
HTTP/OP sent a probe every 500 milliseconds, contin-and Ping for a Summer Olympics web server.
uously for one minute, and the same probing pattern re-
peated after idling for four minutes. The entire measure- , i
ment was smoothly conducted for over a month. 7.3 Asymmetric oss rates and loss-pair RTTs
Figure 8 shows the RTT and round-trip loss rate mea-This set of results is also part of the Olympic Games
surement for one of the paths. The HTTP/OP meaimeasurement. For all the paths in this set of measure-
surement captured clear diurnal RTT and round-trip losgnent, the reverse-path losses dominated the round-trip
patterns. The peak loss rates also coincided with théoss rates, and in some cases the packet losses occurred
daily high RTT periods. A positive correlation between only on the reverse paths. These results are consistent
RTT and loss rate was also reported by observing packetith web’s highly asymmetric traffic profile. Moreover,
losses at bottleneck queues in a ns-2 simulation studwe conducted a parallel measurementto the same servers
[9]. For temporal correlation, the high RTT periods were but with different reverse paths, but we did not observe
longer and the intensity of the peak loss rates were highgpacket losses from this set of measurement. Therefore,
on weekends. the packet losses were believed to occur on the reverse
Studying the correlation of RTT and packet loss ratepaths close to the web servers but not in the web servers.
is important for predicting network congestion fromend Moreover, HTTP/OP can measure the loss-pair RTT.
hosts [9]. HTTP/OP provides a more accurate measureA probe packet-pair or a response packet-pair is con-
ment of their correlation, because it can sample an Intersidered doss pairif only one packet is lost to the pair
net path with more fine-grained and uniform sampling,[23]. Loss-pair analysis has been shown useful in es-
and over a long duration. HTTP/OP’s intrusion to thetimating bottleneck buffer sizes of droptail routers and
path is also minimal, thus minimizing the self-induced characterizing packet dropping behavior [23]. However,
bias. For the purpose of comparison, the measurement iim the absence of a suitable measurement tool, the loss-
[27] was conducted for five days and for each day eachpair analysis has so far been analyzed using simulations
run was executed every two hours, and it introduced beand restricted to round-trip loss pairs.
tween 6 and 20 MB in each run. Figure 10 shows the forward-path and reverse-path

Forward-path loss rate (%)

|
N
o

3001 Olympic Games — RTT

|
w
o

200 22 Aug
20:37 UTC =

[y
o

RTT(milliseconds)
N
o
Round-trip Loss Rate (%)

100 M M N H MMM
0 ! AR TR LV A L, L A

s T ks) I 0li | i ALY
8Augl2nn 15Augl2nn 22Augl2nn
Figure 8: Time series of RTT and round-trip loss rates obtained by HORPfor a Summer Olympics web server.

o

loss-pair RTTs for one of the paths, and the RTT wassible explanation is that smaller probe packets will reach
measured for the first packet in the pair (and the seconthe server with a smaller inter-packet interval. They will
was lost). The loss-pair RTTs are superimposed with theherefore induce two response packets also with a smaller
corresponding RTT time series to identify which partsinterval, and the occurrence of packet reordering gener-
of the RTT time series the loss pairs were located. Theallly increases with a shorter inter-packet interval.

figure shows that almost all the loss-pair RTTs on the
forward path were clustered on the RTT peaks, suggest-
ing that the packets were dropped in a drop-tail router
on the forward path. However, the reverse-path loss-pair
RTTs behaved very differently. While many loss pairs
saw the highest RTT, there were also many others seeing
other RTT values, including the lowest RTT. Therefore,
the packet dropping behavior is more similar to that ex- ¢ i)
hibited by a random-early-drop router. O 50Sep 21Sep zzée T3Sep 24Sep 25Sep 265ep

N
?
q|

{280,1420}

Reordering rate (%)
= =
S &

g

7.4 Effect of packet size on reordering rates (a) Forward-path reordering

This set of measurement results was obtained from a ‘
PlanetLab node [32]. The HTTP/OP measurement re- {iii?,;‘;i‘}”
vealed that this path experienced persistent, high re-
ordering rates on both forward and reverse paths over
one week. We experimented with three combinations of
packet sizes{280, 280}, {280, 1420}, and{1420, 280},
where the first is the probe packet size in bytes and the
second response packet size in bytes. Note that the cur- =F
rent non-cooperative tools cannot measure the reverse- 20Sep 2Sep 225 23Sep 24Sep 25Sep 26Sep
path reordering rate for different packet sizes. (b) Reverse-path reordering

Figure 11(a) depicts how the packet size affected thesigyre 11: Time series of forward-path and reverse-path packet re-
reordering rate for the forward path. The reordering pat-ordering rates obtained by HTTP/OP for a PlanetLab node.
tern for {280,280}, which is not included in the fig-
ure, is similar to that fof280, 1420}. A comparison of .
the three results therefore concludes that a smaller prob% Conclusions
packet is more prone to packet reordering. This findingin this paper, we presented OneProbe, a new TCP prob-
is consistent with the results obtained from a cooperativéng method, and HTTP/OneProbe, an implementation of
measurement study [16] and TBIT measurement [28]. OneProbe for HTTP/1.1 to induce sufficient HTTP data

Figure 11(b) shows the distinctive reordering rates orfor continuous measurement. HTTP/OneProbe’s path
the reverse path for the three packet size combinationsneasurement is reliable, because the probes and induced
Same as the forward-path reordering, a smaller responsesponse packets are legitimate HTTP/TCP data pack-
packet size is more prone to packet reordering. Thus, thets, and the probes are based on TCP’s basic fundamen-
case of{280, 1420} suffered from the least reordering. tal transmission mechanisms. OneProbe can also sample
Surprisingly though, the reordering rate 280, 280} RTT, packet loss rates on the forward and reverse paths,
was distinctively higher than that of1420,280}, al- and packet reordering rates on the forward and reverse
though they had the same response packet size. A popaths at the same time using the same probe. We per-

Reordering rate (%)
= = N
o (42 ?

4 ; X *

e

w
o
o

N
o
o

=
o
o

RTT(milliseconds)

‘*RTT + Loss—pair RTﬂ

w
o
o

=
o
o

RTT(milliseconds)

N
o
o

‘*RTT + Loss—pair RTﬂ

ol .
8Augl2nn 15Augl2nn 22Augi2nn

(a) Forward path

ol
8Augl2nn

15Augl2nn 22Augi2nn

(b) Reverse path

Figure 10: Time series for the loss-pair RTTs obtained by HTTP/OP foum@er Olympics web server.

formed extensive experiments to validate the correctnesss]
of the probe responses, to evaluate the performance and
accuracy of HTTP/OneProbe, and to monitor network

paths for over a month. We are currently introducing newt!’

path metrics, such as capacity and available bandwidtH,lB]
to OneProbe.

Acknowledgments

We thank the five anonymous reviewers for their criti-[

(19]

cal reviews and suggestions and Mike Freedman, in pafpy)
ticular, for shepherding our paper. We also thank Wait-
ing Fok for preparing the colorful Internet measurement{22]

plots. This work is partially supported by a grant (ref.

no. 1TS/152/08) from the Innovation Technology Fund [23]
in Hong Kong.

References

(1]
(2]

(3]
(4]
(5]

(6]

(7]

(8]
El
[10]
[11]

[12]

[13]
[14]

[15]

Apache: HTTP server project. http://httpd.apaché.org

Apache Performance Tuning. http://httpd.apachedureg/2.2/
misc/perf-tuning.html.

procps. http://procps.sourceforge.net/.
strace. http://sourceforge.net/projects/strace.

SYSSTAT. http://pagesperso-orange.fr/sebastietagd/
features.html.

S. Aillleret. Larbin:
http://larbin.sourceforge.net/.

Multi-purpose web crawler.

P. Barford and M. Crovella. Generating representatieektoads
for network and server performance evaluation. Phac. ACM
SIGMETRICS1998.

P. Barford and M. Crovella. Critical path analysis of TEBns-
actions.|[EEE/ACM Trans. Networking(3), 2001.

S. Bhandarkar, A. Reddy, Y. Zhang, and D. Loguinov. Erinta
AQM from end hosts. IProc. ACM SIGCOMMZ2007.

J. Bolot. End-to-end packet delay and loss behaviohénltter-
net. InProc. ACM SIGCOMM1993.

R. Chang, E. Chan, W. Fok, and X. Luo. Sampling TCP daiti-p
quality with TCP data probes. roc. PFLDNeT 2009.

Y. Cheng, U. Holzle, N. Cardwell, S. Savage, and G. Veelk
Monkey see, monkey do: A tool for TCP tracing and replaying.
In Proc. USENIX Annual Technical Conferen@@04.

Cisco Systems. TCP out-of-order packet support foc€i©OS
firewall and Cisco I0S IPS. http://www.cisco.com/, 2006.

E. Corell, P. Saxholm, and D. Veitch. A user friendly T8IGck.
In Proc. PAM 2006.

S. Floyd and E. Kohler. Tools for the evaluation of siatidn and

testbed scenarios. Internet-draft draft-irtf-tmrg-26b, Febru-
ary 2008.

[24]

(25]
(26]
[27]
(28]
[29]
(30]
(31]

(32]
(33]

(34]

(35]

(36]

(37]

(38]

L. Gharai, C. Perkins, and T. Lehman. Packet reorderimigh
speed networks and transport protocol performance.Prbe.
IEEE ICCCN 2004.

] GNU Waget. http://www.gnu.org/software/wget/.

A. Haeberlen, M. Dischinger, K. Gummadi, and S. Saroiu.
Monarch: A tool to emulate transport protocol flows over the |
ternet at large. IfProc. ACM/USENIX IMC2006.

F. Heusden. httping. http://www.vanheusden.cormihg/.

20] J. Postel (editor). Transmission control protocol. (RP3, IETF,

September 1981.

V. Jacobson, R. Braden, and D. Borman. TCP extensiartsidb
performance. RFC 1323, IETF, May 1992.

E. Kohler. The Click Modular
http://read.cs.ucla.edu/click/.

J. Liu and M. Crovella. Using loss pairs to discover natw
properties. IrProc. ACM IMW 2001.

M. Luckie, Y. Hyun, and B. Huffaker. Traceroute probettra
and forward IP path inference. IRroc. ACM/USENIX IMC
2008.

X. Luo and R. Chang. Novel approaches to end-to-end giack
reordering measurement. Froc. ACM/USENIX IMC2005.

R. Mahajan, N. Spring, D. Wetherall, and T. Andersonetdsvel
Internet path diagnosis. Froc. ACM SOSP2003.

J. Matrtin, A. Nilsson, and |. Rhee. Delay-based corigasivoid-
ance for TCPIEEE/ACM Trans. NetworkingL1(3), 2003.

A. Medina, M. Allman, and S. Floyd. Measuring the evadatof
transport protocols in the InternedCM CCR April 2005.

Netcraft Services. http://uptime.netcraft.comagouracy.html.

V. Paxson, M. Allman, S. Dawson, W. Fenner, J. Grineéav-
ens, K. Lahey, J. Semke, and B. Volz. Known TCP implementa-
tion problems. RFC 2525, IETF, March 1999.

V. Paxson, G. Almes, J. Mahdavi, and M. Mathis. Framéwfor
IP performance metrics. RFC 2330, IETF, May 1998.

PlanetLab. http://www.planet-lab.org/.

R. Fielding et al. Hypertext Transfer Protocol — HTTR/IRFC
2616, IETF, June 1999.

S. Savage. Sting: a TCP-based network measurement ol
Proc. USENIX Symp. Internet Tech. and S$899.

R. Sherwood and N. Spring. A platform for unobtrusiveasigre-
ments on PlanetLab. IRroc. USENIX Workshop on Real, Large
Distributed Systems (WORLDZ)06.

R. Sherwood and N. Spring. Touring the Internet in a T@R-s
car. InProc. ACM/USENIX IMC2006.

N. Spring, D. Wetherall, and T. Anderson. Scriptroutepublic
Internet measurement facility. Broc. USENIX Symp. Internet
Tech. and Sys2003.

L. Wenwei, Z. Dafang, Y. Jinmin, and X. Gaogang. On eaflu
ing the differences of TCP and ICMP in network measurement.
Computer Communicationdanuary 2007.

Router Project.

