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Abstract—A sensor in wireless sensor networks (WSNs) periodically produces data as it monitors its vicinity. The basic operation in

such a network is the systematic gathering (with or without in-network aggregation) and transmitting of sensed data to a base station

for further processing. A key challenging question in WSNs is to schedule nodes’ activities to reduce energy consumption. In this

paper, we focus on designing energy-efficient protocols for low-data-rate WSNs, where sensors consume different energy in different

radio states (transmitting, receiving, listening, sleeping, and being idle) and also consume energy for state transition. We use TDMA as

the MAC layer protocol and schedule the sensor nodes with consecutive time slots at different radio states while reducing the number

of state transitions. We prove that the energy consumption by our scheduling for homogeneous network is at most twice of the

optimum and the timespan of our scheduling is at most a constant times of the optimum. The energy consumption by our scheduling for

heterogeneous network is at most �ðlog Rmax

Rmin
Þ times of the optimum. We also propose effective algorithms to construct data gathering

tree such that the energy consumption and the network throughput is within a constant factor of the optimum. Extensive simulation

studies show that our algorithms do considerably reduce energy consumption.

Index Terms—Energy consumption, MAC, TDMA, scheduling, routing, WSN.
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1 INTRODUCTION

WIRELESS sensors are often powered by batteries and
have limited computing and memory resources.

Because of the limitations due to battery life, sensor nodes
are built with power conservation in mind, and generally,
spend large amounts of time in a low-power “sleep” mode
or processing the sensor data. Wireless sensor networks
(WSNs) can operate in an event-driven model or regular
continuous monitoring model. Here, we focus on a regular
continuous monitoring model, where each sensor will
monitor its vicinity and periodically sends its collected
information to the sink possibly via the relay of other
sensors. A key challenging question in WSNs is to schedule
nodes’ activities to reduce energy consumption.

A treeT rooted at a sink node is called a data gathering tree, if
every internal node v collects the data from the sensors that
are its children, and then, sends the data (possibly with data
aggregation) to its parent node. Depending on the application
scenario and the computing power of wireless sensors, a
wireless sensor could process the data collected from its
children sensors, and then, send the processed data to its
parent, which is called data aggregation. When a sensor node

simply relays the data from its children directly to its parent,
this is called data collection. Although for simplicity, we
assume that there is only one sink for data gathering (i.e., one
tree), all our results hold when there are multiple sinks.

Efficient TDMA scheduling has been extensively studied
recently for sensor networks. These previous studies did not
consider all possible energy consumption by wireless
sensors, especially the energy consumed during wasted
listening, and the state transitions (e.g., from idle state to
listening state, from sleep state to transmitting state, and so
on). Typically, a wireless sensor node v will wake up
periodically to sense the environment (using a sensing
device) and produce new data at rate ‘ðvÞ, to process the
sensed data (using a computing component), to send some
data to the sink node (by switching the radio to transmitting
mode), and to receive (by switching the radio to receiving
mode) and process data from other wireless sensor nodes
(which may involve data aggregation). After these, a sensor
node will go to sleep mode again. Notice that the state
transition of the processor, the sensor, and the radio costs
nonnegligible energy. Waking up a sensor node takes
orders of magnitude more time than putting it into sleep
mode. Notice that in most applications, the processor and
radio run for a brief period of time followed by a sleep cycle.
During the sleep, the current consumption by a sensor is in
the microamperes as opposed to milliamperes. This results
in very low current draw the majority of the time, and short
duration spikes while processing, receiving, and transmit-
ting data. This method extends battery life; however, due to
the current surges, it reduces specified battery capacity.
Thus, given a required number of time slots for transmitting
and receiving, a scheduling should reduce the state
transitions to increase the lifetime of a sensor. For example,
the ATMega 128L processor of Mica mote sensor takes 4 ms
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for start-up; the RFM radio (used by Mica) takes 12 �s to
switch between sending and receiving while the raw bit
time is 25 �s; and the Chipcon radio (used by newer Mica2
and Mica2 dot) takes 250 �s to switch between sending and
receiving while the raw bit time is 26 �s.

The main contributions of this paper are as follows. To
reduce the energy cost, we design data collection and
aggregation methods to minimize the wake-up times in a
scheduling period, when the number of transmissions and
receptions by a sensor node is fixed. Clearly, the best
scenario is that a sensor node only wakes up once and
finishes all operations continuously. In a scheduling period,
any sensor node needs only to wake up at most twice in our
protocol: once for continuously receiving all packets from
its children nodes and once for sending its own data to its
parent node. We first consider the homogeneous WSNs in
which all wireless sensor nodes have an identical inter-
ference range RI . We always assume that RIðvÞ � ð1þ
�ÞRT ðvÞ for a constant � > 0 (in practice, � ’ 1). Here,
different wireless sensor nodes may have different commu-
nication range RT ðvÞ. We prove that by using our schedul-
ing, the total energy consumption per node for a
homogeneous network is at most a constant times of the
optimum, both for data collection and data aggregation.
Both centralized algorithms and communication-efficient
distributed algorithms with at most OðnÞ messages are
proposed to find the scheduling.

We then consider WSNs where different wireless sensor
nodes may have different interference range RIðvÞ. We
propose communication-efficient scheduling protocols that
are also energy-efficient: the energy consumption by our
scheduling for a heterogeneous network is at most
�ðlog Rmax

Rmin
Þ times of the optimum. Here, Rmax and Rmin are

the maximum and the minimum interference range of all
nodes, respectively. We design both centralized and
distributed algorithms for the scheduling in such a
heterogeneous network. We conduct extensive simulations
to study the performances of our proposed methods, and
we found that they perform better than known algorithms
in the literature.

The rest of the paper is organized as follows: In Section 2,
we present our network model and the problems to be
studied. We provide centralized and distributed algorithms
for homogeneous network in Section 3, and for hetero-
geneous network in Section 4. We report our simulation
results that compare the performance of our methods with
existing methods in Section 6. We review the related work
in Section 7, and conclude our paper in Section 8.

2 SYSTEM MODEL AND ASSUMPTION

2.1 Network System Models

Assume that there is a set V ¼ fv1; v2; . . . ; vng of n sensors
deployed in a two-dimensional region. Node v0 is a special
computer that serves as the sink node of the network, i.e.,
all data will be collected and sent to this node. Our results
can be easily extended to the scenario when there are
multiple sink nodes in the network. For simplicity, we
assume that each wireless node vi will use a fixed power to
communicate with its neighboring sensors, and the physical

link vivj is reliable if vi can communicate with vj. With the
fixed transmitting power, the network is modeled as a
graph G ¼ ðV ;EÞ, where E is the set of all possible
communication links. We further assume that all commu-
nication links have the same capacity. Relaxing this
assumption will not affect the correctness of our results as
will be seen later. We assume that the fixed power
transmission by a node vi will define an interference range
RIðviÞ such that the transmission of node vi will interfere
the reception of any node vk when kvk � vik � RIðviÞ.

The energy efficiency is a major design criterion for WSNs.
The main energy consumption of a wireless sensor node is
typically from the following operations: transmitting a
packet, receiving a packet, listening radio signals, sampling
the vicinity, reading sample data from the ADC, reading data
from the flash, and writing/erasing data in the flash [1], [2].
In this paper, we mainly focus on the energy cost by the
radio. The radio is in any of the four states: transmitting,
receiving, listening, and sleeping, each of which has different
energy consumption (energy consumption per unit time) of
Ptx; Prcv; Plst, andPslp, respectively. Table 1 summarizes some
typical values of the energy cost for different operations. We
also consider the energy EA;B consumed by transiting from
one state A to another state B for a sensor and other control
units. Typically, the time to restart a sensor node from the
sleep mode to active mode is about 4 ms.

We use a TDMA for scheduling node activities to reduce
the energy consumption. We assume that the time is
logically divided into slots with slot size ts, and time slots
are synchronized among nodes. A schedule period T is
composed of T consecutive time slots. The activities of
every node is then repeated with period T . Assume that a
node vi will produce rvi data packets per scheduling period
T . Notice that typically, the maximum data rate supported
by an RF transceiver of a sensor node is 40 kbps for Mica
and Mica2, and 250 kbps for Micaz. Thus, the maximum data
that can be transmitted in a time slot are about 150 Bytes for
Mica/Mica2 sensor nodes and about 935 Bytes for Micaz
sensor node under an ideal situation. Notice that the default
data packet size by TinyOS is 36 Bytes. Thus, in one time
slot, a node can transmit multiple data packets under the
ideal environment. When a node vi is transmitting packets
to a neighboring node vj, some other neighboring nodes
that are in the listening state will also consume energy.
Therefore, the total energy consumption upon the scenario
that node vi transmits in L slots, while k neighboring nodes
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listening is ðPtx þ Prcv þ k � PlstÞ � L � ts. To minimize the
energy consumption, we should schedule the activities of
sensor nodes to reduce k.

2.2 Problem Description

We then describe in detail the problems to be studied in this
paper. We divide our studies into two parts: energy-
efficient scheduling and data-collection tree construction.

2.2.1 Energy-Efficient Scheduling

First, we assume that a tree T rooted at the sink is already in
place for data collection (or data aggregation). Then, we
study how to construct a data collection (or aggregation)
tree that can support the highest data rate and reduce the
energy consumption. A scheduling of activities for all nodes
is to assign each time slot 1 � t � T to one of the four
possible states: transmitting, receiving, listening, and
sleeping. Notice that since we use TDMA, no nodes need
to be in state listening if all nodes are perfectly synchro-
nized. If the synchronization is needed, nodes will also have
additional state listening so that adjacent nodes can
synchronize their activities. See Fig. 1 for an illustration.
Here, we assume that the sender node will use a short
preamble to synchronize the receiving node (similar to X-
MAC [3]). In other words, when a sender wakes up, it will
periodically send a message SYN (contains its address and
the receiver’s address, and the time slots needed for
sending data) and listen for the ACK message from the
receiver. When the receiver wakes up (after a state switch
time SW), it will listen for the message SYN and reply a
message ACK if it gets one completed SYN message. After
getting the correct ACK message, the sender starts sending
data. For a node vi, if it is scheduled to transmit at time slot
t, we denote it as Xi;S;t ¼ 1; otherwise we denote it as
Xi;S;t ¼ 0. We use variables Xi;R;t 2 f0; 1g; Xi;P ;t 2 f0; 1g and
Xi;L;t 2 f0; 1g to denote whether the node vi is scheduled to
receive, sleep, or listen at time slot t or not, respectively. We
denote energy consumed by state transition as EP;S; EP;R, or
EP;L. See Table 2 for notations used. In practice, the energy
consumed from an active state (such as transmitting,
receiving, and listening) to an idle state (sleeping or deep
sleeping) is often ignored.

Notice that the energy cost by a node vi in all states isPT
t¼1ðXi;S;t � Ptx þXi;R;t � Prcv þXi;L;t � Plst þXi;P ;t � PslpÞ � ts;

the energy cost for state transitions is
PT

t¼1ðXi;P;t �Xi;S;tþ1 �
EP;S þXi;P ;t �Xi;R;tþ1 � EP;R þXi;P;t �Xi;L;tþ1 � EP;LÞ, where
T þ 1 will be treated as 1. The objective of a schedule S is
to minimize the summation of these two energy costs.

Among numerous schedules for wireless sensor nodes’
activities, we consider schedules that satisfy certain

feasibility constraints. A schedule S is called a valid

schedule (or feasible schedule) if it satisfies the following

constraints:

1. First of all, the amount of slots assigned to a node vi for
transmitting should be enough. Without loss of
generality, we assume that the total number of time
slots for transmitting in a scheduling period T , based
on a data collection tree T, required by node vi is
0 � wi � T . Here, wi is computed based on the
amount of information (sayW packets) received from
its children nodes in the data collection tree T in a
scheduling period and the amount rvi of data
produced by its own sensor in a scheduling period.
If node vi does not have data aggregation ability,
wi ¼ d

Wþrvi
Ps
e. When node vi has the aggregation

ability, wi ¼ d
fðW;rvi Þ

Ps
e, where function fð�; �Þ computes

the number of packets needed for aggregated data
(generated from the data received from its children
and its own data). Notice that in practice, since the
wireless channel is not reliable, we may need to adjust
wi as wi=p, where p is the observed link reliability of
link ðvi; vkÞ, where node vk is the receiving node
(typically, the parent node) of node vi. In other words,
wi=p is the expected size of the data to be transferred
such that all original data are correctly received. In
summary, we need

PT
t¼1 Xi;S;t � wi=p.

2. Obviously, a node vi with children nodes u1; u2; . . . ;
udi should be active for receiving at the time slots
when these children nodes send data to vi. In other
words, if Xj;S;t ¼ 1, then Xi;R;t ¼ 1 when node vi is
the parent node of node vj; equivalently, we need
Xi;R;t � Xj;S;t whenever node vi is parent of node vj
in tree T.

3. Further, any node can only be in one of the states,
i.e., Xi;S;t þXi;R;t þXi;P;t þXi;L;t ¼ 1.

4. At last, all transmissions should be interference-free,
i.e., Xi;S;t þXk;S;t � 1 for any time slot t and any pair
of nodes vi and vk that will cause interference if they
are transmitting simultaneously. Notice that it is also
true for vk 2 IðiÞ if node vk sends to a node vj which
is in the interference region of node vi. For notational
simplicity, we use IðiÞ to denote the set of nodes that
cannot transmit simultaneously with node vi. Thus,
we need Xi;S;t þXk;S;t � 1 for any node vk 2 IðiÞ.

In a simple event-driven data collection, a sensor, which is

triggered by an event, will wake up and monitor its vicinity,

and then, produce some sample data. It will then wake up its

parent node (called dominator node sometimes) and send

WU ET AL.: ENERGY-EFFICIENT WAKE-UP SCHEDULING FOR DATA COLLECTION AND AGGREGATION 277

Fig. 1. The synchronization between two nodes.

TABLE 2
Symbol Notations



data to it. However, when the dominator node dominates
k sensors, it may need to wake upk times to receive all the data
form its children nodes in the worst case, which is energy
consuming because of multiple state transitions. Our objec-
tive is to schedule the activities of sensor nodes to minimize
the states transitions (especially from sleeping state to active
states), in the meanwhile, the data rate by all sensors is
supported. In this paper, we will always consider low-data-
rate WSNs where in the majority of time slots, sensor nodes
can sleep to save the energy. Notice that in low-data-rate
WSNs, each sensor needs to switch from sleeping state to
active state at least once. Surprisingly, we will design a valid
schedule in which any sensor node only needs to wake up at
most twice: once for receiving data from its children nodes and
once for sending its data to its parent node. This also
dramatically reduces the cost of the clock synchronization.
See Fig. 2 for an illustration of possible schedule for a node.

2.2.2 Data Collection Tree Construction

Previously, we assume that a tree T is given for the data
collection or aggregation. In the literature, a number of trees
have been proposed for the data collection or data
aggregation for various purposes. In this paper, we will
further study how to (approximately) construct an opti-
mum tree T such that the total energy cost of the optimum
activities scheduling based on this tree is the lowest among
all trees satisfying the data rate requirements by all nodes. It
has been observed in the literature that the largest data rate
that can be supported by different network topologies will
vary. Thus, our objective is to find a data collection tree T
that should satisfy the data requirements of all nodes, i.e.,
there exists a valid scheduling of node activities. Observe that
given a wireless network topology, it is generally NP-hard
to find the largest data rate that can be supported. Recently,
a number of constant approximation algorithms [4], [5], [6]
have been proposed for various interference models.

3 HOMOGENEOUS WIRELESS SENSOR NETWORKS

In a homogeneous sensor network, every sensor node has
the same interference range, while the amount of data
(represented by the number of time slotswi) to be transferred
by a sensor node vi to its parent could be different.

3.1 Centralized Activity Scheduling

We first study a centralized scheduling of sensor activities to

minimize the energy cost. Assume that we are given the data

gathering tree T for the sensor network. Traditionally, the

scheduling algorithms (e.g., [6]) often schedule the individual

activities for each sensor one by one: assuming that sensors

will schedule in a random order, each sensor node will find the

best time slots for sending its data, and also the best time slots

to receive data from each child individually without causing

interference to already-scheduled sensors. This schedule is

called schedule by random. Unfortunately, these scheduling

strategies cannot minimize the energy cost for each sensor

node: some sensors may need to wake up multiple times in a

scheduling period T . In this paper, to reduce the energy cost,

we will schedule the activities of a subset of sensors in one

bundle.LetCTðviÞdenote the setof children nodesof nodevi in

data gathering tree T. Then we say that CTðviÞ constitutes a

virtual cluster Ci. For each cluster Ci, we define Wi ¼P
vj2CTðviÞ wj as its weight. Obviously, Wi ¼

P
vj2CTðviÞ wj is the

total number of time slots that node vi should wake up to

receive the data from its children in the data gathering tree T.

Then instead of scheduling the transmitting time slots for each

individual child node of node vi, we schedule a chunk of

consecutive Wi time slots to the cluster Ci of these children

nodes. Then each child vj will be assigned a consecutive wj
time slots from this chunk. All the children will send their data

in this period and the parent will receive the data at the same

time. Thus, the energy consumption due to the state transition

will be definitely saved since each node needs only to wake up

twice: once for receiving all data from its children and once for

transmitting its data to its own parent. To present our

methods, we define conflicting clusters as follows.

Definition 1. Two clusters Ci and Ck are said to be conflicting
with each other if there exists a sensor node u 2 Ci and a
sensor node v 2 Ck such that u and v cannot be scheduled
simultaneously for transmitting.

We schedule the clusters in the decreasing order of their
weight. To schedule a cluster Ci, we use the first-fit approach:
the chunk of time slots scheduled to sensors in Ci is the
earliest consecutive Wi time slots such that it will not have
any overlap with already-scheduled time slots for scheduled
conflicting clusters. Thus, our schedule ensures that it will not
cause any interference for the transmissions of any sensors in
Ci. We describe the detailed method in Algorithm 1.

Algorithm 1. Activity Schedule using Tree T

1: for each sensor vi do

2: calculate its receiving-weight Wi ¼
P

vj2CTðviÞ wj.

3: Sort the sensor in nonincreasing order of weight Wi.
4: for i ¼ 1 to n do

5: Assign cluster Ci (equivalently sensor node vi for

receiving) Wi earliest available time slots for

transmitting that will not overlap with time slots

assigned to conflicting clusters.
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6: Each sensor node vj in Ci will be sequentially

assigned wj consecutive time slots for transmitting.

Notice that two conflicting clusters may still be sched-
uled together. For example, assume that C1 ¼ fu1; u2g and
C2 ¼ fu3; u4g and each sensor node needs wi ¼ 2 time slots
for transmitting. Further assume that only one pair of nodes
u1 and u3 cannot be scheduled simultaneously. Then
following schedule is valid: node u1 uses time slots 1, 2;
node u2 uses time slots 3, 4; node u3 uses time slots 3, 4; and
node u4 uses time slots 1, 2. Based on this observation, our
schedule seems to be pessimistic. However, we will prove
that the maximum period required by our schedule is only a
constant factor of the optimum solution.

3.1.1 Distributed Method

For the convenience of designing-efficient distributed
activities scheduling method, we associate the cluster Ci

with the parent node vi. In other words, the scheduling for
sensors in Ci will actually be done by node vi in distributed
implementation. We call Wi as the receiving weight (or
simply weight if it is clear from the context) of node vi. Our
schedule by Cluster method is based on the first-fit strategy.
We sort the sensor nodes according to the nonincreasing
receiving weight Wi. If some of the sensors have the same
receiving weight, we break the tie by sensors’ ID. For
simplicity, assume that the sequence W1;W2; . . . ;Wn is the
sorted receiving weights in nonincreasing order. Then we
schedule the sensors sequentially. For sensor vi, starting
from the time slot 1, we search for consecutive Wi time slots
which are not be occupied by any already-scheduled
conflicting cluster Cj with j < i. If found, we schedule
cluster Ci to these time slots. Otherwise, we schedule cluster
Ci to new time slots that are not used by any cluster before.

3.1.2 Performance Analysis

The interference-free scheduling is similar to the graph
coloring. For a scheduling S, let T ðSÞ be the span of time slots
used by all nodes in a period. Typically, for a schedule, we
start from time slot 1, then T ðSÞ is simply the last time slot
that has active node activities (i.e., transmitting or receiving).
Notice that 1=T ðSÞ is closely related to the maximum data
rate that can be supported by the schedule S. We then prove
that the timespan T ðSÞ achieved by our method described in
Algorithm 1 is at most a constant factor of the optimum. To
simplify the proof, we integrate the time for the wake up and
clock synchronization to the time slots for transmitting or
receiving the data. In other words, all the weights wi and Wi

also include the wake-up cost and clock-synchronization
cost. It is reasonable because the time for the state switching

and clock synchronization is much smaller and can typically
be done within one time slot. We just add one more time slot
for receiving or transmitting.

Theorem 1. The energy consumption for the scheduling derived
by Algorithm 1 is at most twice of the optimum.

Proof. For a given data gathering tree T, the time slot needed
to transmit and receive by an individual node is fixed
because it only depends on the tree structure. So, the
difference of the energy consumption from different
schedules is the cost for the wake up and clock
synchronization. In our scheduling, there are at most two
state switches for each node. So, the total number of state
switches is at most 2n times of the energy consumption for
a node to switch the state. That is,ES � 2 � n � Es, whereES

is the energy consumption for state switch in our
scheduling, Es is the energy consumption for the state
switch of one sensor, and n is the number of sensors.
Because there is at least one state switch for each node in
any scheduling, Eopt

S � n � Es, where Eopt
S is the optimal

energy consumption for state switch. We denoteET as the
total energy consumption in the active states by all nodes
by our method, E as the total energy consumption in our
scheduling and Eopt as the optimal energy consumption.
We get E ¼ ET þ ES � Eopt

T þ 2Eopt
S < 2Eopt

T þ 2Eopt
S ¼

2Eopt. This finishes the proof. tu
Theorem 2. The timespan derived by Algorithm 1 is at most a

constant factor of the optimum.

Proof. Consider the sensor node vi that has the last time
slots for receiving in our scheduling (i.e., the cluster Ci

has the last time slots for sending data to vi). Notice that
it is not necessary that sensor node vi has the smallest
receiving weight. For sensor vi, we consider the moment
when the sensor vi (equivalently, cluster Ci) is sched-
uled. At the moment when preparing to schedule for
node vi, some sensors are already scheduled and we
illustrate the situation of occupied time slots in Fig. 3.

In the figure, Wj1 ;Wj2 ; . . . ;Wjk represent the con-
secutive time slots occupied by the clusters which
conflict with cluster Ci and are scheduled before cluster
Ci (and equivalently, sensor vi). For time slots occupied
by other nonconflicting clusters, we denote them as gaps,
which could be assigned to cluster Ci (and sensor vi).
Notice that some of the time slots assigned to clusters
conflicting with Ci may overlap, i.e., one chunk of
consecutive time slots Wja with 1 � a � k may denote
the time slots assigned to several clusters conflicting with
Ci. So, every chunk of time slots Wj1

;Wj2 ; . . . ;Wjk is no
smaller than the time slots Wi required by sensor vi for
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receiving since we scheduled the sensors in the decreas-
ing order of the receiving weight Wi. In addition, in the
figure, gj1 ; gj2 ; . . . ; gjk represent the time slots occupied by
some other sensors, which do not conflict with cluster Ci.
Notice that some of gj1

; gj2
; . . . ; gjk may be empty slots.

Case 1. 9l;Wi � gil ; 1 � il � ik. In this case, vi can be
scheduled inside time slots gil because the sensors
scheduled there do not interfere with cluster Ci (and
also vi for receiving data). That is, vi can be scheduled
before vil , which contradicts the assumption that vi has
the largest time slots for receiving. In other words, this
case is impossible.

Case 2. Wi > gil ; 81 � il � ik. The total time slots used
by our scheduling after vi is scheduled are

Ti ¼
Xk
l¼1

gil þ
Xk
l¼1

Wil þWi

� k �Wi þ
Xk
l¼1

Wil þWi � 2
Xk
l¼1

Wil þWi

 !
:

Recall that we assumed that sensor node vi has the
largest time slots for receiving. According to the above
result, the timespan T used by our schedule satisfies
T � 2ð

Pnk
l¼1 Wnl þWnÞ. We denote Topt as the smallest

timespan by any schedule. In an optimum schedule,
consider the time slots needed for the following
clusters Ci;Cj1

;Cj2
; . . . ;Cjk . Here, Cj1 ;Cj2 ; . . . ;Cjk are

all clusters that conflict with cluster Ci and have a
weight Wjl �Wi. We will show that

Topt �
Pk

l¼1 Wjl þWi

�
;

where � is a constant (called the independence number)
depending on the interference model and will to be
specified later. Combining with T � 2ð

Pk
l¼1 Wjl þWiÞ,

we get T � 2� � Topt.
We then prove a constant value �. Let p ¼ vi be the

parent node of all sensor nodes in cluster Ci. First of all, we
will show that every sensor node z from some cluster
conflicting with Ci is at most 4-hops away from node p.
Assume that node z is from a conflicting cluster Cjl . Fig. 4a
illustrates the case. Assume that the cluster Cjl conflicts
with cluster Ci because a node u 2 Ci and a node v 2 Cjl

cannot be scheduled for transmitting simultaneously. Let
q be the receiving node (i.e., parent node) of sensor node v.
Then, we either have q is inside the interference region of
nodeu or p is inside the interference region of node v. Since

we typically assumed that the interference region of a
node is all nodes within 2-hop communication distance,
we can conclude that node q is within 3-hop distance
from node p. For node z, it is 1-hop communication
neighbor of node q. Thus, every node z is at most 4-hops
away from node p.

Notice that either kp� vk � RIðvÞ or kq � uk � RIðuÞ.
Additionally, kq � vk � RT ðqÞ � RIðqÞ; kq � zk � RT ðqÞ �
RIðqÞ; kp� uk � RT ðpÞ � RIðpÞ, since the interference

range of any node is at least its communication range.

Recall that we assumed that all nodes have the same

interference range RI . Consequently, the above analysis

also shows that node z is within the distance at most 3RI

from node p. That is, the sensors from conflicting

clusters Cjl (1 � l � k) can only be distributed inside

the circle with the radius 3RI as in Fig. 4b. The total time

slot required by all these sensors for sending data isPk
l¼1 Wjl þWi. Observe that for an interference model,

two nodes transmitting simultaneously must be a certain

distance away from each other. For example, for the

transmitter interference model (TxIM), the separation

distance is about the interference range RI . For the fixed

power protocol model (fPrIM), let d be the distance

between two transmitting nodes u and v and p the

receiving node of u’s transmission. Then, kv� pk �
ku� vk þ ku� pk � dþRT ðuÞ, which is less than RIðuÞ
if d � RIðuÞ �RT ðuÞ. In other words, the transmission

by node v will interfere the receiving of node p. Recall

that we assumed RI ¼ RIðuÞ � ð1þ �ÞRT ðuÞ for every

node u for some constant � ’ 1. Consequently, the

distance between two nodes transmitting simulta-

neously should be at least RIðuÞ �RT ðuÞ � �
1þ� �RI .

Then, for any scheduling for sensor nodes in clusters

Ci;Cjl (1 � l � k), the simultaneous transmitting sensor

nodes should be at least a distance �
1þ� � RI away from

each other. Thus, the number of simultaneously trans-

mitting nodes at any time slot is at most�
3þ 1

2

�2�
�

2ð1þ�Þ
�2
¼ 49ð1þ �Þ2

�2
:

Let

� ¼ 49ð1þ �Þ2

�2
:

Thus, the total time slot needed for scheduling the
sensors in clusters Ci;Cjl (1 � l � k) is at leastPk

l¼1 Wjl þWi

�
:

Thus, the timespan of the schedule produced by
Algorithm 1 is at most 2� times of the optimum. tu
Based on the above results, we formally define what is a

low-data-rate sensor network. Given a data collection tree T

and the data rate rvi for every sensor vi, the data rate vector
r ¼ hrv1

; rv2
; . . . ; rvn�1

; rvni is called schedulable under tree T if
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there is a schedule of node activities such that the data
produced by all sensors will be received by the sink node
within a finite time. A data rate r0 ¼ hr0v1

; r0v2
; . . . ; r0vn�1

; r0vni is
called low-data-rate if 2� � r0 is schedulable. Notice that based
on Theorem 2, a low-data-rate sensor network can always
be scheduled by Algorithm 1.

3.1.3 More Discussions

Besides reducing the energy consumption and increasing
network throughput, another important issue for the data
collection in WSNs is to reduce the delay. In a schedule of
the data collection, if the time slots for transmitting data
by a node v are later than the time slots for transmitting of
its parent node, say pðvÞ, then the data collected by v can
only be sent by pðvÞ in next round, which will cause a
possible large delay. Thus, in our scheduling algorithm, to
reduce the delay, we will adopt the following changes,
which will not affect the correctness of Theorem 1 and
Theorem 2. Instead of scheduling using the available
earliest time slots, we use the latest available time slots.
Assume that we start from time slot T initially. The cluster
with the largest weight, say W1, will be scheduled in time
slots ½T �W1 þ 1; T �. When we want to schedule a cluster
Ci with weight Wi, let ti be the earliest time slot that has
been used by some scheduled cluster conflicting with Ci.
There are two cases here.

1. No big gap.1 In this case, we cannot find con-
secutive Wi time slots in the scheduled period ½ti; T �
that will not cause conflict with already scheduled
clusters. Then, Ci will be scheduled in time slots
½ti �Wi; ti � 1�.

2. Existence of big gaps. In the second case, we can
find such consecutive Wi time slots in ½ti; T �. In this
case, let vi be the parent node of all nodes in Ci in T.
Notice that for the data collection, the transmitting
time of vi must have been scheduled already since
the cluster containing vi will have larger weight than
Wi. Let Yi be the starting time slot of transmitting by
vi. Then we will schedule the time slots for
transmitting by nodes in Ci (equivalently, the time
slots for receiving by vi) ahead of Yi, say the latest
gap before Yi. If no such gap exists, we will just
schedule the time slots for transmitting by nodes in
Ci in the latest gap, i.e., closest to time T .

In our performance evaluation, the schedule by cluster
method will include such enhancement.

We can make further improvement (although its improve-
ment is at most a constant factor) is to reduce the timespan of
the resulting schedule. Remember that we say that two
clusters Ci and Cj conflict with each other if there is any pair of
nodes u and v (one from each cluster) such that u and v cannot
be scheduled simultaneously. Notice that in our scheduling,
conflicting clusters will never have overlap time slots. In
practice, these two clusters may still be able to scheduled
using overlap time slots. Thus, we can modify our scheduling
to further reduce the timespan of the schedule: we try to

schedule Ci to latest consecutive Wi time slots that will not
cause any interference. Notice that the techniques used to
reduce the delay still apply. In our performance evaluation,
this method is called Schedule by Cluster and Squeeze.

In sensor networks, a sensor may be depleted or
destroyed. Our scheduling is adaptive in this scenario as
long as the network is still connected. After removing
depleted or destroyed nodes, we just need to update the
data collection tree using nearby nodes locally, and then,
using the distributed scheduling in the following section.

3.2 Distributed Activity Scheduling

We then design a distributed activities scheduling algorithm.
An obvious difficulty of the distributed implementation is to
sort nodes’ weights. We use local sorting in distributed
algorithm by replacing the global sorting in centralized
algorithm: a cluster can schedule its transmitting activities if
all conflicting clusters with larger weight have been scheduled.
Second, for easy maintenance, each sensor node vi will be
responsible for the scheduling of transmitting activities of its
children nodes Ci (equivalently, the receiving activity of
itself). To inform potentially conflicting clusters about its own
weight Wi, sensor node vi will first multicast a request
message (including its weight Wi) to its k-hop neighbors to
request for scheduling. Notice, based on previous analysis,
that we will choose k ¼ 4 in our algorithm. If a sensor does not
have the largest weight, it will wait till it has the largest weight
among its k-hop nonscheduled neighbors. The sensor finds
the earliest available time slots and marks itself as scheduled.
Then the sensor sends scheduled message to its unscheduled
neighbors with its reserved time-slots information included.
Algorithm 2 illustrates our method.

Algorithm 2. Distributed Activity Scheduling using T by vi
1: The sensor vi first computes Wi based on the data rates

from its children in Ci. It sends a message request to all

sensors that are within a constant k-hops to request for
scheduling. This can be done using a simple flooding

with time-to-live TTL ¼ k.

2: if Wi �Wj for each nonscheduled k-hop neighbor vj
then

3: Schedule vi earliest Wi available time slots for

receiving data and sequentially schedule the time

slots for transmitting for every sensor in Ci.

4: Send a message IamScheduled (with its own schedule)
to all its unscheduled k-hop neighbors and mark

itself scheduled.

Theorem 3. The timespan of the schedule produced by Algorithm 2
is at most a constant factor of the optimum.

Proof. In Algorithm 2, when we schedule the receiving
activities of a sensor node (and thus, the transmitting
activities of all its children nodes), we consider all
possible sensor nodes that could conflict with its
receiving activities. Similar to the proof of Theorem 2,
we can prove the correctness of this theorem. tu

Theorem 4. The number of messages used in Algorithm 2 is
OðnÞ.

Proof. Suppose the maximum number of k-hop neighbors is
�k, which is often much smaller than n. The total number
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1. A gap is maximal consecutive time slots in ½ti; T � that can be used by
current to-be-scheduled cluster Ci, i.e., its size is at least Wi. Often many
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of request messages is at most �kn. In the worst case,
every sensor sends a request message to its neighbors,
which are at most �k such relaying messages. Each
cluster will send its scheduled message to its unscheduled
neighbors. The total number of scheduling messages is at
most �kn. So, the total messages used in the Algorithm 2
are �ð�knÞ, which is linear when �k is constant.

When �k is not a constant, we can apply the method
proposed in [7] to do the message relay based on a
connected dominating set of the network. That method
can guarantee that the number of nodes used to relay a
message from a node vi to its k-hop neighborhood is only
a constant. tu
We note that the worst case time complexity of Algorithm 2

could be as large asOðnÞ. In the worst case, the sensor will be
scheduled sequently. For example, the sensors are distributed
in a line with increasing weight from left to right and only
adjacent sensors form communication links. The scheduling
order will be n; n� 1; n� 2; . . . ; 1. Sensor i will wait until
sensor iþ 1 is scheduled, sensor iþ 1 will wait until sensor
iþ 2 is scheduled, and so on. Then sensor 1 will wait until all
the other sensors are scheduled.

4 HETEROGENEOUS WIRELESS

SENSOR NETWORKS

In a heterogeneous WSN, we can show that the method
developed for a homogeneous WSN cannot guarantee a
constant approximation ratio on the timespan used by a
schedule. To schedule the activities of sensors for hetero-
geneous sensors, we will first divide the sensors into buckets
according to their interference radii: the ith bucket contains
all sensors which have the interference radius within

½2i�1Rmin; 2
iRminÞ:

Here, Rmin is the minimum interference radius of the sensor
in the network. In each bucket, we schedule the sensors
according to the first-fit approach developed in Algorithm 1:
we sort the nodes in nonincreasing order according to the
receiving weight and assign each node a chunk of the earliest
consecutive time slots without causing interference to
already-scheduled nodes. Then the scheduling in each
bucket has a timespan at most a constant factor of the
optimum. We schedule the buckets in sequential order and
the time slots used by consecutive buckets are concatenated
together. We describe our method in detail in Algorithm 3.

Algorithm 3. Centralized Activity Schedule in Heteroge-

neous Networks using T

1: for each sensor vi do

2: Insert the sensor into bucket ½2i�1Rmin; 2
iRminÞ in

nonincreasing order according to the weight Wi if

its interference radius is within ½2i�1Rmin; 2
iRminÞ.

3: for each bucket bl do

4: for every cluster Ci (equivalently sensor node vi for

receiving) in the bucket do

5: Assign cluster Ci a chunk of Wi earliest available
time slots for transmitting which will not overlap

with time slots assigned to conflicting clusters.

6: Each sensor node vj in Ci will be sequentially

assigned wj consecutive time slots for transmitting.

7: assign vi a chunk of Wi earliest available time slots.

Theorem 5. The timespan of the schedule derived by Algorithm 3
is at most �ðlog Rmax

Rmin
Þ of the optimum.

The proof is omitted due to space limit. Notice that this is
only the theoretical bound. In practice, we expect that this
�ðlog Rmax

Rmin
Þ ratio to be actually �ð1Þ since our schedule

actually will overlap the time slots used by different buckets
and Ti could be much smaller than Topt. Actually, without
using the bucket idea, we can also prove that Algorithm 1
produces a schedule whose timespan is at most �ð�2

3Þ times
of the optimum, where �k ¼ max�kðvÞ and �kðvÞ is the ratio
of the interference range RIðvÞ over the smallest inter-
ference range among all nodes in NkðvÞ. Notice that
�k � Rmax

Rmin
. The basic idea is to show that the number of

independent nodes among NkðvÞ is at most �ð�2
kÞ; thus, the

number of simultaneous transmissions for nodes in N3ðvÞ
by any schedule is at most �ð�2

kÞ. The rest of the proof is
similar to Theorem 2 and is omitted here.

We then design a distributed algorithm for a hetero-
genous network. The scheduling is similar to the centralized
algorithm except that the sensors will find a schedule by
collecting the information within k-hop first. Based on the k-
hop information, the sensor chooses a bucket to which it
belongs and inserts itself into the bucket according to the
data rate. Each sensor will then be scheduled an inter-
ference-free time slots after all the sensors with larger
weights are scheduled.

Similar to Theorem 5, the next theorem is straightforward.

Theorem 6. The timespan of the schedule derived by Algorithm 4
is at most �ðlog Rmax

Rmin
Þ of the optimum.

Algorithm 4. Distributed Activity Scheduling in

Heterogeneous Networks using T by vi
1: The sensor vi first computes Wi based on the data rates

from its children in Ci. It collects information of sensors
that are within a constant k-hops, using a simple

flooding with TTL k.

2: All sensors with transmission range in the same bucket

½2l�1Rmin; 2
lRminÞ run the distributed scheduling.

5 FORMATION OF DATA GATHERING TREE

So far, we always assume that we already have a data
gathering tree T in hand for the data collection or data
aggregation. Obviously, the performance of our scheduling
algorithm depends on the underlying data gathering tree T

used. If we only consider the total energy consumption by
all nodes in the network for the data collection (i.e., without
the data aggregation), the energy cost of a node v only
depends on the total data rate of all nodes that are
descendant of v in the tree T. In other words, given a node
u, the total energy cost used by all nodes to relay the data
amount (ru units) by node u is h � ru � E, where h is the
height of node u in the tree T and E is the energy used to
transmit a unit amount of data. Thus, the tree that will
minimize the energy cost for data collection is the shortest
hop path tree SPT (or equivalently, breadth-first search tree
BFS rooted at the sink node).

On the other hand, to reduce the timespan of a
scheduling, the shortest hop path tree may not be always
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the best choice. The throughput achieved by the tree SPT
may also not be the optimum. We thus would like to
design a data gathering tree such that the total energy cost
incurred by the data collection of a best scheduling S1 on
this tree is within a constant times of the optimum, and the
timespan of the best scheduling S1 over this tree is also
within a constant factor of the optimum. In the literature, a
number of data collection trees have been proposed such
as the local minimum spanning tree and the minimum
spanning tree. However, none of these structures seems to
achieve both properties.

Notice that the requirement of the constant approxima-
tion ratio on the total energy cost is equivalent to the
requirement that the height of every node v in the data
collection tree T is at most a constant factor of that in SPT,
i.e., its shortest-hop distance to the sink node. The
requirement for constant approximation ratio on the time-
span is equivalent to the requirement that the weighted
chromatic number is a constant factor of the optimum.

We first consider the case of the data collection tree for
homogeneous networks. Our tree will be based on a
connected dominating set (CDS). A number of efficient
methods have been proposed for constructing the CDS
tree, e.g., [8].

We briefly review the method in [8]. First, we construct
BFS tree, where the distance of the node is called its level.
Then we construct CDS. Initially, we set all nodes white,
and then, set the sink black (dominator) and its neighbors
gray (dominatees). For each level with nondecreasing order,
if there are white nodes left, we choose the one with the
smallest ID as dominator, set it black, and set its white
neighbors gray as dominatees. If the dominator is not
connected to CDS tree, we add its parent as connector. The
resulting tree is called CDS tree. We then prove the
following property of the CDS tree.

Theorem 7. The energy consumption in the CDS tree is a
constant factor of that by the optimal tree.

Proof. Given a node v, we denote the hop distance from the
node v to the sink in the CDS tree as h. From the
construction, we know h � 2� h0, where h0 is the hop
distance from v to the sink in overall BFS tree. To save
energy, we just consider transmitting state and receiving
state as the active states in our scheduling. Let ECDS

T be
the energy consumed for transmitting/receiving by the
CDS tree. Let OPT be the best tree that has the lease
energy consumption for transmitting, receiving, and
switching states. Then, ECDS

T � 2 � EBFS
T � 2 � EOPT

T ,
where EH

T is the energy consumption in active states by
a tree H. Similarly, let EH;S

S be the energy consumption
for switching state in a structure H using a schedule S.

A node switches between sleeping state and active
state at most twice in our scheduling: one between the
sleeping state and transmitting state, and the other
one between the sleeping state and receiving state.
Obviously, the switching cost on CDS by our protocol
is at most ECDS

S � 2 � n � Es, where Es is the energy
consumption for a node to switch from sleeping state
to active state and switch back. Note that EOPT

S �
n � Es since one node should wake up at least once to

either transmit or receive the data. Thus, ECDS ¼
ECDS
T þ ECDS

S � 2 � EOPT
T þ 2 � EOPT

S � 2EOPT . tu
Theorem 8. The timespan in the CDS tree is a constant factor of

that in the optimal tree.

Proof. We schedule the nodes in two phases: first schedule
all dominatee nodes using a simple greedy approach,
and then, schedule the dominators. Let T 0 be the time
slots needed for scheduling the dominatees (sensors
which are not in the backbone). To schedule the sensors
in the backbone, we only need a constant number
(denoted by C) time slots, because the nodal degree of
every node is constant in the backbone. Therefore, the
total time slots for the CDS tree is T ¼ T 0 þ C. While
Topt � T 0opt � T 0

� , where � is the independence number
from Theorem 2, T � � � Topt þ C � ð�þ CÞ � Topt. tu

For the case of the data collection, we need to balance the
time slots required by different nodes. The timespan is
tightly related to Wi of every node vi. It is also not difficult
to prove that the CDS tree has constant approximation
ratios on both the total energy consumption and the
timespan needed for schedules. The proofs are similar,
and thus, omitted here.

6 PERFORMANCE EVALUATION

We conduct extensive simulations to compare the perfor-
mances of our proposed methods with some methods in
the literature. In the results reported here, we did not
compare our methods with a naive method schedule by
random since our simulation results have shown that our
method outperforms this method significantly. We will
examine the energy consumption and the maximum time
delay with various number of nodes, and at various data
rates based on various tree structures in homogeneous
networks. Here, the maximum time delay is the maximum
time taken by the last data transmitted to the sink. In all
scenarios, we compare our cluster-based method with the
node-based method provided in [9]. In both methods, we
implemented both centralized scheduling and distributed
scheduling. Since the distributed scheduling is essentially
same as centralized scheduling, we will only report the
results of distributed scheduling here. We form different
underlying tree structures to study these two methods. We
have found that under our scheduling, nodes need to wake
up at most twice to transmit or receive, while many nodes
need to wake up numerous times (up to several 100 times,
which is proportional to the total time slots required by
this node) under the schedule by node-based method. At
last, we also simulate the impact of various Rmax

Rmin
ratios on

timespan in heterogeneous networks. And we compare the
heterogeneous method with buckets with the cluster-based
one in homogeneous network. All the following figures are
simulations conducted in data collection network. The
simulation results for data aggregation are similar and
thus omitted.

6.1 Impact of Data Rate

In this simulation, we use different data rates to study how
the data rate can affect energy consumption and data delay.
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We first construct a random sensor network by randomly
placing 32 sensors in a square area of 5� 5 square meters.
We set the transmission radius as 1 meter and the
interference radius as 2 meters. Then we construct different
tree structures as the topology of the sensor network, CDS
tree (CDST) [8] based on BFS tree, minimum spanning tree
(MST) and the shortest path tree (SPT). Based on the
topology, a sink node (with a fixed position) will collect
data from the other sensors in the network. We simulate the
sensor networks when data rate of links varies from
1 packets per slot to 3.5 packets per slot.

Figs. 5 and 6 show that energy consumption and
maximum delay will decrease when the data rate increases,
but the reduction is slower than the data rate increasing.
Among different structures, we found that CDS tree has the
smallest timespan, and therefore, the smallest energy
consumption and data delay, while MST is always the
worst with the largest among all trees. This is because CDS
tree structure has the shortest hops from all other nodes to
the sink. In MST, there is always long chains in the
structure, which expands the timespan.

We also found that the schedule by our cluster-based
method performs much better than the node-based method.
In cluster-based method, to avoid potentially delaying the
transmission to the next scheduling period, we intentionally
schedule the sending time slots of a parent node after its
children nodes’ sending time slots. That is, the transmis-
sions are always within one scheduling period. While in
node-based method [9], the maximum delay for the data to
its parent node may take several time periods because the
node can only process one unit of (packets/data rate) per
time slot, while it may have more data and need several
time slots. In addition, if the parent node is scheduled
before the child node, the data will be delayed at least one
more time period. As expected, the energy consumption in
cluster-based method is also much better than node-based
method, as shown in Fig. 6. The energy consumption is
dramatically reduced when scheduling the node to wake up
at most twice in a time period.

6.2 Impact of Number of Nodes

In this simulation, we study how the number of nodes can

affect the data delay and energy consumption. We vary the

number of nodes from 29 to 39 in the sensor network. We set

the transmission radius as 1 meter and the interference radius

as 2 meters. We also use 1 packet per slot as the data rate.
We found that the maximum time delay increases with

the number of nodes increases, which is also true for the

energy consumption. This is because the number of

interference clusters increases when the number of nodes

increases. In addition, adding nodes also increases the total

traffic load in the data collection model so that it will

lengthen the timespan, and thus, the maximum delay and

energy consumption. Figs. 7 and 8 also show that our

cluster-based schedule consumes less energy and produces

smaller time delay than node-based method in either CDS,

MST, or SPT. This is because we use less state switches and

assign the child node time slots earlier than its parent node.

6.3 Impact of Heterogeneous Nodes

We then study the impact of interference model on the

network performances, especially the ratio of the maximal

interference radius to the minimal interference radius. We

also compare the heterogeneous method using buckets

with the cluster-based method without using buckets. We

vary the ratio log max
min from 1 to 2.1 in a sensor network

with 64 nodes in a square region with side length 6 meters

and data rate as 1 packet per slot.
Fig. 9 shows that the trend of timespan increases when

the ratio of Rmax

Rmin
increases under CDS tree structure. This is

because the number of buckets increases when the ratio of
Rmax

Rmin
increases and some sensors, which can be scheduled

with overlapped time slots, may be assigned into different

buckets so that they will be scheduled sequentially. While

the energy consumption does not vary significantly when

the ratio of Rmax

Rmin
changes, it depends on the tree structure.

From Fig. 9, we also observe that the timespan in the cluster-

based method is higher than the method using buckets.
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Fig. 5. Impact on the data delay with various data rates in homogeneous

networks using CDS tree, MST tree, and SPT tree.

Fig. 6. Impact on the energy cost with various data rates in

homogeneous networks using CDS tree, MST tree, and SPT tree.



7 RELATED WORK

A number of MAC protocols have been proposed for WSNs.
Polastre et al. proposed an MAC protocol, called B-MAC
[10], which is used as the default MAC for Mica2. Buettner
et al. proposed a new approach to low-power listening
called X-MAC [3], which employs a short preamble to
further reduce energy consumption and reduce latency. In
[11], Rhee et al. presented the design, implementation, and
performance evaluation of a hybrid MAC protocol, called
Z-MAC, for WSNs that combines the strengths of TDMA
and CSMA while offsetting their weaknesses. Ahn et al.
proposed a new MAC protocol called Funneling-MAC [12]
that uses the CSMA MAC protocol for nodes far away from
the sink and uses the TDMA protocol for nodes that are
close to the sink.

Scheduling has been studied extensively [9], [13], [14],
[15], [16], [17], [18], [19], [20], [21], [22]. Arisha et al. [20]

proposed an energy-aware TDMA-based scheduling. But
they did not consider parallel transmission in the network.
Thus, the proposed scheduling could have a large delay.
Ergen and Varaiya [9] proposed a TDMA scheduling
algorithm to improve the delay in the network. However,
they did not consider the energy consumption. Moreover,
they did not consider the weight of node and the
transmission order of the parent node and child node. In
[23], Solis and Obraczka studied the trade-off of energy
efficiency and delay for data aggregation. In [24], Dai et al.
proposed the algorithm to save energy by reducing
redundant data. In [25], Rajagopalan and Varshney gave a
survey for data aggregation techniques.

To save energy consumption, the wake-up scheduling
has been widely used. Keshavarzian et al. [26] analyzed
different wake-up scheduling schemes and proposed a new
scheduling method that can decrease the end-to-end overall
delay. However, they did not consider the time-slot assign-
ment problem to avoid interference. TDMA-based wake-up
scheduling can provide both energy-efficient and conflict-
free channel access [6], [27]. TDMA-based scheduling
algorithms that minimize the number of time slots or the
message delay are proved NP-complete [28], [29]. Approx-
imate algorithms have been therefore proposed, including
both link scheduling [6], [16], [27] and broadcast scheduling
[30], [31], [32]. Link scheduling and broadcast scheduling
are time-slot assignments to links and nodes, which can be
reduced to different coloring problems: edge coloring and
vertex coloring. Panconesi and Srinivasan [33] proposed a
randomized distributed edge coloring method that uses at
most 2�þ 1 colors. Ramanathan [15] proposed a unified
framework for TDMA-, FDMA-, and CDMA-based multi-
hop wireless networks. Krumke et al. [31] proposed the
efficient approximation algorithms for the distance-2 vertex
coloring problem for various geometric graphs. In [34],
Kumar et al. studied packet scheduling under RTS/CTS
interference model and gave polylogarithmic/constant
factor approximation algorithms for various families of
disk graphs and randomized near-optimal approximation
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Fig. 8. Impact on the energy cost with various number of nodes in

homogeneous networks using CDS tree, MST tree, and SPT tree.

Fig. 9. Impact on the timespan with various Rmax

Rmin
ratios in heterogeneous

networks using CDS tree.

Fig. 7. Impact on the data delay with various number of nodes in

homogeneous networks using CDS tree, MST tree, and SPT tree.



algorithms for general graphs. Recently, Moscibroda and

Wattenhofer [35] proposed an Oð�Þ distributed coloring

method with time complexity Oð� lognÞ. Wang et al. [6]

also proposed both centralized and distributed interference-

aware link scheduling algorithms to maximize the through-

put of the network.

8 CONCLUSION

In this paper, we propose efficient centralized and distributed

scheduling algorithms that not only remove the unnecessary

listening cost, but also reduce the energy cost for state

switching and clock synchronization. In our protocol, every

node needs only to wake up at most twice in one scheduling

period: one for receiving data from its children and one for

sending data to its parent. We have also proposed an efficient

method to construct energy-efficient data gathering tree,

whose energy cost and timespan of the scheduling are both

within constants times of the optimum. Our extensive

simulation results have verified our theoretical statements.

An interesting question left for the future research is to design

efficient data collection or data aggregation tree and nodes’

activity scheduling algorithm such that the data delay, the

number of messages needed for collection (or aggregation),

and the energy cost are all almost optimum. If this is

impossible, then what are the best trade-offs among these

potentially conflicting objectives?
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