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Abstract—Unlike convectional omnidirectional sensors that always have an omniangle of sensing range, directional sensors may

have a limited angle of sensing range due to the technical constraints or cost considerations. A directional sensor network consists of a

number of directional sensors, which can switch to several directions to extend their sensing ability to cover all the targets in a given

area. Power conservation is still an important issue in such directional sensor networks. In this paper, we address the multiple

directional cover sets (MDCS) problem of organizing the directions of sensors into a group of nondisjoint cover sets to extend the

network lifetime. One cover set in which the directions cover all the targets is activated at one time. We prove the MDCS to be

NP-complete and propose several algorithms for the MDCS. Simulation results are presented to demonstrate the performance of these

algorithms.

Index Terms—Coverage, energy conservation, mixed integer programming, scheduling, sensor networks.
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1 INTRODUCTION

IN recent years, sensor networks have emerged as
promising platforms for many applications, such as

environmental monitoring, battlefield surveillance, and
health care [1], [2]. A sensor network may consist of a large
number of small sensor nodes that are composed of sensing,
data processing, and communicating components. The
conventional research of sensor networks is always based
on the assumption of omnidirectional sensors that have an
omniangle of sensing range. However, sensors may have a
limited angle of sensing range due to the technical
constraints or cost considerations, which are denoted by
directional sensors in this paper. Video sensors [3], [4],
ultrasonic sensors [5], and infrared sensors [2] are examples
of widely used directional sensors. Note that the directional
characteristic we discuss in this paper is from the point of
view of the sensing, but not from the communicating
activity of sensor nodes.

There are several ways to extend the sensing ability of
directional sensors. One way is to put several directional
sensors of the same kind on one sensor node, each of which
faces to a different direction. One example using this way is
in [5], where four pairs of ultrasonic sensors are equipped
on a single node to detect ultrasonic signals from any

direction. Another way is to equip the sensor node with a
mobile device that enables the node to move around. The
third way is to equip the sensor node with a device that
enables the sensor on the node to switch (or rotate) to
different directions. We adopt the third way so that a sensor
can face to several directions. In this paper, we assume that
each sensor node equips exactly one sensor on it. Therefore,
we do not differentiate the terms sensor and node in the rest
of the paper.

We also consider the following scenario. Some targets
with known locations are deployed in a two-dimensional
Euclidean plane. A number of directional sensors are
randomly scattered close to these targets. We assume that
the sensing region of each direction of a directional sensor is
a sector of the sensing disk centered at the sensor with a
sensing radius. Each sensor has a uniform sensing region
and the sensing regions of different directions of a sensor do
not overlap. However, the algorithms proposed in this
paper do not put restrictions on the shape of the sensing
region or overlap between different directions. When the
sensors are randomly deployed, each sensor initially faces
to one of its directions. These sensors form a directional
sensor network so that data can be gathered and transferred
to the sink, a central processing base station.

If a directional sensor faces to a direction, we say that the
sensor works in this direction and the direction is the work
direction of the sensor. When this sensor works in a direction
and a target is in the sensing region of the sensor, we say
that the direction of the sensor covers the target. Because a
directional sensor has a smaller angle of sensing range than
an omnidirectional sensor or even does not cover any target
when it is deployed, we need to schedule sensors in the
network to face to certain directions to cover all the targets.
We call a subset of directions of the sensors in which the
directions cover all the targets as a cover set. Note that no
more than one direction of a sensor can be in a cover set.
The problem of finding a cover set, called directional cover set
(DCS) problem, is proved to be NP-complete in this paper.
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Fig. 1a shows a simple directional sensor network. The
black point s1 is a directional sensor that can switch to three
directions d1;1; d1;2, and d1;3. Direction d1;1 is the direction to
which the sensor faces when it is deployed and the shadowed
sector above d1;1 is the sensing region of s1 when it works in
d1;1. The stars a1; a2, and a3 are three targets. Although the
direction d1;1 does not cover any target, s1 can switch to d1;3 to
cover both a1 and a2. The directions d1;3 of s1 and d3;1 of the
sensor s3 together cover all the targets in Fig. 1a. Therefore,
fd1;3; d3;1g is a cover set for the three targets.

Power conservation is still an important issue in
directional sensor networks due to the following reasons.
First, most sensors have limited power sources and are
nonrechargeable. Also, the batteries of the sensors are hard
to replace due to the hostile or inaccessible environments in
many scenarios. We assume that each sensor is nonre-
chargeable and dies when it runs out its power. To conserve
energy, we can leave necessary sensors in the active state
and put redundant sensors into the sleep state, while
keeping all the targets covered.

The objective of this paper is to maximize the network
lifetime of a directional sensor network, where the net-
work lifetime is defined as the time duration when each
target is covered by the work direction of at least one
active sensor. Our approach is to organize the directions of
sensors into nondisjoint subsets, each of which is a cover
set, and allocate the work time for each cover set. Note
that nondisjoint cover sets allow a direction or a sensor to
participate in multiple cover sets. We alternately activate
only one cover set at any time. When one cover set is
activated, each sensor that has a direction in this cover set
is in the active state and works in this direction, while all
the other sensors are in the sleep state. We call the
problem of finding nondisjoint cover sets and allocating
the work time for each of them to maximize the network
lifetime as multiple directional cover sets (MDCS) problem.

In this paper, we formally define the DCS and the MDCS
and prove that both problems are NP-complete. We model
the MDCS as an optimization problem [6]. To solve the
MDCS, we first consider the solutions to the DCS, which is a
subclass of the MDCS, where the number of cover sets is
restricted to 1. The main contributions of this paper are as
follows. We design several algorithms to meet different
application requirements for the MDCS. First, we present a

heuristic algorithm named Progressive, which is based on the
optimization problem. Second, we propose an algorithm
called Feedback that uses the results obtained in previous
iterations as a feedback to the next iteration. This algorithm
gets a longer network lifetime and fewer cover sets, which are
more efficient and practical. Third, we describe an algorithm
named MDCS-Greedy that is not based on the optimization
problem, which has much shorter runtime. Finally, a
distributed algorithm called MDCS-Dist is presented.

The rest of the paper is organized as follows: Section 2
briefly surveys the related works in the literature. In Section 3,
the DCS and the MDCS are formally defined and proved to be
NP-complete. In Section 4, we formulate the MDCS as an
optimization problem. In Section 5, we describe and evaluate
the solutions to the DCS. In Section 6, we present the solutions
to the MDCS. In Section 7, we present the simulation results
for the MDCS. The paper is concluded in Section 8.

2 RELATED WORK

A number of scheduling algorithms have been proposed to
prolong the network lifetime for omnidirectional sensor
networks. Sleeping protocols, such as RIS [7], [8], PEAS [9],
and PECAS [8], have used different strategies to extend the
network lifetime while trying to achieve the largest area
coverage, which represents how well a region of interest is
monitored. In [10], [11], [12], both area coverage and
communication connectivity are considered in the schedul-
ing algorithms for omnidirectional sensor networks. If the
communication radius is at least twice of the sensing radius,
complete area coverage of a convex region implies commu-
nication connectivity among the active sensors [10], [11].

When a set of targets is deployed to be monitored by
omnidirectional sensor networks, scheduling problems are
studied in [13], [14], [15]. Liu et al. [13] assume that a sensor
can watch only one target at a time and build a target
watching timetable for each sensor to maximize the net-
work lifetime. Cheng et al. [14] organize sensors into
mutually exclusive subsets that are activated successively,
where the size of each subset is restricted and not all of the
targets need to be covered by the sensors in one subset.
Unlike the authors of [13] and [14], Cardei et al. [15] aim to
extend the lifetime of an omnidirectional sensor network by
organizing the sensors into nondisjoint subsets, where each
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target must be covered by at least one sensor in each subset.
This problem is proved to be NP-complete in [15], although
finding a subset of omnidirectional sensors to cover all the
targets can be done in a polynomial time. Note that the
problem discussed in [15] is a special case of the MDCS,
where a sensor has only one direction.

Some efforts have recently been devoted to the research
of the directional sensor networks. Ma and Liu [16] provide
a directional sensor model, where each sensor is fixed to one
direction and analyzes the probability of full area coverage.
In [17], a similar directional sensor model is proposed,
where a sensor is allowed to work in several directions. The
objective is to find a minimal set of directions that can cover
the maximal number of targets. It is different from the one
in this paper that aims to find a group of nondisjoint cover
sets in each of which the directions cover all the targets so as
to maximize the network lifetime.

3 PROBLEM STATEMENT

In this section, we first define the notations, and then give
some simple examples of the MDCS to briefly describe this
problem. We also formally define the DCS and the MDCS
and prove that both problems are NP-complete.

3.1 Notations and Assumptions

We adopt the following notations throughout the paper.

. M: the number of targets.

. N : the number of sensors.

. W : the number of directions per sensor.

. am: the mth target, 1 � m �M.

. si: the ith sensor, 1 � i � N .

. di;j: the jth direction of the ith sensor, 1 � i � N;
1 � j �W . We define di;j ¼ famj am is covered by
di;j; 8am 2 Ag and si ¼ fdi;jj j ¼ 1 . . .Wg. Hence, if
am 2 di;j; am is covered by di;j.

. A: the set of targets. A ¼ fa1; a2; . . . ; aMg.

. S: the set of sensors. S ¼ fs1; s2; . . . ; sNg.

. D: the set of the directions of all the sensors.
D ¼ fdi;jj i ¼ 1 . . .N; j ¼ 1 . . .Wg.

. Li: the lifetime of a sensor si, which is the time
duration when the sensor is in the active state all
the time.

For simplicity, we assume that each sensor initially has
an equal lifetime. Moreover, we assume that the energy
consumed for switching a sensor from one direction to
another can be omitted.

3.2 Simple Examples of the MDCS

Fig. 1 shows two directional sensor networks, both of which
have three sensors s1; s2, and s3 deployed to monitor three
targets a1; a2, and a3. Each sensor has an initial lifetime of 1
(time unit). Sensor s1 has three directions d1;1; d1;2, and
d1;3; s2 has d2;1; d2;2 and d2;3, and s3 has d3;1; d3;2, and d3;3.

For the network deployment in Fig. 1a, we can get the
following cover sets: D1 ¼ fd1;3; d3;1g with the work time of
0.5, D2 ¼ fd1;3; d2;2g with 0.5, and D3 ¼ fd2;2; d3;1g with 0.5.
This results in a network lifetime of 1.5. On the other hand,
if a sensor is not allowed to participate in multiple cover
sets, for the network deployment in Fig. 1a, we can get

D1 ¼ fd1;3; d3;1g with its work time 1, which is the maximal
network lifetime.

For the network deployment in Fig. 1b, we can get a
cover set D1 ¼ fd1;3; d2;2g with its available work time 1.
This results in a network lifetime of 1.

3.3 Problem Definition

To prove the NP-completeness of the DCS and the MDCS,
we formally provide the following definitions:

Definition 1. Cover Set: Given a collection D of subsets of a
finite set A and a collection S of subsets of D, a cover set for A
is a subset D0 � D such that every element in A belongs to at
least one member of D0 and every two elements in D0 cannot
belong to the same member of S.

Definition 2. DCS Problem: Given a collection D of subsets of a
finite set A and a collection S of subsets of D, find a cover set
for A.

Definition 3. MDCS Problem: Given a collection D of subsets
of a finite set A and a collection S of subsets of D, find a family
of K cover sets D1; D2; . . . ; DK � D for A, with nonnegative
weights t1; t2; . . . ; tK , such that t1 þ t2 þ � � � þ tK is max-
imized, and for each s 2 S;

PK
i¼1 js \Dij � ti � L, where L is

a given positive number.

Note that js \Dij indicates the number of the directions of s
that are in Di, where js \Dij ¼ 0 or 1 since no more than
one direction of a sensor can work in a cover set.

3.4 NP-Completeness

In this section, we first prove the DCS to be NP-complete by
reduction from the 3-Conjunctive Normal Form Satisfia-
bility (3-CNF-SAT) problem [18]. Then we prove the MDCS
to be NP-complete by reduction from the DCS.

The decision versions of both the DCS and the MDCS are
defined as follows.

Definition 4. Decision Version of the DCS: Given a collection D
of subsets of a finite set A and a collection S of subsets of D,
determine if there exists a cover set for A.

Definition 5. Decision Version of the MDCS: Given a collection

D of subsets of a finite set A and a collection S of subsets of D,

determine if there exists a family of K cover sets

D1; D2; . . . ; DK � D for A, with nonnegative weights

t1; t2; . . . ; tK , such that t1 þ t2 þ � � � þ tK � p, and for each

s 2 S;
PK

i¼1 js \Dij � ti � L, where L is a given positive

number.

The following theorems show that both the DCS and the

MDCS are NP-complete.

Theorem 1. The DCS is NP-complete.

Proof. We first show that DCS 2 NP. Suppose that a set D0

is given as a certificate. The verification algorithm first

affirms D0 � D and then checks that if each element in A

belongs to at least one member of D0. Finally, it checks

that if each member of S contains no more than one

element in D0. The verification can be done in a

polynomial time. Therefore, DCS 2 NP.

To prove that the decision version of the DCS is

NP-hard, we show a polynomial time reduction from
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the 3-CNF-SAT problem to the DCS. For the 3-CNF-

SAT problem, a Boolean formula F consisting of

m clauses and n variables is in 3-conjunctive normal

form, i.e., F ¼ c1 ^ c2 ^ . . . ^ cm, where each clause cj ¼
xj;1 _ xj;2 _ xj;3 and each literal xj;k 2 fx1; x1; . . . ; xn; xng.
From the given formula F , an instance of the DCS is
constructed as follows:

1. A ¼ fcjj j ¼ 1 . . .mg.
2. For each xi, define a set

di;1 ¼ fcjj cj contains xi; 1 � j � mg.
3. For each xi, define a set

di;2 ¼ fcjj cj contains xi; 1 � j � mg.
4. D ¼ fdi;1j i ¼ 1 . . .ng [ fdi;2j i ¼ 1 . . .ng.
5. si ¼ fdi;1; di;2g; S ¼ fsij i ¼ 1 . . .ng.

This reduction can be finished in a polynomial time. An

example of the reduction is illustrated in Fig. 2.

We now show that the formula F is satisfiable if and

only if the instance of the DCS has a cover set. If the

formula is satisfiable, for every clause cj, at least one of its

literals is true. Picking the true literals from each clause
yields a subsetD0 ofD since each literal in the 3-CNF-SAT

problem corresponds to an element in D. Each cj 2 A
belongs to at least one member of D0, which corresponds

to one of its chosen literals. As xi and xi cannot both be

true, the corresponding di;1 and di;2 in D cannot both be

chosen into D0, i.e., every two elements in D0 do not

belong to the same s 2 S. Therefore,D0 is a cover set forA.
Conversely, suppose that the instance of the DCS has

a cover set D0. Since each element in D0 corresponds to a
literal in the 3-CNF-SAT problem, we can assign true to
these corresponding literals. Any literal and its comple-
ment are not both true because the corresponding
elements in D0 cannot belong to the same s 2 S. Every
clause is true because it belongs to at least one member of
D0, i.e., at least one of its literals is true. Therefore, the
formula is satisfied.

Since the DCS is both NP and NP-hard, we conclude
that the DCS is NP-complete. tu

Theorem 2. The MDCS is NP-complete.

Proof. We first show that MDCS 2 NP. Given a solution
D1; D2; . . . ; DK with weight t1; t2; . . . ; tK , and a number
p, the verification algorithm can verify whether
D1; D2; . . . ; DK are cover sets in polynomial time as we
have shown in the proof of Theorem 1. Checking t1 þ
t2 þ � � � þ tK � p and all the members of s appear in
D1; D2; . . . ; DK with a total weight of at most L for each
s 2 S can also be done in a polynomial time. Therefore,
MDCS 2 NP.

To prove that the decision version of the MDCS is
NP-hard, we give the MDCS a polynomial time reduc-
tion from the DCS, which has been proved to be
NP-complete in Theorem 1. Given a DCS instance with
a collection D1 of a finite set A1 and a collection S1 of
subsets of D1, we construct an instance of the MDCS by
setting A ¼ A1; D ¼ D1; S ¼ S1; K ¼ 1; L ¼ 1, and p ¼ 1.
If the instance of the DCS has a cover set D0, we get a
solution D1 ¼ D0 with t1 ¼ 1 for the instance of the
MDCS and vice versa. This proves that the MDCS is NP-
hard. As the MDCS 2 NP, the MDCS is NP-complete. tu
From the proof of Theorem 2, we can see that the DCS is

a subclass of the MDCS, where the number of cover sets K
is restricted to 1.

4 OPTIMIZATION FORMULATION OF THE MDCS

In this section, we first model the MDCS as a Mixed Integer
Programming (MIP) problem [6]. Since the MDCS is
NP-complete, it is unlikely to solve the MIP problem of
the MDCS in polynomial time. Therefore, we relax the
integrality restrictions in the MIP problem to get a Linear
Programming (LP) problem, which is used in the heuristic
algorithms of the following sections.

Consider a directional sensor network with a set A of M
targets, a set S of N sensors, and a set D of directions. Each
sensor si 2 S has W directions and an initial lifetime of Li.

We organize the directions in D into K cover sets. The
kth cover set is denoted byDk, with the work time tk. A
direction di;j is allowed to participate into multiple cover
sets. We set a Boolean variable xi;j;k as

xi;j;k ¼
1; if di;j 2 Dk;
0; otherwise:

�
ð1Þ

The MIP problem formulated for the MDCS is as follows:

max t1 þ t2 þ � � � þ tK ð2Þ

subject to

XK
k¼1

XW
j¼1

xi;j;k � tk � Li; 8si 2 S; ð3Þ

XW
j¼1

xi;j;k � 1; 8si 2 S; k ¼ 1 . . .K; ð4Þ

X
am2di;j
di;j2D

xi;j;k � 1; 8am 2 A; k ¼ 1 . . .K; ð5Þ

where xi;j;k ¼ f0; 1g and tk � 0: ð6Þ
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Fig. 2. An example of the reduction from the 3-CNF-SAT problem to the
DCS. The formula in the 3-CNF-SAT problem is F ¼ c1 ^ c2 ^ c3, where
c1 ¼ ðx1 _ x2 _ x4Þ; c2 ¼ ðx1 _ x3 _ x4Þ, and c3 ¼ ðx2 _ x3 _ x4Þ. In the
instance of the DCS, there are three targets c1; c2, and c3 and four
sensors s1; s2, s3, and s4, each of which has two directions. Direction d1;1

of s1 corresponds to x1; d1;2 of s1 corresponds to x1, and so on. A
satisfying assignment of F is x1 ¼ 1; x2 ¼ 1; x3 ¼ 0, and x4 ¼ 0. The
corresponding directions of this assignment d1;1; d2;1; d3;2, and d4;2 form a
cover set for the targets c1; c2, and c3.
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The objective function (2) maximizes the total work time
of all the K cover sets. The constraint (3) shows the lifetime
constraint for each sensor. The W directions of any sensor
work across all the cover sets for no more than the initial
lifetime of the sensor. The constraint (4) indicates the
exclusivity among different directions of a single sensor,
i.e., no more than one direction of the sensor can work in a
cover set. The constraint (5) represents the coverage
guarantee for each target. For each cover set, every target
in A must be covered by at least one direction of this cover
set. The constraint (6) shows the restrictions on the
variables. The variable xi;j;k can be either 1 or 0, i.e., the
direction di;j works either in the kth cover set or not.

As there exists xi;j;k � tk in constraint (3), the MIP problem
is not linear. Let ti;j;k ¼ xi;j;k � tk. The variable ti;j;k indicates
the work time of di;j in the cover setDk. We get the following
Linear Mixed Integer Programming (LMIP) problem with
the objective function (2) and the following constraints:

XK
k¼1

XW
j¼1

ti;j;k � Li; 8si 2 S; ð7Þ

XW
j¼1

ti;j;k � tk; 8si 2 S; k ¼ 1 . . .K; ð8Þ

X
am2di;j
di;j2D

ti;j;k � tk; 8am 2 A; k ¼ 1 . . .K; ð9Þ

where ti;j;k ¼ 0 or tk and tk � 0: ð10Þ

Since the MDCS is NP-complete, it is unlikely to solve
the MIP or LMIP problem of the MDCS in polynomial time.
We relax “ti;j;k ¼ 0 or tk” to “0 � ti;j;k � tk” in the constraint
(10) and obtain the variable constraint for the LP problem:

ti;j;k � 0: ð11Þ

We use the constraint (11) for the LP problem instead of the
constraint “0 � ti;j;k � tk” because the latter can be deduced
by the two constraints (8) and (11) together. Finally, we get
the LP problem consisting of the objective function (2), the
constraints (7), (8), (9), and (11). In the following sections,
we first consider the solutions to the DCS, which is a
subclass of the MDCS, and then describe several heuristic
algorithms to the MDCS based on the LP problem and the
solutions to the DCS.

5 SOLUTIONS TO THE DCS

As stated before, the DCS is a subclass of the MDCS, where
the number of cover sets K is restricted to 1. To solve the
MDCS, we first consider the solutions to the DCS. In this
section, we first present a search algorithm named
DCS-Search to the DCS. Although we attempt to speed up
the search process in this algorithm, it may still take too
long runtime for some large-scale directional sensor net-
works. Based on the DCS-Search algorithm, we propose a
greedy algorithm named DCS-Greedy, which has much
shorter runtime while maintaining high possibility to find a

cover set. In Section 6, the DCS-Greedy algorithm is applied
in several solutions to the MDCS.

5.1 DCS-Search Algorithm

In this section, we propose a search algorithm called DCS-
Search. Given a directional sensor network with a set A of M
targets, a set S of N sensors, and a set D of directions. We
define a tuple G ¼ ðDG;AGÞ, where AG is the set of targets
and AG ¼ A initially, and DG is the set of directions that
cover at least one target in AG, i.e., DG ¼ fdi;jj am 2 di;j;
9am 2 A; 8di;j 2 Dg. If more than one direction of a sensor is
in DG, we say that these directions conflict with each other
and are conflicting directions. Otherwise, if only one direction
of the sensor is in DG, we say that this direction is a
nonconflicting direction. For example, the directions di;j and
di;j0 of the same sensor si conflict with each other if they are
both in DG. We need to select a set of nonconflicting
directions from DG to be a cover set. We denote Ds as such a
selected set of directions. We also define a stack Rs to store
the states of the search process.

In the DCS-Search algorithm, we consider the following
cases, Case 1, Case 2, and Case 3, to speed up the search
process when selecting directions from DG to Ds. For each
case, we specify a pivot policy to pick a direction among the
candidate directions in DG that satisfy this case. The pivot
policy we use here is to find a direction to cover the target
that can be covered by minimal number of directions. Other
pivot policies can also be adopted according to the specific
application requirements. In Sections 6.1.1 and 6.3, some
other pivot policies are used, including selecting a direction
of the sensor that has the longest residual lifetime.

Case 1. Each target in AG is covered by at least one direction in
DG and there exist nonconflicting directions in DG.

We handle this case as the following to select nonconflicting
directions into Ds. Pick a nonconflicting direction di�;j� in DG

using the pivot policy. We denoteU as the set of targets inAG

that is covered by di�;j� . Remove the targets in U from AG.
After the targets in U are removed from AG, there are some
directions in DG that cover no targets in the current AG,
including the direction di�;j� . We denote the set of these
directions by V . Remove the directions in V from DG. If a
direction di;j in V conflicts with the directions neither in Ds

nor inDG, we add di;j toDs. Remove di;j from V and repeat to
select a new direction from V into Ds until the remaining
directions in V conflict with the directions either inDs orDG.

Case 2. Each target in AG is covered by at least one direction in
DG and no nonconflicting direction exists in DG.

We handle this case as the following to select a direction
and remove its conflicting directions from DG. Apply the
pivot policy to select a direction di�;j� . Record the current
state of the search process, denoted by R ¼ ðG;Ds; si� ; Di� Þ,
where Di� ¼ fdi�;j�g. Push R into Rs. Remove the directions
that conflict with di�;j� from DG.

Case 3. There exist some targets in AG that are not covered by
any direction in DG.

We handle this case as the following to backtrack. Pop the
previous state of the search process R ¼ ðG;Ds; si� ; Di� Þ

CAI ET AL.: ENERGY EFFICIENT TARGET-ORIENTED SCHEDULING IN DIRECTIONAL SENSOR NETWORKS 1263

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on September 28, 2009 at 03:42 from IEEE Xplore.  Restrictions apply. 



from Rs and restore it. Try another unselected direction di�;j0
of sensor si� , i.e., di�;j0 2 DG and di�;j0 62 Di� . Update Di� as
Di�

S
fdi�;j0 g and push R back to Rs. If such a direction does

not exist, backtrack again. The backtracking process is a
recursive process.

The search process of the DCS-Search algorithm works as
follows. First, while Case 1 is satisfiable, repeat to use the
pivot policy to select nonconflicting directions into Ds.
Second, if Case 2 is satisfiable, use the pivot policy to select
one direction and remove its conflicting directions. Third, if
neither Case 1 nor Case 2 is satisfiable, handle Case 3 to call
the backtracking process. If the backtracking process fails,
the whole search process ends and returns an empty set;
otherwise, repeat the above steps until AG is empty and
return Ds as a cover set, which we will prove in Theorem 3.
An example of the search process is illustrated in Fig. 3.

Theorem 3 shows that if there exists a cover set in a
directional sensor network, the DCS-Search algorithm can
succeed to find a cover set.

Theorem 3. Consider a directional sensor network with a set A of
M targets, a set S of N sensors, and a set D of directions.
Suppose that there exists a cover set, which is a subset of D,
covering all the targets in A. The DCS-Search algorithm
returns a cover set Ds for A.

Proof. The proof of this theorem is shown in
Appendix A. tu

We give the following example to illustrate how the
search process works.

Example. Fig. 3a shows a directional sensor network of
seven targets a1; a2; . . . ; a7 and five sensors s1; s2; . . . ; s5,
each of which has two directions. Fig. 3b shows the
search process. In Fig. 3b, a direction di;j is the direction
selected in the corresponding step, and the targets next
to it are the targets removed from AG in this step. At first,
d5;1 is a nonconflicting direction and Case 1 is satisfiable.
Select d5;1 into Ds. After removing a7 from AG and d4;1

from DG; d4;2 becomes a nonconflicting direction and we
handle Case 1 again. Then, Case 2 is satisfiable, d1;1 is

selected, and we record the current state of the search

process. Remove d1;2 that conflicts with d1;1 from AG.

Handling Case 2 results in d1;1 as a nonconflicting

direction. Repeat to handle Case 1 until s3 is reached and

Case 2 is satisfiable. Select d3;1 into Ds and record the

current state of the search process. Removing d3;2 results

in a6 uncovered. Backtracking to try the other direction

d3;2 of s3 results in a3 uncovered. Thus, backtrack to try

the other direction d1;2 of s1. Selecting d1;2 into Ds results

in a1 uncovered. At last, no backtracking is available. The

whole process fails and no cover set is found. From this

example, we can see that we do not need to backtrack to

try every sensor even though a sensor initially has

conflicting directions, such as s2 and s4.

The DCS-Search algorithm and the backtracking process

are shown below.

DCS-Search Algorithm

1: AG ¼ A;DG ¼ fdi;jj am 2 di;j; 9am 2 A; 8di;j 2 Dg;
G ¼ ðDG;AGÞ; Ds ¼ ;; Rs ¼ ;

2: while AG 6¼ ;
3: while Case 1 is satisfiable

4: Pick a non-conflicting direction di�;j� in DG using

the pivot policy
5: U ¼ famj am 2 di�;j� ; 8am 2 AGg; AG ¼ AG � U
6: V ¼ DG � fdi;jj am 2 di;j; 9am 2 AG; 8di;j 2 DGg;

DG ¼ DG � V
7: for each di;j 2 V
8: if di;j conflicts with the directions neither in Ds

nor DG

9: Ds ¼ Ds [ fdi;jg
10: if AG 6¼ ;
11: if Case 2 is satisfiable

12: Pick di�;j� in DG using the pivot policy

13: Record the current state of the search process

R ¼ ðG;Ds; si� ; Di� Þ, where Di� ¼ fdi�;j�g, and push

R into Rs
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14: DG ¼ DG � fdi�;jj j 6¼ j�; 8di�;j 2 DGg
15: else if Backtracking-Process (Rs) ¼¼ FALSE

16: Ds ¼ ;
17: break

18: return Ds

Backtracking-Process (Rs)

1: Succeeded ¼ TRUE

2: if Rs 6¼ ;
3: Pop R ¼ ðG;Ds; si� ; Di� Þ from Rs and restore it

4: if 9di�;j 2 DG and di�;j 62 Di�

5: Pick an unselected direction di�;j0 2 DG using the

pivot policy

6: Set Di� ¼ Di�
S
fdi�;j0 g and push updated R back

to Rs.

7: DG ¼ DG � fdi�;jj j 6¼ j0; 8di�;j 2 DGg
8: else

9: Backtracking-Process (Rs)

10: else

11: Succeeded ¼ FALSE

12: return Succeeded

5.2 DCS-Greedy Algorithm

Although we attempt to speed up the search process by
reducing the times of backtracking in the DCS-Search
algorithm, it may still take too long runtime for some
large-scale directional sensor networks. In this section, we
propose a greedy algorithm named DCS-Greedy based on
the DCS-Search algorithm, which is suitable for large-scale
directional sensor networks.

As the backtracking process in the DCS-Search algorithm
may take most of the runtime, it is not allowed in the DCS-
Greedy algorithm. Therefore, the DCS-Greedy algorithm
deals with the following two cases:

Case 1. There exist nonconflicting directions in DG.

Case 2. No nonconflicting direction exists in DG and DG 6¼ ;.

We handle these two cases just as we deal with Cases 1 and
2 in the DCS-Search algorithm. Note that the pivot policy
used in this algorithm is the same as the one in the DCS-
Search algorithm, i.e., among all the candidate directions, it
is to select one direction to cover the target that can be

covered by minimal number of directions. The search
process of this algorithm is almost the same as the DCS-
Search algorithm except that there is no backtracking
process. The DCS-Greedy algorithm works as follows. First,
we construct G ¼ ðDG;AGÞ. Then repeat to handle Cases 1
and 2 and get a set of directions Ds. When AG is empty, the
search process succeeds to find a cover set Ds. When DG is
empty but AG is not empty, the search process fails to find a
cover set and returns an empty set.

The DCS-Greedy algorithm is shown below.

DCS-Greedy algorithm

1: AG ¼ A;DG ¼ fdi;jj am 2 di;j; 9am 2 A; 8di;j 2 Dg;
G ¼ ðDG;AGÞ; Ds ¼ ;

2: while DG 6¼ ;
3: while Case 1 is satisfiable

4: Handle this case just as handling Case 1 in the
DCS-Search algorithm

5: if DG 6¼ ;
6: if Case 2 is satisfiable

7: Handle this case just as handling Case 2 in the

DCS-Search algorithm

8: if AG 6¼ ;
9: Ds ¼ ;

10: return Ds

5.3 Simulation Results

We evaluate the performance of the DCS-Search and DCS-

Greedy algorithms through simulations running on a
computer with 3 GHz CPU and 1 GB memory. N sensors
with the sensing radius r and M targets are deployed
uniformly in a region of 400 m� 400 m. Each sensor has
W directions. We randomly generate 1,000 deployments of
sensors and targets, and average the result on every
deployment for each algorithm.

Fig. 4 shows the snapshots of the simulations. Fig. 4a
illustrates a randomly generated directional sensor network
when M ¼ 5; N ¼ 8; r ¼ 150, and W ¼ 3. Fig. 4b shows a
cover set, where only five shadowed sectors are the work
directions of the sensors.

Fig. 5 shows the relationship between the runtime and the
number of directions per sensor W when M ¼ 40; N ¼ 40,
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and r ¼ 100. In the figure, we can see that the runtime of the

DCS-Search algorithm grows exponentially as W increases.

However, the runtime of the DCS-Greedy algorithm is much

shorter. WhenW ¼ 6, the average runtime of the DCS-Search

algorithm is 724.041 millisecond, while the average runtime

of the DCS-Greedy algorithm is only 3.298 millisecond.
Fig. 6 shows the relationship between the success rate

and the number of directions per sensor W when M ¼ 40,

N ¼ 40, and r ¼ 100. The success rate is the ratio of the

number of samples, where a cover set is successfully found

to the total number of samples. For both algorithms, the

success rate drops when W increases. The success rate of the

DCS-Greedy algorithm decreases a little faster than the DCS-

Search algorithm. However, the DCS-Greedy algorithm still

maintains relatively high success rate even when W ¼ 6.
Simulation results show that the runtime of the DCS-

Search algorithm grows exponentially as W increases, while

the runtime of the DCS-Greedy algorithm is not sensitive to

W . The success rate of the DCS-Greedy algorithm still

maintains relatively high when W increases. Therefore, in

the following section, we propose several solutions to the

MDCS based on the DCS-Greedy algorithm.

6 SOLUTIONS TO THE MDCS

In this section, we propose several algorithms for the

MDCS. First, we present a heuristic algorithm named

Progressive based on the LP problem as a basic solution to

the MDCS. Second, we propose an algorithm called Feedback

that gets a longer network lifetime and fewer cover sets,

which are more efficient and practical. Third, we describe

an algorithm named MDCS-Greedy without LP, which has

shorter runtime. Finally, a distributed algorithm called

MDCS-Dist is presented.

6.1 Progressive Algorithm

In [15], an algorithm based on LP is proposed to get the

maximal lifetime of an omnidirectional sensor network. In

this paper, we modify this algorithm as a basic solution to

the MDCS. This algorithm is referred to as Progressive, since

in each iteration, it computes several cover sets and their

corresponding work time that is accumulated to the total

network lifetime. Each iteration in the Progressive algorithm
consists of the following steps.

First, we solve the LP problem and get the optimal solution
of tk, the work time of the kth set of directions, and ti;j;k, the
work time of the direction di;j in the kth set of directions for
i ¼ 1 . . .N; j ¼ 1 . . .W , and k ¼ 1 . . .K. We denote the kth set
of work directions by Dk ¼ fdi;jj ti;j;k > 0; 8di;j 2 Dg.

Note that more than one direction of a sensor may be in
Dk for k ¼ 1 . . .K. For example, ti;j;k > 0 and ti;j0;k > 0
indicate that the directions di;j and di;j0 of the same sensor
si work at the same time, although ti;j;k and ti;j0;k may still
satisfy all the constraints of the LP problem. We need to
remove conflicting directions in Dk to make it a cover set.
We call this process as the conflicting direction elimination
process. If this process succeeds, it returns the updated cover
set Dk and the work time ti;j;k of any di;j 2 Dk; otherwise,
Dk ¼ ;. For description convenience, we describe the detail
of this process separately in Section 6.1.1.

If the conflicting direction elimination process returns a
cover set Dk, we also need to determine the work time for
Dk. Although the work time of the directions in Dk may be
variant, we determine an identical period of time such that
all the targets in A can be covered by the directions in Dk.
To save energy, only a subset of Dk can be selected. We call
this process as the direction selection process. This process
returns a cover set D�k � Dk and the work time t�k of D�k. We
describe the detail of this process separately in Section 6.1.2.

After the direction selection process, the work time t�k of
the cover set D�k is accumulated to the total network
lifetime. Then the residual lifetime of any selected sensor si
is updated, i.e., Li ¼ Li � t�k; 8di;j 2 D�k. The constraint (7) in
the LP problem is also updated.

The iterations are repeated until the lifetime computed in
the current iteration is less than a small positive value of ",
which is given depending on the accuracy requirement of
specific applications.

The Progressive algorithm is shown below.

Progressive Algorithm

1: lnet ¼ 0 /* the lifetime of the network*/

2: repeat

3: Solve the LP problem and get each tk and ti;j;k
4: Dk ¼ fdi;jj ti;j;k > 0; 8di;j 2 Dg, for k ¼ 1 . . .K
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5: l0net ¼ lnet
6: for k ¼ 1 . . .K

7: Call the conflicting direction elimination process to

make Dk a cover set.

8: if Dk 6¼ ;
9: Call the direction selection process to select a

cover set D�k � Dk and get its work time t�k
10: lnet ¼ lnet þ t�k
11: for each di;j 2 D�k
12: Li ¼ Li � t�k
13: until lnet � l0net < "

14: return lnet

6.1.1 Conflicting Direction Elimination Process

First, we have the set Dk and the work time ti;j;k for any
di;j 2 Dk. Eliminating the conflicting directions in Dk to get
a cover set is an instance of the DCS, which is NP-complete.
In this section, we describe how to eliminate the conflicting
directions in Dk based on the DCS-Greedy algorithm in
Section 5.2.

In this process, we first construct the tuple G ¼ ðDG;AGÞ,
where AG ¼ A and DG is the set of directions in Dk that
covers at least one target in A. Differentiated with the DCS-
Greedy algorithm, the pivot policy here is to select the
direction di�;j� with the maximal work time intoDs among all
the candidate directions in DG. The two cases of this process
are the same as the ones in the DCS-Greedy algorithm.

Repeat to handle Cases 1 and 2 and get a set of

nonconflicting directionsDs as in the DCS-Greedy algorithm.

If the elimination process succeeds, we add the work time of

the removed directions to the work time of directions in Ds,

i.e., 8di;j 2 Ds; ti;j;k ¼ ti;j;k þ
P

di;j0 2Dk�Ds
ti;j0;k. Otherwise, we

set Ds ¼ ;. Finally, return Ds as the updated Dk with the

work time ti;j;k for any di;j 2 Ds.
The conflicting direction elimination process is shown

below.

Conflicting-Direction-Elimination ðDk; fti;j;kj 8di;j2DkgÞ
1: AG ¼ A;DG ¼ fdi;jj am 2 di;j; 9am 2 A; 8di;j 2 Dkg;
G ¼ ðDG;AGÞ; Ds ¼ ;

2: Repeat to handle Case 1 and Case 2 to select a set of

nonconflicting directions Ds until DG is empty as in the

DCS-Greedy algorithm

3: if AG is empty
4: for each di;j 2 Ds

5: ti;j;k ¼ ti;j;k þ
P

di;j0 2Dk�Ds
ti;j0;k

6: else

7: Ds ¼ ;
8: return Ds and fti;j;kj 8di;j 2 Dsg

6.1.2 Direction Selection Process

First, we have the cover set Dk and the work time ti;j;k for
any direction di;j in Dk. For a target am, the maximal time
for which it can be covered by the directions in Dk is
tam ¼ maxam2di;jdi;j2Dk

ti;j;k. The maximal time for which all
the targets in A can be covered by the directions in Dk is
t�k ¼ minam2A tam . Hence, t�k ¼ minam2Amaxam2di;jdi;j2Dk

ti;j;k.
A cover set D�k � Dk is selected to save energy. A

straightforward way is to select the direction di;j 2 Dk that

satisfies ti;j;k > t�k and has the longest work time, to cover
some uncovered targets each time. Repeat selecting another
direction from Dk to D�k until all the targets are covered by
the selected directions.

Then, we remove redundant directions in D�k, since the
targets covered by some directions formerly selected into
D�k may be totally covered by the ones selected into D�k later.
We employ a simple strategy here. Get a direction from D�k
and check whether it is redundant or not. Remove it from
D�k if it is redundant. Get another and check it until all the
directions in D�k have been checked. Finally, return the
cover set D�k � Dk and its work time t�k.

The direction selection process is shown below.

Direction-Selection ðDk; tk; fti;j;kj 8di;j 2 DkgÞ
1: t�k ¼ minam2Amaxam2di;jdi;j2Dk

ti;j;k
2: D�k ¼ ;; A0 ¼ A
3: D0k ¼ fdi;jj ti;j;k � t�k; 8di;j 2 Dkg
4: Sort the directions in D0k according to the corresponding

work time in nonincreasing order

5: while A
0 6¼ ;

6: Remove the direction di;j from the head of D0k
7: if 9am 2 A

0
; am 2 di;j

8: D�k ¼ D�k [ fdi;jg
9: A0 ¼ A0 � famj am 2 di;j; 8am 2 A0g

10: Remove redundant directions in D�k
11: return D�k and t�k

6.2 Feedback Algorithm

As stated before, we aim to extend the network lifetime by
activating a group of cover sets one after another in this
paper. The number of the cover sets plays an important role
when scheduling the cover sets in practice. Too many cover
sets may be inefficient or impractical. Frequently switching
sensors from one direction to another may not be easy for
physical reasons. Furthermore, even if the state transition
period, which is the time interval when one cover set is
being put into sleep as well as another cover set being
activated, is relatively short, too many cover sets mean too
many state transition periods that lead to the occurrence of
the following consequence with high probability: Some
targets may not be covered during the state transition
period. Therefore, an efficient algorithm should generate
fewer cover sets with longer work time.

In this section, we propose an algorithm named Feedback
that utilizes the results obtained from the previous itera-
tions and finds a group of cover sets in the last iteration.
This algorithm is more useful and practical because it
generates no more than K cover sets totally. Although the
cover sets generated in each iteration of the Progressive
algorithm are no more than K, the number of the total cover
sets after all the iterations may be much larger than K.

In the Feedback algorithm, the LP problem formulated in
Section 4, the conflicting direction elimination process
proposed in Section 6.1.1 and the direction selection process
proposed in Section 6.1.2 are also used. In each iteration of
the Feedback algorithm, we only determine one cover set
from the solution to the LP problem and add the constraints
that indicate this cover set to the LP problem in the next
iteration. Then we solve the updated LP problem again to
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get the next cover set. The uth iteration in the Feedback
algorithm consists of the following steps.

At the first step, we solve the LP problem and get the
optimal solution tk and ti;j;k for i ¼ 1 . . .N; j ¼ 1 . . .W , and
k ¼ 1 . . .K. The set of work directions is denoted by
Dk ¼ fdi;jj ti;j;k > 0; 8di;j 2 Dg; k ¼ 1 . . .K. The former u� 1
sets D1; D2; . . . ; Du�1 are cover sets and the latter K � uþ 1
sets may not be cover sets. We set the collection of the
latter K � uþ 1 sets as Unc ¼ fDkj k ¼ u . . .Kg and the set
of work time of the former u� 1 cover sets as
Vc ¼ ftkj k ¼ 1 . . .u� 1g.

At the second step, the set Dv in Unc with the longest
work time is selected. The conflicting directions in Dv are
eliminated by the conflicting direction elimination process
in Section 6.1.1. If Dv 6¼ ;, the elimination process succeeds
and Dv is a cover set. Otherwise, another set in Unc is tried.
After the cover set Dv is found, a subset D�v of Dv is selected
to save energy and its work time t�v is determined, using the
direction selection process in Section 6.1.2.

At the third step, if the cover set D�v with its work time t�v
is successfully found at the second step, constraints are
added to the LP problem to make the uth set a cover set. For
each di;j 62 D�v, a constraint ti;j;u ¼ 0 that indicates di;j does
not work in the uth cover set, and for each di;j 2 D�v, a
constraint ti;j;u ¼ minð�; t�vÞ that indicates di;j works in the
uth cover set are added to the LP problem, where � is a quite
small positive number. Instead of immediately determining
the final work time of a cover set, we use the parameter � to
indicate whether a direction works in the cover set or not.
The final work time of all the cover sets is computed at the
end of the algorithm.

The iteration consisting of the three steps above is
repeated until all the K cover sets are found or no cover set
can be found in the current iteration. Finally, the network
lifetime is determined. In the case that K cover sets are
found, we compute once again the LP problem to which we
have added more constraints in the Kth iteration and get
the work time tk for each cover set. The network lifetime
lnet ¼

PK
k¼1 tk. In the case that less than K cover sets are

found, the network lifetime lnet ¼
P

tk2Vc tk, where Vc is the
set of the work time of all the cover sets in the last iteration.

The Feedback algorithm is shown below.

Feedback Algorithm

1: u ¼ 1; Unc ¼ ;; Vc ¼ ;
2: while u � K
3: Solve the LP problem and get each tk and ti;j;k
4: Dk ¼ fdi;jj ti;j;k > 0; 8di;j 2 Dg; Unc ¼ fDkj k ¼

u . . .Kg; Vc ¼ ftkj k ¼ 1 . . .u� 1g
5: Found ¼ FALSE

6: while Found ¼¼ FALSE

7: Select a Dv such that tv ¼ maxDk2Unc tk
8: Unc ¼ Unc �Dv

9: Call the conflicting direction elimination process to

make Dv a cover set
10: if Dv 6¼ ;
11: Found ¼ TRUE

12: Call the direction selection process to select a

cover set D�v 2 Dv and get its work time t�v
13: if Found ¼¼ TRUE

14: for each di;j 2 D�D�v
15: Add ti;j;u ¼ 0 to the LP problem

16: for each di;j 2 D�v
17: Add ti;j;u ¼ minð�; t�vÞ to the LP problem

18: u ¼ uþ 1

19: else

20: break

21: if u ¼¼ K þ 1

22: Solve the LP problem and get each tk
23: lnet ¼

PK
k¼1 tk

24: else

25: lnet ¼
P

tk2Vc tk
26: return lnet

6.3 MDCS-Greedy Algorithm

In the Progressive and Feedback algorithms, the LP problem is
solved once in each iteration, which may result in heavy
computation overhead and long runtime. In this section, we
propose an algorithm called MDCS-Greedy without LP to
find multiple cover sets. In each iteration of this algorithm,
we compute at most one cover set. We set the work time of
each cover set as a fixed value �t, which is determined
according to the application requirements on both the
network lifetime and the number of cover sets. Larger �t
may result in shorter network lifetime, while smaller �t
may result in more cover sets, which we will discuss
specifically in Section 7. An iteration of the MDCS-Greedy
algorithm consists of the following steps.

First, we find the sensors whose residual lifetimes are no
less than �t. The directions of these sensors are selected
into a set D0.

Second, implement the conflicting direction elimination
process to eliminate the conflicting directions in D0. The
pivot policy in this process takes into consideration the
residual lifetime of each sensor and works as follows. First,
we find the uncovered target am� that can be covered by
minimal number of directions. Then, we find the sensor si�

with the longest residual lifetime among all the candidates
whose directions can cover am� . Finally, the direction di�;j� of
si� that can cover am� is selected. If this elimination process
succeeds, it returns the updated cover set D0; otherwise, D0

is set empty and the MDCS-Greedy algorithm exits.
Finally, when the cover set D0 is found, implement the

direction selection process to select a subset D� of D0 so as to
save energy. When selecting a cover set D� � D0, we select
the direction di;j 2 D0 of sensor si that has the longest
residual lifetime Li to cover some uncovered targets each
time. Then, the work time �t is assigned to D� and
accumulated to the total network lifetime. Moreover, the
residual lifetime of any selected sensor si is updated, i.e.,
Li ¼ Li ��t; 8di;j 2 D�.

The iteration consisting the above steps is repeated until
it fails to find a cover set in the current iteration.

The MDCS-Greedy algorithm is shown below.

MDCS-Greedy Algorithm

1: lnet ¼ 0

2: Found ¼ TRUE

3: repeat

4: D0 ¼ fdi;jj Li � �t; 8di;j 2 Dg
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5: Call the conflicting direction elimination process to
make D0 a cover set.

6: if D0 6¼ ;
7: Call the direction selection process to select a cover

set D� � D0
8: Assign the work time �t to D�

9: lnet ¼ lnet þ�t

10: for each di;j 2 D�
11: Li ¼ Li ��t

12: else

13: Found ¼ FALSE

14: until Found ¼¼ FALSE

15: return lnet

6.4 Distributed Algorithms

In this section, we present a distributed algorithm called
MDCS-Dist based on the centralized algorithms, where a
sensor only cooperates with its neighbors in its commu-
nication range. In the MDCS-Dist algorithm, sensors work
in rounds. A round is equivalent to a cover set when all the
targets are covered in this round. Each round lasts for a
period of �t, which is the same as the one in the MDCS-
Greedy algorithm. There is a scheduling stage prior to each
round. In the scheduling stage, a sensor probes the states of
its neighbors and decides its work direction.

First, a sensor broadcasts a message to its neighbors
including each target that it can cover. Each sensor si
assigns a priority pm to each target am that it can cover
locally. The fewer times a target can be covered by its
neighbors, the higher priority the target is assigned to. A
sensor tends to work in the direction that covers the
uncovered target with the highest priority in this round.
This strategy is similar to the pivot policy used in the
centralized algorithms, which is to find a direction to cover
the target that can be covered by minimal number of
directions, except that this strategy is to find a target locally.

Second, each sensor si initializes a timer uniformly
distributed in ½0; Tp	 and goes to sleep. When the timer
decreases to zero, si wakes up, marks itself PREWORK,
broadcasts a probing message, and waits for a period for its
neighbors’ replies. On receiving the probing message, any
neighbor si0 that is active but not in the PREWORK state
responds to si with a message indicating its work direction.
After receiving the neighbors’ replies, si decides whether to
sleep. If it finds out that itself does not cover any uncovered
target, it sleeps. Otherwise, it erases the PREWORK mark,
switches to the direction that covers the uncovered target
am� with the highest priority pm� , and broadcasts a message
to its neighbors indicating its work direction.

Third, when a neighbor of si, say si0 , which is not in the
PREWORK state, receives the message from si indicating its
work direction, it checks whether it becomes redundant, i.e.,
all the targets covered by its work direction have been
covered by the sensors recently waked up. If it finds out
that it has become redundant, it notifies its neighbors and
sleeps in the round. This check strategy is similar to the one
of removing redundant directions in the centralized
algorithms in Section 6.1.2.

In this paper, we will compare the performance of the
MDCS-Dist algorithm with another distributed algorithm

named SNCS, proposed by Ai and Abouzeid [17], where
sensors also work in rounds. The objective of [17] is to
cover maximal targets with minimal sensors. The SNCS
algorithm works as follows. At the beginning of the
scheduling stage, each sensor is active. It assigns itself a
priority that is equal to its residual energy and randomly
picks a direction as its work direction. Each sensor si
broadcasts a message including the priority, location, and
work direction to its neighbors. Upon receiving a message,
si calculates the number of acquired targets for each of its
directions. A target is acquired to a sensor if the target is not
covered by any higher priority neighbor of this sensor. If
there are acquired targets, si chooses the direction that has
the maximum number of acquired targets as its current
work direction and broadcasts a message to inform its
neighbors about its new work direction. Otherwise, si
activates a transition timer. The timer is off if a new
message arrives and there are acquired targets for si. If the
timer remains on for longer than a duration Tw; si sleeps in
this round.

The MDCS-Dist algorithm is shown below.

MDCS-Dist Algorithm

/* scheduling stage prior to one round */

1: si broadcasts a message to its neighbors including each
target that it can cover

2: si assigns a priority pm to each target am that it can

cover locally. The fewer times a target can be covered

by the directions of its neighbors, the higher priority the

target is assigned to.

3: si initializes a decreasing timer uniformly distributed in

½0; Tp	 and goes to sleep

4: if the timer � 0

5: si wakes up, marks itself PREWORK and broadcasts

a probing message

6: for each si0 2 Ni that receives the probing message

7: if si0 is active but not in the PREWORK state

8: si0 responds to si to indicate its work direction

9: if 6 9am that am is uncovered and can be covered by si
10: si goes to sleep

11: else

12: si erases the PREWORK mark, switches to the

direction that covers the uncovered target am�

with the highest priority pm� and notifies its

neighbors

13: for each si0 2 Ni that receives the message from

si indicating its work direction

14: if si0 is active but not in the PREWORK state

15: if 8am 2 di0;j that di0;j is the work direction and
am is covered

16: si0 notifies its neighbors and goes to sleep

The time complexity of the algorithms for the MDCS is
shown in Table 1. In each iteration of the Progressive and
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Time Complexity of the Algorithms for the MDCS
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Feedback algorithms, the LP problem is solved once. The time
complexity of the LP problem is Oðn3Þ using Ye’s algorithm
[19], where n is the number of variables and n ¼ K þKNW .
The time complexity of each iteration is OðK3N3W 3Þ, which
is mainly determined by the time complexity of the LP
problem. In the Progressive algorithm, the number of
iterations is at most N=", where N is the longest possible
network lifetime when there is only one direction in any
cover set. Therefore, the time complexity of this algorithm is
OðK3N4W 3Þ by assuming that " is a constant. The time
complexity of the Feedback algorithm is OðK4N3W 3Þ since
the LP problem is solved for at most K þ 1 times. In the
MDCS-Greedy algorithm, the time complexity to get a cover
set in each iteration is OðN2WMÞ and the number of
iterations is at most N=�t. Therefore, the time complexity of
this algorithm is OðN3WMÞwhen �t is fixed. In the MDCS-
Dist and SNCS algorithms, the time complexity of each
round is OðNWMÞ and the time complexity is OðN2WMÞ.

7 SIMULATION RESULTS OF THE MDCS

In this section, we evaluate the performance of the
Progressive, Feedback, MDCS-Greedy, MDCS-Dist, and SNCS
algorithms through simulations with the same configura-
tions as in Section 5.3. The optimization toolbox in Matlab is
used to solve the LP problem. For the Progressive and Feedback
algorithms, the maximal number of cover sets in one
iteration is equal to the number of sensors, i.e., K ¼ N . For
the Progressive algorithm, we set " ¼ 0:001. For the MDCS-
Dist and SNCS algorithms, we assume that the communica-
tion radius is twice of the sensing radius. We randomly
generate 10 deployments of sensors and targets, and average
the result on every deployment for each algorithm.

7.1 Parameters Tuning

The initial lifetime of each sensor is set as 1 in this section.

7.1.1 � in the Feedback Algorithm

Fig. 7 shows the network lifetime of the Feedback algorithm
when � varies from 10�10 to 1. The upper curve shows the
network lifetime when 10 targets and 50 sensors are
deployed, r is fixed at 100, and W is set as 3. The lower
curve shows the network lifetime when 25 sensors are
deployed. We can see from the two curves that the value of

� does not affect the network lifetime much. We observe in
the figure that the algorithm works slightly better when
� ¼ 0:01. In the following simulations, we set � ¼ 0:01 for
the Feedback algorithm.

7.1.2 �t in the MDCS-Greedy Algorithm

Fig. 8 shows the network lifetime of the MDCS-Greedy
algorithm when �t, the work time of each cover set, varies
from 0.001 to 1. When �t increases from 0.001 to 0.1, the
network lifetime drops slightly. When �t becomes greater
than 0.1, the network lifetime becomes unstable and drops
dramatically. The reason is that, when the initial lifetime of
each sensor is divisible by �t, the sensor has a high
probability to use up all of its lifetime. Note that when �t is
too small, it may result in too many cover sets totally.
Therefore, in the following simulations, we set �t ¼ 0:05 for
the MDCS-Greedy, MDCS-Dist, and SNCS algorithms.

7.2 Communication and Computation Overhead

In this section, we first provide an energy model for a
sensor node. Then we compute the communication and
computation overhead for all the algorithms based on this
energy model.

For a sensor node, the energy is mainly consumed by
three components: the processor, transceiver, and sensor
such as an ultrasonic sensor on the node. Note that we
differentiate the terms sensor and node in this section. The
power consumptions of different components depend on
the different work modes. For the processor or the sensor,
it can work in either the active or sleep mode. For the
transceiver, it can work in one of the four modes: transmit,
receive, idle, or sleep. According to Crossbow Mica2 motes
[20], we set up the energy consumption levels of different
components, as shown in Table 2. The transmission data
rate is set as 19.2 Kbps. We assume that when a node
works in a cover set, the processor, transceiver, and sensor
are in the active, idle, and active mode, respectively.
Assume that the initial energy of each sensor node is
2,000 J. The total expected work time (second) of a node T0

is calculated as 312,012 s. The network lifetime (unit) is
computed as the ratio of the time duration (second) before
at least one target is not covered, i.e., a cover set is not
found, to T0.

For the MDCS-Dist and SNCS algorithms, we assume
that all the messages are 16 bytes since each message sent
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Fig. 8. Network lifetime versus �t in the MDCS-Greedy algorithm.Fig. 7. Network lifetime versus � in the Feedback algorithm.
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by a node contains only the information about the node
itself. Both Tp in the MDCS-Dist algorithm and Tw in the
SNCS algorithm with M ¼ 10; N ¼ 50;W ¼ 3, and r ¼ 100
are set as 5 s, when a node can exchange messages with its
neighbors to decide whether to sleep. Note that Tp and Tw
are proportional to the average number of the neighbors.
When a node has more neighbors, it may need more time to
exchange messages with its neighbors. The number of
neighbors of a node is proportional to the number of nodes
in the network, the communication range of a node, and is
inversely proportional to the deployment area of the
network. Fig. 9 shows the network lifetime of the two
algorithms with and without considering the communica-
tion and computation overhead. The network lifetime of the
MDCS-Dist algorithm drops about 3 percent when con-
sidering the overhead, while the network lifetime of the
SNCS algorithm drops about 5 percent. The MDCS-Dist
algorithm has lower overhead since each node sleeps for a
random period at the beginning of each round and goes to
sleep immediately when it finds out that it does not cover
any uncovered target.

For the Progressive, Feedback, and MDCS-Greedy algo-
rithms, the cover sets are computed in the sink. We assume
that there is a scheduling stage before the network starts to
monitor all the targets. In the scheduling state, the informa-
tion of all the cover sets is broadcasted to the nodes.
Therefore, both the size of each message and the time
duration when a transceiver is in the idle mode are
proportional to the number of nodes and the number of
total cover sets. Fig. 10 shows the network lifetime of the

three algorithms with and without considering the overhead.
The network lifetime of the Progressive algorithm drops about
2 percent when considering the overhead and the network
lifetime of the MDCS-Greedy algorithm drops about 1 percent,
while the network lifetime of the Feedback algorithm drops
about 0.2 percent, which is almost 10 times less than the other
algorithms. The Feedback algorithm has the lowest overhead
because it has the least number of total cover sets as shown in
Fig. 15.

In the following simulations, the communication and
computation overhead is considered for all the algorithms.

7.3 Algorithm Comparison

7.3.1 Network Lifetime

Fig. 11 shows the relationship between the network lifetime
and the sensing radius r when M ¼ 10; N ¼ 50, and W ¼ 3.
We can see that, for all algorithms, the network lifetime
increases when the sensing radius r increases. Among all the
algorithms, the Feedback algorithm has the best performance,
followed by the MDCS-Greedy algorithm. The MDCS-Dist
algorithm has about the same performance as the Progressive
algorithm, even when r increases. The network lifetime of
the SNCS algorithm increases relatively slowly when r
increases to greater than 125, i.e., the network becomes more
complicated. The MDCS-Greedy algorithm works better than
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Fig. 11. Network lifetime versus sensing radius r with M ¼ 10; N ¼ 50,

and W ¼ 3.

Fig. 10. Affect of communication and computation overhead to network

lifetime of the Progressive, Feedback, and MDCS-Greedy algorithms

with M ¼ 10; N ¼ 50, and W ¼ 3.

TABLE 2
Power Consumption Levels

Fig. 9. Affect of communication and computation overhead to network

lifetime of the MDCS-Dist and SNCS algorithms with M ¼ 10; N ¼ 50,

and W ¼ 3.
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the Progressive algorithm because of the following reason. In

each iteration of the Progressive algorithm, multiple cover

sets and their work time are determined, while the residual

lifetimes of the sensors are not taken into consideration.

However, in the MDCS-Greedy algorithm, this factor has

been considered both in the conflicting direction elimination

process and in the direction selection process.
Fig. 12 shows the relationship between the network

lifetime and the number of sensors when 10 targets are

deployed, r is fixed at 100, and W is set as 3.
Fig. 13 shows that the network lifetime drops as the

number of targets increases when N ¼ 50; r ¼ 100, and

W ¼ 3. We can see that the network lifetime drops

significantly when M varies from 1 to 2 and then drops

relatively slowly when M varies from 5 up to 20.

7.3.2 Runtime

Fig. 14 shows the runtime for the algorithms when

M ¼ 10; r ¼ 100, and W ¼ 3. As the number of sensors

increases, the runtime increases. The runtime of the Feedback

algorithm is longer than the Progressive algorithm. The

MDCS-Greedy, MDCS-Dist, and SNCS algorithms have

much shorter runtime than the other two algorithms.

7.3.3 Number of Total Cover Sets

Fig. 15 shows the number of the total cover sets of each

algorithm when M ¼ 10; r ¼ 100, and W ¼ 3. We can see

that the Feedback algorithm generates the least cover sets. As

stated before, fewer cover sets with longer work time are

more efficient and practical.

7.4 Discussion

As shown by the simulations, the Feedback algorithm has the

longest network lifetime, the fewest cover sets, and the

lowest communication overhead. However, it has a longer

runtime. It is feasible that the sink, a central processing base

station, can collect the information needed from the sensors

and run the algorithm. The sink then transfers the result

back to sensors. The MDCS-Dist and SNCS algorithms have

shorter network lifetime and higher communication over-

head, while they are able to detect a node that has died

unexpectedly in the scheduling stage prior to a round.

8 CONCLUSIONS AND FUTURE WORK

Scheduling algorithms to save energy and prolong the

network lifetime are always important for sensor networks.

However, algorithms designed for omnidirectional sensor
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Fig. 14. Runtime versus number of sensors N with M ¼ 10; r ¼ 100, and

W ¼ 3.

Fig. 15. Number of total cover sets versus number of sensors N with

M ¼ 10; r ¼ 100, and W ¼ 3.

Fig. 13. Network lifetime versus number of targets M with

N ¼ 50; r ¼ 100, and W ¼ 3.

Fig. 12. Network lifetime versus number of sensors N with

M ¼ 10; r ¼ 100, and W ¼ 3.
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networks may not be suitable for directional sensor
networks. In this paper, we have studied the problem of
finding a directional cover set, the DCS, and the problem of
finding multiple directional cover sets to extend the
network lifetime, the MDCS, and proved that both
problems are NP-complete. We have proposed several
centralized algorithms and distributed algorithms. As
future work, we plan to find out how the proposed
algorithms approximate the optimal solution for the MDCS
and test the proposed algorithms in the real environments.

APPENDIX A

PROOF OUTLINE OF THEOREM 3

By the DCS-Search algorithm, we first get a tuple G ¼
ðDG;AGÞ from D and A. To assist this proof, we give a
definition as follows. Given a tuple G ¼ ðDG;AGÞ, if there
exists a cover set, which is a subset of DG, covering all the
targets in AG, we say that G is feasible; otherwise, we say
that G is infeasible. According to this definition, G is feasible
at the beginning of the search process.

When G is feasible and Case 1 is satisfiable, we will prove
by contradiction that after handling Case 1, the newly
updated G, denoted by G0, is still feasible. Assume that G0 is
infeasible. According to the process of handling Case 1,
G0 ¼ ðDG � V ;AG � UÞ. Recall that U is the set of targets in
AG that is covered by di�;j� . V is the set of directions inDG that
covers no target in the updated AG from which the targets in
U have been removed. The only way to makeG0 feasible is to
add more directions to cover the targets inAG � U . We add V
to G0 and get a tuple G00 ¼ ðDG;AG � UÞ. Because the
directions in V make no contribution to the coverage of the
targets inAG � U;G00 is still infeasible. Then, we add U toG00

and get the tuple ðDG;AGÞ, which is G. Because there does
not exist a cover set in DG to cover all the targets in AG � U ,
which is a subset of AG;G is infeasible. This is contradictory
to the condition that G is feasible. Therefore, after handling
Case 1, the updated G is still feasible.

Now we consider Cases 2 and 3. Suppose that in certain
step of the search process, G is feasible and Case 2 is
satisfiable. When handling Case 2, we select a direction di�;j�

of sensor s�i . If selecting this direction results in that G is
infeasible in the following step, backtracking to try another
direction of s�i is allowed by handling Case 3. Since G is
feasible, it implies that there exists at least one direction of
s�i that can be selected into the final Ds and selecting this
direction results in that G is still feasible in the following
step. Hence, handling Case 2 together with Case 3 can
finally result in that G is feasible in the following step.

By repeatedly handling Cases 1, 2, and 3, we ultimately
get a set of selected directions Ds. Now we prove that Ds is
a cover set for A. Recall that when targets are removed from
AG, nonconflicting directions that only cover these targets
are selected into Ds in Case 1. When the search process
completes, i.e., AG ¼ ;; Ds is a set of directions that covers
all the targets in A, which do not conflict with each other.
Therefore, Ds is a cover set for A.
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