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Abstract— A directional sensor network consists of a number
of directional sensors, which can switch to several directions to
extend their sensing ability to cover the interested targets in
a given area. Because a directional sensor has a smaller angle
of sensing range or even does not cover any target when it is
deployed, how to cover the interested targets becomes a major
problem in directional sensor networks. In this paper, we address
the directional cover set problem (DCS) of finding a cover set in a
directional sensor network, in which the directions cover all the
targets. We propose both centralized and distributed algorithms
for the DCS. We also introduce two applications that utilize these
algorithms to extend the network work time while maximizing
the coverage of the targets. Simulation results are presented
to demonstrate the performance of these algorithms and the
applications.

I. INTRODUCTION

A directional sensor network is a set of directional sensor
nodes deployed to monitor a given area or some interested
targets [1], [2]. In contrast to an omni-directional sensor that
has an omni-angle of sensing range, a directional sensor has
a limited angle of sensing range due to technical constraints
or cost considerations, such as video sensors [3], ultrasonic
sensors [4] and infrared sensors [5]. To extend the sensing
ability of directional sensors to monitor their omni-angle
vicinity, several ways can be adopted. One way is to put several
directional sensors of the same kind on one sensor node, each
of which faces to a different direction. Another way is to place
the sensor node onto a mobile device so that the node can
move around. The third way is to equip the sensor node with
a device that enables the sensor node to switch or rotate to
different directions. We adopt the third way in this paper so
that a sensor can face to several directions.

For simplicity, the following assumptions and notations are
adopted in this paper. In the directional sensor model, the
sensing region of each direction of a directional sensor is
a sector of the sensing disk centered at the sensor with a
sensing radius. When the sensors are randomly deployed,
each sensor initially faces to one of its directions. Some
interested targets with known locations are deployed in a two-
dimensional Euclidean plane. Each sensor node equips exactly
one sensor on it. Therefore, the terms sensor and node are not
differentiated in this paper. A number of directional sensors
are randomly scattered close to these targets. If a directional
sensor faces to a direction, we say that the sensor works in

this direction and the direction is the work direction of the
sensor. When this sensor works in a direction and a target is
in the sensing region of the sensor, we say that the direction
of the sensor covers the target.

How to monitor or cover the interested targets in directional
sensor networks is a challenging problem, which is also a
coverage problem. This is because a directional sensor has a
smaller angle of sensing range than an omni-directional sensor
or even does not cover any target when it is deployed. We call
a subset of directions of the sensors as a cover set, in which
the directions cover all the targets. Because no more than one
direction of the same sensor can work at the same time, they
cannot be in a cover set. We call the problem of finding a
cover set in a directional sensor network as the directional
cover set problem (DCS).

We propose a centralized algorithm and a distributed algo-
rithm for the DCS that schedule directional sensors to face
to certain directions to cover the targets. In the proposed
algorithms, we do not put restrictions on the number of
selected sensors. Enhanced algorithms can be proposed based
on these algorithms for different optimization purposes such
as power conservation or interference avoidance. We introduce
two applications that utilize the proposed algorithms to extend
the network work time while maximizing the coverage of the
targets.

The rest of the paper is organized as follows: Section II
briefly surveys the related work in the literature. In Section III,
the definition of the DCS is given. In Section IV, we describe
our algorithms for the DCS. In Section V, we describe two
applications that use these algorithms. Simulation results are
presented to show the performance of the proposed algorithms
in Section VI. We conclude the paper in Section VII.

II. RELATED WORK

The coverage of a sensor network represents the quality
of monitoring. According to the objectives to be monitored,
different coverage models have been studied in both omni-
directional and directional sensor networks.

The area coverage represents the fraction of the region that
is covered by sensors [6], [7], [8]. In [9], [10], [11], both area
coverage and communication connectivity are considered for
omni-directional sensor networks. If the communication radius
is at least twice of the sensing radius, complete area coverage



of a convex region implies communication connectivity among
the active sensors [9], [10].

The target coverage problem in omni-directional sensor
networks is also studied in literature when a set of targets
are deployed in a region [12], [13], [14]. [12] assumes that a
sensor can watch only one target at a time, and builds a target
watching timetable for each sensor to maximize the network
lifetime. Sensors are organized into subsets that are activated
successively to extend the network lifetime [13], [14].

The coverage problem in directional sensor networks has
attracted intense interest recently. In [1], the authors present
a directional sensor model where each sensor is fixed to one
direction and analyze the probability of the full area coverage.
In [2], [15], a directional sensor model where a sensor is
allowed to work in several directions is proposed. In [2],
heuristic and distributed algorithms are also proposed to find
a minimal set of directions, in which the directions cover
the maximal number of targets. The problem of finding non-
disjoint cover sets and allocating the work time for each of
them to maximize the network lifetime is discussed in [15]. To
solve this problem, three heuristic algorithms based on Linear
Programming are proposed and evaluated in [15].

III. DIRECTIONAL COVER SET PROBLEM

We use the following notations and definitions throughout
the paper.

• M : the number of targets.
• N : the number of sensors.
• W : the number of directions per sensor.
• am: the mth target, 1 ≤ m ≤ M .
• si: the ith sensor, 1 ≤ i ≤ N .
• di,j : the jth direction of the ith sensor, 1 ≤ i ≤ N ,

1 ≤ j ≤ W . We define di,j = {am| am is covered by
di,j ,∀am ∈ A} and si = {di,j | j = 1 . . . W}. Hence, if
am ∈ di,j , am is covered by di,j .

• A: the set of targets. A = {a1, a2, . . . , aM}.
• S: the set of sensors. S = {s1, s2, . . . , sN}.
• D: the set of the directions of all the sensors. D =

{di,j | i = 1 . . . N, j = 1 . . . W}. Notice that
⋃N

i=1 si is a
non-overlapped partition of D.

Definition 1. Cover Set: Given a collection D of subsets of
a finite set A and a partition S of D, a cover set for A is a
subset D

′ ⊆ D such that every element in A belongs to at
least one member of D

′
and every two elements in D

′
cannot

belong to the same member of S.

Definition 2. Directional Cover Set Problem (DCS): Given a
collection D of subsets of a finite set A and a partition S of
D, find a cover set for A.

The DCS has been proven to be NP-complete by reduction
from the 3-CNF-SAT problem [15].

IV. SOLUTIONS TO DCS

In this section, we first present a centralized greedy algo-
rithm named DCS-Greedy that has high possibility to find a

cover set, considering that the DCS is NP-complete. Then,
we propose a distributed algorithm named DCS-Dist. We will
show in Section V how to utilize these algorithms to extend
the network work time while maximizing the coverage of the
targets.

A. DCS-Greedy Algorithm

In this subsection, we propose a greedy algorithm named
DCS-Greedy. Given a directional sensor network with a set A
of M targets, a set S of N sensors and a set D of directions.
We define a tuple G = (DG, AG), where AG is the set of
targets and AG = A initially, and DG is the set of directions
that cover at least one target in AG, i.e., DG = {di,j | am ∈
di,j ,∃am ∈ A,∀di,j ∈ D}. If more than one direction of a
sensor is in DG, we say that these directions conflict with
each other and are conflicting directions. Otherwise, if only
one direction of the sensor is in DG, we say that this direction
is a non-conflicting direction. For example, the directions di,j

and di,j′ of the same sensor si conflict with each other if they
are both in DG. We need to select a set of non-conflicting
directions from DG to be a cover set. We denote Ds as such
a selected set of directions.

In this algorithm, when selecting directions from DG to Ds,
we consider two cases, Case 1 and Case 2. For either case, we
specify a pivot policy to pick a direction among the candidate
directions in DG that satisfy this case. The pivot policy we use
here is to find a direction to cover the target that can be covered
by minimal number of directions. Other pivot policies can also
be adopted according to specific application requirements.

Case 1. Each target in AG is covered by at least one direction
in DG and there exist non-conflicting directions in DG.

We handle this case as the following to select non-
conflicting directions into Ds. Pick a non-conflicting direction
di∗,j∗ in DG using the pivot policy. We denote U as the set
of the targets in AG that are covered by di∗,j∗ . Remove the
targets in U from AG. After the targets in U are removed from
AG, there are some directions in DG that cover no targets in
the current AG, including the direction di∗,j∗ . We denote the
set of these directions as V . Remove the directions in V from
DG. If a direction di,j in V conflicts with the directions neither
in Ds nor in DG, we add di,j to Ds. Remove di,j from V
and repeat to select a new direction from V into Ds until the
remaining directions in V conflict with the directions either in
Ds or DG.

Case 2. Each target in AG is covered by at least one direction
in DG and no non-conflicting direction exists in DG.

We handle this case as the following to select a direction
and remove its conflicting directions from DG. Apply the pivot
policy to select a direction di∗,j∗ . Remove the directions that
conflict with di∗,j∗ from DG.

The DCS-Greedy algorithm works as follows: Firstly, while
Case 1 is satisfiable, repeat to use the pivot policy to select
non-conflicting directions into Ds. Secondly, if Case 2 is
satisfiable, use the pivot policy to select one direction and



remove its conflicting directions. Repeat to handle Case 1 and
Case 2 and get a set of directions Ds. When AG is empty,
the algorithm succeeds to find a cover set Ds. When DG is
empty but AG is not empty, it fails to find a cover set, but it
still returns Ds, which is a set of non-conflicting directions,
as the work directions of the sensors.

The DCS-Greedy algorithm is shown below:
DCS-Greedy algorithm

1: AG = A, DG = {di,j | am ∈ di,j ,∃am ∈ A,∀di,j ∈ D},
G = (DG, AG), Ds = ∅

2: while DG �= ∅
3: while Case 1 is satisfiable
4: Pick a non-conflicting direction di∗,j∗ in DG using

the pivot policy
5: U = {am| am ∈ di∗,j∗ ,∀am ∈ AG}, AG = AG −U
6: V = DG − {di,j | am ∈ di,j ,∃am ∈ AG,∀di,j ∈

DG}, DG = DG − V
7: for each di,j ∈ V
8: if di,j conflicts with the directions neither in Ds

nor DG

9: Ds = Ds ∪ {di,j}
10: end if
11: end for
12: end while
13: if DG �= ∅
14: if Case 2 is satisfiable
15: Pick di∗,j∗ in DG using the pivot policy
16: DG = DG − {di∗,j | j �= j∗,∀di∗,j ∈ DG}
17: end if
18: end if
19: end while
20: if AG �= ∅
21: Ds = ∅
22: end if
23: return Ds

B. DCS-Dist Algorithm

In this subsection, we propose a distributed algorithm called
DCS-Dist to the DCS for the applications when centralized
algorithms are inapplicable. In this algorithm, a sensor only
cooperates with its neighbors in its communication range.
There are two stages in this algorithm, the deployment stage
and the decision stage.

In the deployment stage, each sensor scans the targets
that its directions can cover and assigns a priority to each
target locally. The fewer times a target can be covered by the
directions of a sensor and its neighbors, the higher priority it is
assigned to. Initially, each sensor is in the active state. First,
each sensor si scans the environment to detect the targets,
denoted by Mi,j , that can be covered by each of its directions
di,j . Sensor si maintains the sets of Mi,j , for j = 1 . . . W
locally. Then, si broadcasts a message indicating each of its
directions di,j and the targets Mi,j that it can cover to its
neighbors, denoted as Ni. After waiting for a period for the
broadcasted messages of its neighbors, si assigns a priority
pm to each target am in

⋃W
j=1 Mi,j , where pm = 1/Tm and

Tm = 1 + | {di′ ,j | am ∈ di′ ,j ,∀di′ ,j ∈ si′ , si′ ∈ Ni} |.
The variable Tm indicates how many times a target am in⋃W

j=1 Mi,j can be covered by the directions of si and its
neighbors.

After each sensor has assigned the priority to the targets
that its directions can cover, it shifts to the decision stage.
In this stage, a sensor probes the states of its neighbors and
decides its work direction. First, each sensor si initializes a
timer Tp as a value uniformly distributed in [0, δp] and goes to
sleep. When the timer Tp decreases to zero, si wakes up and
marks itself PREWORK. Note that the sensor in the PREWORK

state does not respond to its neighbors. Then, si broadcasts
a probing message and waits for a period for its neighbors’
replies. On receiving the message, any active neighbor but not
in the PREWORK state responds to si with a message indicating
its work direction. At last, si makes a decision based on its
neighbors’ replies. If it finds out that its directions can cover
some uncovered targets, it erases the PREWORK mark, and
works in the direction that covers the uncovered target am∗

with the highest priority pm∗ ; otherwise, it can simply go to
sleep.

The DCS-Dist algorithm is shown below:
DCS-Dist Algorithm

1: Each sensor si detects the targets Mi,j that can be covered
by each of its directions di,j , for j = 1 . . . W

2: si broadcasts a message including di,j and Mi,j , for j =
1 . . . W , to its neighbors Ni

3: si waits for a period for the broadcasted messages of its
neighbors

4: for each am ∈ ⋃W
j=1 Mi,j

5: si assigns a priority pm = 1/Tm to am, where Tm =
1 + | {di′ ,j | am ∈ di′ ,j ,∀di′ ,j ∈ si′ , si′ ∈ Ni} |

6: end for
7: si initializes the timer Tp and goes to sleep
8: if Tp ≤ 0
9: si wakes up and marks itself PREWORK

10: si broadcasts a probing message and waits for a period
for replies

11: for each si′ ∈ Ni

12: if si′ is active but not in the PREWORK state
13: si′ responds to si to indicate its work direction
14: end if
15: end for
16: if ∃am ∈ Mi that am is uncovered
17: si erases the PREWORK mark
18: si works in the direction that covers the uncovered

target am∗ with the highest priority pm∗

19: else
20: si goes to sleep
21: end if
22: end if

The time complexity of the DCS-Greedy algorithm is
O(N2WM). The time complexity of the DCS-Dist algorithm
is O(NWM).



V. APPLICATIONS BASED ON ALGORITHMS FOR DCS

In this section, we show two applications that are based
on the DCS-Greedy algorithm and the DCS-Dist algorithm re-
spectively to extend the network work time while maximizing
the coverage of the targets. We denote the lifetime of a sensor
si as Li, which is the time duration when the sensor is in the
active state all the time. For simplicity, we assume each sensor
initially has an equal lifetime.

Firstly, we briefly describe an application called WT-Greedy
that is based on the DCS-Greedy algorithm. In each iteration of
this application, using the DCS-Greedy algorithm, we compute
at most one set of non-conflicting directions as the work
directions of the sensors. We set the work time of each cover
set as a fixed value ∆t, which is determined according to
application requirements. The residual lifetime of any selected
sensor si is updated, i.e., Li = Li − ∆t. The pivot policy
when finding a set of non-conflicting directions here takes into
consideration the residual lifetime of each sensor and works
as follows: First, we find the uncovered target am∗ that can
be covered by minimal number of directions. Then, we find
the sensor si∗ with the longest residual lifetime among all
the candidates whose directions can cover am∗ . At last, the
direction di∗,j∗ of si∗ that can cover am∗ is selected. Repeat to
compute the sets of non-conflicting directions until the residual
lifetimes of all the sensors are less than ∆t. These sets of
non-conflicting directions work one after another for ∆t each,
according to the order when they are generated.

Secondly, we introduce the other application called WT-
Dist based on the DCS-Dist algorithm. This application has
two stages, the deploying stage and the monitoring stage. The
deploying stage of this application works the same as the
DCS-Dist algorithm. In the monitoring stage, sensors work
in rounds. Each round lasts for a period of ∆t, which is the
same as the one in the WT-Greedy. At the beginning of one
round, a sensor probes the states of its neighbors and decides
its work direction the same as the decision stage of the DCS-
Dist algorithm. For simplicity, we assume the duration of the
decision stage of each round is a very small value compared to
∆t and can be omitted. The sensor which decides to work in
the decision stage works until the end of this round. Otherwise,
it sleeps until the end of this round. Each sensor decides
to work or sleep as described above in each round until its
residual lifetime is less than ∆t.

VI. SIMULATION RESULTS

We evaluate the performance of the DCS-Greedy and DCS-
Dist algorithms and their applications through simulations
running on a computer with 3 GHz CPU and 1 GB memory.
N sensors with sensing radius r and M targets are deployed
uniformly in a region of R×R, where R = 400. Each sensor
has W directions.

A. Comparison Across the Solutions to the DCS

Each algorithm runs 1000 times through random placement
of sensors and targets. For the DCS-Dist algorithm, we assume
the communication radius is twice of the sensing radius.

Fig. 1. Success rate vs. number of sensors N with M = 40, r = 100 and
W = 3

Fig. 2. Success rate vs. number of directions per sensor W with M = 40,
N = 40 and r = 100

1) Success Rate: Fig. 1 shows the success rate of the DCS-
Greedy and DCS-Dist algorithms. The success rate is the ratio
of the number of samples where a cover set is successfully
found by each algorithm to the total number of samples. We
set M = 40, r = 100 and W = 3. From this figure we can
see that the DCS-Greedy algorithm has a higher success rate
than the DCS-Dist algorithm. Fig. 2 shows the relationship
between the success rate of the three algorithms and the
number of directions per sensor W . The success rate drops
when W increases. Especially, the success rate of the DCS-
Dist algorithm decreases much faster.

2) Coverage Percentage: Fig. 3 shows the coverage per-
centage of the DCS-Greedy and the DCS-Dist algorithms. The
coverage percentage is the ratio of the number of covered
targets to the total number of targets M . We set M = 40,
r = 100 and W = 3. We can see from this figure that
the coverage percentage of both algorithms increases quickly
when N increases from 10 to 30 and relatively slowly after 30.
The coverage percentage of the DCS-Dist algorithm is slightly
smaller than that of the DCS-Greedy algorithm. Fig. 4 shows
that the coverage percentage of the two algorithms drops when
W grows. From this figure, we can see that the DCS-Greedy
algorithm can still have relatively higher coverage percentage
even when W = 6.



Fig. 3. Coverage percentage vs. number of sensors N with M = 40,
r = 100 and W = 3

Fig. 4. Coverage percentage vs. number of directions per sensor W with
M = 40, N = 40 and r = 100

B. Simulation for the Two Applications

In this simulation, the initial lifetime of each sensor is set as
1. Each application runs 10 times through random deployment
of sensors and targets. Fig. 5 shows the relationship between
the coverage percentage and the network work time for the
WT-Greedy and WT-Dist when M = 10, r = 100, W = 3 and
∆t = 0.05. As the time goes, the coverage percentage drops.
In this figure, we can see that the average coverage percentage
of the WT-Dist drops faster than the WT-Greedy.

VII. CONCLUSIONS

In this paper, we have studied the problem of finding a
cover set. A centralized algorithm named DCS-Greedy and a
distributed algorithm named DCS-Dist have been proposed for
this problem. The DCS-Greedy algorithm has a higher possi-
bility to find a cover set, and has a greater coverage percentage
than the DCS-Dist algorithm. Based on the algorithms for the
DCS, we have also introduced two applications to extend the
network work time.
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