
Data Aggregation Scheduling in Uncoordinated
Duty-Cycled Wireless Sensor Networks under

Protocol Interference Model

XIANLONG JIAO1,2, WEI LOU2 , XIAODONG WANG1 , JIANNONG CAO2,
MING XU1, XINGMING ZHOU1⋆

1 School of Computer,
National University of Defense and Technology, Changsha 410073, China

2 Department of Computing,
The Hong Kong Polytechnic University, Kowloon 999077, Hong Kong

Data aggregation is a critical and widely-used operation in wireless sen-
sor networks (WSNs). Data aggregation scheduling (DAS) aims to find
an interference-free scheduling for data aggregation with the minimum
latency. Most existing algorithms for the DAS problem, unfortunately,
assume that nodes are always active, and hence are not suitable for duty-
cycled scenarios. In this paper, we investigate the DAS problem in un-
coordinated duty-cycled WSNs (DAS-UDC problem) under protocol in-
terference model and prove its NP-hardness. To solve this problem, we
propose two novel approximation algorithms called SDAS and CDAS
with the data aggregation latency of at most O(Rs + ∆) and O(R + ∆)
respectively, where Rs, ∆ and R are the maximum depth of the breadth-
first-search tree rooted at the sink node s, the maximum node degree
and the graph-theoretic radius of the network respectively. We conduct
extensive simulations to evaluate the performance of our algorithms and
report their average performance.

Key words: data aggregation scheduling, duty cycle, approximation al-
gorithms, breadth-first-search, wireless sensor networks, protocol inter-
ference model.

⋆ email: {xljiao, xdwang, mxu, xmzhou}@nudt.edu.cn, {csweilou,
csjcao}@comp.polyu.edu.hk

1

1 INTRODUCTION

Data aggregation, which aggregates the data (e.g., temperature) from the sen-
sor nodes to the sink node, is one of the most critical communication oper-
ations in wireless sensor networks (WSNs). The energy of nodes in WSNs
is powered by batteries, and to save the energy, these nodes in WSNs often
switch between the active state and the sleep state. In uncoordinated duty-
cycled multi-hop wireless sensor networks (UDC-WSNs), nodes indepen-
dently determine their sleep/active cycles without coordination [3, 6, 9, 27].
To promptly deal with the emergent events in many applications of UDC-
WSNs, such as fire monitoring and battlefield surveillance, data aggregation
must be completed with low latency.

Three common interference models in UDC-WSNs include graph-based
interference model, protocol interference model and physical interference
model [14]. Under graph-based interference model, the interference is treated
as the collision, and if two nodes send their messages to their common neigh-
boring node concurrently, the common neighboring node will receive neither
of the two messages. Under protocol interference model, if one node lies
in the interference range of one transmitter node, it cannot receive the mes-
sages from other nodes when this transmitter node is transmitting its message.
Under physical interference model, the signal to interference-plus-noise ratio
(SINR) of one receiver node should be above some threshold such that this
node can correctly decode the message from one transmitter node.

Data aggregation scheduling (DAS) aims to provide an interference-free
scheduling for data aggregation with the minimum latency. The DAS problem
in WSNs without sleep/active cycles has been proved to be NP-hard in [1].
To solve this problem, many approximation algorithms [1, 11, 14, 19, 23, 25]
have been proposed. However, most of these algorithms assume that nodes
are always active. In UDC-WSNs, nodes can only transmit their messages
to their neighboring nodes when these neighboring nodes are active. More-
over, it may leave many idle time slots unused if simply extending existing
algorithms. Therefore, it is critical to devise an efficient data aggregation
algorithm for the DAS problem in duty-cycled scenarios.

In this paper, we investigate the DAS problem in UDC-WSNs (DAS-UDC
problem) under protocol interference model. To the best of our knowledge,
this is the first work to study the DAS-UDC problem under protocol interfer-
ence model. The main contributions of this paper include the following.

1. We formulate the DAS-UDC problem under protocol interference model
and prove its NP-hardness.

2

2. We propose two novel approximation algorithms, called SDAS and
CDAS, to address the DAS-UDC problem under protocol interference
model. SDAS algorithm directly aggregates the data to the sink node,
while CDAS algorithm uses some node to assist the sink node’s data
aggregation.

3. We prove that the data aggregation latency of the SDAS and CDAS al-
gorithms is at most 3β2|T |(15Rs+∆−3) and (45β2+1)|T |R+3β2|T |(∆−3)
respectively, where β is ⌈ 2

3 (α + 2)⌉, α denotes the ratio of the interfer-
ence radius to the transmission radius, |T | is the number of time slots
in a scheduling period, Rs is the maximum depth of the breadth-first-
search tree rooted at the sink node s, ∆ is the maximum node degree of
the network, and R is the graph-theoretic radius of the network.

4. We conduct extensive simulations to evaluate the performance of our
algorithms, and the simulation results confirm the efficiency of our al-
gorithms.

The remainder of this paper is organized as follows. In Section 2, we detail
the related work on data aggregation. Section 3 introduces the network model,
problem formulation and some graph-theoretic definitions. We present our
data aggregation scheduling algorithms in Section 4. Section 5 provides the
performance analysis of our algorithms. The results of extensive simulations
are shown and analyzed in Section 6. Finally, we conclude this paper and
discuss our future work in Section 7.

2 RELATED WORK

A lot of researches [4, 12, 15, 16, 20, 24, 26] have been done to study the
data aggregation problem due to its importance in WSNs. Intanagonwiwat
et al. [12] propose a greedy data aggregation approach based on an energy-
efficient aggregation tree. They show that their approach achieves up to 45%
energy savings over opportunistic data aggregation approaches. Shrivastava
et al. [15] present a distributed data aggregation technique which saves band-
width and power compared to naive data aggregation schemes. To explore
energy-latency tradeoffs for data aggregation in WSNs, Yu et al. [26] pro-
vide both offline and online efficient algorithms. Other work [4, 16, 20, 24]
also proposes efficient solutions to reduce the latency or energy consumption
of data aggregation. However, none of these researches focus on the DAS
problem.

3

Chen et al. [1] prove that the DAS problem under graph-based interference
model is NP-hard, and propose an approximation algorithm with a ratio of
∆−1. Huang et al. [11] also investigate this problem and propose an algorithm
with the data aggregation latency of at most 23R + ∆ + 18. Yu et al. [25]
propose a distributed data aggregation scheduling algorithm with the latency
of at most 24D + 6∆ + 16, where D is the graph-theoretic diameter of the
network. Xu et al. [23] also present an efficient distributed data aggregation
algorithm, which improves the worst data aggregation latency to 16R+∆−16.

Wan et al. [18] propose three approximation algorithms with the latency
of at most 15R + ∆ − 4, 2R + O(log R) + ∆ and (1 + O(log R/ 3√R))R + ∆
respectively. They also claim that their first two algorithms can be extended
with a generic expansion technique to solve the DAS problem under protocol
interference model. Wan et al. [19] propose an approximation algorithm to
solve the DAS problem in multi-channel multi-hop wireless networks under
protocol interference model. The DAS problem under physical interference
model is investigated by Li et al. [14].

Nevertheless, none of the work mentioned above has investigated the DAS
problem in duty-cycled scenarios. Notice that, sensor nodes consume a large
amount of energy if they always wake up, so it is reasonable to let these
nodes turn to sleep. In duty-cycled scenarios, the transmitter node must wait
for the receive node to wake up before it transmits the message, and thus the
problems (data aggregation, broadcast, and so on) in these scenarios differ
from the problems in conventional scenarios. To tackle the problems in duty-
cycled scenarios, many solutions are proposed [7,8,13,21,22]. Wu. et al. [22]
schedule the wake-up time slots of sensor nodes to save the energy consump-
tion by data aggregation. Their proposed approach requires the coordination
of sensor nodes, and thus incurs extra communication overhead. The other
work [7,8,13,21] focuses on the broadcast problem in duty-cycled scenarios.
However, to the best of our knowledge, less attention is paid to the DAS-UDC
problem under protocol interference model. In this paper, we will investigate
this problem and devise efficient approximation algorithms for this problem.

3 PRELIMINARIES

3.1 Network Model
We model the uncoordinated duty-cycled wireless sensor network as a UDG
G = (V, E), where V contains one sink node s and n − 1 sensor nodes in the
network, and E is the set of edges, which exist between any two nodes u and
v if their Euclidean distance is no larger than the transmission radius r. We

4

regard protocol interference model as the interference model. We denote by
r f the interference radius, and by α the interference ratio, which equals to the
ratio of r f to r. Every node cannot send or receive the messages at the same
time. We call node c the graph center of the network if the hop distance of the
shortest path from node c to the farthest node in the network is the minimum.
This hop distance denoted by R is called the graph-theoretic radius of the
network, which can be achieved by using the Floyd-Warshall algorithm [5].

We assume that nodes independently determine the active/sleep time in
advance. The duty cycle is defined as the ratio of the active time to the whole
scheduling time. The whole scheduling time is divided into multiple schedul-
ing periods of the same length. One scheduling period T is further divided
into fixed |T | unit time slots, i.e., T = {0, 1, ..., |T | − 1}. Every node v indepen-
dently and randomly chooses one time slot in T as its active time slot A(v). A
node can transmit the message at any time slot, but is only allowed to receive
the message at its active time slot.

3.2 Problem Formulation
We study the data aggregation problem in UDC-WSNs, where all the sensor
nodes require transmitting their data to the sink node. The data aggregation
task starts at time slot 0 and completes when the sink node receives the data
of all the sensor nodes. We model the data aggregation scheduling as as-
signing the transmitting time slots for all the nodes, i.e., assigning a function
TTS : V → 2N , whereN denotes the natural number set. For example, if we
assign the transmitting time slot t1 for node v, then TTS (v) = {t1}. Here, the
transmitting time slot t1 can be any time slot in some scheduling period, i.e.,
t1 = k1|T | + k2, where k1 ∈ {0, 1, 2, ...} and 0 ≤ k2 ≤ |T | − 1.

Note that, if we complete the data aggregation scheduling, some node u
will be assigned with a transmitting time slot t2, which is the largest in the
assigned transmitting time slots for all the nodes. Data aggregation can fin-
ish one time slot after node u transmits the data at time slot t2. It implies
that the data aggregation latency equals to t2 + 1. Therefore, to minimize the
data aggregation latency can be transformed to minimize the largest assigned
transmitting time slot t2, which is the objective of data aggregation schedul-
ing.

Lemma 1. The DAS-UDC problem under protocol interference model is NP-
hard.

Proof. If we set T = {0} and α = 1, all the nodes keep always active and the
protocol interference model reduces to the graph-based interference model.

5

1 2 3 45 6 7 8 910 11 12 13 14 1516 17 18 19 2021 22 23 2425 26 27 1510 611 252116 17
15

2024 9144
22212

FIGURE 1
An example to illustrate the coloring scheme

Therefore the DAS-UDC problem under protocol interference model reduces
to the DAS problem in conventional WSNs under graph-based interference
model, which has been proved to be NP-hard in [1], so this lemma holds. �

3.3 Graph-Theoretic Definitions
We denote by G[U] the subgraph of G induced by a subset U of V . If there is
no edge between any two nodes in G[U], we call the subset U an Independent
Set (IS) of G. A Maximal Independent Set (MIS) of G is not a subset of any
other IS of G. It is known that a node can be adjacent to at most 5 nodes in
an IS of a UDG [17]. U1 is a cover of U2, if, for any node in U2, there is one
node in U1 which is adjacent to this node. A minimal cover of U is a cover
of U in which the removal of any single node destroys the covering property.

A proper tessellation of hexagons in the whole plane is to partition the
plane into hexagons of the same size. Coloring of these hexagons is to assign
every hexagon one natural number representing the color of this hexagon.
According to [10], a proper 3β2 coloring of half-open half-closed hexagons
can make sure that the distance between two hexagons of the same color is
larger than 3β − 2 radii of the hexagon. If we set β as ⌈ 2

3 (α + 2)⌉ and set the
radius of the hexagon as r/2, the distance between two hexagons of the same
color will be larger than (α + 1)r = r f + r.

We take Figure 1 as an example to illustrate the coloring scheme. We
assume that α is 2, and hence β = ⌈ 2

3 (α + 2)⌉ = 3. A proper tessellation and
27-coloring (3β2 = 27) of hexagons are shown in Figure 1. The radius of
the hexagon is r/2. Using this coloring scheme, we can make sure that the
distance between two hexgons of the same color is larger than (α + 1)r, e.g.,

6

the distance of two hexagons colored with 1 in Figure 1 is at least 7 × r/2 =
3.5r, which is larger than (α + 1)r = 3r.

4 APPROXIMATION ALGORITHMS

We have shown that the DAS-UDC problem under protocol interference model
is NP-hard in previous section. In this section, we first present one approx-
imation algorithm called SDAS, which directly aggregates the data from the
sensor nodes to the sink node. We then propose another approximation al-
gorithm called CDAS. This algorithm first aggregates the data from all the
sensor nodes to the graph center, and then transmits the aggregated data from
the graph center to the sink node.

4.1 Sink based Data Aggregation Scheduling
The Sink based Data Aggregation Scheduling (SDAS) algorithm contains five
steps as shown in Algorithm 1. The first step is to color all the nodes. We
use the coloring scheme detailed in Section 3.3 to color these nodes, and use
f : V → {1, 2, ..., 3β2} to denote this coloring method. The second and third
steps are to divide all the nodes according to the depths of these nodes in the
BFS tree T s

BFS rooted at sink node s. Rs denotes the maximum depth of T s
BFS .

Algorithm 1 SDAS Algorithm

Input: G = (V, E), s, A, α, r, T .
Output: Aggregation Scheduling TTS : V → 2N .

1: Apply a proper tessellation and 3β2-coloring of hexagons with a radius
of r/2 in the whole area to color all the nodes. Use f : V → {1, 2, ..., 3β2}
to denote this coloring method, where β is ⌈ 2

3 (α + 2)⌉.
2: Construct the BFS tree T s

BFS rooted at sink node s.
3: Assign MaxDepth(T s

BFS) to Rs, and divide V into different layers L0, L1,
..., LRs .

4: Apply Algorithm 2 to construct the data aggregation tree T s
A inwardly

rooted at node s, and to get the array P to maintain every node’s inward
parent node.

5: Apply Algorithm 3 to achieve the scheduling of aggregating the data to
node s.

The fourth step is to construct the data aggregation tree T s
A inwardly rooted

at node s. The pseudocode of this step is shown in Algorithm 2. T s
A is con-

structed based on the connected dominated set (CDS) similar to that used
in [18]. The construction of CDS contains two processes. During the first

7

process, we find a dominating set which consists of independent sets. First,
we construct the IS’es B0, B1, ..., BRs layer by layer. The first layer L0 only
contains node s, so B0 is {s}. In each layer Li (1 ≤ i ≤ Rs), we construct
the IS Bi of G[Li] such that

∪
0≤ j≤i B j is an MIS of G[

∪
0≤ j≤i L j]. Note that,∪

0≤i≤Rs
Bi is an MIS of G[

∪
0≤i≤Rs

Li] = G, which is a dominating set of G.

Algorithm 2 Construct the data aggregation tree

1: B0 ← {s}
2: for i← 1 to Rs do
3: Construct an IS Bi of G[Li] such that

∪
0≤ j≤i B j is an MIS of

G[
∪

0≤ j≤i L j].
4: TA ← (VA, EA), VA ← V , EA ← ∅
5: for i← 1 to Rs − 1 do
6: Find a minimal cover Ui ⊆ Li of Bi+1.
7: for each node v ∈ Bi+1 do
8: Find one of its neighboring nodes u ∈ Ui.
9: P(v)← u, EA ← EA

∪
(v, P(v))

10: Find a minimal cover C ⊆ Bi−1
∪

Bi of Ui.
11: for each node u ∈ Ui do
12: Find one of its neighboring nodes x ∈ C.
13: P(u)← x, EA ← EA

∪
(u, P(u))

14: for i← 1 to Rs do
15: Wi ← Li\{Bi

∪
Ui}

16: Find a minimal cover C ⊆ Bi−1
∪

Bi of Wi.
17: for each node w ∈ Wi do
18: Find one of its neighboring nodes x ∈ C.
19: P(w)← x, EA ← EA

∪
(w, P(w))

20: return TA and P

During the second process, we find some nodes to connect the nodes in the
IS’es. In each layer Li (1 ≤ i ≤ Rs − 1), we find a minimal cover Ui ⊆ Li of
Bi+1, and set the nodes in Ui as the parent nodes of nodes in Bi+1. In each layer
Li (1 ≤ i ≤ Rs), we collect the nodes, which are in Li but neither in Bi nor
in Ui, into Wi. It is easy to find that Bi−1

∪
Bi is a cover of Li\Bi = Ui

∪
Wi,

since otherwise some nodes in Li\Bi can be chosen into Bi which destroys the
property of MIS. Since Bi−1

∪
Bi should be a cover of Ui, we find a minimal

cover C ⊆ Bi−1
∪

Bi of Ui, and set the nodes in C as the parent nodes of nodes
in Ui. Using this method, we can ultimately achieve a CDS

∪
0≤i≤Rs

(Bi
∪

Ui).
In each layer Li (1 ≤ i ≤ Rs), since Bi−1

∪
Bi is a cover of Wi, we first find a

minimal cover C ⊆ Bi−1
∪

Bi of Wi, and then set the nodes in C as the parent

8

nodes of nodes in Wi.
The final step is to schedule the data aggregation based on the tree T s

A. The
pseudocode of this step is shown in Algorithm 3. The scheduling contains two
processes. During the first process, all the nodes outside the CDS (collected
in W =

∪
1≤i≤Rs

Wi) aggregate their data to their parent nodes. In the second
process, the nodes in the CDS aggregate their data from the bottom layer
to the top layer. In each layer Li (1 ≤ i ≤ Rs), nodes in Ui first aggregate
their data to their parent nodes which belong to Bi−1

∪
Bi. Nodes in Bi then

aggregate their data to their parent nodes which belong to Ui−1.

Algorithm 3 Data aggregation

1: t ← 0
2: W ← ∪1≤i≤Rs

Wi

3: Apply Algorithm 4 with X = W and t to achieve the scheduling of data
aggregation from nodes in W to their parent nodes and to get the ending
time te.

4: t ← te
5: for i← Rs down to 1 do
6: Apply Algorithm 4 with X = Ui and t to achieve the scheduling of

data aggregation from nodes in Ui to their parent nodes and to get the
ending time te.

7: t ← te
8: Apply Algorithm 4 with X = Bi and t to achieve the scheduling of

data aggregation from nodes in Bi to their parent nodes and to get the
ending time te.

9: t ← te
10: return TTS

We schedule the data aggregation from the nodes in a set X to their parent
nodes as shown in Algorithm 4. Since the parent nodes can only receive the
data from their children nodes when these parent nodes are active, we first
divide the nodes in X into different subsets X0, X1, ..., X|T |−1 according to the
active time slots of their parent nodes. We then schedule the transmissions
from the children nodes in each X j (0 ≤ j ≤ |T | − 1) to their parent nodes
collected in Y .

To avoid the interference of the transmissions, we schedule the transmis-
sions from the children nodes to their parent nodes based on the colors of
the nodes (the children nodes or the parent nodes) in the MIS

∪
0≤i≤Rs

Bi. To
improve the data aggregation latency, we do not directly use these colors to
assign the transmitting time slots of the children nodes. Instead, we collect

9

the colors of the nodes in the MIS
∪

0≤i≤Rs
Bi into a color set F, and use the

indexes of these colors in F to schedule the transmissions.
The scheduling works iteratively. In each iteration, each parent node y in

Y receives one of its children nodes x at time slot t j + (g(z) − 1)|T | + j, where
t j is the beginning time slot of each iteration, g(z) is the index of the color of
node z (which is node x if node x belongs to the MIS, otherwise is node y) in
F and j is the active time slot of the parent node y. Afterward, t j advances to
multiple times of |T | when all these transmissions in this iteration can finish.
After all the transmissions are scheduled, we can achieve that the ending time
slot te equals to max0≤ j≤|T |−1 t j when all the transmissions can finish.

Algorithm 4 Nodes in X aggregate data to their parent nodes at time slot t

1: for each node x ∈ X do
2: Collect x into XA(P(x)).
3: for j← 0 to |T | − 1 do
4: t j ← t
5: while X j , ∅ do
6: Y ← {P(x)|x ∈ X j}, t′ ← t j, X′ ← ∅
7: for each node y ∈ Y do
8: Find one of its children nodes x in X j.
9: X′ ← X′

∪{x}.
10: Set Z as X′ if X′ contains the nodes in the MIS

∪
0≤i≤Rs

Bi, and oth-
erwise set Z as Y .

11: F ← { f (z)|z ∈ Z}
12: Set g(z) as the index of f (z) in F for each node z.
13: for each node x ∈ X′ do
14: Find the corresponding index g(z) to node x or its parent node y

in Y .
15: TTS (x)← TTS (x)

∪{t j + (g(z) − 1)|T | + j}
16: if t′ < t j + (g(z) − 1)|T | + j + 1 then
17: t′ ← t j + (g(z) − 1)|T | + j + 1
18: X j ← X j\{x}
19: t j ← ⌈t′/|T |⌉|T |
20: te ← max0≤ j≤|T |−1 t j

21: return TTS and te

Example 1. We take an example to illustrate the SDAS algorithm. The net-
work consists of one sink node s and seven sensor nodes as shown in Fig-
ure 2(a). The pentagram denotes the sink node s and the circles denote the
sensor nodes. The scheduling period T contains ten time slots from 0 to 9.

10

1 2 3 45 6 7 8 910 11 12 13 14 1516 17 18 19 2021 22 23 2425 26 27 1510 611 252116 17
15

2024 9144
222126 7 1 4 35ss Sink node s

2
Sensor node

(a) G’s topology and colors

6 7 1 4 35s2 L1 L2L0
(b) BFS tree T s

BFS

6 7 1 4 35s2 L1 L2L0
(c) Data aggregation tree T s

A

FIGURE 2
An example to illustrate the SDAS algorithm

Every node independently and randomly chooses its active time slot from the
ten time slots. Table 1 lists the active time slots of all the nodes.

Using SDAS algorithm, we first apply a proper 27-coloring (α = 2) scheme
to color all the nodes. As shown in Figure 2(a), every node is in a hexagon,
and is colored with the number of this hexagon, e.g., node 1’s color f (1) is
12. Table 1 lists the colors of all the nodes. Next, we construct the BFS tree
T s

BFS rooted at sink node s, and divide all the nodes into different layers as
shown in 2(b). In this example, L0 = {s}, L1 = {1, 2, 3} and L2 = {4, 5, 6, 7}.

Then we apply Algorithm 2 to construct the data aggregation tree T s
A. Fig-

ure 2(c) demonstrates T s
A. The sink node and the black nodes 4 and 6 belong

11

TABLE 1
Active time slots and colors of all the nodes

Node ID s 1 2 3 4 5 6 7
Active time slot 3 6 7 5 2 8 9 5
Color 14 12 18 15 27 5 11 21

to B0 and B2 respectively, and the plaid nodes 1 and 2 belong to U1. The
white nodes 3, 5 and 7 belong to W1 and W2 respectively. The CDS consists
of the sink node and nodes 1, 2, 4, 6.

Afterward, we schedule the data aggregation based on Algorithm 3. The
current time slot t is 0. The white nodes 3, 5 and 7 first aggregate their data to
their parent nodes s, 4 and 6 respectively. According to Algorithm 4, nodes
3, 5 and 7 are divided into different subsets according to their parent nodes’
active time slots. In this example, X2 = {5}, X3 = {3} and X9 = {7}.

So we first schedule the time of the transmission from the node in X2 to its
parent node, i.e., from node 5 to its parent node 4. Since node 4 belongs to
B2, its color f (4) is collected into F, i.e., F = {27}. Hence the index g(4) of
node 4’s color f (4) in F equals to 1. Next we schedule the transmitting time
of node 5 at time slot t2 + (g(4)− 1)|T |+ 2 = t+ (1− 1) ∗ 10+ 2 = 2. Since the
transmission takes one time slot, we can achieve that the transmission of the
node in X2 can finish at time slot 3, i.e., t′ = 3. t2 advances to multiple times of
|T |when the transmission of the node in X2 can finish, so t2 = ⌈t′/|T |⌉|T | = 10.

Similarly, we can get that the transmissions from node 3 to its parent node
s and from node 7 to its parent node 4 are scheduled at time slots 3 and 9
respectively. Moreover, both t3 and t9 advance to time slot 10. So the current
time slot t advances to time slot max{t2, t3, t9} = 10.

The nodes in the CDS then aggregate the data to their parent nodes from
the bottom layer to the top layer. In the layer L2, the black nodes 4 and 6 in
B2 aggregate their data to their parent nodes 2 and 1 respectively. According
to Algorithm 4, nodes 4 and 6 are divided into two subsets X7 and X6 because
A(2) = 7 and A(1) = 6. X6 is handled before X7, and we collect node 6’s
color f (6) into F, so F = {11} and g(6) = 1. We schedule the transmission
time of node 6 at time slot t6 + (g(6) − 1)|T | + 6 = t + (1 − 1) ∗ 10 + 6 =
16. Afterward, t′ equals to 17, and t6 advances to time slot ⌈t′/|T |⌉|T | = 20.
Similarly, we can achieve that node 4 will aggregate its data to node 2 at time

12

slot t7 + (g(4) − 1)|T | + 7 = t + (1 − 1) ∗ 10 + 7 = 17, and t7 advances to time
slot 20. The current time slot t advances to time slot max{t6, t7} = 20.

In layer L1, nodes 1 and 2 in U1 aggregate their data to the sink node s.
First, they are collected into one subset X3 since they have the same parent
node. The data aggregation works iteratively. In the first iteration, we assume
that node 1 first aggregates the data to node s. Since node s belongs to B0,
its color is collected into F, i.e., F = {14}. Therefore g(s) equals to 1. We
schedule the transmission time of node 1 at time slot t3 + (g(s) − 1)|T | + 3 =
t + (1 − 1) ∗ 10 + 3 = 23. t′ advances to time slot 24, and t3 advances to time
slot ⌈t′/|T |⌉|T | = 30.

In the second iteration, node 2 aggregates its data to node s. We collect
node s’s color into F, and hence g(s) = 1. Then we schedule the transmission
time of node 2 at time slot t3 + (g(s) − 1)|T | + 3 = 30 + (1 − 1) ∗ 10 + 3 = 33.
Note that, the data aggregation finishes one time slot after node 2 aggregates
the data to node s, so the data aggregation latency is 34 time slots.

4.2 Center assisted Data Aggregation Scheduling
In this subsection, we detail the Center assisted Data Aggregation Scheduling
(CDAS) algorithm. CDAS algorithm contains six steps, and the pseudocode
of this algorithm is shown in Algorithm 5.

Algorithm 5 CDAS Algorithm

Input: G = (V, E), s, A, α, r, T .
Output: Aggregation Scheduling TTS : V → 2N .

1: Apply a proper tessellation and 3β2-coloring of hexagons with a radius
of r/2 in the whole area to color all the nodes. Use f : V → {1, 2, ..., 3β2}
to denote this coloring method, where β is ⌈ 2

3 (α + 2)⌉.
2: Find the graph center c and construct the BFS tree T c

BFS rooted at node c.
3: Assign MaxDepth(T c

BFS) to R, and divide V into different layers L0, L1,
..., LR.

4: Apply Algorithm 2 with Rs = R to construct the data aggregation tree T c
A

inwardly rooted at node c, and to get the array P to maintain every node’s
inward parent node.

5: Apply Algorithm 3 with Rs = R to achieve the scheduling of aggregating
the data to node c. Do not schedule the transmission of node s to its
parent node if node s does not have children nodes in T c

A.
6: Schedule node c to transmit the aggregated data to node s along the short-

est path between node c and node s in T c
BFS .

Similar to the SDAS algorithm, the CDAS algorithm first applies a proper

13

coloring method to color all the nodes. We then find the graph center c by
using the Floyd-Warshall algorithm [5]. Next we construct the BFS tree T c

BFS
rooted at node c, and divide all the nodes into different layers L0, L1, ..., LR,
where R is the graph-theoretic radius of the network. Algorithm 2 is also used
to construct the data aggregation tree T c

A inwardly rooted at node c.
Afterward, we schedule all the sensor nodes to aggregate their data to the

graph center c by applying Algorithm 3. Note that we require modifying Rs

to R in this case. If the sink node s does not have children nodes in T c
A, it

does not need to forward the data of other sensor nodes, and hence we do
not schedule the transmission from node s to its parent node. Finally, when
node c receives all the data from other sensor nodes, we schedule this node to
transmit the aggregated data to node s along the shortest path between node c
and node s in T c

BFS .
Example 2. We take an example to illustrate the CDAS algorithm. The
network consists of one sink node s and nine sensor nodes. The network
topology of G is shown in Figure 3(a). The pentagram and the octagon denote
the sink node s and the graph center c respectively. The scheduling period T
contains ten time slots from 0 to 9. Ten nodes independently and randomly
choose their active time slots from these ten time slots. The active time slots
of ten nodes are listed in Table 2. The current time t is time slot 0.

According to Algorithm 5, we first color all the nodes by a proper tessel-
lation and 27-coloring (α = 2) of hexagons as shown in Figure 3(a), e.g., the
color of node 6 is 9. The colors of all the nodes are listed in Table 2. We
then construct the BFS tree T c

BFS rooted at node c, and divide all the nodes
into different layers as shown in Figure 3(b). In this example, L0 = {c},
L1 = {1, 2, 4, 7, 8} and L2 = {s, 3, 5, 6}.

Next, we construct the data aggregation tree T c
A as shown in Figure 3(c).

The black nodes c, 3 and 6 belong to the IS’es B0 and B2 respectively, and the
plaid nodes 2 and 4 belong to U1. The white nodes 1, 7, 8, 5 and sink node s
belong to W1 and W2 respectively. The CDS consists of the black nodes and
the plaid nodes.

Afterward, we schedule the data aggregation from all the nodes to node c
by applying Algorithm 3 with Rs = R. The sink node s has no children nodes,
and hence the transmission from node s to its parent node 3 is not scheduled.
The white nodes 1, 5, 7 and 8 first aggregate their data to their parent nodes
in T c

A, and are divided into different subsets according to their parent nodes’
active time slots. In this example, X2 = {5} and X6 = {1, 7, 8}.

According to Algorithm 4, node 5 in X2 is first scheduled to aggregate its
data to its parent node 3. The color of node 3 is collected into a color set F,

14

1 2 3 45 6 7 8 910 11 12 13 14 1516 17 18 19 2021 22 23 2425 26 27 1510 611 252116 17
15

2024 9144
222124 c6 7 1 82 35s

s cSink node s Graph center c
(a) G’s topology and colors

4 c6 7 1 82 35sL1L2L0
(b) BFS tree T c

BFS

4 c6 7 1 82 35sL1L0L2
(c) Data aggregation tree T c

A

4 c6 7 1 82 35sL1L0L2
(d) Transmissions from node c to node s

FIGURE 3
An example to illustrate the CDAS algorithm

i.e., F = {15}. Since F only contains node 3’s color f (3), g(3) equals to 1. We
schedule the transmitting time of node 3 at time slot t2 + (g(3) − 1)|T | + 2 =
t + (1 − 1) ∗ 10 + 2 = 2. The transmission of the node in X2 finishes at time
slot 2 + 1 = 3, i.e., t′ = 3. Therefore t2 advances to next scheduling period
when the transmission finishes, i.e., t2 = ⌈t′/|T |⌉|T | = 10.

Next, nodes 1, 7 and 8 in X6 aggregate their data to node c iteratively.
In each iteration, only one node is scheduled to aggregate its data to node
c. We assume that three nodes follow the order of 1, 7 and 8 to carry out
the data aggregation. According to Algorithm 4, in each iteration, the color
of node c is collected into F, i.e., F = { f (c)} = {18}, and g(c) is set as 1.

15

TABLE 2
Active time slots and colors of ten nodes

Node ID s c 1 2 3 4 5 6 7 8
Active time slot 3 6 7 5 2 8 9 5 8 2
Color 9 18 12 14 15 17 5 9 21 27

In the first iteration, the transmitting time of node 1 is scheduled at time slot
t6+(g(c)−1)|T |+6 = t+(1−1)∗10+6 = 6. Then t6 advances to next scheduling
period when this transmission finishes, i.e., t6 = 10. In the second iteration,
the transmitting time of node 7 is scheduled at time slot t6+ (g(c)−1)|T |+6 =
16, and t6 advances to time slot 20. In the third iteration, the transmitting
time of node 8 is scheduled at time slot t6 + (g(c) − 1)|T | + 6 = 26, and t6
advances to time slot 30. Then the current time slot t advances to time slot
max{t2, t6} = 30.

The nodes in the CDS then aggregate their data to their parent nodes from
the bottom layer to the top layer. In the bottom layer L2, U2 is empty, and B2

contains two nodes 3 and 6. According to Algorithm 4, node 3 and node 6
are divided into two subsets X5 and X8 respectively based on the active time
slots of their parent nodes 2 and 4. First, the color of node 3 is collected into
F, i.e., F = { f (3)} = {15}, and g(3) is set as 1. Next, the transmitting time of
node 3 is scheduled at time slot t5+ (g(3)−1)|T |+5 = t+ (1−1)∗10+5 = 35.
t5 advances to time slot 40. For the subset X8, the color of node 6 is collected
into F, i.e., F = { f (6)} = {9}, and g(6) is set as 1. The transmitting time of
node 3 is scheduled at time slot t8+ (g(6)−1)|T |+8 = t+ (1−1)∗10+8 = 38.
t8 advances to time slot 40. The current time slot t advances to time slot
max{t5, t8} = 40.

In the layer L1, B1 is empty, and U1 contains two nodes 2 and 4. According
to Algorithm 4, nodes 2 and 4 are both collected into one subset X6 since they
have the same parent node c. These two nodes aggregate their data to node c
in two iterations respectively. In each iteration, the color of node c is collected
into F, so F = { f (c)} = {18} and g(c) is set as 1. In the first iteration, we
assume that node 2 first aggregates its data to node c. The transmitting time
of node 2 is scheduled at time slot t6+(g(c)−1)|T |+6 = t+(1−1)∗10+6 = 46.
t6 advances to time slot 50. In the second iteration, we can achieve that the
transmitting time of node 4 is scheduled at time slot t6 + (g(c) − 1)|T | + 6 =

16

t + (1 − 1) ∗ 10 + 6 = 56. t6 advances to time slot 60. The current time t
advances to time slot max{t6} = 60

Finally, node c transmits the aggregated data to node 2 at time slot t +
A(2) = 60+ 5 = 65, which forwards the data to node s at time slot 73. Figure
3(d) illustrates this process. The whole data aggregation process finishes one
time slot after node 2 transmits the aggregated data to node s, so the total data
aggregation latency is 74 time slots.

5 PERFORMANCE ANALYSIS

Theorem 1. The SDAS algorithm provides a correct and interference-free
data aggregation scheduling.

Proof. In the SDAS algorithm, the data of nodes outside the CDS is first
aggregated to their parent nodes in the CDS, and then the data of nodes in the
CDS is aggregated layer by layer. In each layer Li, nodes in Ui aggregate the
data to their parent nodes in Bi−1

∪
Bi, and afterward nodes in Bi aggregate

the data to their parent nodes in Ui−1. So the sink node will ultimately receive
the data from all the sensor nodes. According to the tessellation and coloring
method discussed in Section 3.3, the distance between two nodes in an IS
with the same color should be larger than r f + r. It is easy to prove that the
transmissions to these two nodes or from these two nodes are interference-
free. Since all the transmissions are scheduled based on the colors of nodes
in the MIS

∪
0≤i≤Rs

Bi, these transmissions are interference-free. �

Theorem 2. The CDAS algorithm provides a correct and interference-free
data aggregation scheduling.

Proof. The CDAS algorithm contains two processes. During the first process,
the data is aggregated to the graph center c. This process is similar to that of
the SDAS algorithm. Therefore we can use the similar proof to that used
in previous theorem to prove that node c can receive the data from all the
sensor nodes, and the transmissions during this process are interference-free.
During the second process, node c transmits the data to the sink node s. Since
the network is connected, there should be a path between node c and node
s and the nodes in the path transmit the data one by one. Therefore node s
can ultimately receive the data and the transmissions scheduled during this
process are interference-free. �

Theorem 3. The data aggregation latency of the SDAS algorithm is at most
3β2|T |(15Rs + ∆ − 3).

17

Proof. First, we consider the latency of Algorithm 4. Nodes in X aggregate
their data to their parent nodes iteratively. The transmissions to parent nodes
with different active time slots are separated. Since each parent node can
receive the data of only one of its children nodes during one iteration, the
parent node y with the most children nodes will always exist in the set Y
during all the iterations, and the number of its children nodes in the set X j will
decrease by one after each iteration. So the number of iterations is bounded
by the number of the children nodes of node y. Since the indexes of colors in
F are no larger than 3β2 and the active time slot of a node is no larger than
|T | − 1, the latency of transmissions in one iteration is at most (3β2 − 1)|T | +
(|T | − 1) + 1 = 3β2|T |.

Nodes outside the CDS first aggregate their data to their parent nodes.
Since these parent nodes have at most ∆ children nodes in W, the number
of iterations is at most ∆ and the latency of these transmissions is at most
3β2|T |∆. According to [18], one parent node of nodes in Ui has at most 11
children nodes in Ui, and one parent node of nodes in Bi has at most 4 children
nodes in Bi if 2 ≤ i ≤ Rs. Moreover, B2 is empty and the sink node s has at
most 12 children nodes in U2. Therefore the latency of transmissions from
the bottom layer to the top layer is at most

∑Rs
i=2 3β2|T |(11+ 4)+ 3β2|T | ∗ 12 =

3β2|T |(15Rs − 3). We combine two kinds of latency, and achieve that the data
aggregation latency of the SDAS algorithm is at most 3β2|T |(15Rs+∆−3). �

Theorem 4. The SDAS algorithm has an approximation ratio of at most
3β2|T |(∆ + 12).

Proof. According to Theorem 3, the data aggregation latency of the SDAS
algorithm is at most 3β2|T |(15Rs +∆ − 3). We can observe from the BFS tree
T s

BFS that the data of the nodes in the bottom layer LRs should be transmitted
Rs times to reach the sink node s. Moreover, the latency of each transmission
is at least one time slot, so we can claim that the data aggregation latency of
the optimal solution is at least Rs. Since Rs ≥ 1, it follows that 3β2|T |(15Rs +

∆−3) ≤ 3β2|T |[15Rs+ (∆−3)Rs] = 3β2|T |(∆+12)Rs, and hence this theorem
holds. �

Theorem 5. The data aggregation latency of the CDAS algorithm is at most
(45β2 + 1)|T |R + 3β2|T |(∆ − 3).

Proof. Using the similar proof to that used in Theorem 3, we can achieve that
the latency of the first process in the CDAS algorithm is at most 3β2|T |(15R+
∆ − 3). During the second process, we consider the worst case where the

18

latency of each hop in the shortest path between node c and node s is |T |.
Since the hop distance of this path is bounded by R, the latency of the second
process is at most R|T |. We combine the latency of two processes, and achieve
that the data aggregation latency of the SDAS algorithm is at most (45β2 +

1)|T |R + 3β2|T |(∆ − 3). �

Theorem 6. The CDAS algorithm has an approximation ratio of at most
(3β2∆ + 36β2 + 1)|T |.

Proof. According to Theorem 5, the data aggregation latency of the CDAS
algorithm is at most (45β2+1)|T |R+3β2|T |(∆−3). According to the definition
of the graph-theoretical radius R, it follows that R ≤ Rs. Moreover, R ≥ 1, so
it follows that,

(45β2 + 1)|T |R + 3β2|T |(∆ − 3)

≤(45β2 + 1)|T |R + 3β2|T |(∆ − 3)R

=(3β2∆ + 36β2 + 1)|T |R
≤(3β2∆ + 36β2 + 1)|T |Rs.

Based on the proof of Theorem 4, we can achieve that the data aggregation
latency of the optimal solution is at least Rs, and hence this theorem holds. �

Theorem 7. The total number of transmissions scheduled by the SDAS algo-
rithm is n − 1.

Proof. According to the SDAS algorithm, every sensor node only transmits
once to aggregate the data to its parent node, so the total number of transmis-
sions scheduled by this algorithm is n − 1. �

Theorem 8. The total number of transmissions scheduled by the CDAS algo-
rithm is at most n + R − 1.

Proof. The first process of the CDAS algorithm is similar to that of the SDAS
algorithm and only the graph center c does not transmit in this process, so the
number of transmissions during this process is at most n−1 according to The-
orem 7. During the second process, the number of transmissions is bounded
by the hop distance of the shortest path between node c and node s. This hop
distance is at most R, so we combine the number of transmissions during two
processes and achieve that the total number of transmissions scheduled by the
CDAS algorithm is at most n + R − 1. �

Theorem 9. The time complexity of the SDAS algorithm is O(n2).

19

Proof. The first step in the SDAS algorithm is to apply a proper tessellation
and 3β2-coloring of hexagons to color the nodes. It takes O(S A

r2) time to tessel-
late and color the hexagons, where S A denotes the area size of the whole area,
and takes O(n) time to color all the nodes. We can regard O(S A

r2) as O(1) if n
is large. The next step is to construct the BFS tree rooted at node s. It takes
O(n2) time to do this according to [2]. The running time of dividing all the
nodes into different layers is O(n). It takes O(n2) time to construct the data ag-
gregation tree and to schedule the data aggregation. So the time complexity of
the SDAS algorithm is O(1)+O(n)+O(n2)+O(n)+O(n)+O(n2) = O(n2). �

Theorem 10. The time complexity of the CDAS algorithm is O(n3).

Proof. The main additional steps in the CDAS algorithm compared to the
SDAS algorithm are to find the graph center c and to schedule the transmis-
sions from node c to node s along the shortest path. The running time of
these two steps is O(n3) and O(n) respectively. So, based on Theorem 9, we
can achieve that the time complexity of the CDAS algorithm is O(n3). �

6 PERFORMANCE EVALUATION

In this section, we conduct extensive simulations to evaluate the performance
of our SDAS and CDAS algorithms. Since SAS and PAS algorithms can be
extended by a generic expansion technology to solve the DAS problem under
protocol interference model [18], and the extended versions of these two al-
gorithms are so far the best two algorithms, we further extend the extended
versions of these two algorithms to solve the DAS-UDC problem under proto-
col interference model. We call the extended algorithms as SAS-E and PAS-
E respectively, and compare the performance of our algorithms with that of
SAS-E and PAS-E algorithms. The extending approach is as follows. For the
links scheduled to transmit in the same time slot by the extended versions of
the SAS and PAS algorithms, we schedule these links to transmit at the active
time slots of the receiver nodes during one scheduling period.

We randomly deploy all the nodes in a rectangle area of 200 m × 200m.
These nodes have the same transmission radius. We test the data aggregation
latency and the total numbers of transmissions of four algorithms. The data
aggregation latency is the total time slots required by the sink node to receive
the data from all the sensor nodes. We study the effect of different network
configurations including the network size, the transmission radius, the duty
cycle and the interference ratio on the performance of four algorithms.

20

100 150 200 250 300
0

500

1000

1500

2000

2500

3000

3500

D
at

a
A

gg
re

ga
tio

n
La

te
nc

y
(ti

m
e-

sl
ot

)

Number of Nodes

 SAS-E
 PAS-E
 SDAS
 CDAS

(a) Data aggregation latency

100 150 200 250 300
0

50

100

150

200

250

300

350

To
ta

l N
um

be
r o

f T
ra

ns
m

is
si

on
s

Number of Nodes

 SAS-E
 PAS-E
 SDAS
 CDAS

(b) Total number of transmissions

FIGURE 4
Performance variation under different numbers of nodes

The network size ranges from 100 to 300 with an interval of 50. We vary
the range of the transmission radius from 30 m to 70 m. The number of time
slots in T increases from 10 to 50 with an interval of 10, and the duty cy-
cle which equals to 1/|T | varies between 0.1 and 0.02. The experiments are
conducted with one configuration changed and the other three fixed. These
experiments are run on 20 randomly generated graph topologies. Moreover,
we carry out the experiments 10 times for each graph topology and randomly
choose one node as the sink node in each experiment. The average perfor-
mance of these experiments is reported.

6.1 Impact of Network Size
First, we evaluate the impact of the network size on the performance of four
algorithms. The transmission radius is fixed to 30 m, the duty cycle is set as
0.05 with |T | = 20 and the interference ratio α is set as 3. Figure 4 illus-
trates the performance variation of four algorithms under different numbers
of nodes. We can observe from Figure 4(a) that the data aggregation latency
increases with the increase of the network size. This is because more nodes
have to send its data to the sink node, and a node can only receive the data
from one node in one scheduling period when it is active.

Note that our two algorithms perform better than SAS-E and PAS-E al-
gorithms in terms of data aggregation latency especially when the network
size is large. The reason is that, our algorithms separate the transmissions
better than SAS-E and PAS-E algorithms according to the active time slots of
the receiver nodes. Another observation is that CDAS outperforms SDAS in

21

30 40 50 60 70
0

1000

2000

3000

4000

5000

D
at

a
A

gg
re

ga
tio

n
La

te
nc

y
(ti

m
e-

sl
ot

)

Transmission Radius (m)

 SAS-E
 PAS-E
 SDAS
 CDAS

(a) Data aggregation latency

30 40 50 60 70
0

50

100

150

200

250

300

350

To
ta

l N
um

be
r o

f T
ra

ns
m

is
si

on
s

Transmission Radius (m)

 SAS-E
 PAS-E
 SDAS
 CDAS

(b) Total number of transmissions

FIGURE 5
Performance variation under different transmission radiuses

these experiments. This is because the transmission radius is small, and the
network diameter may be large. If the hop distance between the sink node and
the farthest node is large, the number of layers in the BFS tree T s

BFS is large
and the latency of the transmissions scheduled layer by layer will be high.

Figure 4(b) illustrates the performance variation of four algorithms in terms
of the total number of transmissions. It requires more transmissions for more
nodes to finish the data aggregation operation, so the total numbers of trans-
missions increase with the increase of the network size. Note that, since all
the three algorithms SAS-E, PAS-E and CDAS first schedule the sensor nodes
to transmit its data to the graph center, and then schedule the graph center to
transmit the aggregated data to the sink node, the total numbers of transmis-
sions of these three algorithms are equal. SDAS directly aggregates the data
to the sink node, so the total number of transmissions scheduled by this al-
gorithm is smaller than those of the other three algorithms. The results also
validate the theoretical analysis in previous section.

6.2 Impact of Transmission Radius
Next, we study the performance variation of four algorithms with different
transmission radiuses. Figure 5 shows the results for the experiments with
200 nodes, the duty cycle of 0.05 and the interference ratio of 3. When the
transmission radius increases, more transmissions interfere with each other
and hence have to be separated. Therefore, the data aggregation latency in-
creases with the increase of the transmission radius as shown in Figure 5(a).
Our algorithms SDAS and CDAS perform better than SAS-E and PAS-E al-

22

0.1 0.05 0.033 0.025 0.02
0

1000

2000

3000

4000

5000

6000

D
at

a
A

gg
re

ga
tio

n
La

te
nc

y
(ti

m
e-

sl
ot

)

Duty Cycle

 SAS-E
 PAS-E
 SDAS
 CDAS

(a) Data aggregation latency

0.1 0.05 0.033 0.025 0.02
0

50

100

150

200

250

300

350

To
ta

l N
um

be
r o

f T
ra

ns
m

is
si

on
s

Duty Cycle

 SAS-E
 PAS-E
 SDAS
 CDAS

(b) Total number of transmissions

FIGURE 6
Performance variation under different duty cycles

gorithms due to the similar reason discussed in previous subsection.
Note that, CDAS incurs higher latency than SDAS after the transmission

radius reaches 50m. The reason is that, the network diameter gets smaller
when the transmission radius increases. It bring fewer benefits to let the graph
center assist the data aggregation, and the latency of the transmissions from
the graph center to the sink node takes more adverse effects on the total data
aggregation latency instead. Since the network size is fixed, the total numbers
of transmissions change a little as shown in Figure 5(b).

6.3 Impact of Duty Cycle
In this subsection, we evaluate the impact of the duty cycle on the perfor-
mance of four algorithms. These experiments are run with the network size
of 200, the transmission radius of 30 m and the interference ratio of 3. The
results of these experiments are shown in Figure 6.

When the duty cycle decreases, the number of time slots in a scheduling
period increases. The sensor nodes may wait more time for their parent nodes
to wake up before they aggregate the data to their parent nodes. Hence the
performance curves of these four algorithms in terms of data aggregation la-
tency trend up as shown in Figure 6(a). We can also observe from this figure
that our algorithms incur lower latency than SAS-E and PAS-E algorithms,
and CDAS performs better than SDAS because the transmission radius is
small. Figure. 6(b) illustrates the variation of total numbers of transmissions
scheduled by these four algorithms, which change a little because the number
of nodes is fixed.

23

2 3 4 5 6
0

500

1000

1500

2000

2500

3000

3500

4000

D
at

a
A

gg
re

ga
tio

n
La

te
nc

y
(ti

m
e-

sl
ot

)

Interference Ratio

 SAS-E
 PAS-E
 SDAS
 CDAS

(a) Data aggregation latency

2 3 4 5 6
0

50

100

150

200

250

300

350

To
ta

l N
um

be
r o

f T
ra

ns
m

is
si

on
s

Interference Ratio

 SAS-E
 PAS-E
 SDAS
 CDAS

(b) Total number of transmissions

FIGURE 7
Performance variation under different interference ratios

6.4 Impact of Interference Ratio
Finally, we evaluate the impact of the interference ratio on the performance of
four algorithms. These experiments are run with the network size of 200, the
transmission radius of 30 m and the duty cycle of 0.05. The results are shown
in Figure 7. When the interference ratio grows, the interference range of a
node enlarges, and hence fewer transmissions can be simultaneous. There-
fore the data aggregation latency of all the four algorithms increases with the
increase of the interference ratio as shown in Figure 7(a).

Another observation is that, our algorithms perform better than SAS-E
and PAS-E algorithms. The latency of our algorithms increases slowly, while
the latency of SAS-E and PAS-E algorithms increases significantly when the
interference ratio grows. The reason is that, SAS-E and PAS-E algorithms
determine whether two links interfere with each other only based on the dis-
tance between some two nodes of these links, and schedule the transmissions
of these two links in different scheduling periods. In our algorithms, instead,
if the receiver nodes of these two links have different active time slots, we can
schedule the transmissions of these two links in one scheduling period. From
Figure 7(b), we can see that the total number of transmissions scheduled by
four algorithms change a little since the network size is fixed.

7 CONCLUSION AND FUTURE WORK

In this paper, we investigate the DAS-UDC problem under protocol inter-
ference model. We prove that this problem is NP-hard and propose two

24

approximation algorithms SDAS and CDAS. Both two algorithms provide
correct and interference-free data aggregation schedulings. The data aggre-
gation latency of SDAS and CDAS is bounded by 3β2|T |(15Rs + ∆ − 3) and
(45β2 + 1)|T |R + 3β2|T |(∆ − 3) respectively. The total numbers of transmis-
sions scheduled by these two algorithms are n − 1 and at most n + R − 1
respectively. We also show that both two algorithms are polynomial time al-
gorithms. The results of extensive simulations show that, our two algorithms
SDAS and CDAS achieve lower data aggregation latency than extended ver-
sions of existing algorithms. In addition, CDAS outperforms SDAS in most
scenarios, but performs worse than SDAS in terms of data aggregation latency
when the transmission radius is large. Moreover, SDAS schedules fewer to-
tal number of transmissions than CDAS and extended versions of existing
algorithms.

Although our algorithms cannot be directly used to solve the data aggre-
gation problem under physical interference model, this paper provides certain
guidance significance to the research under realistic interference models. As
claimed in [10], by carefully selecting the transmission radius and the in-
terference radius, we can transform the problem under physical interference
model to the problem under protocol interference model. Therefore, using
this method, we can extend our algorithms to solve the data aggregation prob-
lem under physical interference model, and we leave it as our future work.

REFERENCES

[1] X. J. Chen, X. D. Hu, and J. M. Zhu. (2005). Minimum data aggregation time problem in
wireless sensor networks. Lecture Notes in Computer Science 3794, pages 133–142.

[2] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. (2009). Introduction to
Algorithms, Third Edition. The MIT Press.

[3] O. Dousse, P. Mannersalo, and P. Thiran. (2004). Latency of wireless sensor networks
with uncoordinated power saving mechanisms. In Proc. of ACM MobiHoc.

[4] K.-W. Fan, S. Liu, and P. Sinha. (2008). Dynamic forwarding over tree-on-dag for
scalable data aggregation in sensor networks. IEEE Transactions on Mobile Computing,
16(10):1271–1284.

[5] R. W. Floyd. (1962). Algorithm 97: Shortest path. Communications of the ACM, 5(6):345.

[6] C. Gui and P. Mohapatra. (2004). Power conservation and quality of surveillance in target
tracking sensor networks. In Proc. of ACM MobiCom.

[7] S. Guo, Y. Gu, B. Jiang, and T. He. (2009). Opportunistic flooding in low-duty-cycle
wireless sensor networks with unreliable links. In Proc. of ACM MobiCom.

[8] J. Hong, J. Cao, W. Li, S. Lu, and D. Chen. (2009). Sleeping schedule-aware minimum
latency broadcast in wireless ad hoc networks. In Proc. of IEEE ICC.

[9] C. Hua and T.-S. P. Yum. (2007). Asynchronous random sleeping for sensor networks.
ACM Transactions on Sensor Networks, 3(3):15.

25

[10] S. C.-H. Huang, P.-J. Wan, J. Deng, and Y. S. Han. (2008). Broadcast scheduling in
interference environment. IEEE Transactions on Mobile Computing, 7(11):1338–1348.

[11] S. C.-H. Huang, P.-J. Wan, C. T. Vu, Y. Li, and F. Yao. (2007). Nearly constant approx-
imation for data aggregation scheduling in wireless sensor networks. In Proc. of IEEE
INFOCOM.

[12] C. Intanagonwiwat, D. Estrin, R. Govindan, and J. Heidemann. (2002). Impact of network
density on data aggregation in wireless sensor networks. In Proc. of IEEE ICDCS.

[13] X. Jiao, W. Lou, J. Ma, J. Cao, X. Wang, and X. Zhou. (2010). Duty-cycle-aware minimum
latency broadcast scheduling in multi-hop wireless networks. In Proc. of IEEE ICDCS.

[14] X.-Y. Li, X.H. Xu, S.G. Wang, S.J. Tang, G.J. Dai, J.Z. Zhao, and Y. Qi. (2009). Efficient
data aggregation in multi-hop wireless sensor networks under physical interference model.
In Proc. of IEEE MASS.

[15] N. Shrivastava, C. Buragohain, D. Agrawal, and S. Suri. (2004). Medians and beyond:
new aggregation techniques for sensor networks. In Proc. of ACM SenSys.

[16] X. Tang and J. Xu. (2008). Optimizing lifetime for continuous data aggregation with
precision guarantees in wireless sensor networks. IEEE/ACM Transactions on Networking,
16(4):904–917.

[17] P.-J. Wan, K. M. Alzoubi, and O. Frieder. (2004). Distributed construction of connected
dominating set in wireless ad hoc networks. Mob. Netw. Appl., 9(2):141–149.

[18] P.-J. Wan, S. C.-H. Huang, and L. Wang. (2009). Minimum-latency aggregation scheduling
in multihop wireless networks. In Proc. of ACM MobiHoc.

[19] P.-J. Wan, Z. Wang, Z. Wan, S. C. H. Huang, and H. Liu. (2009). Minimum-latency
schedulings for group communications in multi-channel multihop wireless networks. In
Proc. of WASA.

[20] B. Wang and X. Jia. (2009). Reducing data aggregation latency by using partially over-
lapped channels in sensor networks. In Proc. of IEEE GlobeCom.

[21] F. Wang and J. Liu. (2009). Duty-cycle-aware broadcast in wireless sensor networks. In
Proc. of IEEE INFOCOM.

[22] Y. Wu, X.-Y. Li, Y.H. Liu, and W. Lou. (2010). Energy-efficient wake-up scheduling for
data collection and aggregation. IEEE Transactions on Parallel and Distributed Systems,
21(2):275–287.

[23] X. H. Xu, S. G. Wang, X. F. Mao, S. J. Tang, P. Xu, and X.-Y. Li. (2009). Efficient data
aggregation in multi-hop wsns. In Proc. of IEEE GlobeCom.

[24] Z. Ye, A. A. Abouzeid, and J. Ai. (2009). Optimal stochastic policies for distributed
data aggregation in wireless sensor networks. IEEE/ACM Transactions on Networking,
17(5):1494–1507.

[25] B. Yu, J. Li, and Y. Li. (2009). Distributed data aggregation scheduling in wireless sensor
networks. In Proc. of IEEE INFOCOM.

[26] Y. Yu, B. Krishnamachari, and V. Prasanna. (2004). Energy-latency tradeoffs for data
gathering in wireless sensor networks. In Proc. of IEEE INFOCOM.

[27] R. Zheng and R. Kravets. (2003). On-demand power management for ad hoc networks.
In Proc. of IEEE INFOCOM.

26

