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a b s t r a c t

In recent years, water pollution incidents happen frequently, causing serious disasters and so-

ciety impact. It is advocated that water quality monitoring sensors shall be deployed in water

distribution network to enable real-time pollution detection such that we can effectively de-

tect the water pollution event to reduce the risk. Besides event detection, it is also important

to identify the contaminant source for depollution actions. But how to use the information

derived from the monitoring sensors to identify the contaminant source is a non-trivial task.

Contamination source identification problem is characterized by its extremely high computa-

tion complexity, uncertainty and non-uniqueness of the solution in a large-scale water distri-

bution network with dynamic water demands. To tackle this issue, we develop a MapReduce

based Parallel Niche Genetic Algorithm (MR-PNGA) that is not only able to achieve high iden-

tification accuracy but also to explore the cloud resources for performance improvement. The

accuracy and efficiency of MR-PNGA is extensively validated on an 8-server cluster.

© 2015 Elsevier B.V. All rights reserved.

 

 

1. Introduction

Recently, accidental and intentional contamination in a

water distribution network occurs frequently, causing sig-

nificant economic losses and bad social influence. In order

to prevent such contamination accidents and alleviate the

losses, water quality sensors are installed in water distri-

bution network to monitor contaminant event. According to

health supervision work report by Ministry of Public Health

of China in 2012, Chinese government has set 28600 moni-

toring stations including million of water quality sensors all

over the country. Many different kinds of contaminant events

can be detected by the deployed sensor networks. However,

far beyond simple event detection, we all also need to iden-

tify the contaminant source for further depollution actions.

When a contamination event is detected by sensor networks,
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a fast and accurate source identification is critical for the

municipal authorities to make prompt reactions for improv-

ing the safety of citizens. Contamination source identification

(CSI) shall be able to expose (1) the location of the contami-

nant, (2) the type of the contamination, and (3) concentra-

tions of the contamination and its distribution throughout

the water distribution network. How to derive these infor-

mation using the data collected from the water quality sen-

sors has become an important but also a challenging task for

many reasons. For example, the source injections can origi-

nate at any point across the whole system at any time and

the water demand of consumers also vary over time [1].

Much pioneering work has been devoted to addressing

the CSI problem by various methods such as particle back-

tracking [2,3], machine learning [4], data mining [5] and so

on. Among them, simulation-optimization [6] that couples

simulation (e.g., by EPANET1) with heuristic optimization
1 http://epanet.de/
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Fig. 1. Existence of multiple possible contaminant sources.
algorithm (e.g., evolutionary algorithms) has been regarded

as an efficient and practical way to address the CSI problem

for its accuracy and robustness [7]. However, all the existing

studies assume that there is a single solution to a CSI problem

while we notice that there could be multiple solutions (i.e.,

non-uniqueness), where the exact contaminant source is in-

cluded. As shown in Fig. 1, although the sensor at C detect a

contaminant event in both cases, it can only derive that A and

B are the possible sources but cannot exactly tell which one is

the true source. Therefore, searching and listing all the possi-

ble sources, i.e., multi-modal optimization (MMO), and filter-

ing them to find out the true one is necessary. Niche Genetic

Algorithm that is able to preserve the diversity of population

and locate multiple optimal solutions has been regarded as a

promising MMO method [8].

On the other hand, although with high accuracy,

simulation-optimization methods are not quite efficient as

they are often associated with high computation cost, espe-

cially when it is applied to solving some typical engineering

problems where the function evaluation requires simulation

of some complex numerical models. CSI problem falls into

such category as it requires computation-intensive function

evaluation using hydraulics computation with a big volume

of data. For example, the Battle of the Water Sensor Networks

(BWSN2) [9] consists of 12,523 nodes. Assume that the sam-

pling interval of each sensor is set as 10 min. If each sam-

pling report has 12 bytes, totally we will get 1.21 gigabytes

for 72 h monitoring. Larger network size or higher sampling

rate even implies bigger data. Furthermore, it is reported that

simulating one scenario by EPANET2.0 requires 4 s on a Pen-

tium 4.3 GHz computer [10]. While a CSI problem demands

real-time or near-real-time solution, it is significant to find a

way to accelerate simulation-optimization based method to

CSI problem. In other words, fast and accurate solution to CSI

problem is essentially required.

To evolutionary algorithms based optimization methods,

it is possible to explore their parallelism for performance

acceleration, e.g., [11,12]. Furthermore, cloud comput-

ing emerges as a new and promising parallel computing

paradigm with a pool of rich computation resources. To

explore the bulk cloud resources, many cloud computing

paradigms have been proposed and adopted in practice. One

of the most famous ones is known as Hadoop, which enables
Please cite this article as: C. Hu et al., A MapReduce based Parallel
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MapReduce computing paradigm [13]. To improve the effi-

ciency of solving CSI problem, it is natural to wonder whether

we can apply MapReduce to simulation-optimization based

method. After collecting and storing water quality sensor

data in a data center, MapReduce paradigm is promising to

explore both the cloud resources in the data center and the

parallelism in the simulation-optimization based method.

In this paper, we are motivated to address the non-

uniqueness and efficiency of solving CSI problem. The main

contributions are as follows.

1. To our best knowledge, we are the first to formulate

CSI into an MMO problem and formally prove its non-

uniqueness.

2. We propose a MapReduce based Parallel Niche Genetic

Algorithm (MR-PNGA), which is able to find out multi-

ple possible contaminant sources fast and accurately.

3. We practically implement MR-PNGA on a 8-server

cluster. Experiment results show that MR-PNGA in-

deed can detect more contaminant sources efficiently.

The remainder of this paper is organized as follows.

Section 2 introduces existing related work to CSI problem and

multi-modal optimization. Section 3 formulates the CSI prob-

lem into an MMO problem and shows its non-uniqueness.

Section 4 proposes our MR-PNGA. Section 5 gives the perfor-

mance evaluation and analysis. Finally, Section 6 concludes

this work.

2. Related work

2.1. CSI problem

To solve a CSI problem is to derive the locations of the

contaminant sources, the contaminant mass loading profile

and the start time of injection at each contaminant source,

according to the data collected by sensors. CSI is usually re-

garded as an inverse problem to derive the unknown input

(e.g., injections) based on the partially known output (e.g.,

contaminant information). Due to the high importance of

solving CSI problem, many efforts have been devoted to ad-

dressing it. Existing methods can be generally classified into

three categories.

The first category is particle back-tracing, which directly

treats the CSI problem as an “inverse problem” to find out

one contaminate source [14]. Shang et al. [14] consider the

pollutant as a particle and trace back from the nodes where

contamination is detected to the source in reverse. Laird et al.

[2] use tracking and simulation algorithm to identify the con-

taminant source. Sanctis et al. [3] use the particle trace algo-

rithm to identify possible contaminant sources by comparing

the consistency of the nodes that are not in conformity by for-

ward and reverse comparison, respectively. Due to its com-

plexity, particle backtracking can be only applied to medium

and small size of water distribution network.

The second one is machine learning based to yield a prob-

abilistic contaminant source characterization using both sen-

sor data and system stochastic processes. Huang and McBean

[5] propose a data mining based CSI solution. Perelman and

Ostfeld [15] divide water distribution network into clusters

according to the flow and connectivity, and calculate the

probabilities of contaminant sources by Bayesian algorithm.
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Fig. 2. Workflow of simulation-optimization for CSI problem.

 

 

Recently, Wang and Jin [16] propose a random sampling data

through the Monte Carlo Markov Chain (MCMC) sampling

method and also calculate the probabilities by Bayesian al-

gorithm. Wang and Harrison [4] further combine MCMC and

vector regression to improve the algorithm efficiency. Al-

though machine learning is able to list all the contaminant

source probabilities, it is with low accuracy but high compu-

tation complexity, not applicable to large-scale water distri-

bution network.

The third category includes simulation-optimization

based algorithms. Basically, simulation-optimization is a

trial-and-error approach. The main procedures are depicted

in Fig. 2. As shown in the figure, a searching procedure (i.e.,

optimization) is coupled with a water distribution simula-

tion (e.g., EPANET based simulation) to evaluate the search

results. Optimization technique based searching is to accel-

erate the searching procedure for fast source identification.

Guan et al. [6] first demonstrate simulation-optimization ap-

proach’s applicability to CSI by incorporating the reduced

gradient method. Liu et al. [17] put forward adaptive dynamic

optimization technique based on evolutionary algorithm

to search the contaminant source. Simulation-optimization

based algorithms are with higher accuracy compared to the

other two categories. However, to our best knowledge, none

of existing studies address the non-uniqueness of CSI prob-

lem to give out multiple potential and alternative optimal

solutions.

2.2. MMO problem

Knowledge of multiple candidate solutions to many engi-

neering optimization tasks is helpful and MMO to find multi-

ple solutions in one run is thus advocated [18]. Many evolu-

tionary algorithms based methods for MMO problems have

been presented in the literature. Li [19] propose a Species-

based Particle Swarm Optimization (SPSO) that has a niche

radius defined beforehand in order to determine the size

of species (i.e., dominant particles). Qu et al. [20] present
Please cite this article as: C. Hu et al., A MapReduce based Parallel
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a Distance-Based Locally Informed Particle Swarm (LIPS),

which adopts the local information information from its

nearest neighborhood to guide the search of the particles. Qu

et al. [21] suggest a differential evolution with neighborhood

mutation strategy, where each individual is evolved toward

its nearest optimal point. Later, Stoesn et al. [22] differen-

tiate species and save the diversity of population in species

conservation version 2 (TSC2) with the consideration of both

seed selection and seed conservation.

Evolutionary computing based algorithms to MMO are

still notorious for their low efficiency in solving time, it is es-

sential to find a way that can improve their performance for

practical engineering adoption.

3. System model and problem statement

3.1. System model

In this paper, we consider a water distribution network

as shown in Fig 3. The network is described using a graph

G = (V, E), where E is a set of edges representing pipes and V

is a set of vertex locating in the intersections of pipes. A ver-

tex could be a source, reservoir, tank or sink (i.e., consumer).

A pipe connecting two vertices vi and vj indicates certain flow

could existing between them. The flow pattern (i.e., flow di-

rections) has significant effect on the contamination diffu-

sion. In this paper, we consider a fixed flow pattern, where

the directions of the flows on E are known.

There are r monitoring sensors located at the nodes in the

network. Generally, the number of sensors is much smaller

than the size of the nodes in a water distribution network,

i.e., r � n. Upon a contaminant event, a sensor can detect

both its type and concentration. Further, it is able to store the

history data for a few days, i.e., contaminant concentration

profile. We assume that the sensors can upload the collected

information to the data center as soon as they detect the con-

taminant if the concentration of contaminant is greater or

equal to a threshold. A contaminant injection may happen 
Niche Genetic Algorithm for contaminant source identifica-
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Fig. 3. System model, contaminant mass loading profile and contaminant concentration profile.

 

 

at any node in the network. After the injection, the contami-

nant will gradually dilute with the water flows. In this paper,

we assume that there is only one attack. If an attack on node

vi happens, the monitoring sensors at nodes vi �= vj, ∀vj ∈ V

shall be able to detect the contaminant type and its concen-

tration if there is a path from vi to vj for which all edges have

“positive” flow. For example, in Fig. 3 we deliberately inject

contaminant at node 34 with different mass loading during

from 3:00 to 5:00. Sensors S1 and S2 have different concen-

tration profiles due to different contaminant diffusion paths.

3.2. Problem statement

The goal of CSI is to find the locations of the contaminant

source and the start time of injection according to the con-
Please cite this article as: C. Hu et al., A MapReduce based Parallel
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taminant concentration profiles. For the example shown in

Fig. 3, our goal is to find the injection node (i.e., 34) based on

the observed concentration profiles of sensors S1 and S2. If

an attack δi(m, t′) with mass loading m happens on node i at

time t′, we can obtain the observed concentration profile of

sensor vj, ∀vj ∈ V, vj �= vi at the time t ∈ [T0, Ts], t ≥ t′ as c∗
j
(t),

where T0 and Ts are the starting and end time of the profile.

On the other hand, we can derive the concentration profiles

c j(t, δi′(m, t ′)) by hydraulics computation for a given attack

δi′(m, t′) and water flow pattern. Obviously, different attacks

shall have different concentration profiles determined by the

corresponding δi(m, t′). Therefore, our goal to identify the

contaminant source is equivalent to find out δi′(m, t′) that

can lead to concentration profiles c j(t, δi′(m, t′)) best match-

ing the observed one c∗
j
(t), i.e,  
Niche Genetic Algorithm for contaminant source identifica-
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C

C

min : f =
r∑

j=1

Ts∑
t=T0

|c j(t, δi′(m, t ′)) − c∗
j(t)|, (1)

where f denotes the fitness value and |·| is absolute function.

3.3. Proof of non-uniqueness

Intuitively, due to the ill-posed nature of CSI problems, a

set of solutions may match the observed data due to lack of

sufficient data or the presence of error in the data. We call

this issue as non-uniqueness, which shall be addressed prop-

erly. In this section, we formally prove the non-uniqueness

of CSI and show that the CSI problem is essentially an MMO

problem by linear system theory. To this end, we first make

three definitions related to the proof.

Definition 1. (Local minimum) Let min f: X → R. If ∀x∗
l
,∃ε >

0 : ∀x ∈ X, | x − x∗
l
|< ε satisfies f (x∗

l
) ≤ f (x), x∗

l
is the local

extreme value point and (x∗
l
) be local minimum value.

Definition 2. (Global minimum) Let min f: X → R. If ∀x ∈ X

satisfies f (x∗
l
) ≤ f (x), f (x∗

l
) is the global minimum.

Definition 3. (MMO problem) Let min f: X → R, where X be

the set of solutions. If X contains more than one local ex-

tremum points or global extreme value point, f is a multi-

modal function and solving f is an MMO problem.

Theorem 1. The CSI problem in water distribution networks is

an MMO problem.

Proof. As [23] states, hydraulic water transport process of

water distribution network can be described as a linear in-

put/output system, i.e.,

ci(t) =
n∑

j=1

t∑
k=1

θ k
i j(t)uk

j , (2)

where ci(t) is the concentration of contaminant on node i at

time t, uk
j

is contaminant mass loading on node j at time k

and θ k
i j
(t) is the response coefficient of contaminant concen-

tration mass on node i injected from node j at time t.

All the nodes are with the same probability to be attacked,

i.e., as contaminant source. Given a set of r monitoring sen-

sors in a water distribution network with n nodes. At time t,

the cumulative concentration matrix Cr × 1 of all the monitor-

ing sensors can be expressed as

r×1 = Ar×nXn×1, (3)

where Ar × n is response coefficients matrix in size r × n.

By (1), we have

min
x⊆X

f = min
x⊆X

(C∗ − C)2 = min
x⊆X

{
r∑

i=1

[c∗
i (t) − (Ax)i(t)]

}2

(4)

Essentially, solving a CSI problem is to equivalent to find-

ing a set of decision variables Xn × 1 that make the observed

concentration of r sensors C∗
r×1 as close as possible to the de-

rived concentration Cr × 1. Because the optimization function

(4) is nonnegative function, it is clear that the optimal point
Please cite this article as: C. Hu et al., A MapReduce based Parallel
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of (1) is the solution to

‖C∗ − C‖ = AX − C∗ = 0, (5)

which is an MMO problem if it has multiple solutions.

We can divide matrix A and X into basis part and non-

basis part with r and n − r vectors, respectively. Thus, (5) can

be rewritten as

∗ = ABXB + A′
BX ′

B. (6)

Solving (6) to derive XB, we have

XB = A−1
B C∗ − A−1

B A′
BX ′

B, (7)

which shows that the solution is composed of the base

and the non-base vector. As the non-basis vectors are non-

uniqueness, (5) shall correspondingly have more than one

solutions. Therefore, we can conclude that the CSI problem

is an MMO problem. �

4. Algorithm design

4.1. Prerequisite knowledge

According to our problem statement, it is shown that de-

riving the concentration profiles by hydraulics computation

is critical to solving the CSI problem. Fortunately, a set of

tools have been proposed to address this issue. Among them,

EPANET has been widely adopted. Thus, we can incorporate it

into simulation-optimization procedures to evaluate the fit-

ness value. In this section, we briefly introduce the main con-

cept of EPANET based simulation-optimization method for

CSI problem as prerequisites. The work flow is as follows. A

number of trial solutions to the CSI problem is first randomly

generated. Then, EPANET simulation is conducted to evalu-

ate the fitness value of the trial solutions. If the fitness value

is not satisfied enough, the trial solutions will be readjusted

and the fitness value will be also reevaluated by EPANET.

Such routine repeats until a predetermined fitness value is

achieved.

4.2. MapReduce based Parallel Niche Genetic Algorithm

In this section, we propose our simulation-optimization

algorithm for CSI problem. In particular, we apply niche ge-

netic algorithm as the optimization method. The search pro-

cess niche genetic algorithm can run in parallel. This moti-

vates us to rewrite the process in MapReduce paradigm to

explore the bulk cloud resources to accelerate niche genetic

algorithm and maintain the population diversity at the same

time. Incorporating with EPANET for simulation, a MapRe-

duce based Parallel Niche Genetic Algorithm (MR-PNGA) is

proposed. An overview of MR-PNGA is shown as Fig. 4.

At first, the master node generates an initial population

as input. The population is partitioned into n subgroups, i.e.,

P(t) = {P1(t), P2(t), . . . , Pi(t)}, each of which comprises of m

individuals. An individual represents a trial solution to CSI

problem, including (1) node location and (2) injection mass

loading. The evolution, i.e., reproduction, mutation, niche

and selection, of each subgroup is then conducted on a map-

per. In other words, a mapper is responsible for one subgroup

and multiple mappers shall be generated for multiple sub-

groups. Intermediate results generated by the mappers are
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Fig. 4. Overview of MR-PNGA.

Algorithm 2 Reducer phase (Key, Value).

Require: Key ← Pn
i
(t).node;Value ←

Pn
i
(t).mass and Pn

i
(t). f itness.

Ensure: Key ← PN(t).node;Value ←
PN(t).mass and PN(t). f itness.

1: for all the same Key do

2: for all i f rom 1 to n do

3: PN(t) ← min{Pn
i
(t). f itness}

4: end for

5: end for

Table 1

Cluster configuration.

Number of servers 8

Processor 2.0 GHZ

Memory 4 GB

Operation system Ubuntu 12.10

Hadoop Hadoop-0.21.0.

 

 

then shuffle to the reducers. A reducing task then evaluates

the fitness values of the mappers and store the multiple op-

timal in an archive. Multiple iterations may execute to im-

proves the population diversity and hence the probability to

find the best-matching solutions. Finally, we can output the

solution with the best fitness value.

The details of the mapper phase and reducer phase are

shown in Algorithm 1 and Algorithm 2, respectively. Let us

Algorithm 1 Mapper phase (Key, Vale).

Require: Key ← i;Value ← Pi(t).

Ensure: Key ← Pn
i
(t).node;Value ←

Pn
i
(t).mass and Pn

i
(t). f itness.

1: while t < maximum iteration do

2: Evaluation : �( fi(t)) = evaluate[Pi(t)]

3: Sort : [Pi(t)] ← sort[Pi(t)]

4: Elite : Pk
i
(t) ← savebe f orek [Pi(t)]

5: Selection : Ps
i
(t) ← select[Pi(t)]

6: Mutation : Pm
i

(t) ← mutate[(Ps
i
(t)]

7: Combine : P∗
i
(t) ← Pm

i
(t) + Pk

i
(t)

8: Niche

9: for all j f rom 0 to m + k do

10: if P∗
i j
(t). f itness < ε then

11: if P∗
i j
(t).node not included in Pn

i
(t) then

12: Pn
i
(t) ← P∗

i j
(t)

13: else

14: for all q f rom 0 to nichenumber do

15: if P∗
i j
(t).node ≡ Pn

iq
(t).node then

16: if P∗
i j
(t). f itness ≤ Pn

iq
(t). f itness then

17: Pn
iq
(t) ← P∗

i j
(t)

18: else

19: penalty P∗
i j
(t)

20: end if

21: end if

22: end for

23: end if

24: end if

25: end for

26: end while

first check the mapper phase. Each mapper essentially is

a local simulation-optimization process under given input

(i.e., subgroup). A maximum local searching number, i.e.,

maximum iteration, is set, as shown in line 1. In each itera-

tion, we first evaluate the fitness value of the initial popula-

tion using EPANET in line 2. According to the niche genetic
Please cite this article as: C. Hu et al., A MapReduce based Parallel
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algorithm concept, the local population evolves by evalu-

ation, selection, mutation and combination operations, as

shown from lines 3–6. Lines 8–26 are niche operations. We

treat each node as a niche. Within each niche, all the individ-

uals are screened out to select the individual with the best

fitness value. Lines 10 and 11 are the niche judgment condi-

tions. If the individual fitness value is less than the threshold

ε, then the individual is a possible solution. We define a niche

radius, any two possible individuals closer together than the

niche radius are considered to be in the same niche and thus

share their fitness values. Line 19 use penalty mechanism to

eliminate poor individuals.

The mapper phase is mainly responsible for overall evalu-

ation across different subgroups from different mappers. All

the individuals from mappers are combined according to the

fitness value of each individual. The optimal solutions are

stored in an archive.

The proposed MR-PNGA algorithm can be deployed in a

data center residing with the data collected from water qual-

ity monitoring sensors. Once the contaminant sources are de-

termined, depollution actions can be taken accordingly.

5. Experiment results and analysis

5.1. Experiment settings

To verify the performance of MR-PNGA, we practically im-

plement MR-PNGA in a cluster with 8 servers. Each server

equips with a 2.0 GHZ dual-core processor and 4 GB mem-

ory, as summarized in Table 1.

The default niche genetic algorithm parameter settings

are listed in Table 2.

For the water distribution network, we use widely

adopted simulator EPANET and consider a realistic network

consisting of 129 nodes, 2 tanks, 2 sources and 170 pipes, as

shown in Fig. 3. Hypothetical, but realistic and synthetic, at-

tack scenarios are considered in the simulations. Two kinds

of sensor layouts with different sensor deployments (i.e.,

the number of sensors and the sensor locations) are stud-

ied. Sensor data volume varies on different sensor quantities, 
Niche Genetic Algorithm for contaminant source identifica-
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Fig. 5. The possible solutions found out by MR-PNGA under given attack at node 44.

Table 2

Niche genetic algorithm settings.

Crossover probability 0.95

Mutation probability 0.1

Elite strategy 10

Population size 80

Punish coefficient 1.5

Table 3

Multiple solutions by algorithm in one run.

Sensor location Attack ({node, mg/L}) Results ({node, mg/L})

(22, 30.1)

(23, 15.2)

(24, 80.5)

(25, 105.6)

(26, 60.3)

(10, 83) (44, 300) (27, 115.2)

(28, 80.7)

(29, 25.8)

(43, 70.5)

(44, 300)

(53, 125.2)

 

 

sampling rates and total simulation time. The network is de-

fault simulated hourly over 60 h and is assumed to be steady

within each hour. The transport of a nonreactive contami-

nant is simulated in an interval of 10 min, i.e., generating

concentration profiles at sensors in a 10 min increment. An

attack with contaminant mass loading of 300 mg/L is intro-

duced into the network at node 44 at the beginning of the

simulation.

5.2. Accuracy evaluation

To test and evaluate the accuracy of MR-PNGA, three dif-

ferent scenarios in three case studies are considered.

• Scenario 1: the location of sensors and contaminant

source are fixed.
Please cite this article as: C. Hu et al., A MapReduce based Parallel
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• Scenario 2: the location of sensors are fixed but the

location of contaminant source changes.

• Scenario 3: the locations of sensors are unfixed but

contaminant source location fixed.

We prove the accuracy of our algorithm by showing

whether it is able to find a set of possible sources contain-

ing the real one. Meanwhile, we will also prove that the CSI

problem is an MMO problem by showing that all the found

possible sources can generate the same concentration profile

on each monitoring sensor.

5.2.1. Evaluation results of scenario 1

In this case study, two sensors are deployed at nodes 10

and 83 and the contaminant injection happens at the node

44, as shown in Fig. 5. Using the sensor profiles from nodes

10 and 83 as input to our MR-PNGA, 11 potential solutions

are found. Table 3 summarizes the results including both

the contaminant source and its corresponding mass loading.

We can see that MR-PNGA finds 11 potential solutions. The

real contaminant source (i.e., 44) is included in the solutions

found by our MR-PNGA, indicating that we accurately locate

the real contaminant source.

Furthermore, we are also interested in whether these pos-

sible injection profiles can indeed generate the same concen-

tration profile on each sensor node. We use EPANET to obtain

the concentration profile by simulating contaminant event

according to each derived result. For example, we simulate

attacks at nodes 22 and 23 with loading mass 30 mg/L and

15 mg/L, respectively. The concentration profiles on sensor

node 10 from all the 11 different injection profile are illus-

trated in Fig. 6, from which we can see that all the concentra-

tion profile fits well with the real attack at node 44 with the

300 mg/L. This proves that the CSI problem is essentially an

MMO problem and exhibits the non-uniqueness feature.

This also proves that the CSI problem is an MMO problem.

5.2.2. Evaluation results of scenario 2

Next, we evaluate the accuracy of our MR-PNGA by vary-

ing the contaminant sources as 34, 71, 22, 44 and 28, 
Niche Genetic Algorithm for contaminant source identifica-
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Fig. 6. The contaminant concentration profiles at sensor node 10 under different attacks.

Fig. 7. Testing scenario 2 with different contaminant sources.

Table 4

Success number under different contaminant sources.

Node 44 Node 71 Node 22 Node 28 Node 34

Success number 29 30 28 30 30

 

 

respectively. All the attacks are with contaminant mass load-

ing 300 mg/L. Five sensors are placed at nodes 10, 83, 31, 45

and 118. The testing scenario is shown in Fig. 7, where the

source and sensors are represented by red circles and solid

triangles, respectively. For each source, 30 different simula-

tion instances with different flow patterns are conducted. We

are interested in the ability of our MR-PNGA to find the real

contaminate sources in these instances. Table 4 shows the

evaluation results. We first see the probabilities of identify-

ing the real source are 96.7%, 100%, 93.3%, 100% and 100%,

respectively, for the five attacks, indicating high accuracy of

MR-PNGA.
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5.2.3. Evaluation results of scenario 3

We finally check the accuracy of MR-PNGA under differ-

ent sensor deployments under a given attack at node 44 with

mass loading 300 mg/L. Three sensors placement strategies,

i.e., A = {10, 83, 31, 45, 18}, B = {10, 83, 45} and C = {10, 83},

are considered. Fig. 8 illustrates strategy A. 30 simulation in-

stances with different flow patterns are investigated. We plot

in Fig. 9 the average number of possible solutions that can in-

cur the same concentration profile at the sensors. We can see

that the number of possible solutions shows as an increasing

function of the number of sensors. This is attributed to the

intuitive fact that more accurate decision can be made upon 
Niche Genetic Algorithm for contaminant source identifica-
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Fig. 8. Sensor placement strategy A.

Fig. 9. Number of possible solutions found at different placement strategies. Fig. 10. Task execution time vs. MR-PNGA generation number.

 

 

more diverse information. In strategy A with 5 sensors, we

even can directly locate the real contaminant source, other

than finding out a set of possible sources.

5.3. Efficiency evaluation

After showing the accuracy of our MR-PNGA, we further

evaluate its efficiency in the metric of task execution time as

well as the derived fitness value.

We first vary the generation number (i.e.,

maximum iteration in Algorithm 1) under cluster size (i.e., the

number of servers) 1, 2, 4 and 8 to check how it affects the

task execution time in the metric of seconds. Fig. 10 shows

the task execution time under different generation numbers

ranging from 1 to 50. It can be first seen that the task

execution time is proportional to the generation number in

MR-PNGA. This is simply because larger generation number

requires longer evolution time, which further incurs longer

task execution time. On the other hand, we can also see that

larger cluster size also indicates shorter task execution time.
Please cite this article as: C. Hu et al., A MapReduce based Parallel
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This implies that MR-PNGA efficiently explore the available

cloud resources.

We next investigate how the generation number affects

the optimization objective, i.e., fitness value, and plot the re-

sults in Fig. 11. On the contrary, we can see that increasing

generation number is beneficial to the fitness value. How-

ever, the benefit becomes marginal when the generation

number is large enough. This is the nature of niche genetic

algorithm as the quality of the generation finally may con-

verge.

Next, we check how the cluster size influences the task

execution time in the metric of speedup ratio, i.e, the ratio

between the task execution time of cluster and one server.

Fig. 12 presents evaluation results under the cluster size

ranging from 1 to 8. We note that the speedup scales well

with the cluster size when the cluster size is less than 4, for

any generation number. The speedup then increases slowly

because larger communication overhead among the servers

raises.

In order to further analyze our MR-PNGA, we check the

time spent on the three main phases, i.e., (1) the HDFS setup 
Niche Genetic Algorithm for contaminant source identifica-
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Fig. 11. The fitness value vs. evolution generation.

Fig. 12. Speedup vs. cluster size.

Fig. 13. Average time spent in three main phases.

 

 

phase, (2) mapper phase, (3) reducer phase. Average time of

10 runs is logged and plotted in Fig. 13. We observe that the

time at HDFS setup and reducer phases is much smaller to

the mapper phase. This is because the mapper phase is with

intensive hydraulics computation using EPANET. Fortunately,

this part is embarrassingly parallel and therefore it is possi-

ble to greedily explore the bulk cloud resources to improve

the performance. It is expected that MR-PNGA can be sig-

nificantly acerbated if applied to large-scale cluster or data

center.

6. Conclusion and future work

CSI, as an interdisciplinary science of environment and

computer, has been regarded as a critical issue to prevent

malicious attacks. In this paper, we study a CSI in a water dis-

tribution network with limited number of monitoring sen-

sors. We first formally prove that CSI is essentially an MMO

problem and show its non-uniqueness feature. To address

this issue, an accurate and efficient MapReduce based Par-

allel Niche Genetic Algorithm (MR-PNGA) is proposed. We

also successfully implement MR-PNGA in an 8-server clus-

ter. By incorporating practical contaminant attack scenarios
Please cite this article as: C. Hu et al., A MapReduce based Parallel
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on EPANET, the accuracy and efficiency of MR-PNGA is exten-

sively validated on the cluster.

Acknowledgment

This research was supported in part by the NSF of China

(Grant No. 61305087, 61402425, 61272470, 61440060), the

China Postdoctoral Science Foundation funded project (Grant

No. 2014M562086), the Fundamental Research Funds for Na-

tional University, China University of Geosciences, Wuhan

(Grant No. CUG14065, CUGL150829), the Provincial Natural

Science Foundation of Hubei (Grant No. 2015CFA065).

References

[1] A. Ostfeld, l. e. a. Uber, The battle of the water sensor networks

(bwsn): A design challenge for engineers and algorithms, J. Water

Res. Plan. Manag. 134 (6) (2008) 556–568, doi:10.1061/(ASCE)0733-
9496(2008)134:6(556).

[2] C. Laird, L. Biegler, B. van Bloemen Waanders, R. Bartlett, Con-
tamination source determination for water networks, J. Water

Res. Plan. Manag. 131 (2) (2005) 125–134, doi:10.1061/(ASCE)0733-
9496(2005)131:2(125).

[3] A. De Sanctis, F. Shang, J. Uber, Real-time identification of possible

contamination sources using network backtracking methods, J. Water
Res. Plan. Manag. 136 (4) (2010) 444–453, doi:10.1061/(ASCE)WR.1943-

5452.0000050.
[4] H. Wang, K. Harrison, Improving efficiency of the bayesian approach

to water distribution contaminant source characterization with sup-
port vector regression, J. Water Res. Plan. Manag. 140 (1) (2014) 3–11,

doi:10.1061/(ASCE)WR.1943-5452.0000323.

[5] J. Huang, E. McBean, Data mining to identify contaminant event loca-
tions in water distribution systems, J. Water Res. Plan. Manag. 135 (6)

(2009) 466–474, doi:10.1061/(ASCE)0733-9496(2009)135:6(466).
[6] J. Guan, M. Aral, M. Maslia, W. Grayman, Identification of contaminant

sources in water distribution systems using simulation coptimization
method: Case study, J. Water Res. Plan. Manag. 132 (4) (2006) 252–262,

doi:10.1061/(ASCE)0733-9496(2006)132:4(252).

[7] E.M. Zechman, S.R. Ranjithan, Evolutionary computation-based meth-
ods for characterizing contaminant sources in a water distribution sys-

tem, J. Water Res. Plan. Manag. 135 (5) (2009) 334–343.
[8] C.-Y. Lin, W.-H. Wu, Niche identification techniques in multimodal ge-

netic search with sharing scheme, Adv. Eng. Softw. 33 (11-12) (2002)
779–791.

[9] A. Ostfeld, J.G. Uber, E. Salomons, J.W. Berry, W.E. Hart, C.A. Phillips, J.-

P. Watson, G. Dorini, P. Jonkergouw, Z. Kapelan, et al., The battle of the
water sensor networks (bwsn): A design challenge for engineers and

algorithms, J. Water Res. Plan. Manag. 134 (6) (2008) 556–568.
[10] A. Krause, J. Leskovec, C. Guestrin, J. VanBriesen, C. Faloutsos, Efficient

sensor placement optimization for securing large water distribution
networks, J. Water Res. Plan. Manag. 134 (6) (2008) 516–526. 
Niche Genetic Algorithm for contaminant source identifica-

/dx.doi.org/10.1016/j.adhoc.2015.07.011

http://dx.doi.org/10.13039/501100001809
http://dx.doi.org/10.13039/501100002858
http://dx.doi.org/10.13039/501100004701
http://dx.doi.org/10.13039/501100003787
http://dx.doi.org/10.1061/(ASCE)0733-9496(2008)134:6(556)
http://dx.doi.org/10.1061/(ASCE)0733-9496(2005)131:2(125)
http://dx.doi.org/10.1061/(ASCE)WR.1943-5452.0000050
http://dx.doi.org/10.1061/(ASCE)WR.1943-5452.0000323
http://dx.doi.org/10.1061/(ASCE)0733-9496(2009)135:6(466)
http://dx.doi.org/10.1061/(ASCE)0733-9496(2006)132:4(252)
http://refhub.elsevier.com/S1570-8705(15)00146-8/sbref0007
http://refhub.elsevier.com/S1570-8705(15)00146-8/sbref0007
http://refhub.elsevier.com/S1570-8705(15)00146-8/sbref0007
http://refhub.elsevier.com/S1570-8705(15)00146-8/sbref0008
http://refhub.elsevier.com/S1570-8705(15)00146-8/sbref0008
http://refhub.elsevier.com/S1570-8705(15)00146-8/sbref0008
http://refhub.elsevier.com/S1570-8705(15)00146-8/sbref0009
http://refhub.elsevier.com/S1570-8705(15)00146-8/sbref0009
http://refhub.elsevier.com/S1570-8705(15)00146-8/sbref0009
http://refhub.elsevier.com/S1570-8705(15)00146-8/sbref0009
http://refhub.elsevier.com/S1570-8705(15)00146-8/sbref0009
http://refhub.elsevier.com/S1570-8705(15)00146-8/sbref0009
http://refhub.elsevier.com/S1570-8705(15)00146-8/sbref0009
http://refhub.elsevier.com/S1570-8705(15)00146-8/sbref0009
http://refhub.elsevier.com/S1570-8705(15)00146-8/sbref0009
http://refhub.elsevier.com/S1570-8705(15)00146-8/sbref0009
http://refhub.elsevier.com/S1570-8705(15)00146-8/sbref0009
http://refhub.elsevier.com/S1570-8705(15)00146-8/sbref0009
http://refhub.elsevier.com/S1570-8705(15)00146-8/sbref0010
http://refhub.elsevier.com/S1570-8705(15)00146-8/sbref0010
http://refhub.elsevier.com/S1570-8705(15)00146-8/sbref0010
http://refhub.elsevier.com/S1570-8705(15)00146-8/sbref0010
http://refhub.elsevier.com/S1570-8705(15)00146-8/sbref0010
http://refhub.elsevier.com/S1570-8705(15)00146-8/sbref0010
http://dx.doi.org/10.1016/j.adhoc.2015.07.011


C. Hu et al. / Ad Hoc Networks 000 (2015) 1–11 11

ARTICLE IN PRESS
JID: ADHOC [m3Gdc;July 31, 2015;10:0]

 

[11] J. Kumar, G. Adviser-Mahinthakumar, S.R. Adviser-Ranjithan, Asyn-
chronous hierarchical parallel evolutionary algorithm-based frame-

work for water distribution systems analysis, North Carolina State
University, 2010.

[12] L. Wang, D. Chen, W. Liu, Y. Ma, Y. Wu, Z. Deng, Dddas-based parallel
simulation of threat management for urban water distribution systems,

Comput. Sci. Eng. 16 (1) (2014) 8–17, doi:10.1109/MCSE.2012.89.

[13] X.Y. Yang, Z. Liu, Y. Fu, Mapreduce as a programming model for asso-
ciation rules algorithm on hadoop, in: Information Sciences and In-

teraction Sciences (ICIS), 2010 3rd International Conference on, 2010,
pp. 99–102, doi:10.1109/ICICIS.2010.5534718.

[14] F. Shang, J. Uber, M. Polycarpou, Particle backtracking algorithm for wa-
ter distribution system analysis, J. Environ. Eng. 128 (5) (2002) 441–

450, doi:10.1061/(ASCE)0733-9372(2002)128:5(441).
[15] L. Perelman, A. Ostfeld, Bayesian networks for source intrusion

detection, J. Water Res. Plan. Manag. 139 (4) (2013) 426–432,

doi:10.1061/(ASCE)WR.1943-5452.0000288.
[16] H. Wang, X. Jin, Characterization of groundwater contaminant source

using bayesian method, Stoch. Environ. Res. Risk Assess. 27 (4) (2013)
867–876, doi:10.1007/s00477-012-0622-9.

[17] L. Liu, S. Ranjithan, G. Mahinthakumar, Contamination source identifi-
cation in water distribution systems using an adaptive dynamic opti-

mization procedure, J. Water Res. Plan. Manag. 137 (2) (2011) 183–192,

doi:10.1061/(ASCE)WR.1943-5452.0000104.
[18] K.-C. Wong, C.-H. Wu, R.K. Mok, C. Peng, Z. Zhang, Evolutionary multi-

modal optimization using the principle of locality, Inf. Sci. 194 (2012)
138–170.

[19] X. Li, Adaptively choosing neighbourhood bests using species in a par-
ticle swarm optimizer for multimodal function optimization, in: K. Deb

(Ed.), Proceedings of the Genetic and Evolutionary Computation GECCO

2004, vol. 3102, Lecture Notes in Computer Science Springer Berlin,
Heidelberg, 2004, pp. 105–116.

[20] B. Qu, P. Suganthan, S. Das, A distance-based locally informed particle
swarm model for multimodal optimization, Evol. Comput. IEEE Trans.

17 (3) (2013) 387–402, doi:10.1109/TEVC.2012.2203138.
[21] B.Y. Qu, P. Suganthan, J. Liang, Differential evolution with neighborhood

mutation for multimodal optimization, Evol. Comput. IEEE Trans. 16 (5)

(2012) 601–614, doi:10.1109/TEVC.2011.2161873.
[22] C. Stoean, M. Preuss, R. Stoean, D. Dumitrescu, Multimodal op-

timization by means of a topological species conservation al-
gorithm, Evol. Comput. IEEE Trans. 14 (6) (2010) 842–864,

doi:10.1109/TEVC.2010.2041668.
[23] O. Piller, M. Propato, M.E. Tryby, Linear algebra analysis for contami-

nant source identification in water distribution systems, Proceedings of

the Conference on World Environmental and Water Resources Congress
2007, pp. 1–10 (Chapter 513).

Chengyu Hu received his M.S. degree in automa-

tion and control from Wuhan University of Tech-
nology in 2003 and obtained his Ph.D. in au-

tomation control from Huazhong University of
Science and Technology in 2010. He is currently

an associate professor and head of Department

of Computer Science, China University of Geo-
sciences, Wuhan, China. His current research in-

terests include: evolutionary algorithm, swarm
intelligence and cloud computing.
Please cite this article as: C. Hu et al., A MapReduce based Parallel

tion in water distribution network, Ad Hoc Networks (2015), http:/
Jing Zhao is a master student at the School

of Computer Science, China University of Geo-
sciences, Wuhan, China. Her research interests

include: parallel computing and evolutionary

computation.

Xuesong Yan received him B.E. degree in Com-
puter Science and Technology in 2000 and M.E.

degree in Computer Application from China Uni-

versity of Geosciences in 2003. He received his
Ph.D. degree in Computer Software and Theory

from Wuhan University in 2006. He is currently
with School of Computer Science, China Univer-

sity of Geosciences, Wuhan, China and was as
a visiting scholar with Department of Computer

Science, University of Central Arkansas, Conway,

USA. His research interests include evolutionary
computation, data mining and computer applica-

tion.

Deze Zeng received his Ph.D. and M.S. degrees in

computer science from University of Aizu, Aizu-

Wakamatsu, Japan, in 2013 and 2009, respec-
tively. He received his B.S. degree from School

of Computer Science and Technology, Huazhong
University of Science and Technology, China in

2007. He is currently an associate professor and
head of Department of Network Engineering in

School of Computer Science, China University of

Geosciences, Wuhan, China. His current research
interests include: cloud computing, software-

defined sensor networks, data center networking,
networking protocol design and analysis. He is a

member of IEEE.

Song Guo received the Ph.D. degree in computer
science from the University of Ottawa, Canada in

2005. He is currently a Full Professor at School
of Computer Science and Engineering, the Uni-

versity of Aizu, Japan. His research interests are
mainly in the areas of protocol design and per-

formance analysis for reliable, energy-efficient,

and cost effective communications in wireless
networks. He has published over 250 papers in

refereed journals and conferences in these areas
and received three IEEE/ACM best paper awards.

Dr. Guo currently serves as Associate Editor of
IEEE Transactions on Parallel and Distributed Sys-

tems, Associate Editor of IEEE Transactions on Emerging Topics in Comput-

ing with duties on emerging paradigms in computational communication
systems, and on editorial boards of many others. He has also been in orga-

nizing and technical committees of numerous international conferences. Dr.
Guo is a senior member of the IEEE and the ACM.

 

 

Niche Genetic Algorithm for contaminant source identifica-

/dx.doi.org/10.1016/j.adhoc.2015.07.011

http://refhub.elsevier.com/S1570-8705(15)00146-8/sbref0011
http://refhub.elsevier.com/S1570-8705(15)00146-8/sbref0011
http://refhub.elsevier.com/S1570-8705(15)00146-8/sbref0011
http://refhub.elsevier.com/S1570-8705(15)00146-8/sbref0011
http://dx.doi.org/10.1109/MCSE.2012.89
http://dx.doi.org/10.1109/ICICIS.2010.5534718
http://dx.doi.org/10.1061/(ASCE)0733-9372(2002)128:5(441)
http://dx.doi.org/10.1061/(ASCE)WR.1943-5452.0000288
http://dx.doi.org/10.1007/s00477-012-0622-9
http://dx.doi.org/10.1061/(ASCE)WR.1943-5452.0000104
http://refhub.elsevier.com/S1570-8705(15)00146-8/sbref0018
http://refhub.elsevier.com/S1570-8705(15)00146-8/sbref0018
http://refhub.elsevier.com/S1570-8705(15)00146-8/sbref0018
http://refhub.elsevier.com/S1570-8705(15)00146-8/sbref0018
http://refhub.elsevier.com/S1570-8705(15)00146-8/sbref0018
http://refhub.elsevier.com/S1570-8705(15)00146-8/sbref0018
http://refhub.elsevier.com/S1570-8705(15)00146-8/sbref0019
http://refhub.elsevier.com/S1570-8705(15)00146-8/sbref0019
http://dx.doi.org/10.1109/TEVC.2012.2203138
http://dx.doi.org/10.1109/TEVC.2011.2161873
http://dx.doi.org/10.1109/TEVC.2010.2041668
http://dx.doi.org/10.1016/j.adhoc.2015.07.011

	A MapReduce based Parallel Niche Genetic Algorithm for contaminant source identification in water distribution network
	1 Introduction
	2 Related work
	2.1 CSI problem
	2.2 MMO problem

	3 System model and problem statement
	3.1 System model
	3.2 Problem statement
	3.3 Proof of non-uniqueness

	4 Algorithm design
	4.1 Prerequisite knowledge
	4.2 MapReduce based Parallel Niche Genetic Algorithm

	5 Experiment results and analysis
	5.1 Experiment settings
	5.2 Accuracy evaluation
	5.2.1 Evaluation results of scenario 1
	5.2.2 Evaluation results of scenario 2
	5.2.3 Evaluation results of scenario 3

	5.3 Efficiency evaluation

	6 Conclusion and future work
	 Acknowledgment
	 References


