
1

Byzantine-Resilient Secure Software-Defined
Networks with Multiple Controllers in Cloud

He Li, Student Member, IEEE, Peng Li, Member, IEEE,
Song Guo, Senior Member, IEEE, and Amiya Nayak, Senior Member, IEEE

Abstract —Software-defined network (SDN) is the next generation of networking architecture that is dynamic, manageable, cost-
effective, and adaptable, making it ideal for the high-bandwidth, dynamic nature of today’s applications. In SDN, network management
is facilitated through software rather than low-level device configurations. However, the centralized control plane introduced by SDN
imposes a great challenge for the network security. In this paper, we present a secure SDN structure, in which each device is managed
by multiple controllers, not just a single as in a traditional manner, with the dynamic and isolated instance provided by the cloud. It can
resist Byzantine attacks on controllers and the communication links between controllers and SDN switches. Furthermore, we study a
controller minimization problem with security requirement and propose a cost-efficient controller assignment algorithm with a constant
approximation ratio. From the experiment result, the secure SDN structure has little impact on the network latency, provide better
security than general distributed controller, and the proposed algorithm performs higher efficiency than random assignment.

Index Terms —Software-Defined Network, Byzantine Attack, Cloud Computing, Approximation Algorithm

✦

1 INTRODUCTION

Software-defined network (SDN) is a promising network
paradigm that separates the control plane and data
plane in networks such that switches become simple
data forwarding devices and network management is
controlled by logically centralized servers [1], [2], [3],
[4]. It has shown great advantages in simplifying net-
work management such that network administrators
have central programmable control of network traffic via
controllers, and new functions can be easily supported
without physical access to the network switches [5], [6],
[7].

Although SDN can significantly improve network ap-
plicability and efficiency, it is exposed to new threats
that are more serious than those in traditional networks,
where an attack is made in a cooperative manner to
multiple switches if they are distributed in different re-
gions, and probably protected by different organizations
[8]. However, the attack becomes much easier in SDN
since a malicious controller could compromise the entire
network.

An intuitive method to enhance security of SDN is to
employ multiple controllers for each switch [9]. When a
controller is disabled because of attacks, a backup one
can be immediately activated to take over the controlling
function. Unfortunately, such a method can only deal
with attacks that halt controllers. In practice, there are
other attacks, e.g., to forge or temper the commands
issued by controllers, which imposes the requirement for

• H. Li, P. Li and S. Guo are with the School of Computer Science and
Engineering, The University of Aizu, Japan. E-mail: {d8141105, pengli,
sguo}@u-aizu.ac.jp

• A. Nayak is with the School of Information Technology and Engineering,
University of Ottawa, Canada. E-mail: anayak@site.uottawa.ca

a more secure mechanism to protect controllers in SDN.
Byzantine fault tolerant (BFT) technology [10] has been

proposed to defend against Byzantine failures, in which
components of a system fail in arbitrary ways. While
the existing BFT solutions are suited for the file system
environment, there are some problems to apply BFT
to the SDN network. Unlike the file system, security
requirement of each switch is different because many
switches may not forward important packets. For ex-
ample, in data center networks, since the core switches
forward network packets from the entire network, they
are much more important than the leaf switches which
forward packets for less nodes. With different routing,
the security requirements for sensitive data forwarding
at each switch are also different. As a result, controller
assignment should be dynamic and on demand. Mean-
while, since the BFT mechanism usually requires the
independence of failures among replicas, it needs isolat-
ed environments with different operation systems and
applications. A cloud environment can easily provide a
dynamic environment and various instances to deploy
Byzantine mechanism [11], [12].

In this paper, we design a novel SDN architecture to
resist the attack on the control plane by BFT mechanism
in Cloud. Different from the traditional SDN architecture
that each switch is controlled by a single controller [13],
we propose to use multiple controllers to confirm the
update of flow tables in each switch. Specifically, we
apply the BFT mechanism to guarantee that each switch
can correctly update its forwarding tables even some
compromised controllers issue false instructions.

Based on the proposed architecture, we then study
how to assign controllers to a set of switches such that
their security requirements are satisfied. This assignment
problem has two challenges. First, each switch may

2

require a different number of controllers, and each con-
troller can provide services to multiple switches. Con-
sidering the cost for deploying controllers to commercial
servers, we need to minimize the number of controllers.
Second, as the Byzantine mechanism would incur fre-
quent message exchanges among the set of controllers
associated with the same switch, its performance highly
depends on the link latency among these controllers.
When we assign controllers for a switch, the maximum
latency among these controllers must be guaranteed
within a threshold.

To evaluate the performance of our proposal, we
implement a prototype on the emulator and the cloud
instances to test the network latency brought by the
BFT mechanism, which is the most concerned issue to
the network performance. The results show that the
overhead brought by BFT is affordable. To evaluate
the security, we also design an experiment to simulate
the network connection when controllers under attacks.
From this simulation, we find that the Byzantine-resilient
secure SDN network shows much better stability than
normal distributed controller network.

The main contributions of this paper are summarized
as follows.

• First, we propose a secure SDN architecture, in
which each switch is controlled by multiple con-
trollers in cloud using Byzantine mechanism.

• Second, we study a controller assignment problem
to minimize the number of employed controllers
while satisfying the security requirement of each
switch, in terms of the required number of associ-
ated controllers and the maximum latency among
them. We propose an efficient algorithm to solve the
controller assignment with a good result ratio with
the optimal assignment.

• Finally, we evaluate our work with experiments on
a prototype and simulations. The results of network
latency on the prototype show that the BFT mech-
anism does not impact the network performance
seriously. Extensive simulations are conducted and
the results show that the security of the proposed
structure is better than ordinary distributed struc-
ture and the performance of the proposed algorithm
can significantly reduce the number of controllers.

The rest of this paper is summarized as follows.
Section II reviews the related work. Our network model
and threat model are introduced in Section III. Section
IV presents the system design and problem formulation.
An efficient algorithm is proposed in Section V. Section
VI gives the simulation results. Finally, Section VII con-
cludes this paper.

2 RELATED WORK

2.1 Software defined network

The concept of SDN stems from the research of the net-
work operating system that provides a uniform and cen-
tralized programmatic interface to the entire network. As

the first attempt of building a network operating system
at a large scale, NOX [14] achieves a simple program-
ming model for control function based on OpenFlow.
Later, Maestro [15] exploits parallelism with additional
throughput optimization techniques while keeping the
simple programming model for programmers.

FlowVisor [16] is the first testbed for SDN, which
slices the network hardware by placing a layer between
control plane and the data plane. Its basic idea is that
if unmodified hardware supports some basic primitives,
then a worldwide testbed can ride on the coat-tails of
deployments without an extra expense.

Casado et al. [17] introduce an idea of designing a new
network-wide software layer that exposes one or more
logical forwarding elements. Instead of interfacing di-
rectly to the networking hardware, the control software
reads and writes to these logical forwarding elements.
This approach allows the network state to be largely
decoupled from the underlying hardware, paving the
way for migration, failure resilience, and more complex
state management.

Recently, a slice abstraction that can easily isolate
network programs from each other is proposed in [18].
Efficient algorithms are designed for compiling slices
to OpenFlow switches, and they are evaluated on a
prototype implementation.

A structure with distributed multi-domain SDN con-
troller is the same with the structure with multiple SDN
controllers[19]. Even though it introduces a communi-
cation model with multiple controllers, this structure is
used for cooperation of controllers in different network
domains rather than improving the security of the con-
trol plane in a single network.

2.2 Security issues in SDN

The security issues in SDN also attract lots of attentions.
FortNOX [20] is a software extension that provides

role-based authorization and security constraint enforce-
ment for the NOX OpenFlow controller. FortNOX en-
ables NOX to check flow rule contradictions in real time,
and implements a novel analysis algorithm that is robust
even in cases when an adversarial OpenFlow application
attempts to strategically insert flow rules that would
otherwise circumvent flow rules imposed by OpenFlow
security applications.

FRESCO [21] is proposed to address several key issues
that can accelerate the composition of new OpenFlow-
enabled security services. It exports a scripting API that
enables security practitioners to code security moni-
toring and threat detection logic as modular libraries.
CORONET [22] is an SDN fault-tolerant system that
recovers from multiple link failures in the data plane.
However, it cannot deal with the attacks on the control
plane.

Reiblatt et al. [23] present a new language, called
FatTire, for writing fault-tolerant network programs.
The central feature of this language is a programming

3

ID

1

Source Dest

10.1.1.210.1.1.1

ID

1

Source Dest

10.1.1.510.1.1.1

Controller

Data Path (Hardware)

Flow Table

Control Path

32

1 4

Table

updates

Packet

metadata

Sender Reciever

Malicious Reciever

ID

1

Source Dest

10.1.1.210.1.1.1

5

*

Port

10.1.1.1

IP Src

10.1.1.2

IP Dst

*

IP Prot

Group

Action

Flow Table Updates Group Table Updates

1

Bucket

10.1.1.1

IP Src

10.1.1.2

IP Dst

*

IP Prot

Port 2

Action

3 10.1.1.1 10.1.1.5 * Port 3

2 10.1.1.1 10.1.1.2 *
Modiy

IP Dst

Fig. 1. SDN operations managed by a single controller

construct based on regular expressions, that allows de-
velopers to specify the set of paths that packets may
take through the network as well as the degree of fault
tolerance required.

Sezer et al. [24] give a brief summary of the challenges
in SDN, including several security issues. Kreutz et al. [8]
list six threat vectors that may enable the exploit of SDN
vulnerabilities, and sketch the design of a secure and
dependable SDN control platform. However, they do
not provide any detailed solutions for specific security
problem in SDN.

Mailik et al. [25] proposed a framework that delegates
the SDN network controls to the cloud. With their work,
users can define their packet forwarding path with the
controllers in a Infrastructure as a Servic (IaaS) cloud.
Even though they illustrate the tradeoffs bettwen secu-
rity and the level of network abstractions provided to
users, the security issue of the controller is not solved.

Among the main existing solutions focus on the se-
curity issue, few of them consider the potential security
threat in centralized structure [3], in which the logically
centralized methodology is hard to ensure the security
of the data plane. In the our previous work [26], this
challenge has bee briefly tackled and a simple solution,
with no performance guarantee, been proposed to the
minimum controller assignment problem.

3 BACKGROUND AND MOTIVATION

3.1 Software defined network

In a typical network architecture, each network device
(e.g., router or switch) consists of a control plane and
a data plane, where the control plane is responsible
for device configuration and routing management, and
the data plane forwards data traffic according to the
rules defined by the control plane. Traditionally, both
control and data planes are integrated in the firmware

of network devices. Once the device configuration or the
routing strategy needs to be changed, we have to modify
the firmware of all involved devices, which would incur
a high labor cost and take a long time, especially when
there are lots of devices distributed in a large region.

Software defined network (SDN) decouples the control
and data planes, and implements the control plane in
software instead, which enables programmatic access
to make network administration much more flexible.
In SDN, the data plane in each device forwards data
traffic according to a set of rules specified by the control
plane that is implemented in a remote server called the
controller. As an example shown in Fig. 1, we consider
a network flow through a switch from a source with
address 10.1.1.1 to the destination 10.1.1.2. When a pack-
et of this flow arrives the switch, the switch searches a
forwarding rule among the ones stored in its local cache
for this packet according to its source and destination
addresses. If a rule is found successfully, the data plane
forwards the packet according to the action defined by
the rule such that the packet can eventually arrive the
destination. Otherwise, the packet is forwarded to the
controller that executes the routing algorithm, and adds
a new forwarding entry to the flow table in the switch.

3.2 Threats in the control plane

The controllers are not always safe when they provide
services to the network applications. It is needed to allow
users some access to these controllers for deploying new
applications, monitoring the network status, and so on.
Therefore, it is possible that the controller is accessed by
malicious users who may insert some unsafe network
applications or operate the rule space directly.

As shown in Fig. 1, the control planes of multiple
devices are moved into a centralized controller residing
in general servers in SDN. Although such a novel net-
work paradigm shows great advantages in simplifying
network management, it is exposed to new threats tar-
geted on the control plane that a malicious adversary
can compromise the controller to dominate the entire
network by modifying the flow tables on network de-
vices. For example, the compromised controller in Fig.
1 can set up rules to modify the destination address of
the packets from the source 10.1.1.1 such that all data
are forwarded to a malicious receiver 10.1.1.5. To protect
SDN from such a kind of threats to the control plane, we
need to deal with the challenge of letting the controllers
continue operating correctly, even if some of them ex-
hibit arbitrary, possibly malicious behavior. Obviously,
simply setting up backup controller is not enough to
eliminate such threats because they are activated only
when the crash of primary controllers is detected.

3.3 Control plane on cloud with BFT

Byzantine Fault-Tolerance (BFT) provides a powerful
state machine replication approach for providing highly
reliable and consistent services in spite of the presence of

4

ID

1

Source Dest

10.1.1.210.1.1.1

ID

1

Source Dest

10.1.1.210.1.1.1

Data Path (Hardware)

Flow Table

Control Path

1 4

Flow

updates

Packet

metadata

Sender Reciever

Controller A

Controller B

Controller C

2 3

*

Port

10.1.1.1

IP Src

10.1.1.2

IP Dst

*

IP Prot

Group

Action

1

Bucket

10.1.1.1

IP Src

10.1.1.2

IP Dst

*

IP Prot

Port 2

Action

3 10.1.1.1 10.1.1.5 * Port 3

2 10.1.1.1 10.1.1.2 *
Modiy

IP Dst

Flow Table Updates

Group Table Updates

*

Port

10.1.1.1

IP Src

10.1.1.2

IP Dst

*

IP Prot

Port 2

Action

Flow Table Updates

*

Port

10.1.1.1

IP Src

10.1.1.2

IP Dst

*

IP Prot

Port 2

Action

Flow Table Updates

Fig. 2. SDN operations managed by multiple controllers

failures. When we apply BFT to resist the attacks on the
control plane, each switch is connected to n controllers
that run the BFT protocol, such as those in [27], [28], to
form a “big” fault-free controller that can tolerate up to f

faulty controllers. The relationship between n and f will
be different under different BFT protocols. For example,
n ≥ 3f + 1 is guaranteed by the PBFT protocol [27],
and MinZyzzyva [28] improves the performance with
n ≥ 2f + 1.

We use the example in Fig. 2 to show the benefit of
BFT, in which a switch is connected to three controllers
A, B, and C. Even though the controller C is compro-
mised to issue faulty commands to modify the flow
tables, this event can be detected by other two controllers
that guarantee correct flow table update at the switch.

For a better understanding of BFT, we briefly describe
the PBFT that is the first practical BFT algorithm. It is
a replication algorithm in asynchronous environments
based on a Byzantine failure model with independent
node failures. It assumes that the adversary cannot delay
correct nodes indefinitely or subvert the cryptographic
techniques.

Sevices are replicated and executed on independent
replicas. The replicas move through a succession of con-
figurations called views and one replica is the primary
in a view. When the primary fails, the view will change.
The algorithm works briefly as follows.

1 The client sends a request to the primary to require
a service operation.

2 The primary sends the request to other replicas.
3 Replicas execute the request and send a reply to

the client.
4 The client waits for f + 1 replies from different

replicas with same result.

When we apply BFT to a general SDN with multiple
switches, we note that cloud is very suitable for BFT
mechanism as follows. First, a large number of repli-
cas are needed to satisfy the redundant requirement
of BFT. For example, m identical switches under PBFT
with f = 1 need at least 4m controllers. To ensure
the validity of BFT mechanism, replicas should run
isolated environments with different operation systems
and controller implementations. IaaS cloud environment
can easily meet such requirement, because controllers
are isolated into different instances. Second, the number
of controllers needed by each switch varies because of
different fault-tolerant requirements. These requirements
may also change over time. With flexible resource pro-
vision, cloud becomes a perfect platform for controller
assignment under such a dynamic environment. Finally,
cloud can provide isolation among controllers belonging
to different users by accommodating them into virtual
machines.

Above facts motivate us to move controllers into the
cloud that is a perfect platform for a cost-efficient and
flexible resource provision. Further, using the cloud ser-
vice to provide a secure and on-demand SDN controller
service is an emerging approach [30].

4 THE CAFTS PROBLEM

In this section, we study the statement of the problem
of controller assignment in fault-tolerant SDN (CAFTS).

5

TABLE 1
Notations in the CAFTS problem

Notation Description
S Set of all switches
si Switch i
C Set of all controllers
ci Controller i
Bi Required controllers of si

Φi Assigned controllers for si

Ljk Latency between cj and ck

δi Threshold of the communication
latency between any two controllers
associated with si

Ψj Set of switches associated with cj

N Total number of controllers employed
to satisfy the requirements of all
switches

After that, we analyze the hardness of the CAFTS prob-
lem. The notations used in the statement of the CAFTS
problem are listed in Table 1.

4.1 Problem statement

We consider a two-layer SDN as shown in Fig. 3. The
lower layer is the data plane consisting of a set S =
{s1, s2, ..., sm} of switches, each of which has a cache
with limited capacity to store flow tables. The upper
layer is the control plane residing in a data center with
a set C = {c1, c2, ..., cn} of identical severs referred to
as controllers in this paper. The communication latency
between any two controllers ci and cj is denoted by Lij .

To deal with the threats in the control plane, each
switch si ∈ S is assigned a set Φi of controllers that
run BFT protocol to achieve consistency about flow table
updating. The BFT protocol imposes two requirements
for the controller assignment. First, the number of con-
trollers in Φi should be at least Bi, i.e.

|Φi| ≥ Bi, ∀si ∈ S. (1)

The value of Bi is determined by ci’s tolerance of
faulty controllers and the BFT algorithm. For example,
if a switch can tolerance at most 2 faulty controllers and
the PBFT algorithm [27] with n ≥ 3f + 1 is applied,
we need to assign at least 7 controllers to this switch.
Second, the controllers associated with a switch need
to frequently exchange messages in the BFT protocol.
In order to guarantee a certain level of performance,
the communication latency between any two controllers
associated with switch si should not exceed a threshold
δi, i.e.,

Ljk ≤ δi, ∀si ∈ S, ∀cj ∈ Φi, ck ∈ Φi. (2)

We let Ψj denote the set of switches associated with
controller cj . Since each controller can support at most
K switches due to resource limit (such as CPU and
memory), we have:

|Ψj | ≤ K, ∀cj ∈ C. (3)

S1

S5

S2

Data Plane

Control Plane

S3

C1 C4

C5

C3
C2

S4

Fig. 3. System model

The total number of controllers employed to satisfy
the requirements of all switches is denoted by N , which
can be calculated by:

N = | ∪mi=1 Φi|. (4)

The problem of controller assignment in fault-
tolerant SDN (CAFTS): given a set of controllers and
a set of switches, the CAFTS problem attempts to assign
the minimum number of controllers to these switches
such that BFT protocol can be applied to eliminate the
threats in the control plane.

4.2 Hardness analysis

Theorem 1: The controller assignment problem is NP-
hard.

Proof: We prove the NP-hardness of the controller
assignment problem by reducing the well-known bin-
packing problem defined as follows.

The bin-packing problem: given a set of items
{a1, a2, ...am}, each item ai with a size bi, and a number
of n bins of size W , is there a bin-packing scheme such
that all items can be accommodated into n bins?

As shown in Fig. 4, for each item ai of size bi, we
create a switch si that requires Bi = bi controllers, among
which the maximum latency should be no greater than
δ, to achieve a certain level of security. For each bin, we
create a group of W controllers with capacity 1, i.e., each
controller can provide service for at most one switch.
The latency between any two controllers within the same
group is no greater δ, and the links across groups have
latency that is greater than δ.

We first suppose a solution that the bin-packing prob-
lem that all items can be accommodated into n bins. In
the corresponding solution of the controller assignment
problem, we choose Bi controllers of the same group
for each switch si, and the total number of assigned
controller in each group is less than W .

6

Fig. 4. An instance of the CAFTS problem

We then suppose that the controller assignment prob-
lem has a solution that each switch si is assigned a set of
Bi controllers. Since the latency between different groups
of controllers is greater than δ, the set of controllers as-
signed to each switch should belong to the same group,
which forms a solution of the bin-packing problem.

It is easy to see that the controller assignment prob-
lem is in NP class as the objective function associated
with a given solution can be evaluated in a polynomial
time. Thus, we conclude that the controller assignment
problem is NP-hard.

5 SOLVING THE CAFTS PROBLEM

5.1 Algorithm design

In this section, we propose an algorithm, called require-
ment first assignment (RQFA) algorithm, to solve the
CAFTS problem. Its basic idea is to iteratively assign
controllers to switches that are sorted according to their
required number of controllers in a descending order.
We always keep a set of controllers as candidates for as-
signment. For each switch si, if it can be accommodated
by these candidates, i.e., Bi and δi can be satisfied, we
assign the candidates with minimum residual capacity
to it. Otherwise, we find a set of new candidates that
can accommodate this switch.

The pseudo code of the proposed algorithm is shown
in Algorithm 1. Without loss of generality, we assume
that the switches in set S = {s1, s2, ..., sm} are sorted
such that B1 ≥ B2 ≥ ... ≥ Bm. The set of controllers
as candidates are maintained in set C′ that is initial-
ized to be empty. For each switch si, if there are not
enough controllers with non-zero residual capacity in
current candidate set, we update set C′ by finding a new
set of Bi candidates using function FIND NEXT SET
whose code is shown in Algorithm 2. Note that the
communication latency between any two controllers in
this new candidate set should be no greater than δmin

as calculated in line 4. In the following, we assign con-
trollers in the candidate set to switch si. Specifically, we
always give priority to the controllers with less residual
capacity in the assignment, which is achieved by sorting
the controllers in C′ according to their residual capacity
maintained in kΠj

. Finally, we update the value of kΠj

as well as the sets C, C′ and S.

Algorithm 1 The main procedure of requirement first
assignment

1: C′ ← ∅;
2: for i = 1 to m do
3: if the number of controllers with non-zero resid-

ual capacity in C′ is less than Bi then
4: δmin = argminsi∈Si

δi;
5: C′ ←FIND NEXT SET(C, ∅, δmin, Bi);
6: end if
7: sort the controllers in C′ = {cΠ1

, cΠ2
, .., cΠ|C′|

}
such that kΠ1

≤ kΠ2
≤ ... ≤ kΠ|C′|

;
8: for j = 1 to |C′| do
9: if kΠj

> 0 then
10: Φj ← cΠj

;
11: kΠj

= kΠj
− 1;

12: C′ = C′ − {cΠj
}; C = C − {cΠj

};
13: S = S − {si};
14: end if
15: end for
16: end for

Algorithm 2 The procedure of Find Next Set

1: function FIND NEXT SET(C,C′, δmin, B)
2: if B = 0 then
3: return C′;
4: end if
5: for ci ∈ C = {c1, c2, ..., c|C|} do
6: if L(ci, C

′)≤ δmin and ki = K then
7: T ←FIND NEXT SET(C − {c}, C′ +
{c}, δmin, B − 1)

8: if |T | = B then
9: return T ;

10: end if
11: end if
12: end for
13: return C′;
14: end function

The function FIND NEXT SET, as shown in Algorith-
m 2, finds a set of B controllers that satisfy the minimum
latency δmin in a recursive way. If the input parameter B
is 0, the function end with returning the set of controllers
C′ in line 2 to 4. Otherwise, it continue to check the
other controllers in set C. For each controller c ∈ C

that satisfies the latency requirement, we begin a new
recursion by invoking the FIND NEXT SET function. If
the size of allocated controller set C′ return by the re-
cursion is equal to B, the function returns T . Otherwise,
the function continues to try the next controller in C.

In a worst case, it is needed to find a new controller
set after one of the existed assigning set controller is
full. As K denotes the capacity of each controller, after
assign K switches, the algorithm searches another set
for assignments. Therefore, the total running time of this

assignment algorithm is O(nC
B

K
), where n denotes the

number of switches, C denotes the number of controllers

7

250ms

100ms

200ms

250ms

300ms

300ms

150ms 100ms

300ms250ms

C3C4C5

C1 C2

(a) Initial controller network

SET 1

250ms

100ms

200ms

250ms

300ms

300ms

150ms 100ms

300ms250ms

S1

C3

S1

C4

S1

C5

C1 C2

(b) Assign controllers to S1

SET 1

250ms

100ms

200ms

250ms

300ms

300ms

150ms 100ms

300ms250ms

S1 S2

C3

S1 S2 S3

C4

S1 S2 S3

C5

C1 C2

(c) Assign controllers to S2 and S3

SET 2

SET 1

250ms

100ms

200ms

250ms

300ms

300ms

150ms 100ms

300ms250ms

S1 S2

C3

S1 S2 S3

C4

S1 S2 S3

C5

S4

C1

S4

C2

(d) Assign controllers to S4

Fig. 5. The steps of controller allocation with RQFA algorithm

and B denotes the maximum required number of con-
trollers of switches. Considering the required number
of switches is no more than 20, the time complexity is
acceptable in general case.

5.2 Example

For better understanding, we use an example to show
the execution process of the proposed RQFA algorithm.
We consider a control plane consisting of five controllers
as shown in Figure 5, where the number on each link
indicates the communication latency. There are four
switches S1, S2, S3 and S4 that requires 3, 3, 2 and 2
controllers, respectively, with maximum latency 300ms,
200ms and 250ms.

According to the RQFA algorithm, we first sort the
switches with their required number of controllers and
find the minimum latency is 200ms. Next, we find a
controller set SET 1 including C3, C4 and C5 with
capacity is 3 and maximum latency is 200ms, then we
assign this set to switch S1 as shown in Fig. 5(b). For
the next two switches S2 and S3, with enough capacity
in each controllers, we can assign the previous set to
switch them again. The assignment of S1, S2 and S3 is
shown in Fig. 5(c). After that, as the capacity of C3 and
C4 become 0, SET 1 can not fit the requirement of next
switch S4. From the design of RQFA algorithm, with the
maximum required number is 2 and minimum latency
is 250ms, we find another controller set SET 2 including
C1 and C2 and assign controllers in SET 2 to S4. After
all assignment, the result of the network is shown in Fig.
5(d).

5.3 Performance analysis

We first define some notations that will be used in the
following analysis. We let C′

i denote the i-th candidate
set found in our algorithm, and its cardinality is Ni, i.e.,
Ni = |C′

i|. When we attempt to find a new candidate
set, the number of controllers without residual capacity,
which is also referred to as full controllers, in current
candidate set C′

i is denoted by N
f
i . The total number of

candidate sets is H .

Lemma 1: In the candidate set C′
i, 1 ≤ i ≤ H − 1, the

number of full controllers is greater than Ni

2
, i.e., Nf

i >
Ni

2
, ∀1 ≤ i ≤ H − 1.

Proof: We finish the prove by contradiction. Suppose
N

f
i ≤

Ni

2
. The number of controllers of the last switch

accommodated by C′
i, which is denoted by Bj , must be

no greater than N
f
i , which leads to

Bj ≤ N
f
i ≤

Ni

2
. (5)

When we consider the next switch sj+1, we will find a
new candidate set according to our algorithm. Since the
switches are sorted according to the number of required
controllers in a descending order, we have Bj+1 ≤ Bj .
Combined with (5), it is easy to see that the number of
controllers with non-zero residual capacity in set C′

i is
greater than Bj+1, and it is not necessary to find a new
candidate set.

Theorem 2: The number of controllers employed by the
CAFTS algorithm is no more than two times of that in
an optimal solution.

Proof: We let N ∗ denote the number of controllers
employed by the optimal solution. It is easy to see that

its lower bound is
∑

m
i=1

Bi

K
. As we have shown in Lemma

8

1, over a half of controllers in each candidate set C′
i, 1 ≤

i ≤ H , are full, which leads to

K

2

H−1∑

j=1

Nj <

m∑

i=1

Bi. (6)

The performance ratio between CAFTS and the opti-
mal solution can be calculated by:

N

N ∗
≤

∑H

j=1
Ni

∑
m
i=1

Bi

K

≤

∑H−1

j=1
Ni +NH

∑
m
i=1

Bi

K

≤

2
∑m

j=1
Bi

K
+NH

∑
m
i=1

Bi

K

= 2 +
KNH∑m

i=1
Bi

(7)

Since KNH ≤ KN1 ≤
∑m

i=1
Bi, we finally get N

N∗ ≤ 2.

6 PERFORMANCE EVALUATION

We conduct both simulation and emulation based ex-
periments to evaluate the performance of the proposed
algorithms. In the simulation, a case study is given
first and then simulation results under different network
parameters are presented.

6.1 Case Study

For a better understanding of how our algorithm per-
forms compared to the optimal solution, we elaborate
the results of controller assignment in a small-scale SDN
network with 20 switches that can be controlled by 100
servers in the cloud, each with a capacity of K = 10. To
simulate the communication latency between controllers
that are distributed in different groups, we randomly
generate latency in exponential distribution with mean
values of 100, 200, and 300ms respectively. The required
number of controllers and maximum latency of each
SDN switch are listed in Table 2.

By the exhaustive search, the optimal solution is found
as shown in Table 3, in which only 13 controllers are
chosen and each of them fully exploits their capacity of
10. The result of RQFA given in Table 4 shows that 17
controllers, 4 more compared to the optimal assignment,
are required. The controller 15, 16, 18, 19, 36, 39 and
45 exploit their capacity of 7, 6, 2, 1, 9, 8, 4 and 3,
while other 9 controllers are fully utilized. From the
RQFA algorithm, the assignment first selects the set of
controller 3, 4, 6, 9, 10, 12, 13, 15, 16, 18 and 19 with the
maximum requirement from switch 6 and assigns these
controllers to the switches. After assigning controllers
to 10 switches, this set cannot afford the switch 1 who
has a requirement of 6 controllers, which is larger than
half size of first set. Therefore, RQFA algorithm selects
the second set of 6 controllers for assignment. Since the
remaining switches are no more than 10, there is no
assignment after assigning controllers in the second set.

TABLE 3
Result of the optimal algorithm

Controller ID Controlled switches Used
10 0, 2, 3, 6, 7, 8, 10, 11, 12, 13 10
13 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 10
18 0, 6, 10, 11, 12, 13, 14, 15, 16, 17 10
22 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 10
35 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 10
39 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 10
52 6, 10, 11, 12, 13, 14, 15, 16, 17, 18 10
53 0, 2, 3, 5, 6, 7, 8, 9, 10, 11 10
56 0, 2, 3, 6, 7, 8, 9, 10, 11, 12 10
57 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 10
68 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 10
78 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 10
96 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 10

TABLE 4
Result of the RQFA algorithm

Controller ID Controlled switches Used
3 0, 2, 3, 5, 6, 7, 8, 9, 10, 11 10
4 0, 2, 3, 5, 6, 7, 8, 9, 10, 11 10
6 0, 2, 3, 5, 6, 7, 8, 9, 10, 11 10
9 0, 2, 3, 5, 6, 7, 8, 9, 10, 11 10
10 0, 2, 3, 5, 6, 7, 8, 9, 10, 11 10
12 0, 2, 3, 5, 6, 7, 8, 9, 10, 11 10
13 0, 2, 3, 5, 6, 7, 8, 9, 10, 11 10
15 0, 2, 3, 6, 7, 8, 9 7
16 0, 2, 3, 6, 7, 8, 10, 11, 12 6
18 0, 6 2
19 6 1
21 1, 4, 12, 13, 14, 15, 16, 17, 18, 19 10
30 1, 4, 12, 13, 14, 15, 16, 17, 18, 19 10
33 1, 4, 12, 13, 14, 15, 16, 17, 18, 19 9
36 1, 4, 12, 13, 14, 15, 16, 17 8
39 1, 4, 12, 13, 4
45 1, 4, 12 3

Finally, the assignment cost 11 controllers for the first
set and 6 controllers for the second set. In summary, our
RQFA algorithm performs close to the optimum with a
ratio of 1.2.

6.2 General cases

To evaluate the performance in general cases, we gener-
ate random networks and compare the cost of different
controller assignment algorithms. In our simulation, we
run a python 2.7 script with the networkx library 1.6
on a desktop computer. Parameters Ljk are uniform-
ly distributed within the ranges [100ms, 200ms] and
[100ms, 2900ms] representing network settings with low
latency and high latency among controllers, respectively.
The former range is obtained from the ping latency col-
lected in the same data center of google compute engine
or amazone EC2, while the latter range is from different
data centers and different cloud services. The maximum
latency required by each switch is also set following a
uniform distribution in the range [100ms, 1900ms].

For the purpose of comparison, the following algo-
rithms are also considered: (1) a random assignment
algorithm denoted as RAN, and (2) the capacity first
assignment (CFA) algorithm. The basic idea of CFA is to

9

TABLE 2
The requirement of SDN switches in case study

Switch ID 0 1 2 3 4 5 6 7 8 9
Required number of controllers 10 6 9 9 6 7 11 9 9 8

Maximum latency (ms) 330 320 330 330 320 330 330 330 330 330
Switch ID 10 11 12 13 14 15 16 17 18 19

Required number of controllers 7 7 6 5 4 4 4 4 3 2
Maximum latency (ms) 310 310 310 210 210 200 200 200 110 100

 0

 40

 80

 120

 160

 20 40 60 80 100

T
he

 n
um

be
r

of
 a

llo
ca

te
d

co
nt

ro
lle

rs

The number of switches

CFA-H
CFA-L
RAN-H
RAN-L
RQFA

(a) Bi is uniformly distributed within {3, 8}

 0

 40

 80

 120

 160

 200

 240

 20 40 60 80 100

T
he

 n
um

be
r

of
 a

llo
ca

te
d

co
nt

ro
lle

rs

The number of switches

CFA-H
CFA-L
RAN-H
RAN-L
RQFA

(b) Bi is uniformly distributed within {13, 17}

Fig. 6. Algorithm performance under different number of
switches

iteratively assign controllers with the minimum residual
capacity to each switch. For any algorithm X, we use
notations X-L and X-H to denote the results obtained
in networks with low and high latency, respectively.
All simulation results are averaged over 20 network
instances.

We study the performance of the proposed algorithm
under different number of switches. The number of
controllers required by each switch is randomly specified
in a uniform distribution in [3, 8] and [13, 17] as shown
in Fig. 6. We observe that the RQFA algorithm performs
the same in different network latencies.

 0

 50

 100

 150

 200

 250

CFA-H CFA-L RAN-H RAN-L RQFA

N
um

be
r

of
 a

llo
ca

te
d

co
nt

ro
lle

rs

Network status and allocation algorithm

Allocated
FULL

(a) Bi is uniformly distributed within {3, 8}

 0

 50

 100

 150

 200

 250

CFA-H CFA-L RAN-H RAN-L RQFA

N
um

be
r

of
 a

llo
ca

te
d

co
nt

ro
lle

rs

Network status and allocation algorithm

Allocated
FULL

(b) Bi is uniformly distributed within {13, 17}

Fig. 7. Number of full controllers under different algorith-
m.

When Bi is within [3, 8] as shown in Fig. 6(a), the
number of employed controllers increases as the size of
data plane grows for all algorithms. When the number
of switches is small, all algorithms have the similar
performance. As the number of switches increases, the
result outperforms RAN and CFA under both low-
and high-latency networks. For example, to cover 100
switches, RQFA only needs 13 controllers, while CFA-
H and CFA-L need 23 and 19 controllers, respectively.
This number obtained by RAN-H and RAN-L goes even
higher to 140 and 105, respectively. Similar observations
are made in Fig. 6(b), but the performance gap among

10

these algorithms becomes larger.
We show the number of controllers whose resources

are fully utilized after assignment in Fig. 7. Similarly,
we also show the performance when Bi is uniformly
distributed within [3, 8] and [13, 17], respectively. We
observe that only a small portion of controllers is full
in random algorithm. Although CFA-L and RQFA have
similar performance in total number of assigned con-
trollers, more full controllers are fully utilized under
RQFA. This phenomenon is very obvious in Fig. 7(b),
where over 80% controllers are full under RQFA while
the percentage is less than 40% under CFA-L.

Finally, we investigate the influence of controller ca-
pacity to the performance of the proposed algorithm. The
capacity of controller nodes is set to uniform distribution
with five ranges shown in Fig. 8(a) and 8(b). The number
of switches is fixed to 10. When each switch requires
5 controllers, i.e., K = 5, as shown in Fig. 8(a), RQFA
always outperforms other algorithms. The capacity of
controllers has little effect to the performance under
random algorithms. However, the performance of CFA-
H and CFA-L decreases by 46% when capacity range
changes from [15, 25] to [55, 65].

The results under different capacity ranges when
K = 15 is shown in Fig. 8(b). The performance of all
algorithms shows obviously as decreasing functions of
controller capacity. For example, as the capacity range
changes from [15, 25] to [55, 65], the performance of RQ-
FA decreases by 74%, while CFA based algorithms and
the random allocation has about 50% 10% decreasing,
respectively.

The simulation results show that the RQFA performs
well in several different network settings. Compared to
the random assignment, both RQFA and CFA have much
better efficiency on the CAFTS problem. These two algo-
rithms allocate almost controllers to meet the assignment
requirement when the switches are less than 40. While
the switches increased, the RQFA needs fewer controllers
than CFA assignment. It is because, with the switches
scaled up, since CFA considers the capacity, firstly, it will
happen during the assignment that the existed available
controller network cannot meet the latency requirement
even though the controllers have enough space for the
assignment. While the RQFA considers the latency re-
quirement to find the available network, the assignment
ends only when there are not enough controllers with
capacity.

6.3 Security level

In the security level test, the data plane consists of 100
switches, connected by a regular random network, each
of which is associated by a single host. We consdier
two settings of control plane with 20 controllers and 50
controllers.

For comparison, the following two schemes are con-
sidered: (1) Each switch is managed by 4 controllers
using the proposed BFT-based scheme. (2) Each switch

 0

 50

 100

 150

 200

 250

 300

20 30 40 50 60

T
he

 n
um

be
r

of
 a

llo
ca

te
d

co
nt

ro
lle

rs

The capacity range

CFA-H
CFA-L
RAN-H
RAN-L
RQFA

(a) Each switch requires 5 controllers

 0

 50

 100

 150

 200

 250

 300

20 30 40 50 60

T
he

 n
um

be
r

of
 a

llo
ca

te
d

co
nt

ro
lle

rs

The capacity range

CFA-H
CFA-L
RAN-H
RAN-L
RQFA

(b) Each switch requires 15 controllers

Fig. 8. Algorithm performance under different controller
capacity.

is managed by a single controller using the traditional
scheme.

With this network setting, we study the security level
by measuring connectivity losses of the data plane when
the control plane is under attack. The attack to the
control plane will intrude some controllers and send
malicious rules to all switches connected to the compro-
mised controllers. After each round of attack, we ran-
domly select the compromised controllers in the control
plane. The number of selected compromised controllers
is increased from 2 to 7.

A connectivity loss means a pair of nodes lose con-
nectivity in the data plane. In our simulation, when
a controller in the traditional scheme is compromised
by the attack, we remove all connected switches and
their associated links in the topology. Under the BFT
scheme, we only remove the switches and links when
their related BFT algorithms fail. The connectivity loss
is measured by the function shortest path provided by
networkx. We invoke this function to test each pair of
nodes in the data plane. If this function can not return

11

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6

C
on

ne
ct

iv
ity

 lo
ss

Compromised controllers

20 Distributed controllers
50 Distributed controllers
20 BFT replica
50 BFT replica

Fig. 9. The network connectivity loss of data plane during
the control plan under attack

a link, it means a connectivity loss.

As shown in Fig. 9, the proposed BFT-based scheme
incurs much less connectivity losses, i.e., achieves higher
security level, compared to the traditional one under all
cases. For example, the control plane still works under
our scheme when one controller is compromised, while
the traditional scheme loses quite connectivity. Another
observation is that more controllers can contribute to
enhancing the security level siganificantly. Under our
scheme, when six controllers are simultaneuously com-
promised, about 45% connectivity will be lost in 20-
controller network, while this number drops to 10% in
50-controller network. Even though the replicas man-
age more switches than the controller in the traditional
scheme, the possibility that more than two failed replicas
manage the same switch in the BFT-based scheme is less
than the possibility that a switch is managed by a failed
controller.

6.4 Emulation results

 0

 800

 1600

 2400

 3200

 2 4 6 8 10

T
he

 m
ax

im
um

 la
te

nc
y

(m
s)

The number of switches

Local Cloud
Local Cloud with BFT
Public Cloud
Public Cloud with BFT

Fig. 10. The maximum latency with different switch scale.

The main purpose of this set of experiments into
evaluate the network latency when rule update happens.
We create a 10-switch SDN, each connecting to a host,
using the well-known mininet emulator [31] under two
scenarios as described below.

1) Local Cloud: We use two desktop computers: one
is used to create a light weight local cloud environ-
ment, and the other for the mininet emulator [31].
These two computers are both equipped with Intel
Core i7 4770k 3.4GHz processors, 12GB of RAM
and Gigabyte NICs and connected by a Gigabyte
switch. For the local cloud environment, we install
the VMWare Workstation System to provide four
virtual machines (VM) as cloud instances with
Ubuntu 12.04 LTS, CentOS 6.3, Fedora 17 and
Debian 6.0.8 as the operation systems, separately.

2) Public Cloud: To evaluate the performance in pub-
lic cloud environment, we use four instances pro-
vided by google compute engine service. Each
instance is assigned a vCPU and 3.8 GB of RAM.
We use same operation systems on these instances.
Since our prototype is based on the POX, a Python
implementation of NOX [14], we also installed
original POX as the comparison.

We test the ping latency from the first host to other
hosts at 2-10 hops away. We test each ping latency 20
times and record the average value. To create a link
for the ping command between any two ports of each
switch, it takes 50ms of the network latency to update
the rule to this switch in the emulator. As shown in Fig.
10, the latency incurred by applying BFT to controllers
in cloud is close to that under the traditional scheme
with single controller for both scenarios, especially when
the hop number is less than 4. Even in the case of 10-
hop ping distance, the accumulated latency is only 13%
higher in the public cloud scenario.

The overhead of BFT is not obvious because the la-
tency for rule updating is nearly 50ms in the mininet.
Since the number of hops between any two nodes in a
typical data center network is less then 6 (leaf switches,
aggregation switches and core switches) and rule up-
dating or forwarding only happens in the beginning of
each network flow, the BFT is a practical and efficient
mechanism to resist malicious access.

7 CONCLUSION AND FUTURE WORK

In this paper, we propose a secure SDN architecture that
uses multiple controllers to confirm the update of flow
tables in each switch. We apply the Byzantine mecha-
nism to guarantee that each switch can correctly update
its flow tables even some compromised controllers issue
false instructions. To meet the requirement the require-
ments of dynamic and isolation form the BFT mechanis-
m, we shift the SDN control plan to the cloud and deploy
the BFT replicas in different instances. Based on this
architecture, we study a controller assignment problem
to minimize the number of employed controllers while

12

satisfying the security requirements of a given set of
switches. Finally, extensive simulations are conducted
to show that the proposed algorithm can significantly
reduce the number of controllers.

In the future, we plan to implement a complete SDN
solution with modified openflow protocol to support
multiple controllers. Meanwhile, it is signification to
find appropriate BFT algorithm to suit the SDN control
plane. A deeper experiment with the real word testbed
is also needed to evaluate the efficiency of the new SDN
solution.

REFERENCES

[1] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski,
M. Zhu, R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and
S. Shenker, “Onix: a distributed control platform for large-scale
production networks,” in Proceedings of the 9th USENIX conference
on Operating systems design and implementation, OSDI’10, Berkeley,
CA, USA: USENIX Association, 2010, pp. 1–6.

[2] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma,
and S. Banerjee, “Devoflow: Scaling flow management for high-
performance networks,” in Proceedings of the ACM SIGCOMM
2011 Conference, ser. SIGCOMM ’11. New York, NY, USA: ACM,
2011, pp. 254–265.

[3] D. Levin, A. Wundsam, B. Heller, N. Handigol, and A. Feldmann,
“Logically centralized?: State distribution trade-offs in software
defined networks,” in Proceedings of the First Workshop on Hot
Topics in Software Defined Networks, ser. HotSDN ’12. New York,
NY, USA: ACM, 2012, pp. 1–6.

[4] C. Monsanto, J. Reich, N. Foster, J. Rexford, and D. Walker,
“Composing software-defined networks,” in Proceedings of the 10th
USENIX Conference on Networked Systems Design and Implementa-
tion, ser. nsdi’13. Berkeley, CA, USA: USENIX Association, 2013,
pp. 1–14.

[5] S. Shenker et al., “The future of networking, and the past of
protocols,” Open Networking Summit, 2011.

[6] M. Reitblatt, N. Foster, J. Rexford, and D. Walker, “Consistent
updates for software-defined networks: Change you can believe
in!” in Proceedings of the 10th ACM Workshop on Hot Topics in
Networks, ser. HotNets-X. New York, NY, USA: ACM, 2011, pp.
7:1–7:6.

[7] A. Voellmy, J. Wang, Y. R. Yang, B. Ford, and P. Hudak, “Maple:
Simplifying sdn programming using algorithmic policies,” in
Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM,
ser. SIGCOMM ’13. New York, NY, USA: ACM, 2013, pp. 87–98.

[8] D. Kreutz, F. M. Ramos, and P. Verissimo, “Towards secure
and dependable software-defined networks,” in Proceedings of the
second ACM SIGCOMM workshop on Hot topics in software defined
networking, ser. HotSDN ’13. New York, NY, USA: ACM, 2013,
pp. 55–60.

[9] J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, A. R. Curtis,
and S. Banerjee, “Devoflow: Cost-effective flow management for
high performance enterprise networks,” in Proceedings of the 9th
ACM SIGCOMM Workshop on Hot Topics in Networks, ser. Hotnets-
IX. New York, NY, USA: ACM, 2010, pp. 1:1–1:6.

[10] D. Mazières and D. Shasha, “Building secure file systems out
of byzantine storage,” in Proceedings of the Twenty-first Annual
Symposium on Principles of Distributed Computing, ser. PODC ’02.
New York, NY, USA: ACM, 2002, pp. 108–117.

[11] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner,
“A break in the clouds: Towards a cloud definition,” SIGCOMM
Comput. Commun. Rev., vol. 39, no. 1, pp. 50–55, Dec. 2008.

[12] C. Cachin, I. Keidar, and A. Shraer, “Trusting the cloud,” SIGACT
News, vol. 40, no. 2, pp. 81–86, Jun. 2009.

[13] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Pe-
terson, J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling
innovation in campus networks,” SIGCOMM Comput. Commun.
Rev., vol. 38, no. 2, pp. 69–74, Mar. 2008.

[14] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown,
and S. Shenker, “Nox: towards an operating system for networks,”
SIGCOMM Comput. Commun. Rev., vol. 38, no. 3, pp. 105–110, Jul.
2008.

[15] Z. Cai, A. L. Cox, and T. E. N. Maestro, “A system for scalable
openflow control,” Technical Report TR10-08, Rice University,
Tech. Rep., 2010.

[16] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. Casado,
N. McKeown, and G. Parulkar, “Can the production network be
the testbed?” in Proceedings of the 9th USENIX conference on Op-
erating systems design and implementation, ser. OSDI’10. Berkeley,
CA, USA: USENIX Association, 2010, pp. 1–6.

[17] M. Casado, T. Koponen, R. Ramanathan, and S. Shenker, “Virtu-
alizing the network forwarding plane,” in Proceedings of the Work-
shop on Programmable Routers for Extensible Services of Tomorrow,
ser. PRESTO ’10. New York, NY, USA: ACM, 2010, pp. 8:1–8:6.

[18] S. Gutz, A. Story, C. Schlesinger, and N. Foster, “Splendid isola-
tion: a slice abstraction for software-defined networks,” in Proceed-
ings of the first workshop on Hot topics in software defined networks,
ser. HotSDN ’12. New York, NY, USA: ACM, 2012, pp. 79–84.

[19] K. Phemius, M. Bouet, and J. Leguay, “Disco: Distributed multi-
domain sdn controllers,” CoRR, vol. abs/1308.6138, 2013.

[20] P. Porras, S. Seungwon, Y. Vinod, F. Martin, and G. G. Tyson-
Mabry, “A security enforcement kernel for openflow networks,”
in Proceedings of the first workshop on Hot topics in software defined
networks, ser. HotSDN ’12. New York, NY, USA: ACM, 2012, pp.
121–126.

[21] S. Seugwon, P. Phillip, Y. Vinod, F. Martin, G. Guofei, and
T. Mabry, “Fresco: Modular composable security services for
software-defined networks,” in Proceedings of the 20th Annual
Network & Distributed System Security Symposium, ser. NDSS Sym-
posium 2013. San Diego, CA United States: Internet Society,
February 2013.

[22] H. Kim, J. Santos, Y. Turner, M. Schlansker, J. Tourrilhes, and
N. Feamster, “Coronet: Fault tolerance for software defined net-
works,” in Proceedings of the 20th IEEE International Conference on
Network Protocols (ICNP 2012), 2012, pp. 1–2.

[23] M. Reitblatt, M. Canini, A. Guha, and N. Foster, “Fattire: declara-
tive fault tolerance for software-defined networks,” in Proceedings
of the second ACM SIGCOMM workshop on Hot topics in software
defined networking, ser. HotSDN ’13. New York, NY, USA: ACM,
2013, pp. 109–114.

[24] S. Sezer, S. Scott-Hayward, P. Chouhan, B. Fraser, D. Lake,
J. Finnegan, N. Viljoen, M. Miller, and N. Rao, “Are we ready for
sdn? implementation challenges for software-defined networks,”
IEEE Communications Magazine, vol. 51, no. 7, pp. –, 2013.

[25] M. Malik, M. Montanari, J. Huh, R. Bobba, and R. Campbell,
“Towards sdn enabled network control delegation in clouds,” in
Proceedings of the 43rd Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN 2013), June 2013, pp. 1–6.

[26] H. Li, P. Li, S. Guo, and S. Yu, “Byzantine-resilient secure
software-dened networks with multiple controllers,” in Proceed-
ings of IEEE International Conference on Communications, ser. ICC
’14. Sydney, Australia: IEEE, 2014, pp. 695–700.

[27] M. Castro and B. Liskov, “Practical byzantine fault tolerance and
proactive recovery,” ACM Trans. Comput. Syst., vol. 20, no. 4, pp.
398–461, Nov. 2002.

[28] G. Veronese, M. Correia, A. Bessani, L. C. Lung, and P. Verissimo,
“Efficient byzantine fault-tolerance,” IEEE Transactions on Comput-
ers, vol. 62, no. 1, pp. 16–30, 2013.

[29] H. Takabi, J. Joshi, and G.-J. Ahn, “Security and privacy challenges
in cloud computing environments,” IEEE Security Privacy, vol. 8,
no. 6, pp. 24–31, Nov 2010.

[30] Y. Zhang, Z. Zheng, and M. Lyu, “Bftcloud: A byzantine fault
tolerance framework for voluntary-resource cloud computing,”
in Proceedings of IEEE International Conference on Cloud Computing
(CLOUD 2011), July 2011, pp. 444–451.

[31] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop:
Rapid prototyping for software-defined networks,” in Proceedings
of the 9th ACM SIGCOMM Workshop on Hot Topics in Networks, ser.
Hotnets-IX. New York, NY, USA: ACM, 2010, pp. 19:1–19:6.

13

He Li received the BS and MS degrees from
Huazhong University of Science and Technology
in 2007 and 2009, respectively. Currently, he is
an PhD student in Graduate school of Com-
puter Science and Engineering, University of
Aizu, Japan. His research interests include cloud
computing and software defined networking. He
is a student member of the IEEE and the IEEE
Communication Society.

Peng Li received his BS degree from Huazhong
University of Science and Technology, China, in
2007, the MS and PhD degrees from the Univer-
sity of Aizu, Japan, in 2009 and 2012, respec-
tively. He is currently an Associate Professor at
School of Computer Science and Engineering,
the University of Aizu, Japan. His research in-
terests include networking modeling, cross-layer
optimization, wireless sensor networks, cloud
computing, smart grid, performance evaluation
of wireless and mobile networks for reliable,

energy-efficient, and cost-effective communications. He is a member of
the IEEE.

Song Guo (M’02-SM’11) received the PhD de-
gree in computer science from University of Ot-
tawa, Canada. He is currently a Full Professor
at School of Computer Science and Engineer-
ing, the University of Aizu, Japan. His research
interests are mainly in computer networks, par-
allel and distributed computing, cyber-physical
systems, and cloud computing. He has pub-
lished over 250 papers in referred journals and
conferences in these areas and received three
IEEEACM best paper awards. Dr. Guo currently

serves as Associate Editor of IEEE Transactions on Parallel and Dis-
tributed Systems, IEEE Transactions on Emerging Topics in Computing
with duties on emerging paradigms in computational communication
systems, and on editorial boards of many others. He has also been in
organizing and technical committees of numerous international confer-
ences. Dr. Guo is a senior member of the IEEE and the ACM.

Amiya Nayak received his B.Math. degree in
Computer Science and Combinatorics & Opti-
mization from University of Waterloo in 1981,
and Ph.D. in Systems and Computer Engineer-
ing from Carleton University in 1991. He has
over 17 years of industrial experience in software
engineering, avionics and navigation systems,
simulation and system level performance analy-
sis. Currently, he is a Full Professor at the School
of Electrical Engineering and Computer Science
at the University of Ottawa. His research inter-

ests are in the area of sensor networks, cloud computing, and distributed
systems with over 200 publications in refereed journals and confer-
ence proceedings. He has co-edited Handbook of Applied Algorithms:
Solving Scientific, Engineering, and Practical Problems, John Wiley &
Sons (2008), and co-authored Wireless Sensor and Actuator Networks:
Algorithms and Protocols for Scalable Coordination and Data Commu-
nication, John Wiley & Sons (2010).

