
A Multicast-On-Large-Demand Approach to the
Flash Crowd Problem

Rocky K. C. Chang
Department of Computing

The Hong Kong Polytechnic University

Hung Hom, Kowloon, Hong Kong

Email: csrchang@comp.polyu.edu.hk

ABSTRACT
In this paper we propose a multicast-on-large-demand (MOLD)
approach to the flash crowd problem. A MOLD Web server may
dynamically open a multicast channel for resources when
detecting a very high demand for them, and it reverts back to the
normal unicast mode when the flash crowd subsides. A number of
mechanisms necessary for realizing the MOLD system are
thoroughly discussed. We have implemented the MOLD system
in Java and evaluated the performance in a test-bed.

Categories and Subject Descriptors
C.2 [Computer Systems Organization]: Computer-
Communication Networks; I.6 [Computing Methodologies]:
Simulation and Modeling

General Terms
Measurement, Performance, Design

Keywords
Flash Crowds, Hypertext Transfer Protocol, Multicast

1. INTRODUCTION
Flash crowd refers to a sudden surge in the demand for certain
Web resources in the Internet. Therefore, similar to the effect of a
distributed, denial-of service (DDoS) attacks, flash crowd could
exhaust a Web site’s resources for accepting new (TCP)
connections, processing capability, or network bandwidth [1]. The
demand unpredictability makes it very difficult to pre-allocate
adequate resources to meet the demand surge. Even when the
demand is quite predictable, providing sufficient resources just for
the flash event is too costly a general solution [2].

2. DESIGN OBJECTIVES
1. HTTP extension: The existing HTTP protocols need

extensions to support dynamic opening and closing of
multicast channels.

2. HTTP proxying: MOLD proxies must be able to support all
possible scenarios involving multicast and unicast channels.

3. On-large-demand multicast channels: An MOLD server must
be able to open a multicast channel for very popular resources,
in additional to the unicast channels.

4. Multiplexing multiple resources: An MOLD server must be
able to aggregate a number of very popular resources in a
single multicast channel.

5. Multicast population monitoring: An MOLD server must be
able to continuously monitor the population size of a multicast
channel in a scalable manner.

6. Adaptive push rate: An MOLD server must be able to
adaptively adjust the push rate based on the change rate of the
resources sent in the channel.

7. Switching to multicast channels: MOLD clients and proxies
must switch from the unicast channel to the announced
multicast channel if they support MOLD.

8. Data reliability: The proposed architecture does not assume
the availability of forward error correction codes or reliable
multicast protocols.

9. Monitoring the channel quality: MOLD clients and proxies
must be able to monitor the quality of the multicast channel.

10. Switching back to unicast channels: When switching from a
multicast channel back to a unicast channel, the switching
must be performed gracefully.

3. ARCHITECTURE AND PROTOCOLS
3.1 New HTTP Headers
We have defined a minimal set of new HTTP headers to support
MOLD. To ensure full compatibility and transparency, we
propose that the HTTP version is still maintained at 1.1. In Figure
1, we show the possible states for a resource.

Start

Unicast

 MulticastMulticast
Termination

R
equest rate is high

enough/S
end an M

ulticast-
C

hannel header

S
er

ve
r c

lo
se

s
th

e
m

ul
tic

as
t-

pu
sh

 c
ha

nn
el

 a
fte

r p
ol

lin
g

th
e

po
pu

la
tio

n

Receive an Multicast-Channel header/

Join the specified multicast channelRequest rate is low enough/
Send an Multicast-Stop header

Receive an Multicast-Stop header or
the detect a poor channel quality/

Leave the multicast group

Req
ue

st
fo

r t
he

 ob
jec

t in
 a

un
ica

st
ch

an
ne

l

Fig. 1. States for a resource kept by MOLD clients and servers. There are
two types of state transitions: the solid ones for servers, and the dotted
ones for clients. Regular clients and servers are always in the Unicast
state. MOLD proxies behave like servers when they multicast resources
to clients, and they behave like clients when they are receiving resources
via multicast channels.

3.2 Opening Multicast Push Channels and
Join Latency
An MOLD server may use a request-rate list (RR-list) and a
simple threshold-based decision rule to determine whether a
multicast channel should be open for a resource. The request rate
can be computed based on weighted time averages. That is, the
request rate at the end of ith interval, denoted by Ri, is given by Ri
= αMi + (1 − α)Ri−1, where Mi is the instantaneous rate obtained
during the ith interval.

3.3 Estimating Multicast Receiver Population
There are a few important reasons why an MOLD server needs to
know the population size. The primary one is for the server to
determine when to close the channel because there are not enough
receivers to warrant for it. Another one is to control the size of the
multicast group. Managing a multicast group becomes more
difficult and inefficient when the group size becomes very large.

3.4 Determining Multicast Push Rates
Recall that an M-list contains resources that are delivered in a
multicast channel, in addition to the regular unicast channel. An
important issue to consider concerns how often these resources
are pushed into the channel. One simple mechanism is to push a
resource whenever it is changed. This asynchronous mechanism,
however, suffers from several problems. As a result, we propose
to use cyclic transmission schedules to deliver the resources in the
M-list. During each cycle, a resource is pushed out at least once.

3.5 Closing Multicast Channels
When an MOLD server decides to move to the Multicast
Termination state, it multicasts Multicast-Stop headers several
times to make sure that all receivers have received the message.
Moreover, an MOLD server may perform population poll before
closing the multicast channel. After receiving 0 replies after a
consecutive number of polling, the server may safely assume that
no one is tuned to the multicast channel and therefore change to
the Unicast state.

3.6 Monitoring the Quality of Multicast
Channel
MOLD client and proxies include a simple timeout mechanism to
detect possible multicast channel problems. Recall that an MOLD
server includes RA in the Multicast-Channel headers, along with
the multicast address and port number. With RA, an MOLD client
can choose the timeout value for a requested resource to be σ/RA,
where σ is least equal to 1. If the requested resource does not
arrive within σ/RA, the channel is not usable.

4. PERFORMANCE STUDIES
Fig. 2 shows the set-up for the performance studies. All the
machines are running RedHat Linux 7.3. Since there will be a lot
of concurrent TCP connections during the test, the TCP FIN
timeout value is reduced from 180 seconds to 10 seconds, and the
TCP keep-alive timeout value is reduced from 7,200 seconds to
30 seconds.

Fig. 3 shows that the average response time rises rapidly with
request rate in the cases of unicast delivery. The excessive delay is
partially due to the busyness of the server in handling a large
number of requests. All three MOLD cases, on the other hand,
keep the response time very low.

In Fig. 4, all the unicast-pull cases again incur a very large CPU
utilization on the server. Although the HTTP/1.1-Pull case incurs
the least among the three, they all reach 100% CPU utilization
when the request rate reaches 2,500 per minute. The main reason
contributing to such high CPU utilizations is due to the fact that
the Web server is required to keep a large number of socket
connections. There is a protocol control block (PCB) table in the
Web server OS that keeps the network connection states. A large
PCB table not only consumes more kernel memory, but also
consumes more CPU cycles. When the MOLD mechanism is
used, the CPU utilizations on Web server do not rise higher than
90% in all the tests, because the server no longer keeps a large
number of TCP connections.

Fig. 3. Average response time vs. request rates.

Fig. 4. CPU utilization of the Web server vs. request rates.

5. ACKNOWLEDGMENTS
The work described in this paper was partially supported by a
grant from The Hong Kong Polytechnic University (Project No.
COMP-H-ZJ83).

6. REFERENCES
[1] R. Chang, “Defending Against Flooding-Based, Distributed

Denial-of-Service Attacks: A Tutorial,” IEEE
Communications Magazine, vol. 40, no. 10, 2002.

[2] A. Iyengar, et al, “High-Performance Web Site Design
Techniques,” IEEE Internet Computing, pp. 17-26,
Mar/Apr, 2000.

0

10

20

30

40

50

60

70

80

90

100

1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

Number of Requests per Minute

C
P

U
 U

ti
liz

at
io

n
 o

f
W

eb
 S

er
ve

r
(%

)

HTTP/1.0-Pull
HTTP/1.0-Push
HTTP/1.1-Pull
HTTP/1.1-Push
HTTP/1.0+1.1-Pull
HTTP/1.0+1.1-Push

0

1000

2000

3000

4000

5000

6000

1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

Number of Requests per Minute

A
ve

ra
ge

 R
es

po
ns

e
Ti

m
e

(m
s)

HTTP/1.0-Pull

HTTP/1.0-Push

HTTP/1.1-Pull

HTTP/1.1-Push

HTTP/1.0+1.1-Pull

HTTP/1.0+1.1-Push

Regular/
MOLD
Proxy

Regular
Web

Clients

Regular/
MOLD
Server

Fig. 2. The experiment setup, consisting of an MOLD
server, an MOLD proxy, and a large number of regular
Web clients.

