Appraising the Delay Accuracy in Browser-based Network
Measurement

Weichao Li, Ricky K. P. Mok, Rocky K. C. Chang, and Waiting W. T. Fok
Department of Computing
The Hong Kong Polytechnic University
{csweiclijcskpmok|csrchang|cswtfok}@comp.polyu.edu.hk

ABSTRACT

Conducting network measurement in a web browser (e.g.dspste
and Netalyzr) enables end users to understand their netaark
application performance. However, very little is known abthe
(in)accuracy of the various methods used in these toolhisrpa-

per, we evaluate the accuracy of ten HTTP-based and TCPtsocke
based methods for measuring the round-trip time (RTT) whth t

five most popular browsers on Linux and Windows. Our measure-

ment results show that the delay overheads incurred in nideeo
HTTP-based methods are too large to ignore. Moreover, the ov

heads incurred by some methods (such as Flash GET and POST

vary significantly across different browsers and systenaking it
very difficult to calibrate. The socket-based methods, enather
hand, incur much smaller overhead. Another interestingiamd
portant finding is thabat e. get Ti ne(), atypical timing APl in
Java, does not provide the millisecond resolution assumeadny
measurement tools on some OSes (e.g., Windows 7). Thiggesul
in a serious under-estimation of RTT. On the other hand, dooie
over-estimate the RTT by including the TCP handshaking @has

Categories and Subject Descriptors

C.2.3 [Computer-Communication Networks]: Network Opera-
tions; C.4 Performance of Systems]: Measurement Techniques

Keywords

Delay; Measurement; Accuracy; Web

1. INTRODUCTION

hosts with careful resource management [9, 24], and theanktw
performance is sampled using Poisson process [4, 5, 6, 23, 30

Recently, more measurement tools are available to end tesers
measure their network performance and diagnose problenoch S
efforts include various speedtest services, resideniadband mea-
surement [34], and several host-based tools [17, 32]. Iticpdarr,
many of these tools, such as Netalyzr [19] and Ookla’s spsédt
[1], take advantage of browser’s ubiquity by implementihgm
in browsers. Thesbrowser-based measurement tools usually can
measure the network round-trip time (RTT) and throughpom&

an even measure packet loss and reordering rates. Theteffor
ards this direction is recently stepped up by Fathom [11lictvh
provides a number of APIs for network measurement functions

Although browser-based measurement has gained popdarity
ong end users, very little is known about the (in)accuracyaoibus
methods used in these tools. This paper focuses on the agafra
network delay measured by these tools, because a browsed-ba
tool could easily inflate the network delay measurementifbuso
much for loss and reordering). The delay obtained on the sgow
level may over-estimate (or under-estimate) the actual 818 to
a number of reasons. The inflated delay will also affectrjitiand-
width measurement, and passive measurement methods[18,9.,
14]) that assume a very small inflation.

We quantify the delay inflation by investigating tbelay over-
head on the browser side, which is the difference between theevalu
measured by browser-based tools and the actual value i@idu
through packet capturing). The amount of this overhead riipe
on how the rendering engine (e.g., JavaScript engine)argts the
measurement code and invokes system function calls. Wg stnd
different methods (seven based on HTTP and three on TCP sock-

The accuracy of a network measurement system can be definecets: including WebSocket) which are usually implementeidgus

as how the measurement results deviate from the real nepeork
formance. Following ISO 5725 [3], a network measurement can
be considered more accurate if its produced results arerctos
the actual values (trueness) and are more consistent thatéars
(precision or repeatability). Measurement accuracy dépem a
number of factors, including the correctness of adoptedaoukt-
ogy, time resolution, system load, and so on. To ensure tigh-a
racy, network measurement is traditionally performed idickted

Permission to make digital or hard copies of all or part o thiork for personal or
classroom use is granted without fee provided that copesar made or distributed
for profit or commercial advantage and that copies bear thiis® and the full cita-
tion on the first page. Copyrights for components of this waslined by others than
ACM must be honored. Abstracting with credit is permitted.cbpy otherwise, or re-
publish, to post on servers or to redistribute to lists, neguprior specific permission
and/or a fee. Request permissions from permissions@agm.or

IMC' 13, October 23-25, 2013, Barcelona, Spain.

Copyright 2013 ACM 978-1-4503-1953-9/13/10 ...$15.00.
http://dx.doi.org/10.1145/2504730.2504760.

JavaScript (native in browsers), Flash, and Java appletimfvie-
ment these methods and experiment with the five major brewser
on Windows and Ubuntu.

Our measurement results show that the socket-based methods
incur much lower delay overhead than the HTTP-based methods
in general. The Flash GET and POST methods are most unre-
liable, because their overheads are the highest among &t me
ods, and their overhead variabilities are also the highesisa
different browsers and systems. WebSocket, on the othet, han
provides the most accurate and consistent RTT measurement i
the context of JavaScript and DOM (Document Object Model).
Another interesting finding is that the typical timing APlJava,

Dat e. get Ti ne(), cannot return precise system time in some
OSes (e.g., Windows 7). Although this function is supposgut -
vide timestamps with millisecond resolution, we find that dttual
granularity is not constant. It can be one of the two valuesoked

in our experiments: 1 ms e¢r15 ms, and each possible value will

last for a period of time (several minutes) before changingther Container page Request Response
values. Consequently, the timestamps produced by this ARI c Web Server ! { ! \ -
significantly under-estimate or fluctuate the measured RTTs

In this paper, we report two important cases with detailed in _ O\
vestigations. First, we discover that some HTTP-based odsth Network% 1) [-
over-estimate the RTT, because they include the TCP hakdsha 4 g £ N
ing in the delay. Second, we study the effect of timing meth- ~ Application= — — I 1Y] S ——— Y)
ods in the Java applet case by replacing the timing functith w Preparation ’ Measurement !
Syst em nanoTi ne(). The experiment results show that the
under-estimation of RTT disappears after introducing e fim- Figure 1: Two phases in browser-based network measurement.

ing function. Furthermore, the new implementation introgkivery

small and consistent delay overhead. In particular, thiatran of

delay overhead in the socket-based measurement can apptexi the tools that use them. The HTTP-based method could be im-

to 0 ms, meaning that it can estimate the RTTs accurately as wh plemented through JavaScript, Flash, or Java applet. AS&ai

WinDump can do. code imbedded in the container page creates an XHR object and
The outline of this paper is as follows. In Section 2, we first calls thesend() function to send out an HTTP request. The ob-

survey the measurement methods used in browser-basedrketwo ject records? using the JavaScript functidbat e. get Ti me()

measurement tools and services. We then describe our reeasur and uses thenr eadyst at echange event listener to determine

ment setup in Section 3, followed by a report of the resultSen- whether the response has been received for recordingnother

tion 4. Based on our evaluation, we summarize several padcti JavaScript method is based on DOM element that first readids

considerations in Section 5. After highlighting the retaeorks in before inserting a new DOM element to the page usirgar i pt >

Section 6, we conclude the paper in Section 7. tag or<i mg> tag. This tag points to a specified URL to download

the requested object. A successful loading trigger®ahoad

_ _event which prompts the logging of . Flash, on the other hand,
2. BROWSER-BASED NETWORK MEASURE provides clas$&)RLLoader to handle HTTP data, and Java applet

MENT offers clas$JRL. Both of them provide functioBat e. get Ti me()
A browser-based network measurement tool can generally pro tolog the current imestamps, and they rec&ﬁgjust before send-
vide many different services. Netalyzr [19], for examplep-p ing out the request. Flash detects the completion of rewgivie re-

vides network-layer information (e.g., RTT and path MTUr-s sponse via functioaddEvent Li st ener for recordingt?. Al-

vice reachability, and DNS measurement. In this paper, we co though there is no such event listener in Java applet, theletion
sider the accuracy of the network RTT measurement, because atan be detected by reading the response content.

browser-based tool, being operated on the applicatiorr,layay The socket-based method, on the other hand, establishes net
significantly inflate the actual network RTT. The inflatios@laf- work connections/associations through TCP or UDP soclats f
fects jitter and throughput (Tput) measurement. However,de exchanging binary data. TCP socket is supported by Flash, Ja
not anticipate such impact on packet loss and reorderingmea applet, and WebSocket, whereas UDP socket is only suppbyted

ment. Java applet. Flash manipulates network socket with Sasket .
We have studied the RTT measurement methods employed by aThis class also provides functiemddEvent Li st ener which
number of browser-based tools, such as Netalyzr [19], daneth- detects data arrival. In Java applet, the sockets are dremtelass

ods [16], and How's My Network (HMN) [31], and speedtest ser- Socket for TCP andDat agr amSocket for UDP. The times-
vices, including Speedof.me [2] and Ookla [26, 25], by irtpe tamps are recorded after the receive function call. Web&qmio-
ing their codes and the packets exchanged between browsgrs a vides its functionality through JavaScript. WebSockeike TCP
servers. Their methods comprise a preparation phase ané-a me socket on the abstraction level, except that the data triasgms
surement phase, as shown in Figure 1. In the preparatior pits are based on messages. Therefore, WebSocket obtains # tim
browser first loads from a web server a container page conggin ~ tamps in a similar way as Flash and Java applet.
piece of measurement code. In the measurement phase, All the HTTP-based methods, except for DOM, suffer from the
1. (Send) The measurement code is executed at the browser tgestriction imposed by the same-origin policy which presea
instantiate an object which sends a “request” message (e.g. browser from accessing other servers except the origirahost-
HTTP GET or binary data) to the origin server or anotherweb ing the container page. However, Flash can bypass thisatéstr
server to elicit a “response” message. The timestatfipié through the Flash cross-domain policy, and Java applepsoagh
recorded just before sending the request message which mayis through a signed Java applet. On the other hand, excefplefsin,
be sent in one IP packet (for RTT measurement) or multiple the socket-based methods are not affected by the same-pogi
IP packets (for throughput measurement). icy, but they are required to open service ports for sockaheo-
2. (Receive) The web server that receives the response geessa tions. Another important consideration is that Flash anc p-
returns a “response” message (e.g., HTTP response messagélet, as the third-party plug-ins, are not supported in feotom-
or binary data) to the browser. The timestartfp)(s recorded ~ puting platforms. As a result, WebSocket is the remainingjazh
immediately after receiving the response message. The RTT for performing socket-based measurement in both fixed aridleno
is then estimated by? — ¢Z. Similar to the send case, the network platforms.
response message may be sent in one or more IP packets. .
2.2 Measuring the delay overhead
2.1 HTTP-based and socket-based methods The main objective of this paper is to accurately measure the
The methods for a browser to send a request message to a wellelay overhead incurred at browsers when measuring RTTk Bac
server for RTT measurement can be classified into HTTP-basedto Figure 1, supposing that the request and response message
and socket-based. Table 1 summarizes eleven such methdds ansent in one packet each, the network RTT is given by the eiffee

Table 1: A summary of the browser-based network measuremetiitods and tools.

Subject to
Approaches| Technology | Availability | Methods o::’(j:;?nssglqi:/ l\élj :“stl;/r;detr?ie;tg - Tools / Services
by default?
XHR Native GET Yes RTT, Tput Speedof.me [2], BandwidthPlace [21]
PGST Yes RTT, Tput Janc’s methods [16]
DOM Native GET No RTT, Tput [16], [21], Wang's method [35]
HTTP- Flash Plug-in CGET Yes« RTT, Tput Speedtest [26], AuditMyPC [7], Speedchecker [33]
based PGST Yes« RTT, Tput Bandwidth Meter [10], InternetFrog [15]
Java applet| Plug-in GET Yes RTT, Tput
POST Yesx RTT, Tput
WebSocket Native TCP No RTT, Tput
Socket- Java applet PIuG-in TCP No RTT, Tput Netalyzr [19], HMN [31], JavaNws [20],
based pp 9 UDP No RTT, Tput, Loss Pingtest [25], NDT [22], AuditMyPC [8]
Flash Plug-in TCP Yes« RTT, Tput [26]

Note: x« The same-origin policy can be bypassed.

of the packet's receive and send timestamps which is med&yre

WinDump and tepdumptY — Y. Since browsers cannot access to Table 2: Configurations of the browsers and systems usecein th

network stack directly, the measured RTT is basetfor tZ. The experiments.
time resolution for this br(_)wser-level measurement is Ung 265 oS Browsers | Version | Flash Javla SWGIE
sumed to be 1 ms, determined by the functien e. get Ti me() applet ocket
(we will discuss the real-time granularity of this functitor Java Chrome | 230 | 11.7.700] 1.7.0 Vv
applet in Section 4.2). The accuracy of the browser-level Riea- : Firefox 170 | 115.502] 1.7.0 v
PP <) . Windows [TE 9.08 | 11.5502] 1.7.0 X
surement depends on ;eyeral facForg. Opera | 1211 | 115502 1.7.0 v
1. Accuracy of the timing function invoked by the adopted mea Safari 517 | 115502 1.7.0 X
surement method, Chrome | 230 | 11531 1.6.0 /
2. The delay for the browser to propagate the request message Ubuntu | Firefox 170 | 11.2.202] 1.6.0 v/
to the network stack and the delay for delivering the respons Opera [12.11 [11.2.202] 1.6.0 v

message to the browser, and
3. The behavior of how the browser sends the message, for ex-
ample, whether the delay includes the time for establishing Intel Core 2 Duo processor (E6320) and 2GB memory. One is a

TCP connection. dual-boot system with Windows 7 and Ubuntu 12.04 LTS, and-is i
To appraise the delay accuracy in browser-based network mea stalled with the five browsers. The other machine hosts archga
surement, we therefore measure the delay overhead as web server version 2.2 on Ubuntu 10.04. We also introducelan a
Ad = (1% —5) = (&Y —). @ ditional delay of 50 ms on the server side to simulate theriete
environment. Without such delay, the link RTT (< 1 ms) is too
Besides affecting the RTT measurement, the delay overlifezut, small to sample. Beyond that, as we shall see in the nexisecti
stable enough, will also affect the jitter measurement. eduer, this delay is a major factor determining the amount of RT Tainfl
the actual round-trip throughput could be seriously uresgimated tion when a measurement method includes TCP handshakihg in t
by an inflated RTT. delay measurement.
Client i
3. EXPERIMENT SETUP Request o e
In measuring the delay overhead incurred on the RTT measure- C > >
ment, we consider all the HTTP/TCP measurement methods-in Ta Response <+ |

ble 1. To make the comparison more comparable, we do nodaclu
Java’'s UDP socket method. Besides the ten measurementasetho
we investigate the consistency of delay overhead of a givethoal Figure 2: Testbed Setup.
across browsers and systems. ldeally, a browser-basedstexl
pected to incur similar delay overhead, regardless of whiotvser
and system it is operated on. To this end, we consider the fare m
jor browsers on Windows 7 and Ubuntu in Table 2 with the Flash
and Java applet plug-in configurations. Note that the IE afdrS
versions used in the experiments do not support WebSocket. A
though the latest IE 10 and Safari 6 both support WebSoclket, w
use IE 9 and Safari 5 instead, because IE 9 is the default brows
for Windows 7 and Safari 6 is not available in Windows 7. Far fa
comparison, what we have tested are all 32-bit browsergusec
some of the browsers do not provide 64-bit version.

We set up a testbed consisting of two machines connected to a
switch by 100-Mbps Ethernet, as shown in Figure 2. Both nraeghi !Source codes are availabletstt p: / / wwé. conp. pol yu.
have the same hardware configuration: equipped with a 1.86GH edu. hk/ ~onepr obe/ src. php

We have prepared a container page using PHP or HTML for each
measurement method imbedded with JavaScript code, Flgsttob
or Java applét The entire suite of experiments is executed auto-
matically. Each browser program is executed on commangdime
it retrieves from the server a container page for a given oreas
ment method. When the browser renders the page, it exetiges t
measurement code to instantiate the required object wheintss
a request message to the same web server which returns a reply
message with the 50 ms delay. As discussed in section 2, the me
surement code record® and¢Z. At the same time, the client
machine runs WinDump/tcpdump to captufeand:’ .

Considering the possible impact on the browser to inst@ntia

On the other hand, Figures 3(d), 3(g), and 3(j) show that the

the object for the first RTT measurement, we conduct a second delay overheads incurred by the socket-based methods as&leo

RTT measurement immediately after the first one and reusiag t
same object. Therefore, for each setting, we obtain twodfats-
lay overheads, denoted kd; and Ad,. Moreover, we choose
small request and reply messages, each of which can be sam in
packet. This setting allows us to remove other possibleydile

to data segmentation, send and receive buffering, andlthgoby
the send window. During the measurement period, we alsaensu
that the network was free of cross traffic, packet loss, atrdns-
missions. Although the web server could bias the RTT, ths, lifa
any, is mitigated by the subtractiongf — tZ andtY — ¢ in the
same round of measurement.

For each experiment, we run it for 50 times and compute from
them useful statistics, such as minimum, median, and 25% 5¥td
percentiles. We do not record the system load, but we enbate t
all the necessary processes (eaxpl or er. exe in Windows,

i ni t inLinux, and so on) run in the background. Besides, some

other programs, such as packet capturing program and atitoma
scripts, need to be dynamically invoked during the measeném
procedure. The browsers themselves also consume resdarces
render the measurement objects. As a result, the delay eagsh
may still vary, depending on how sensitive the measuremetii-m
ods are to these system loads.

4. MEASUREMENT RESULTS

We plot the ten sets of measurement results (one per measure OPera.

ment method) in Figure 3 using box-and-whisker plots. Thet fir
row includes the four methods using native features in beosvs
The second comprises the Flash methods, and the third taagav
plet methods. Each plot (except for WebSocket) includesrtea-
surement by the eight browser-OS cases which are identiidakb
browser’s initial (system’s initial). They are then folled by Ad,
(in red) orAd: (in cyan). For example, “C (UAd; " refers toAd:
obtained by Chrome in Ubuntu.

In each box-and-whisker plot, the top and bottom of the bex ar
given by the 75th percentile and 25th percentile, and thekimar

side is the median. The upper and lower whiskers are the maxi-

mum and minimum, respectively, after excluding the oulierhe
outliers above the upper whiskers are those exceeding 1tfeof
upper quartile, and those below the minimum are less thawofl.5
the lower quartile.

Figures 3(a), 3(b), 3(c), 3(e), 3(f), 3(h), and 3(i) for the FP-
based methods show that the delay overhead generally chanot

erably small. The median overheads are mostly smaller thas. 1
Nevertheless, the overheads for some browsers fluctuaténveit
range of around 10 ms (e.g., Java applet for Firefox in Wirgjow
Overall, the WebSocket method achieves the most stablk,resu
cept for Opera (WX\d; . Similar to the other two Java applet meth-
ods, the Java applet socket method will under-estimate etayd
especially those in Windows.

4.1 The effect of network behavior on HTTP-
based methods

The major difference between the HTTP-based and socketdbas
methods is that the former needs to parse the additional HTTP
header. However, parsing HTTP alone cannot explain thage hi
delay overheads. We consider some of these cases next and ana
lyze other possible reasons responsible for the RTT infiatio

Table 3 shows the median overheads for the Flash GET and
POST methods, obtained by Opera in Windows and Ubuntu. Al-
though the data are collected from different OSes, the dalay
heads behave similarly. For the GET method, O(W) and O(U) bot
suffer from a very largé\d; (> 100 ms) but a relatively smalkd.

(< 20 ms). For the POST method, the medisd, is still high, but
the mediamAd, is much larger than that for the GET method.

Table 3: MedianAd; and Ads for the Flash HTTP methods in

o(W) | o)

Ad, | T01.1] 105.3

CET R, T 108 [198
Ad, | 100.1| 105.6

POST R, 7696 | 681

The packet capture files show that Opera opens a new TCP con-
nection to handle the HTTP request issued by the Flash ofgject
the first RTT measurement, therefore inflating thd; measure-
ment. In the GET method, this existing connection can beegus
for the second measurement. Therefore Ak measurement ex-
cludes the TCP handshaking. However, a new connection tillill s
be opened for the POST method. We confirm this by subtracfing 5
ms, the simulated network delay, frafad, in the POST method,
the result £20 ms) is almost the same as the GET method. More-
over, we compare the behavior of other browsers and find test e
for the first RTT measurement they will reuse the TCP conoacti
for downloading the container page in the preparation phass

ignored. The XHR methods’ delay overheads range from a few resulting in a much lower overhead.

milliseconds to tens of milliseconds. The overheads intl-E®

extremely high. The median overheads are between 20 ms and 10 4.2 The effect of timestamp granularity
ms. Even for the minimum overheads, they can reach as high as From Figure 3(h), 3(i), and 3(j), all three Java applet mdtho

100 ms Ad; of Opera in both Windows and Ubuntu). The DOM
methods achieves a better result than XHR and Flash. Mokeof t
median overheads are smaller than 5 ms. The Java appletdsetho
differ from the previous group in that they could (e.g., Fireand
Opera) under-estimate the RTT (i.e., negative overhead$ Ioyuch
as 5ms.

Another important result concerns the consistency of a oreas
ment method across different browsers and systems. If the ov
heads are dependent on specific browsers and systems,niakid
the calibration very difficult. The delay overheads for th€THP-
based methods generally see a very high variability acnasgders
for the Flash methods. The DOM method provides the most sensi
tent overhead across all browsers, especially those ontubtlihe
two Java applet methods are also quite consistent on thetWbunh
less consistent on Windows.

suffer from the negative delay overheads on Windows, whieh i
dicates that performing path measurement with Java applet c
severely under-estimate the RTT. At the same time, significari-
ance can be observed. For example, Safari’'s overhead irapava
plet socket method spans in the range of -13 ms and 13 ms, as
illustrated in Figure 3(j). Due to the page limit, we onlydliss the
socket case for evaluation.

We show the CDFs aid; andAd- of those experiments in Fig-
ure 4(a). The figure depicts that bathl; andAd, for Firefox and
Opera, andAd; for Safari have two discrete levels, whereasg,
for Safari spans continuously over the range.According2&j, [
web browsers instantiate Java applet through Java Plug-fiact,
an applet runs in an instance of the Java Runtime Environment
(JRE) software, not within the browsers. To mitigate theuiafice
of browsers, we directly launch the applet wippl et vi ewer

o
=]

- - 60 +
_ | ¥ _.80 % — -
60
£ 40 < 40 £ 30 I £ I
g <y g S S g e + g 20 4 P
¢ T 020 T § : S 20 T ; + o]
% 20 § + D . S S + z N 2 10
g ! Gt |7 g : - te 8Y QE] i 8
o + s} 1 o +
NEE $$§. TS | - 0%2 SRES E - o ledFe oy llo=3] 8 =
S555558352222288 S555535585552223288 S5555558%52222288 335533338832
oouvwuwoooouwuwdUoonn oovwuwoooouwudWoonn oouvwuwoooouwuwuUoonn oouwuwooovouwuwoo
(a) XHR GET. (b) XHR POST. (c) DOM (d) WebSocket.
140 - T 140 N T
& 120 & 120 4 >
£ 100 7 3 £ 100 T4 i+ £ 10 o,
3 + B S+ N]
2 80 T é] 2 8 $ éé g
§ eol- + & - 5
H 60@*@) : §+ M g 60 5 s % + 3 5
z 40 s % %40$ ﬁ e 2
8 zolﬁ 3 E & 8 20 ﬁ i 1 D e polobofs_,_ +_*_
1 ;o &7 1 | . #* 1 o~ 1 TIsy+0F03%
0 + ! 0 ¥
EEEEEEEEERFEEEEH EEEEEEEEEEFEEEEE! EEEEEEEEEEEREEEL
S555558585522885¢% S3555355553388z% 3355558555328885%
oouwwoooouwudYoonn oonwwooovooouwuwuddoonn oowuwoooouu¥Yoonn
(e) Flash GET. (f) Flash POST. (g) Flash TCP socket.
30 15
| . . 2 1 forer
2 20 @ -
=20 [E E ‘
k=) | o | % 5
g ! g + g
Em ERES H glo +E D E oftotooogy
¢}] +] I
g [BiitoE, 3| g oot EEes) s %H g -5 TTIEEE T
L
S teel L e FrEo S 10 :
— - _10 — = —
EEEREEEEEEFEERER] ELEEEEELEEEEELEE ECEEFEEEEEEEFEEE
S5535533583:23288 S55335583588222288 S55555835582223588
oowuwoooouuwYYoonn oouwoooouuY¥oonn oowwoooouudYoonn
(h) Java applet GET. (i) Java applet POST. () Java applet TCP socket.

Figure 3: Box plots of the delay overheads (by methods).

provided by Oracle Java Development Kit (JDK). We plotthe®SD tained from the test codes. Hence, we believe that the caade
of Ad; andAd in Figure 4(b). Similar discrete levels are observed instable timestamp granularity is the main reason for tlzarpé
without web browser and Java Plug-in. We thereupon can mutle o behavior observed in the previous delay overhead expetanen
browsers and their corresponding Java Plug-ins being tingecaf

this problem. B T N T S R R ' . e
We then focus on the JRE itself. The timing function in Java, o8l g i 0‘__ o8

Dat e. get Ti ne(), is implemented with another Java function R el 0ndr

Systemcurrent TimeM | lis(). An Oracle’s documenta- éo'e’ B e

tion warns that while the resolution of the return value is 4§ m 0.4f 1|e-ag.0

the granularity depends on the underlying system [29]. \&fkthe 02 o J|oae

timestamp granularity with the code shown in Figure 5. Tlee@i r ‘ ‘ 04,5

of code keeps querying the timestamp widat e. get Ti me() 4 T0 e 10 15 20

until the current value is different from the previous ondieTif- (a) Launched in browsers.

ference in the two timestamps is the granularity that thifion . ‘ ‘ ~ ‘ S

can achieve. Surprisingly, we find that the granularity isanoon- 3 ¢

stant value. It can be 1 ms, erl5 ms. Each possible value will o8 z

last for a period of time (several minutes) and then changeher o 06F 88

values. While such a coarse granularity of timestamp in vl Sl H

was reported [27], it has not mentioned the non-constantugra ’

0.2r

larity. Initially, we conjecture that the varying time grdarity is I 1 .ij
related to the 32-bit JRE. However, we later find that 64-RIEJ f5—— % s m i A —
also suffers from the same problem. To further validate qg-fi Adims .

ings, we analyze the data obtained from the delay overheaetiex (b) Launched with appletviewer.
ments. The gap between the two significant discrete levellsast

16 ms, which concurs with one of the timestamp granularity ob

Figure 4: CDF plots ofAd; and Ad: using the Java applet socket
in Windows.

Table 4: Delay overheads measured by Java applet methodsdoWs when functiorBy st em nanoTi me() is adopted (mean with 95%

confidence interval, in ms).

GET POST Socket
Method \——- Ay A Ay Ay Ay
Chiome | 2.9620.02 | 4.80L0.00 | 2.7120.03 | 1.8450.00 | 0.0120.00 | 0.0720.01
Firefox | 2.7320.02 | 4.3820.08 | 2.4150.03 | 1.4920.01 | 0.0050.00 | 0.0720.0T
IE [2.7350.03 | 45620.00 | 2.5720.00 | T.4920.04 | 0.0220.01 | 0.0620.01
Opera | 2.83£0.03 | 4.4650.07 | 25120.03 | L.57£0.01 | 0.01£0.00 | 0.06 £0.01
Safan | 1.8820.05 | 1.5210.02 | 1.6220.07 | 1.42L0.01 | 0.0720.00 | 0.1320.01

We replace the timing functiobat e. get Ti me() with amore
preciseSyst em nanoTi ne() and then rerun the experiments
with the same configurations. The measurement results ammau
rized in Table 4. We present the mean delay overhead as wélkkas
95% confidence intervals. The under-estimation and the heeg-
ation of RTTs disappears after the replacement, includiegther

delay overhead can be better estimated2y, without includ-

ing the TCP handshaking delay. However, some methods, as de-
scribed in Section 4.1, always open new connections for uneas
ment whether the measurement object can be reused or nbtsin t
case, the additional delay cannot be avoided.

two Java applet methods. For the GET and POST methods, the6. RELATED WORKS

mean delay overheads range from 2 ms to 5 ms, only a littlefarg

than the WebSocket cases. As for the socket methods, the dela

overheads are trivial. Considering the accuracy of sofvpacket
capturer being larger than 0.3 ms [7], we can regard the acgur

Although browser-based network measurement tools and ser-
vices have been widely deployed, only a handful of studies ar
devoted to appraising them. These previous works considgr o

of the Java socket method comparable to tcpdump/WinDump if a small number of methods. Janc et al. [16] proposed HTTBebas

Syst em nanoTi ne() is adopted.

1 long start = 0,

2 long end = 0;

3 | while (true) {

4 if (start == 0) {

5 start = new Date().getTime();

6 } else {

7 long current = new Date().getTime();
8 if (current != start) {

9 end = current;

10 break;

11 }

12 }

131}

14 | System.out.println((end - start) + "ms");

Figure 5: Codes for testing the timestamp granularity.

5. PRACTICAL CONSIDERATIONS

Based on the overall evaluation, the Java applet socketatieth
is recommended if the proper timing function is applied. ldger,
our inspection of some Java applet-based tools shows thagy ma
of them are still usingSystem currentTimeM I lis() or
Dat e. get Ti ne(), such as [8, 19, 22]. Switching to the more
precise functiorByst em nanoTi ne() can greatly improve their
accuracy in Windows. Based on our evaluation, the Flash GHT a
POST methods are not so suitable for the purpose of measareme

For the measurements performed in Windows, Firefox is tee pr
ferred browser, whereas in Ubuntu Chrome is a better chale.
do not recommend Safari even for the Java applet socket ohetho
due to the fact that its default Java interfadayaPl ugi n. j ar
andnpJavaPl ugi n. dl |) runs into problems easily. The mea-
surement results obtained from Safari are much higher than t
other browsers. After deleting the two files, we can force itise
the JRE provided by Oracle, and the inaccuracies are substygu
removed.

There are also issues of reusing existing connections abd we
objects for network measurement. The real-world applbcetiare
more complicated than our experiment settings. The branssere
to establish new connections due to the competition of doadi
ing the other files.

methods using JavaScript and Flash for measuring netwaftrpe
mance, and performed control and web experiments to compare
the methods. Later, Kaplan et al. [18] performed testbed@xp
ments to investigate the delay overhead incurred by browiér
four HTTP-based methods using JavaScript and Flash. Bpirpa
concluded that JavaScript performs better than Flash fayaeea-
surement, which is coherent with our results. However, thdyot
compare the HTTP-based methods with socket-based methods.

Krintz and Wolski [20] compared the performance betweela Jav
applet and C program with JavaNws, and found that Java aigplet
comparable with C socket. Yeboah et al. [36] performed a@rint
net measurement study to compare the delay measuremelts resu
from ICMP ping, King [12], Flash (socket-based), and Javghc
(HTTP-based). They found that the results from Flash satlest-
surement were close to ping, whereas JavaScript had arethflat
delay. However, both papers did not utilize any networklstae
formation, such as tcpdump capture, to investigate theabouer-
head caused by the applications.

7. CONCLUSION

In this paper, we studied the impact of application-levdhge
overheads on browser-based network measurement toolsaBy e
ating all the HTTP/TCP methods employed by the current beows
based measurement tools and services with our carefully s
testbed experiments, we showed that both socket-based&hie-H
based methods may introduce different degrees of inacglnac
measuring the RTT due to a number of intrinsic and systenegssu
Based on the results, the socket-based methods are ggmecaé
reliable than the HTTP-based methods. Although our worlorsed
in desktop environment, the methodology can be extendeheto t
mobile environment. Another extension is to investigatedblay
overhead incurred on the server side.

Acknowledgement

We thank the four anonymous reviewers for their very usefuh-c
ments and feedback for improving the paper, and our shepleérd
frey Pang for guiding us during the revision process. Thiskwo
is partially supported by an ITSP Tier-2 project grant (refo.

If a measurement object can be reused, theGHP/027/11) from the Innovation Technology Fund in Hong ¢on

8[1] &Ea’zgﬁﬁ!\é%g?mw ookl a. com

[2] Speedof.mehtt p:// speedof. ne/.

[3] Accuracy (trueness and precision) of measurement rdstho
and results — part 1: General principles and definitions. ISO
5725-1, 1994.

[4] G. Almes, S. Kalidindi, and M. Zekauskas. A one-way delay
metric for IPPM. RFC 2679, IETF, Sept. 1999.

[5] G. Almes, S. Kalidindi, and M. Zekauskas. A one-way
packet loss metric for IPPM. RFC 2680, IETF, Sept. 1999.

[6] G. Almes, S. Kalidindi, and M. Zekauskas. A round-trip
delay metric for IPPM. RFC 2681, IETF, Sept. 1999.

[7] Audit My PC.com. AuditMyPC.com Broadband Speed Test

(Flash).ht t p: / / ww. audi t mypc. conmf

i nternet-speed-test.asp.

Audit My PC.com. Internet Speed Test (Java).

http://ww. audi t mypc. com

i nternet-speed-test. asp.

CAIDA. Archipelago Measurement Infrastructure.

http://ww. cai da. org/ projects/ark/.

cnet.com. Bandwidth Meter Online Speed Téstt p:

//reviews.cnet.cominternet-speed-test/.

M. Dhawan, J. Samuel, R. Teixeira, C. Kreibich, M. Allma

N. Weaver, and V. Paxson. Fathom: A browser-based

network measurement platform. Rroc. ACM/USENIX

IMC, 2012.

K. P. Gummadi, S. Saroiu, and S. D. Gribble. King:

estimating latency between arbitrary internet end hosts. |

Proc. SGCOMM IMW, 2002.

E. Halepovic, J. Pang, and O. Spatscheck. Can you GET me

now? Estimating the time-to-first-byte of HTTP transacsion

with passive measurements.Pnoc. ACM/USENIX IMC,

2012.

J. Huang, F. Qian, Y. Guo, Y. Zhou, Q. Xu, Z. M. Mao,

S. Sen, and O. Spatscheck. An in-depth study of LTE: Effect

of network protocol and application behavior on

performance. IfProc. ACM S GCOMM, 2013.

InternetFrog.com. InternetFrog.com Speed Teist.p:

/I ww. i nt er net frog. com nmypc/ speedt est/ .

[16] A. Janc, C. Wills, and M. Claypool. Network performance

evaluation in a web browser. FProc. IASTED PDCS, 2009.

D. Joumblatt, R. Teixeira, J. Chandrashekar, and N. Taf

HostView: Annotating end-host performance measurements

with user feedback. |Rroc. ACM HotMetrics, 2010.

M. Kaplan, M. Zeljkovic, M. Claypool, and C. Wills.

Javascript and Flash overhead in the web browser sandbox.

Tech. Rep. WPI-CS-TR-10-14, Computer Science

Department, Worcester Polytechnic Institute, 2012.

C. Kreibich, N. Weaver, B. Nechaev, and V. Paxson.

Netalyzr: llluminating the edge network. Rroc.

ACM/USENIX IMC, 2010.

(8]

9]
[10]
[11]

[12]

[13]

[14]

[15]

[17]

[18]

[19]

[20] C. Krintz and R. Wolski. Using JavaNws to compare C and
Java TCP-Socket performandgoncurrency Computat.:
Pract. Exper., 13(8-9):815-839, 2001.
S. Limited. BandwidthPlace Speed Test.
http://ww. bandwi dt hpl ace. cont .
M-Lab. NDT (Network Diagnostic Tool).
http://measurenentl ab. net/run- ndt.
J. Mahdavi and V. Paxson. IPPM metrics for measuring
connectivity. RFC 2678, IETF, Sept. 1999.
D. Morato, E. Magana, M. Izal, J. Aracil, F. Naranjo,
F. Astiz, U. Alonso, I. Csabai, P. Haga, G. Simon, J. Steger,
and G. Vattay. The European Traffic Observatory
Measurement Infraestructure (ETOMIC): A testbed for
universal active and passive measurementBraa.
Tridentcom, 2005.
[25] Ookla. Pingtest.neht t p: / / www. pi ngt est . net/ .
[26] Ookla. Speedtest.ndit t p: / / wwww. speedt est . net/.
[27] Oracle. Bad timing using System.currentTimeMillis{tead
of System.nanoTime().
http://whil eonefork. bl ogspot . hk/ 2010/ 12/
bad-ti m ng- usi ng-systencurrenttinem||li.
htm .
[28] Oracle. Java Plug-in and Applet Architectung.t p: / /
docs. oracl e. conl j avase/ 7/ docs/ t echnot es/
gui des/ j web/ appl et/ appl et _execution. htni.
[29] Oracle. Systenmht t p: // docs. or acl e. com
j avase/ 6/ docs/ api/javall ang/ System ht nl #
currentTineM I 11s().
[30] V. Paxson, G. Almes, J. Mahdavi, and M. Mathis. Framéwor
for IP performance metrics. RFC 2330, IETF, May 1998.
[31] A. Ritacco, C. Wills, and M. Claypool. How's My Network?
- A Java approach to home network measuremerfrdgc.
IEEE ICCCN, 2009.
M. Sanchez, J. Otto, Z. Bischof, D. Choffnes, F. Bustatea
B. Krishnamurthy, and W. Willinger. Dasu: Pushing
experiments to the Internet’s edge.Rroc. USENIX NSDI,
2013.
Speedchecker Limited. Broadband Speedchecker.
http://ww. br oadbandspeedchecker. co. uk/.
S. Sundaresan, W. de Donato, N. Feamster, R. Teixeira,
S. Crawford, and A. Pescape. Broadband Internet
performance: A view from the gateway. Rioc. ACM
S GCOMM, 2011.
Y. Wang, C. Huang, J. Li, and K. Ross. Estimating the
performance of hypothetical cloud service deployments: A
measurement-based approachPioc. IEEE INFOCOM,
2011.
[36] Y. Yeboah Jr., R. Nketia, and X. Hei. A measurement study
of application layer latency. Technical report, Huazhong
University of Science and Technology, 2011.

[21]
[22]
(23]
[24]

[32]

[33]
[34]

[35]

