Towards the Science of Network Measurement

Rocky K. C. Chang The Internet Infrastructure and Security Laboratory November 20, 2012

Network measurement problems

- Topology characterization
- Geolocation problems
- Performance problems
- Reliability problems
- Routing problems
- Security problems

Why measuring network path?

Applications

...

Latency Delay variation (jitter) Connectivity Packet loss/reordering Link/path capacity Available Bandwidth TCP throughput Router hop (count) Packet duplication

Traffic engineering

- Network tomography
- Path fingerprinting
- Routing optimization
- QoS routing, admission control, channel assignment in WLAN

User profiling

- Network resource planning
- SLA verification

Application performance tuning

- Rate adaption for VoIP/video streaming apps
- Distance/location prediction for overlay networks, P2Ps, CDNs

Approaches to path performance measurement

- Passive
 - Per flow
 - Per packet
- Active
 - Client side vs server side
 - One-sided vs two-sided
- Passive-active
 - Passively waiting for incoming packet for active measurement

Current state of active measurement

- Two-sided: OWAMP and TWAMP
- One sided: *Best-effort* measurement (e.g., ping, ping, ping ...)
 - Connectionless
 - Not reliable in terms of measurability and accuracy
 - Measuring the wrong thing

Best-effort measurement

- Best-effort measurement is designed for reachability test.
- Wrongly extending reachability test performance test:
 - ICMP packets measure IP's control plane (not the data plane)
 - TCP SYN/RST segments measure TCP's control plane (not the data plane)
- Do not differentiate between system delay and network delay.

Beyond best-effort measurement

- Measuring the data path
 - In-band vs out-of-band
 - Transport/application specific
 - Load-balancing/traffic engineering below L3
- Measuring the network part
 - Mitigate the impacts of the network nodes
 - Measuring paths to proxies or original servers
- The manner of measurement
 - Sampling patterns and rates
 - Avoid self-induced measurement results
 - Choice of packet sizes

Where to start?

- A possibility is a two-side measurement tool, such as OWAMP in perfSONAR.
 - A complete control of the measurement parameters
 - But not measuring application-specific data paths
 - Deployment is costly.

Our starting point

- OneProbe: A TCP-data-channel measurement approach
 - Stateful measurement
 - Can control the size of the probe and response data packets
 - Can control sampling rate and pattern by using multiple TCP connections
 - A single observation based on
 - Two probe data packets and elicited response data packets

OneProbe's primitive operation

- Send two back-to-back probe data packets.
 - Capacity measurement based on packet-pair dispersion
 - At least two packets for packet reordering
 - Determine which packet is lost.

The probe design (cont'd)

• Similarly for the response packets

Each probe packet elicits a response packet.
 Adv. Window = 2 and acknowledge only 1 packet.

Bootstrapping and continuous monitoring

Loss and reordering measurement via response diversity

18 possible path events

	R0	RR	R1	R2	R3
F0	\checkmark	\checkmark	\checkmark		\checkmark
FR	\checkmark	\checkmark			\checkmark
F1		\checkmark			
F2	\checkmark	_		_	_
F3	_	_	_	_	_

Based on their response packets

Path events	1st response packets	2nd response packets	3rd response packets			
1. F0×R0 2. F0×RR 3. F0×R1 4. F0×R2 5. F0×R3	53 3' 54 4' 54 4' 53 3' \$3 4'	54 4' 53 3' Ŝ3 4' Ŝ3 4'	- - - -			
6. FR×R0 7. FR×RR 8. FR×R1 9. FR×R2 10. FR×R3	53 2' 54 2' 54 2' 53 2' \$3 4'	54 2' 53 2' \$3 4' \$3 4'	Ŝ3 4' Ŝ3 4' - -			
11. $F1 \times R0$ 12. $F1 \times RR$ 13. $F1 \times R1$ 14. $F1 \times R2$ 15. $F1 \times R3$	53 2' 54 2' 54 2' 53 2' \$3 2'	54 2' 53 2' \$3 2' \$3 2'	Ŝ3 2' Ŝ3 2' - -			
16. F2×R0 17. F2×R1	53 3' \$2 3'	Ŝ2 3′ −	-			
18. F3	$\widehat{S}1 2'$	_	_			

清华大学网络运行与管理技术研究室

Our research model

Measurement methods

- RTT, bi-directional loss rate, bi-directional reordering rate, and delay jitter

 Proc. USENIX Annual Tech. Conf. 2009.
- Bi-directional bottleneck capacity
 - Proc. ACM CoNEXT 2011
 - Proc. ACM CoNEXT 2009
- Loss-delay analysis
 - ACM/USENIX IMC 2010
- Fast available bandwidth estimate — ACM Multimedia Systems Conf. 2012

Datasets are used in

- "An Efficient Approach to Multi-level Route Analytics," *Proc. IFIP/IEEE IM 2013*.
- "MonoScope: Automated Network Faults Diagnosis Based on Active Measurements," *Proc. IFIP/IEEE IM* 2013.
- "Characterizing Inter-domain Rerouting after Japan Earthquake," *Proc. IFIP NETWORKING 2012*.
- "Non-cooperative Diagnosis of Submarine Cable Faults," *Proc. PAM 2011*.
- "Could Ash Cloud or Deep-Sea Current Overwhelm the Internet?" *Proc. USENIX HotDep 2010*.

Measurement platforms

- "Performance Monitoring and Measurement of HARNET," funded by the Joint Universities Computer Centre, since January 2009.
- "Performance Monitoring of Critical Network and Service Infrastructure in Hong Kong" 2013.

HARNET measurement platform

M19	A Measurement Result Viewer						Welcome, guest. [Logout]				
RV	Realtime View	Monthly Report	Tro	uble Shoo	oting S	Settings	MOI	N 30-08-20)10 11:47:	38 (GMT-	+8)
A Home » Round Trip Time Choose Other Metrics Round Trip Time ■							•				
Name	URL		U B	UF	UC	U A	UH	UE	U D	U G	
□ HKIX(HK)											
mingpao	www.mingpaonew	vs.com	2.4	1.6	2.6	2.9	3.1	2.1	2.5	2	
atnext	www.atnext.c	om	3.2	2	3.4	3.3	3.5	2.5	3.7	2.4	
pccw	www.pccw.co	om 📃	4	3.1	4.1	4.4	5.3	3.6	4.3	3.5	
wifijucc	wifi.jucc.edu.	hk	1.3	1.3	1.6	3	4.2	1.3	2.3	1.6	
B HKIX(ASGC	NET)										
twgrid	www.twgrid.c	org	50.3	19.2	20.1	20.5	20.7	19.6	20	19.5	
B HKIX(KREO	NET)										
ktc	ktc.gist.ac.k	ir 📃	43.1	43.6	44.7	45	45.2	44	44.5	44	
kreonet	www.kreonet.	net 📃	39.2	39.7	40.6	40.9	41.2	40.1	40.5	40	
Internet(Ch	ina)										
taobao	www.taobao.c	om 📃	35.2	35	34.8	34.9	202	33.6	36.1	34.1	
lenovo	appserver.lenovo.	com.cn	74.9	55.2	55.5	57.8	293	329.3	51.6	52.4	
Internet(Englishing)	□ Internet(England)										
eng2	www.itraveluk.o	o.uk	243	242.9	243.4	233.4	259.1	241.5	238	242.7	
eng4	www.oldmap.c	o.uk 2	28.1	222.3	226.6	258.7	272.3	226	222.5	222	
eng3	www.maps-of-brita	ain.co.uk 2	27.2	227.2	227.6	261.9	318.1	227	229.2	227	
bbc	www.bbc.co.	uk 2	25.3	227.8	225.4	262.1	270.8	228.9	228.2	227.6	
Internet(Fin	land)										
nokia	www.nokia.co	om 2	73.7	272.2	272.3	273.9	319.1	273.4	272.4	271.8	
Internet(US	A)										

清华大学网络运行与管理技术研究室

Time-series plots

Time-series heat map

清华大学网络运行与管理技术研究室

清华大学网络运行与管理技术研究室

Offering network path measurement as a service

- "Design and Implementation of a Unified Box for Offering Network Path Measurement as a Service," Funded by ITF
- Major deliverables:
 - Novel network measurement boxes
 - Novel network measurement platforms
 - Residential broadband measurement
 - IPv6 measurement

New measurement platforms

清华大学网络运行与管理技术研究室

A service and research platform

- Performance problems
 - E.g., QoE measurement of HTTP video ("QDASH: A QoE-Aware DASH System")
- Reliability problems
 - E.g., fault localization ("MonoScope: Automated Network Faults Diagnosis Based on Active Measurements")
- Routing problems
- Security problems

Conclusions

- Network measurement is a primitive in network science and applications.
- But the current status is very much best-effort measurement.
- Not enough skepticism on the measurement accuracy
- What we need are reliable measurement apparatus and platform.
- Network science =? Network data science

March 18-20, 2013

PAM 2013 | HONG KONG

Passive and Active Measurement Conference

CONTACT

Welcome to PAM 2013!

The organizing committee is excited to invite you to take part in the 14th Passive and Active Measurement conference will be held March 18-20, 2013 in Hong Kong at The Hong Kong Polytechnic University.

» SOCIAL NETWORKS

Thanks (oneprobe.org)