MY REFLECTIONS ON WHAT TO TEACH IN COMPUTER NETWORKING
My \(\rightarrow\) 20 years of teaching experience

- **Undergraduate level**
 - A first course on computer networking

- **Post-graduate level**
 - Internetworking protocols I (proposed in 1994): TCP/IP fundamentals
 - Internetworking protocols II (proposed in 1999): Advances in TCP/IP
 - Internet Infrastructure Security (proposed in 2004): Security in TCP/IP
My research

- Network-quality measurement and applications
 - Publications and patents
 - Running a live measurement platform for HARNET for almost four years
- Network security and privacy
 - Publications
 - Release CVEs for Android security
My problem statements

- How could the students learn the complex and fast-changing computer networking field effectively?
 - Not necessarily MORE subjects

- The purpose of our curriculum?
 - Career: Technicians, engineers, network operators, network architects, researchers
 - How about beyond career preparation?
 - *What Are Universities for?* by Stefan Collini
Agenda

- Curriculum design
- Objectives and teaching/learning methods
- Conclusions
Curriculum design
A common approach

- “Core/fundamental” subjects
 - Packet switching, layered model, protocol and service, data-link, etc

- “Advanced” subjects
 - Require knowledge in core subjects, e.g., Internet security
 - More recent topics, such wireless/mobile, multimedia networking, etc
 - More in-depth treatment of a subject, e.g., advanced topics in routing
My example

- A first course on computer networking
- Internetworking protocols I: TCP/IP fundamentals
- Internetworking protocols II:
 - IPv6, IP multicast, Mobile IP, IP telephony, and IP security
- Internet Infrastructure Security
 - Security problems when introducing cryptographic primitives to TCP/IP
Another approach: Three Ps

- **Product**
 - Understand what has already been produced.
 - E.g., how does IP network work?

- **Probing**
 - Understand beyond what-is and probe into why-is.
 - E.g., why is IP network designed in this way and why not the other way?

- **Principle**
 - Understand the principles underlying the design and implementation.
 - E.g., what principles were used to guide the design of IP network?
The first P: Product

- Study a finished and well-tested “product.”
 - The selected topics are usually “useful.”
 - Shifting from OSI to TCP/IP
- Challenges: Understand the problems involved and how they are solved in the current “product.”
- My examples:
 - A first course on computer networking
 - Internetworking protocols II: Advances in TCP/IP
 - Internet Infrastructure Security
The second P: Probing

- Understand beyond what-is and probe into why-is and even why-not.
 - The selected topics are not necessarily “useful.”
 - Why is IP router designed to be stateless?

- Challenges: Understand the rationales beyond a certain design/implementation.

- My example:
 - Internetworking protocols I: TCP/IP fundamentals
The third P: Principle

- Understand the principles underlying the design and implementation.
- Challenges: Think outside the box
- My example:
 - Internetworking protocols I: TCP/IP fundamentals (10%)
- References:
 - *Patterns in Network Architecture: A Return to Fundamentals* by John Day
 - *Network Algorithmics* by G. Varghese
Objectives and teaching/learning methods
The first course on computer networks

- A “product” course

Objective:
- Understand the main topics.
- Increase their interest in the subject.

Approach:
- Identify and remove the obstacles to learning the subject.
What so difficult to learn networking?

- Rapid development in the field (both in scope and depth)
- Abstract concepts
- Lack of hands-on experience
- Many terminologies and acronyms
- Heterogeneity of students’ backgrounds
- Lack of motivation to learn
- Scaling to large class size
An integrative approach

- Three types of integration
 - Teaching and learning activity integration
 - Peer integration
 - Teaching and assessment integration
Teaching and learning activity integration

- The main foundation is still based on lectures and self-reading.
- The problem-solving layer intends to deepen the understanding.
 - Cover the important details and reinforce the concepts taught in lectures.
 - Interact with the concepts through experimentation.
Peer integration

- The best teaching assistants are the students
 - Students know their learning problems.
 - Encouragement, support, and stimulation
- Study groups
Teaching and assessment integration

- Teaching and assessment are nonseparable.
- Meaning and purposes of assessments?
- Imbed assessment in the teaching and learning activities
Assessment

More interested
Understood
Study further
Enjoy

Strongly Agree
Agree
Neutral
Disagree
Strongly Disagree
A course on TCP/IP networks

- A “probing” course
- Objective:
 - Acquire foundational understanding on the concept of Internetworking in terms of the technologies and techniques that drive Internet.
- Approach:
 - Problem solving (paper and lab)
 - Research papers, RFCs, students’ problems
 - Active engaging the students
Conclusions
Conclusive thoughts

- What is our philosophy of the curriculum on computer networking?
- Need for manpower who is creative and can innovate.
- What is the scalable approach to teaching computer networking?
- The approach based on three Ps: Product, Probing, and Principle
- Broaden the curriculum scope: business model, environmental, humanities, etc