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Abstract. A number of projects deploy Linux-based embedded systems
to carry out large-scale active network measurement and network exper-
iments. Due to resource constrains and the increase of network speed,
obtaining sound measurement results from these low-end devices is very
challenging. In this paper, we present a novel network primitive, OMware,
to improve the packet send-time accuracy by enabling the measurement
application to pre-dispatch the packet content and its schedule into the
kernel. By this pre-dispatch approach, OMware can also reduce the over-
heads in timestamp retrievals and sleeping, and the interference from
other application processes.
Our evaluation shows that OMware can achieve a microsecond-level ac-
curacy (rather than millisecond-level in a user-space tool) in the inter-
departure time of packet trains, even under heavy cross traffic. OMware
also offers optimized call for sending back-to-back packet pairs, which
can reduce the minimum inter-packet gap by 2 to 10 times. Further-
more, OMware can help reduce the error of replaying archived traffic from
40% to at almost 19%.

1 Introduction

Linux-based embedded devices are ubiquitous. For example, many homes use
home routers or WiFi APs for sharing the residential broadband access. Some of
them run OpenWrt [27], a popular Linux distribution for networked embedded
devices, which allows developers to re-use the software tools implemented for
the PCs via cross compilation. Due to their low cost, several projects, such as
BISMark [1], SamKnows [8], and RIPE Atlas [6], employ them as vantage points
to measure the Internet performance or gauge the network service quality of
residential broadband. ARM-based single-board computers, such as Raspberry
Pi [5], are also used in sensor network and embedded cloud research.

Obtaining sound measurement results from these resource-constrained de-
vices is however very challenging. A fundamental requirement is to send out
(probe or archived) packets onto the wire according to their pre-determined
schedules. Inaccurate packet send times will distort the scheduled probe pat-
terns (e.g., Poisson, periodic, and Gamma renewal) in active measurement which
may result in non-optimal probing [9]. Inaccurate packet send times can also di-
rectly affect the measurement results for timing-sensitive measurement, notably
packet-pair capacity [20, 12] and available bandwidth [19].



A major source of send-time inaccuracy is the high overhead for these devices
to move packets between user and kernel space and in executing the sleep and
timestamping function calls. These overheads will widen the gap between the
scheduled send time and the actual time of delivering the packet to the wire.
Another problem is to contend resources with other running processes (E.g.,
firewall, NAT, and DNS request forwarding in a residential broadband router).
Due to the CPU context switching, the measurement tool will experience highly
fluctuated overheads which cannot be calibrated easily. A traffic generator may
even fail to send the expected pattern when the CPU consumption is high [10].

In this paper, we propose OMware, a new network primitive to improve the
send-time accuracy. Its main novelty is on utilizing the sleep period typically
required for a packet sending process to copy packets from user space to ker-
nel and construct the sk buff structure [24] for the network card driver. As a
result, the first pre-dispatching phase “absorbs” these operations’ overheads. In
addition, OMware offers optimized function calls for sending back-to-back packet
pairs, which can improve the accuracy of capacity and available bandwidth mea-
surement [20, 12, 11, 21].

We evaluate OMware with two OpenWrt routers (NETGEAR WNDR 3800
and TP-LINK WR1043ND) and perform a set of experiments under different
levels of cross traffic to investigate the improvement in network measurement.
The results show that OMware can achieve a microsecond-level accuracy (rather
than millisecond-level in a user-space tool) in the inter-departure time (IDT) of
packet trains even under heavy cross traffic. Besides, the packet sending delay
can be significantly reduced by 0.2 ms. Furthermore, OMware can reduce the IDT
in a back-to-back packet pair by 2 to 10 times, therefore enabling the embedded
device to measure a much higher capacity.

2 Related Works

There are generally two approaches to increase the packet I/O performance—
hardware and kernel. The hardware approach adopted by SoNIC [23], NetFPGA
[4], and [14] uses programmable network interface cards to improve the precision
of packet sending time and receiving timestamp. However, these cards are usually
expensive, thus prohibiting them from being used in embedded devices, such as
residential broadband routers. Intel recently proposes the DPDK library [18] to
boost packet processing performance. However, this library is only supported by
their Xeon series CPU which is not available in many embedded systems.

The kernel approach runs on commercial PCs and optimizes the operating
system’s kernel to increase the performance. Examples include PF RING [15]
for improving packet capturing performance, and nCap [16], netmap [29], and
kTRxer[30] for improving both sending and receiving speed. Epoll in Linux and
kqueue in FreeBSD are mainly for improving the event notification mechanism,
which can enhance the performance of packets reception. On the other hand, pk-
tgen [26] aims at a high-speed packet sending. However, they do not consider the
accuracy of packet send time. Using real-time Linux (RTLinux [7]) is a possible



solution to increase the packet send-time accuracy. For example, Kiszka et al.
propose RTnet [22] for hard real-time networking. However, running RTLinux on
residential broadband router may significantly affect the performance of running
other network services.

In wireless sensor network community, Österlind and Dunkels [28] proposed
to pre-copy packet to improve the packet forwarding throughput in 802.15.4
networks, but the application cannot send packets at any dedicated time.

3 Background

Linux-based embedded devices, such as home routers and private NASes (Net-
work Access Storage), can be found in many homes today and of low cost. Some
of them support OpenWrt, which is one of the popular and active Linux distri-
butions specifically for embedded devices. Furthermore, the packages of several
network measurement tools, including D-ITG, httping, and hping, are readily
available on public repositories. Developers can also run their own tools via cross
compilation. However, the computational power of these devices are far lower
than commodity PCs. Table 1 shows the detailed configurations of three testing
devices, including NETGEAR WNDR 3800, which has the same configurations
as a BISMark-enabled router, and a reference PC.

Table 1. The configurations of the testing devices.

Device Model CPU/Chipset (Clock Freq.) RAM

Raspberry Pi BCM2835 (700 MHz) 512 MB
TP-LINK WR1043ND AR9132 (400 MHz) 32 MB
NETGEAR WNDR3800 AR7161 (680 MHz) 128 MB

Reference PC Intel Core2Duo (1.86 GHz) 2 GB

Note: All embedded devices are running OpenWrt 12.09.1.
All devices expect Raspberry Pi support 1 Gbps Ethernet.

Due to resource limitations, the performance and accuracy of these devices
are not satisfactory, especially in today’s high speed network. We have identified
three basic operations—timestamp retrieval, sleep, and packet transmission—
could cause performance degradation. These operations are commonly used in
network tools. In the following, due to page limitation, we can only show the
performance issues in packet transmission, which cause the most significant im-
pact.

3.1 Packet sending performance

We define the packet sending performance by the time period between the calling
of sendto() and the packet is put on wire, because some tools may regard the
calling of sendto() as the packet sending time. Previously, Rizzo showed that
the time period 950 ns in his high-end FreeBSD host (Intel i7-870 with 10 Gbit
NIC) [29]. However, we found that tens of microseconds are required in the
embedded devices.

Instead of forcing the functions to return early [29], our benchmark pro-
gram repeatedly flushes out 100,000 identical TCP packets using the raw socket



(i.e., sendto()). Besides, the packet’s TCP/IP header and checksums are pre-
computed to mitigate any overhead from these operations. We repeat the exper-
iment with five packet sizes, which are {40, 200, 500, 1000, and 1500} bytes. All
the packets are captured by an endace DAG card directly connected to the de-
vice. We then analyze the IDTs between packets to estimate the overall sending
performance.

Figure 1 shows the average packet IDTs against the packet sizes. We can
see that the performance of the three embedded devices is about one order
of magnitude slower than a commodity PC. For example, the average packet
IDT for 40-byte packets is 2.64 µs, while the NETGEAR router is 41.7 µs.
The Raspberry Pi performs the worst among the embedded device, because the
Raspberry Pi’s ethernet interface connects to CPU via the USB interface and
results in poor performance. Unlike the reference PC, the performance is fairly
stable across the packet sizes in all three embedded devices. The average packet
IDTs for TP-LINK and NETGEAR only respectively increase by 5% and 8% as
the packet size increases from 40 bytes to 1500 bytes.
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Fig. 1. The average packet IDT against packet size on all devices.

4 Pre-dispatch Programming Model

We survey several network tools listed in Table 2. We find that these tools are
often implemented with similar kind of function calls in packet I/O, sleep and
timestamp retrieval. We further investigate their source code and programming
flows. These tools often adopt a sequential programming model to schedule the
sending of packets. Figure 2(a) and 2(b) illustrate a timeline comparison between
the sequential model and our proposed pre-dispatch model, respectively. The
application in the figures refers to a network tool running on the user space.
For both model, at time t0, we assume the application has prepared the packet
content to be sent at a future time, ts. The packet appears on the wire at {tw,
t′w} in {sequential, pre-dispatch} model. Therefore, the sending time errors are
(ts − t0) or (t

′

s − t0) for sequential or pre-dispatch model, respectively.
Table 2. Examples of function calls used in network tools.

Tools Packet I/O Sleep Timestamp Retrieval

D-ITG [13] POSIX Socket select() and polling gettimeofday()
httping [2] POSIX Socket usleep() gettimeofday()
Iperf [3] POSIX Socket nanosleep() gettimeofday()
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Fig. 2. Timeline comparison between the sequential and pre-dispatch approaches.

We first consider the sequential model in Figure 2(a). The applications using
this model are usually implemented using POSIX socket for packet I/O and a
family of sleep() functions for spacing out packets. We summarize this model
into three major steps.

(1) The application prepares the packet content, computes the sleep period (i.e.,
ts − t0, for ts > t0) and goes into sleep mode.

(2) After the sleep period is over, the packet content is copied to the kernel
using socket.

(3) The packet headers are filled by the TCP/IP stack and finally sent to the
network card.

On the other hand, our pre-dispatch model, as shown in Figure 2(b), divides
the packet sending process into two major phases. The tool first prepares and
copies the packet to the OMware before the scheduled sending time, ts. Then, the
OMware sends the packet when ts arrives. We can describe the details with five
steps:

(i) Once the packet is ready and the sending time is determined, the application
can immediately invoke the packet sending call in the OMware API, which
takes the pointer of packet and the sending time as the input.

(ii) The OMware processes the packet, which includes adding ethernet header
and constructing sk buff structure.

(iii) If the packet sending time does not arrive (i.e., current time < ts), OMware
will add the packet sending operation as a kernel task triggered by a high
resolution timer. Otherwise, the packet should be sent immediately.

(iv) When the scheduled send time ts arrives, an interrupt will be generated to
trigger the callback routine of sending the processed packet.

(v) As the packet has been processed, it can be put onto the wire quickly. The
OMware API then acknowledges the application on whether the process is
successful.

The major difference between the two models is when the program starts to
wait (i.e., (1) and (iii)) for the scheduled time. The pre-dispatch model utilizes
part of the sleep time to handle time consuming operations, such as (i) and (ii).



Therefore, the system can take a shorter critical path in sending packets and
improve the throughput.

5 Evaluation

In this section we evaluate the packet send-time accuracy, pre-dispatching pe-
riod, packet-pair accuracy, and packet send timestamp accuracy on a testbed.
To support the pre-dispatch model, we have implemented OMware, which is a
loadable kernel module for Linux. OMware provides a set of APIs for network
tools. We cross-compile OMware, so that our experiments can run on two home
routers, NETGEAR WND3800 and TP-LINK WR1043ND, both of which are
installed with OpenWrt 12.09.1.

5.1 Testbed and Test Suite

We setup a testbed, as shown in Figure 3, to emulates a network environment
with cross traffic. The WAN port of the OpenWrt router, D0, is directly con-
nected to an endace DAG Card 4.5G2 [17] with 1 Gbps Ethernet for capturing
the traffic sending from D0. The server installed with the DAG card, S0, runs
the dagfwddemo program, so it can forward the traffic from D0 to a Linux host,
S1, and the cross traffic. X0 and X1 are two Linux hosts for generating cross
traffic using D-ITG, where X0 is behind the NAT provided by D0. The cross
traffic is unidirectional UDP flows generated by D-ITG [13]. Each flow is config-
ured with Pareto distributed packet inter-arrival times and uniform distribution
of packet size over {40, 1500} bytes. The bitrate for each flow is about 2200 kbps,
and the packet sending rate is about 352 packets/s.

S0 (w/DAG 4.5G2)

D0

X1

X0

Router

S1

WAN LAN

DAG Card 

Capture

Fig. 3. Testbed for the performance tests.

We have implemented a simple network measurement tool running with
OMware and different programming models for comparing the performance and
timing accuracy between our approach and raw socket. Table 3 lists the details
of a test suite. The packet train tests send a train of evenly spaced TCP data
packets to the WAN port. According to their memory capacities, the train has
100 packets for the NETGEAR router and 50 packets for the TP-LINK router.
The packet pair tests send 50 and 25 pairs of back-to-back packets to the WAN
port. Both tests use different packet sizes, inter-departure times between packets
or packet pairs, and degree/ direction of cross traffic. The parameters used are
listed in Table 4. The packet send time is recorded by both the measurement
tool using OMware and the DAG card.



Table 3. The test suite for evaluating OMware.

Methods
Packet
pattern

Library Model Description

OIR
Packet
train

OMware
OMware (initial

pre-dispatching)

The tool prepares all the probe packets and
their sending timestamps in advance and
sends them to OMware for pre-dispatching the
sending of the packets.

OFR
Packet
train

OMware
OMware (on-the-fly
pre-dispatching)

The tool uses clock nanosleep() with abso-
lute timestamp to sleep until φ µs before the
scheduled send time. Then, it prepares the
probe packets and sends them to OMware for
pre-dispatching the sending of the packets.

OSM
Packet
train

OMware Sequential
This method is a special case of OFR method
where φ is zero.

RSM
Packet
train

POSIX Sequential

This method uses raw socket for sending
packets. Similar to OSM, clock nanosleep()
with absolute timestamp is used for spacing
the probe packets.

TOM
Packet
pairs

OMware OMware

This method employs the packet pair send-
ing function in OMware to send a sequence of
packet pairs with initial pre-dispatching.

TRW
Packet
pairs

POSIX Sequential
This method uses raw socket to send a se-
quence of packet pairs.

Table 4. The parameters used in evaluating packet sending performance.

Parameters Values

No. of cross traffic flows, ρ 0, 1, 5, 10, 20, 30
Direction of cross traffic, ρ WAN→LAN, WAN←LAN
IP packet size, λ (bytes) 40, 200, 500, 1000, 1500

Expected inter-departure time, α (µs) 0, 10, 100, 1000, 10000, 100000
Pre-dispatching period for the OFR method, φ (µs) 0, 100, 500, 1000

5.2 Packet Send-Time Accuracy

We use the timestamps from the packet capture to compute the actual packet
IDT sent from the router by IDT = tsn+1 − tsn, where tsn represents the
timestamp of the nth packet in the packet train. Figure 4 shows a log-log plot of
average packet IDT against the expected IDT, α, in the idle NETGEAR router.
The error bars plot the 95% confidence interval of data. We can see that the OIR

method outperforms the other three, especially in very small packet IDT (10 and
100 µs). But the variation for 10 µs case is quite large, as this IDT is close to the
limit of the system. The OFR method becomes more accurate when the expected
IDT increases to 100 µs as the pre-dispatching can take place after sending the
first few packets. The OSM and RSM methods improve their accuracy when
the IDT is larger than 1 ms.

Figures 5(a) to 5(d) are four box-and-whisker plots respectively showing the
summary of data of the OIR, OFR, OSM, and RSM methods where the expected
packet IDT is set to 1 ms. In each box-and-whisker plot, the top/bottom of the
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Fig. 4. The log-log plot of measured average packet IDT against assigned one for OIR,
OFR (φ=1000 µs), OSM, and RSM (ρ = 0, λ = 40 bytes, α ≥ 10µs, NETGEAR).

box are given by the 75th/25th percentile, and the mark inside is the median. The
upper/lower whiskers are the maximum/minimum, respectively, after excluding
the outliers. The outliers above the upper whiskers are those exceeding 1.5 of
the upper quartile, and those below the minimum are less than 1.5 of the lower
quartile. Each figure shows 15 test cases with different degrees/directions of cross
traffic and packet sizes. For example, OIR-0-500 on the x-axis in Figure 5(a)
represents the results obtained from OIR method under ‘0’ cross traffic (idle)
and sending 500-byte IP packets; WLXX or LWXX represents the experiment
runs with XX flows of cross traffic in WAN→LAN or WAN←LAN direction,
respectively.

We can see that the OIR method is the most stable against the cross-traffic.
Most of the IDTs fall within ± 20 µs of the true value. The OFR method
also shows an accurate median value. But the cross traffic slightly affects this
method’s accuracy. The inter-quartile range increases with the number of cross
traffic flows. Without adopting the pre-dispatching technique, the OSM method
shows even larger inter-quartile range (about 1 ms) for all cases, which is caused
by the inaccuracy of sleep function. Finally, the RSM method shows the worst
result. All the IDTs suffer from at least 0.2 ms inflation. Besides, this method is
also susceptible to cross traffic interference. When the WAN←LAN cross traf-
fic is heavy (e.g., LW30), the inter-quartile range shows a six-fold increase. To
summarize, traditional method (RSM ) experiences larger delay and variance in
sending packets than OMware-based methods.

5.3 Pre-dispatching Period

Another important issue is the length of pre-dispatching period in the OFR

method. Some stateful measurement tools, such as OneProbe [25], requires the
information from the previous probe packets to generate a new one. Preparing
all probes packets at the beginning of the measurement becomes infeasible. As
shown in the previous section, OMware cannot pre-dispatch probes if the packet
send time is too close to the current time. Therefore, we test four different pre-
dispatching periods and examine their effects on the packet send-time accuracy.

Figures 6(a) and 6(b) show the CDFs of the packet IDTs with different
pre-dispatching periods using an expected packet IDT of 10 µs and 1000 µs,
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(a) OIR.
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(b) OFR (φ=1000 µs).
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(c) OSM.
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(d) RSM.

Fig. 5. The box-and-whisker plots of packet IDTs using different methods (α = 1 ms,
NETGEAR router).

respectively. When the expected packet IDT is very small (e.g., α = 10 µs), the
pre-dispatching period cannot improve the accuracy. It is because the requested
IDT is insufficient for OMware to finish the pre-dispatching phase before the
scheduled send time. However, when the expected packet IDT increases to 1 ms,
the fluctuation of the packet IDTs can be significantly decreased when the pre-
dispatching period increases to 500 µs (as shown in Figure 6(b)). We also found
similar pattern in other cases. Therefore, we conclude that the pre-dispatching
period of 500 µs is sufficient for completing the first part of packet dispatchment
in this router.

5.4 Packet-pair Accuracy

OMware provides a dedicated API for sending back-to-back packet pairs. A smaller
gap between the two packets can enable us to measure a higher capacity using
packet pair based methods (e.g., [20, 11]). Figures 7(a) and 7(b) plot the CDFs
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Fig. 6. The CDFs of packet inter-departure time of the OFR method with different
pre-dispatching period (ρ = 0, λ = 1500 bytes, NETGEAR router).

of the back-to-back packet pairs’ IDTs under different degrees of cross traffic in
the NETGEAR and TP-LINK router, respectively. We set a 1 ms gap between
each pair to mitigate the influence from the previous pair. We can see that the
NETGEAR router can achieve a minimum IDT of 6.44 µs, while the TP-LINK
one only can reach 13.6 µs. They can achieve 2 to 10 times improvement against
the raw socket version under the same condition.
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Fig. 7. The CDFs of back-to-back packet pairs’ inter-departure time. (α =1 ms and
λ =40 bytes).

5.5 Packet Send Timestamp Accuracy

In most cases, the measurement tools cannot rely on external timestamping
device, such as DAG card, to provide precise packet send timestamp. The tools
have to rely on the send timestamp reported by OMware. To appraise the accuracy
of the timestamps, we subtract the packet IDTs computed by two time sources,
∆tm = IDTOMware−IDTDAG, where IDTOMware and IDTDAG are the packet
IDTs of the same pair of packets, but computed using the timestamps reported
by the OMware and those captured by the DAG card, respectively. Figures 8(a)
and 8(b) show the CDFs of ∆tm for the NETGEAR and TP-LINK routers.



We can see that the packet IDT difference computed by the two time sources
are very close. OMware’s timestamp accuracy can generally reach micro-second
level. Therefore, the measurement tools can use OMware’s timestamp to compute
accurate results.
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Fig. 8. The CDF of the difference between packet IDTs computed by the DAG card
capture and send timestamps reported by OMware (ρ = 0 and λ = 40 bytes).

6 Conclusions

This paper proposed a novel network primitive to improve the packet send-time
accuracy. The model employs a two-phase approach to allow pre-dispatch of
packets to reduce the impact from the low packet sending performance. Our
implementation, OMware, allows the tools to buffer probe packets and their send
times in the kernel before their actual send time. Hence, the packet send-time
accuracy and sending rate can be significantly improved.

Our testbed evaluation results showed that using OMware to pre-dispatch
packets can provide accurate packet send times. Comparing to raw socket, OMware
can reduce the minimum packet inter-departure time by ten times and reduce
the variation by 6 times under heavy load cross traffic. In the future, we will
compare the performance of OMware in more embedded devices and investigate
the performance impact to other applications.
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