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Abstract

In this paper we analyze a new class of pulsing denial-
of-service (PDoS) attacks that could seriously degrade
the throughput of TCP flows. During a PDoS attack,
periodic pulses of attack packets are sent to a vic-
tim. The magnitude of each pulse should be significant
enough to cause packet losses. We describe two spe-
cific attack models according to the timing of the at-
tack pulses with respect to the TCP’s congestion window
movement: timeout-based and AIMD (additive-increase-
multiplicative-decrease)-based. We show through an
analysis that even a small number of attack pulses can
cause significant throughput degradation. The second
part of this paper is a novel two-stage scheme to detect
PDoS attacks on a victim network. The first stage is based
on a wavelet transform used to extract the desired fre-
quency components of the data traffic and ACK traffic.
The second stage is to detect change points in the ex-
tracted components. Through both simulation and test-
bed experiments, we verify the feasibility and effectiveness
of the detection scheme.

1 Introduction

Starting from the most well-known denial-of-service
(DoS) attacks in February 2000 against a number of very
popular web sites, such as Yahoo, Amazon, and eTrade,
DoS attacks continue to plague the Internet. The most re-
cent one is the attack against Akami’s DNS servers, which
disrupted their services for hours. Unlike other system-
specific attacks, DoS attacks are more generic in nature.
Therefore, their impact can be very significant in scope
and damage.

Conventional DoS attacks are flooding-based [8]. That
is, an attacker sends out an unusually large number of
packets to a victim via a single host or multiple infected
hosts. These attack packets either exhaust the victim’s

bandwidth, e.g. DNS reply flooding, or exhaust the vic-
tim’s system resources, e.g. SYN flooding. Based on
an anomalous rise in the traffic rate, these flooding-based
attacks can be easily detected at the victim’s side. The
response to the detection is usually to ask the upstream
provider to drop the attack packets inscribed with the
victim’s address. Since the attack packets usually con-
tain spoofed source IP addresses, various detection mech-
anisms based on other signatures have been proposed,
such as the statistical distribution of source addresses [14],
source and destination addresses [18], and the TTL values
[6].

In this paper, we consider a new generation of DoS at-
tacks, called pulsing DoS attacks (PDoS). PDoS attacks
are not entirely new, having been reported by Asta Net-
works in 2001 [9]. Based on a six-month period of ana-
lyzing the traffic in the Internet2 Abilene backbone, they
have discovered the presence of pulsing zombies. In-
stead of generating a flood of attack packets, these zom-
bies sent out short bursts of attack packets to a victim.
Kuzmanovic and Knightly have recently proposed a low-
rate TCP-based attack that also involves sending pulses of
packets [13].

In this paper, we propose and analyze a class of PDoS
attacks against TCP-based applications. This class of new
attacks can be further categorized into timeout-based at-
tacks and AIMD-based attacks (AIMD stands for Addi-
tive Increase and Multiplicative Decrease), depending on
the timing of the attack pulses with respect to the TCP’s
congestion window movement. As will be explained later,
there are also variants within each category. It turns out
that the low-rate attack proposed in [13] is a specific case
of the timeout-based attacks.

The PDoS attacks are much more sophisticated and ef-
fective than the traditional flooding-based attacks. First of
all, by adjusting the parameters in the attack tool, differ-
ent levels of damage can be launched. On one extreme,
the result can be the same as the flooding-based attacks.
On the other, it can create a degradation-of-service at-
tack, i.e., the victim’s performance will be degraded but



not to the extent of being denied of service. Second, the
amount of attack traffic required to achieve a DoS attack
is also much lower than in flooding-based attacks. Conse-
quently, the PDoS attack can elude the detection methods
designed for flooding-based attacks. Finally, the number
of attack sources can be very small in a PDoS attack, as
compared with a conventional distributed DoS (DDoS) at-
tack. Therefore, the packet fields in the attack packets can
be set with correct values in order to escape the detection
methods proposed in [14, 18, 6].

We believe that this work is the first to formally address
and analyze PDoS attacks. Therefore, our contributions is
two-fold. First, we identify and formally describe a new
class of PDoS attacks against TCP-based applications. We
also model them and analyze their properties and effec-
tiveness. Second, we propose a novel two-stage scheme
to detect the attacks on the victim’s side. The methods
of detection are designed based on two key observations:
(1) the PDoS attack causes the rate of incoming traffic to
fluctuate more severely than would normally be the case,
and (2) the outgoing TCP ACKs will decline after an at-
tack has been launched. We have employed a wavelet
transform in the first stage to extract relevant information,
which is then fed into a nonparametric CUSUM algorithm
for detecting abrupt changes.

The rest of the paper is organized as follows. In sec-
tion 2, we describe and analyze the new class of PDoS
attacks. In section 3, we describe a two-stage detection
scheme for the PDoS attacks. In section 4, we evaluate the
performance of the detection system based on the ns-2
simulation and a testbed. Section 5 concludes this paper.

2 Modelling and analyzing of the PDoS at-
tacks

One can view the flooding-based attack as a brute-force
attack, which exploits the finiteness of network and sys-
tem resources. However, the PDoS attack is more so-
phisticated in the sense that it exploits a transport proto-
col’s congestion control mechanism. There are two main
mechanisms in a typical end-to-end congestion control al-
gorithm. The first is the generation of a congestion sig-
nal that serves to notify the sender of possible congestion.
The second is the sender’s response to the receipt of such
a congestion signal. Table 1 summarizes the mechanisms
used in TCP.

In essence, a PDoS attacker generates a sequence of
false congestion signals to a TCP sender using attack
pulses, so that the sender’s cwnd is constrained to a low
value. Therefore, the magnitudes of the attack pulses must
be significant enough to cause packet drops in a router. We
formally model the sequence of attack pulses by using the

following:

A(TExtent(n), SExtent(n), TSpace(n), N),

where,

• N is the total number of pulses sent during an attack.

• TExtent(n), n = 0, 1, . . . , N − 1, is the duration of
the nth attack pulse.

• SExtent(n), n = 0, 1, . . . , N − 1, determines the
shape of the nth attack pulse. If SExtent(n) is a con-
stant, the attack pulse is rectangular.

• TSpace(n), n = 0, 1, . . . , N − 2, measures the time
between the end of the nth attack pulse and the be-
ginning of the (n+1)th attack pulse. If TSpace(n) =
0,∀n, the PDoS attack is the same as a flooding-
based attack.

Back to Table 1, a TCP sender’s response to the re-
cipient of three duplicate ACKs is generally known as
a additive-increase, multiplicative-decrease (AIMD) al-
gorithm. Although TCP is the prime target for such
PDoS attacks in the Internet today, it is useful to exam-
ine more general AIMD algorithms in a similar manner
as in [24]. That is, we denote an AIMD algorithm by
AIMD(a, b), a > 0, 1 > b > 0. In this general
AIMD algorithm, a sender will decrease its cwnd from
W to b × W whenever it enters the fast recovery state,
and then it will increase its cwnd from W to W + a per
round-trip time (RTT) until receiving another congestion
signal.

Depending on the type of the false congestion signal
received, a PDoS attack can force a victim TCP sender to
frequently enter the timeout state or to frequently enter the
fast recovery state. The result is a persistently low value
of cwnd, which translates into a very low throughput for
the victim TCP connection. Accordingly we classify the
PDoS attacks into timeout-based attacks and AIMD-based
attacks, to be presented next.

2.1 Timeout-based attacks

In a timeout-based attack, the attack pulses are severe
enough to cause a victim TCP sender to frequently enter
the timeout state. Without receiving (or without a suffi-
cient number of) ACKs, the sender eventually timeouts
and the retransmission timeout value (RTO) is computed
by Eq. (1) [19], as follows:

RTO = max{RTOmin, SRTT+max(G, 4×V RTT )},
(1)

where RTOmin, the lower bound on RTO, is recom-
mended to be 1 second for the purpose of avoiding spu-
rious retransmissions [2], and G is the clock granularity.



Table 1. TCP’s network congestion signals and responses

Congestion Signals Sender’s Responses

1 Retransmission timer expired Reduce the congestion window (cwnd) to one and perform a slow start

(the sender is said to enter the timeout state).

2 Three duplicate ACKs Halve the cwnd and increase the cwnd by one per round-trip time

received (the sender is said to enter the fast recovery state).

SRTT is the smoothed RTT and V RTT is the RTT vari-
ation, which are updated according to Eq. (2) and Eq. (3)
upon receiving a new RTT measurement rtt, respectively.

SRTT = 7/8 × SRTT + 1/8 × rtt. (2)

V RTT = 3/4 × V RTT + 1/4 × |SRTT − rtt|. (3)

2.1.1 Synchronous timeout-based attacks

The first type of timeout-based attacks is synchronous
with the RTO value. That is, if the attacker knows the
RTO value of the targeted TCP sender and is able to
cause every retransmitted packet to drop, then the victim
TCP sender’s cwnd always stays at 1, and the throughput
is equal to 0. This type of attack is shown in Fig. 1, which
shows that the attack epoches coincide with the retrans-
mission epoches.

Proposition 1 (Attack epoches for synchronous time-
out-based attacks). Let tn, n = 0, . . . , be the nth attack
epoch. The first attack starts at t0, and for n > 0, the nth
attack epoch in a synchronous timeout attack is given by

tn =

⎧⎪⎪⎨
⎪⎪⎩

t0 + (2n − 1) × RTO if 1 ≤ n ≤ Nmax

t0 + (2Nmax − 1) if Nmax < n ≤ Amax

×RTO + (n − Nmax)
×RTOmax,

(4)
where RTOmax is the maximum value of RTO, and
Amax is the maximum number of attempts in retransmis-
sions before the TCP sender gives up. Moreover, Nmax =⌊
log2

RTOmax

RTO + 1
⌋
.

Proof. According to RFC 2988, a TCP sender will double
the current RTO value when the retransmission timer ex-
pires [19]. If the new RTO is not more than RTOmax,
then the sender will use the new RTO. Hence, tn =
t0 +

∑n−1
i=0 2i × RTO = t0 + (2n − 1) × RTO for 1 ≤

n ≤ Nmax, where Nmax = max{n : 2n−1 × RTO ≤
RTOmax}. Otherwise, the RTO value is set to RTOmax

and the sender continues to retransmit the lost packet until
the total number of attempts reaches Amax.

2.1.2 Asynchronous timeout-based attacks

The synchronous timeout-based attack is a perfectly timed
attack that is obviously not quite feasible in practice.
Therefore, the attack epoches in the second class of PDoS
attacks are asynchronous with the retransmission epoches.
A most straightforward realization of the asynchronous
timeout-based attacks is to send pulses with fixed periods.
Kuzmanovic and Knightly have recently showed that this
kind of attack is indeed possible [13]. Their attack scheme
works in the following way:

After a victim TCP sender enters the timeout state after
the launch of the first attack pulse, the attacker lets the
sender send data within a short period TShift. This period
should be small but long enough for the sender to transmit
some packets successfully. Therefore, TShift may be set
to 2 ∼ 3 RTTs. Thus, the SRTT , V RTT , and RTO
values are updated according to Eqs. (1-3) during TShift.
Assume that the RTO value at the attack epoch is given by
RTOmin, i.e., the value of second argument of the max
function in Eq. (1) is smaller than RTOmin. If the new
rtts do not deviate too much from the SRTT value, it
is very likely that the RTO value is still being given by
RTOmin at the end of TShift. Thus, subsequent attack
pulses can be launched with a fixed period of RTOmin +
TShift, as depicted in Fig. 2.

2.2 AIMD-based attacks

In a AIMD-based attack, the attack pulses cause a vic-
tim TCP sender to frequently enter the fast recovery state.
Recall that we consider a general AIMD algorithm de-
noted by AIMD(a, b), a > 0, 1 > b > 0. If an at-
tack pulse is able to cause some packet losses in a TCP
connection, but a sufficient number of duplicate ACKs
can still be received by the sender, the cwnd will drop by
(1 − b)%. After that, the cwnd will increase by an MSS
every RTT. Moreover, many TCP implementations do not
send an ACK for every received packet. Instead, they
send a delayed ACK after receiving d consecutive full-
size packets, where d is typically equal to 2 [15]. In this
case the sender’s cwnd is only increased by a

d per RTT.
The case of d = 1 corresponds to the ACK-every-packet
strategy. TCP Tahoe, TCP Reno, and TCP new Reno use



1

cwnd

time

RTO 2*RTO 4*RTO

Attack epoches

Figure 1. An example of the synchronous
timeout-based PDoS attack.
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Figure 2. An example of a timeout-based
PDoS attack with fixed periods.

AIMD(1, 0.5).
Since it will take at least (1−b)×d

a ×W number of RTTs
to restore the cwnd to W after a decrease from W to
bW , the cwnd value could drop continuously if the attack
pulses are launched frequently enough. Moreover, when
the cwnd is dropped to a certain level, there may not be
enough duplicate ACKs to trigger the fast recovery pro-
cess. Thus, the AIMD-based attack can also achieve a
similar effect as the timeout-based attack without causing
timeouts at the beginning of the attack. On the other hand,
the AIMD-based attack could also launch a degradation-
of-service attack by lowering the attack frequency. Sim-
ilar to the timeout-based attacks, there are two types of
AIMD-based attacks.

2.2.1 Synchronous AIMD-based attacks

This type of AIMD-based attacks is referred to as syn-
chronous in the sense that the attack epoches always co-
incide with a fixed set of cwnd values. For example,
consider a general AIMD algorithm AIMD(a, b),where
a > 0, 1 > b > 0, and the sender’s cwnd is increased

by a
d per RTT. Let Wn, n = 0, 1, 2, . . . , be the cwnd

value of a victim TCP connection just before the nth at-
tack epoch. Therefore, W0 is the cwnd value just be-
fore the attack. Suppose that an attack epoch always oc-
curs at the instant when the cwnd rises from Wn−1 to
f × Wn−1, n ≥ 1, 1 ≥ f > b after a multiplicative de-
crease. The attack epoches for this type of synchronous
AIMD-based attack are given in Proposition 2.

Proposition 2 (Attack epoches for synchronous
AIMD-based attack). For the synchronous AIMD-based
attack just described, the number of attack pulses required
to reduce the cwnd to 2 (the minimum value) is given by
log(2/W0)

logf .
Assume that the RTT value is fixed. Let t0 be the first

attack epoch. For n > 0, the nth attack epoch is then
given by

tn = t0 +
1 − fn

1 − f
× (f − b) × d × W0

a
×RTT, n ≥ 1.

(5)

Proof. Since the cwnd is decreased from W to f × W
at each attack epoch, cwnd = fn × W0 after the nth at-
tack. Hence, the attack will bring down the cwnd to 2 by
launching a sequence of log(2/W0)

logf attack pulses.
According to the attack strategy, before the arrival of the

nth (n ≥ 1) attack pulse the cwnd can only be increased
to (f − b) × Wn−1, which takes (f−b)×d×Wn−1

a × RTT
amount of time, according to the AIMD algorithm. There-
fore, the nth attack epoch should take place at

tn = tn−1 +
(f − b) × d × Wn−1

a
×RTT, n ≥ 1. (6)

Furthermore, by substituting Wn = f × Wn−1 into Eq.
(6),

tn = tn−1+
(f − b) × d × f (n−1) × W0

a
×RTT, n ≥ 1.

(7)
We can therefore obtain Eq. (5) by a repeated substitution
of tn−1.

Fig. 3 shows an example of a synchronous AIMD-based
attack. The solid line depicts the trajectory of cwnd con-
trolled by AIMD(1, 0.5). The dashed line, on the other
hand, depicts the trajectory of cwnd when the TCP sender
is experiencing a synchronous AIMD-based attack.

2.2.2 Asynchronous AIMD-based attacks

Similar to the case of synchronous timeout-based attacks,
it is difficult to launch a synchronous AIMD-based attack
because of the difficulty in estimating the attack epoches.
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Figure 3. An example of a synchronous
AIMD-based attack against AIMD(1, 0.5).
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Figure 4. An example of a AIMD-based at-
tack with fixed periods.

Therefore, we remove the synchronization requirement,
and consider a AIMD-based attack with a fixed period of
TAIMD = TSpace + TExtent. Proposition 3 presents the
steady-state value of cwnd in the midst of such an attack.
After that, Proposition 4 gives the minimum number of at-
tack pulses for reducing the cwnd to the steady-state value.

Proposition 3 (Convergence of the cwnd). Consider a
AIMD-based attack with a fixed period of TAIMD against
a TCP connection using AIMD(a, b). If the cwnd of the
victim connection will converge during the attack, then the
converged value is given by

WC =
a

(1 − b) × d
× TAIMD

RTT
. (8)

Proof. Just before the arrival of the (n+1)th attack pulse,

the cwnd value is given by

Wn+1 = b × Wn +
a

d
× TAIMD

RTT

= bn+1 × W0 +
a

d
× 1 − bn+1

1 − b
× TAIMD

RTT
.(9)

If the cwnd converges, Wn+1 = Wn for some n. There-
fore, by substituting Wn+1 = Wn into Eq. (9), we obtain
the result.

Proposition 4 (Minimum number of attack pulses).
Consider a AIMD-based attack with a fixed period of
TAIMD against AIMD(a, b). Let W0 = WC + δ, where
δ > 0. Moreover, if Wn − WC < ε, where ε is a small
value, Wn is considered the same as WC . Then, the mini-
mum number of attack pulses required to reduce the cwnd
from W0 to WC is given by

Nattack <
logε − logδ

logb
. (10)

Proof. From Eq. (8) and Eq. (9), we have Wn = bn ×
W0 + (1 − bn)WC . By substituting W0 = WC + δ
into the equation and solving for n, we obtain n =
log(Wn−WC)−log δ

log b . Since Wn is considered to be the same
as WC if Wn − WC < ε, we obtain Eq. (10).

In Fig. 5 we plot Eq. (10) for different values of b. The
figure shows that the flow throughput of a typical TCP
(b = 1/2) can be brought to the converged value using
fewer than 10 attack pulses. With a higher value of b,
more attack pulses will be required to achieve the same
effect, because the cwnd drops with a slower rate in these
cases. With a higher value of δ, it will also take a longer
time for cwnd to converge.

2.2.3 A comparison of the two PDoS attacks

It is now useful to point out a major and important dif-
ference between the timeout-based attacks and AIMD-
based attacks. Recall from section 2.1 that the timeout-
based attack can effectively deny service to TCP flows
whose RTOs are less than the RTOmin. That is, an at-
tacker can launch the attack epoches using Eq. (4) and
RTO = RTOmin in a synchronous attack and, as ex-
plained before, the attack period is deterministic in an
asynchronous attack. On the other hand, other TCP flows
may survive the timeout-based attack. The simulation re-
sults presented in [13] have indeed shown that those flows
with an RTT higher than 180ms are less affected under
the proposed low-rate attack. However, this is not the case



with AIMD-based attacks. In a periodic AIMD-based at-
tack, Proposition 3 indicates that all flows, regardless of
their RTTs, will be adversely affected by the AIMD-based
attack by limiting their cwnd to a low value of WC .

To drive the point further, in Fig. 6 we use Eq. (8) to
show the relationship between WC and TAIMD

RTT for a TCP
flow and a TCP-friendly flow (AIMD(0.31, 0.875)) with
d = 2. According to [24], a flow with AIMD(a, b)
is considered to be TCP-friendly if its parameters satisfy

a = 4×(1−b2)
3 . Therefore, the converged cwnd value for a

TCP-friendly flow is given by WC = 4×(1+b)
3×d × TAIMD

RTT .
The figure also shows a lower bound and an upper bound
on WC .

The figure shows that if TAIMD

RTT is small, the flow’s cwnd
will be constrained to a very low value that will severely
limit the flow’s throughput. For example, consider those
flows with RTT between 200ms and 500ms. In [13], the
simulation results have shown that these flows will survive
a periodic timeout-based attack. However, Fig. 6 shows
that a periodic AIMD-based attack with a period of 1s is
sufficient to degrade their throughput to the extent that the
cwnd will be confined within (4/3, 20/3). Note that the
TCP fast recovery algorithm usually requires three dupli-
cate ACKs. Therefore, even if the cwnd value is given by
the upper bound, it is very likely that the fast recovery pro-
cedure cannot be started and that a timeout will therefore
occur.

3 A two-stage detection scheme for PDoS
attacks

We propose in this section a novel two-stage scheme
for detecting PDoS attacks. In so doing, we assume that
both the timeout-based and AIMD-based attacks can be
launched. Since a successful PDoS attack does not require
a sustained high attack packet rate, the feasible location
for detecting such an attack is at the victim network. The
patterns of both incoming traffic and outgoing traffic are
then under surveillance. Moreover, since the PDoS attack
can be effectively launched even by a single source, our
detection system is based on the detection of traffic pattern
anomalies.

We have discovered a total of two anomalies that were
incurred by a PDoS attack. The first is that the incom-
ing data traffic will fluctuate in a more extreme manner
during an attack. The abnormal fluctuation is a combined
result of two different kinds of anomalous events caused
by the attack. The first kind is obviously the introduc-
tion of the attack pulses, and the other is a fast decline in
the traffic volume of the affected TCP flows. For AIMD-
based attacks, the unusually high level of traffic fluctua-
tions can immediately be observed at the beginning of the
attack. The fluctuation may even continue after the cwnd
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converges to WC , because it is very likely that the flows
involved will time out because of a small value of WC .

The second anomaly has to do with the outgoing TCP
ACK traffic. As just mentioned, the incoming legitimate
TCP traffic volume will decline because of the attack.
However, the overall incoming TCP traffic volume may
or may not decline during the attack, because the attack
packets can also be TCP based. Hence, our detection sys-
tem is also required to observe a possible decline in the
outgoing TCP ACK traffic. It is important to emphasize
that detecting both anomalies is necessary for confirming
a PDoS. Doing one without the other will result in a high
false positive rate.



3.1 The first stage: A wavelet analysis of the
network traffic

Based on the above discussion, the first stage in the de-
tection process is to monitor the variability in the incom-
ing traffic and in the outgoing TCP ACK traffic. Here
we employ a discrete wavelet transform (DWT) for this
purpose. The DWT represents a signal f(t) ∈ L2(R)
using scaling functions ϕj,k(t), and a translated and di-
lated version of wavelet functions ψj,k(t) [23]. Since the
wavelet functions operate like high-pass filters that use
narrow time windows to compute differences in signals,
they can capture the variability of the incoming traffic vol-
umes. On the other hand, the scaling functions perform
like low-pass filters; therefore, they can be used to extract
the trend of the outgoing TCP ACK traffic.

To realize an on-line detection, we use a moving win-
dow to group G continuous samples to compute the DWT.
Moreover, we define a statistic based on the signal energy
to quantify the variability in the incoming traffic for the
nth window of samples as follows.

EH(n) =
1
G

∑
k

|dIn
1,k|2, (11)

where dIn
1,k is the wavelet coefficient at the finest scale

(j = 1). Similarly, we define a statistic based on the sig-
nal energy to characterize the trend in the outgoing TCP
ACK traffic for the nth window of samples as follows.

EL(n) =
1
G

∑
k

|cOut
L,k |2, (12)

where cOut
L,k is the scaling coefficient at the highest decom-

posed scale (j = L). Further details about the DWT can
be found in Appendix A.

3.2 The second stage: A CUSUM detection for
change points

The second stage is then to detect abrupt changes in
EH(n) for the incoming traffic and in EL(n) for the
ACK traffic. We employ a nonparametric CUSUM al-
gorithm for this purpose. The CUSUM method assumes
that the mean value of the variable under surveillance will
change from negative to positive when a change occurs.
Since both EH(n) and EL(n) are larger than zero, we
transform them into two random sequences, ZH(n) and
ZL(n), which have negative mean values under normal
conditions.

ZH(n) = EH(n) − βH (13)

ZL(n) = βL − EL(n), (14)

where βH and βL are constants for determining the mean
values of ZH(n) and ZL(n). Normally, we can set βH

to the upper bound of EH(n), and set βL to EL(n) −
Ptolerance × [�(EL(n))], where �(EL(n)) is the stan-
dard deviation of EL(n), and Ptolerance controls the limit
of the allowable decrease in EL(n).

Let T In be the detection time for ZH(n) when

yZH
(n) > CIn

cusum, (15)

where yZH
(n) is the CUSUM value of ZH(n) and

CIn
cusum is the corresponding threshold. Similarly, let

TOut be the detection time for ZL(n) when

yZL
(n) > COut

cusum, (16)

where yZL
(n) is the CUSUM value of ZL(n) and COut

cusum

is the corresponding threshold. The detection system con-
firms the onset of a PDoS attack when both Eq. (15) and
Eq. (16) hold. Hence, the final detection time is deter-
mined by

TFinal = max{T In, TOut}. (17)

Let TAttack be the start time of a PDoS attack, and τ In,
τOut, and τFinal be the detection delays as defined below.

τ In = T In − TAttack (18)

τOut = TOut − TAttack (19)

τFinal = max{τ In, τOut} (20)

Other details about the CUSUM algorithm can be found
in Appendix B.

4 Performance evaluation

We have conducted experiments using both ns-2 sim-
ulation [1] and a test-bed to evaluate the effectiveness of
the PDoS attacks and the two-stage detection system.

4.1 Simulation experiments and results

We have conducted extensive ns-2 simulation exper-
iments based on the simulation scripts provided by [13].
The network topology is shown in Fig. 7(a). It consists
of N pairs of TCP senders and TCP receivers. The links
connecting the router S, the senders, and an attacker are
100 Mbps, as are the links between router R and the re-
ceivers. Both routers are connected through a bottleneck
link of 10 Mbps with RED queue management [10]. The
simulation period is 900 seconds, and the attack begins
at 181 seconds (TAttack = 181) and ends at 720 sec-
onds. Since SExtent(n) is set to a constant in all exper-
iments, we use A(TExtent(n), RAttack, TSpace(n), N) to
describe the PDoS attack, where RAttack is the sending
rate in each attack pulse.



The settings for the detection system are selected as fol-
lows. The detection system aggregates the incoming data
traffic and outgoing TCP ACK at a fixed time interval
Ts = 0.25s. In order to achieve a small detection de-
lay, the moving window size is chosen to be G = 120,
which means that each observation period is half a minute
(0.25s × 120 = 30s). At the end of each observation pe-
riod, the detector generates the statistics, such as ZH(n)
and ZL(n), and then executes the CUSUM algorithm to
search for abrupt changes.

We employ the Daubechies family of wavelets in the
first stage of the detection, which have been widely used
to analyze network traffic. The Daubechies wavelets, rep-
resented by DB(N), are orthonormal and compactly sup-
ported with N vanishing moments and 2N − 1 support
length. DB(1), the Haar wavelet, is used to analyze the
incoming data traffic and DB(4) is applied to analyze the
outgoing TCP ACK traffic.

We calculate Ccusum in Appendix B by selecting τ =
m + 1 and h = 2‖a‖ in Eq. (30). In principle, βH can
be set to the upper threshold of EH(n), which can be es-
timated by the value that corresponds to 95% of the cu-
mulative distribution function of EH(n). To simplify the
process, we set the value of βH to the maximum value
of EH(n), and set the tolerance parameter Ptolerance to 1
in the simulation experiments. As a result of the parame-
ter selection, the detection system will be more sensitive
to changes in the ACK traffic, but will tolerate the normal
oscillations of incoming traffic in order to keep a low false
positive rate.

4.1.1 Timeout-based attacks

When we discuss the two types of PDoS attacks, we as-
sume that a PDoS attack is either a timeout-based attack or
a AIMD-based attack. However, a PDoS attack will gen-
erally cause an affected TCP to frequently enter both the
timeout and fast recovery states. Therefore, in the rest of
this paper, a PDoS attack is considered as a timeout-based
attack if it will cause “many more” returns to the timeout
state than to the fast recovery state. Similarly, a PDoS at-
tack is regarded as a AIMD-based attack if it will cause
many more returns to the fast recovery state than to the
timeout state. In this section we first consider the timeout-
based attack, and then examine the same set of issues for
a AIMD-based attack.

We have conducted simulation experiments for three
types of flows: TCP Reno, TCP New Reno, and TCP-
friendly flows that are based on AIMD(0.31, 0.875) and
TCP SACK [22]. The simulation results for the incoming
data traffic are shown in Figs. 8(a)-8(b), and the results
for the outgoing ACK traffic in Figs. 9(a)-9(b). In each
experiment, there are 30 flows with heterogeneous RTTs

Router S Router R

Sender 1

Sender 2

Sender N

Attacker

Receiver 1

Receiver 2

Receiver N

Receiver N-1

(a) The topology of the simulation model.

Victim

Legitimate Users

Attacker

Nist Net

(b) The topology of the test-bed.

Figure 7. Network topologies for simulation
and test-bed experiments.



ranging from 20ms to 460 ms. The PDoS attack is param-
eterized as A(150ms, 10Mbps, 1050ms, � 540

1.05+0.15	 =
450). In order to compare the results, we adjust all of
the horizontal axes with the same scale. However, this
does not mean that each figure contains the same num-
ber of points. For example, Fig. 8(a) consists of 3600
points, each of which is a count during an interval of 0.25s,
whereas Fig. 8(b) contains only 30 points that represent
the values of yZH(n) computed at the end of each obser-
vation period.

As shown in Fig. 8(a), the wavelet coefficients clearly
indicate that the incoming traffic exhibits more oscilla-
tions during the PDoS attack between 181s to 720s, as
compared with periods without the attack, i.e., [1s, 180s]∪
[721s, 900s]. In the other direction, Fig. 9(a) shows that
the outgoing TCP ACK traffic declines after the onset of
the PDoS attack.

Fig. 8(b) displays the statistic ZH(n) of the incoming
data traffic and the CUSUM results: yZH

(n) and CIn
cusum.

The detection times for ZH(n) for all three types of flows
are all equal to T In = 210s, which is 30s after the begin-
ning of the attack. For the outgoing ACK traffic, Fig. 9(b)
gives the result of ZL(n), yZL

(n), and CIn
cusum. As with

the data traffic, the detection times for ZL(n) for all three
types of flows are all equal to TOut = 210s. As a re-
sult, the final detection times for all three cases are equal
to TFinal = max{T In, TOut} = 210s. The detection
delay is τFinal = max{τ In, τOut} = 30s, which means
that the total detection delay is equal to the length of an
observation period.

Table 2 summarizes other experimental results that are
obtained by changing the value of SExtent. The first
column (Mbps) shows the different attack rates, ranging
from 1 Mbps to 20 Mbps. τFinal

Reno , τFinal
NewReno, and τFinal

AIMD

show the final detection delay (in seconds) for TCP Reno,
New-Reno, and AIMD(0.31, 0.875), respectively. On
the other hand, LossR, LossN , and LossA give the es-
timates on the percentage decrease in the legitimate TCP
traffic. These estimates are computed by dividing the av-
erage number of ACKs observed during a PDoS attack by
that during an attack-free environment. The results show
that AIMD(0.31, 0.875) is more robust than the other
two versions of TCP under the PDoS attack and that the
TCP Reno is most vulnerable, primarily because the cwnd
is decreased only to 0.875 of its previous value (instead of
0.5).

Moreover, when the attack burst rate is at least the same
as the bandwidth of the bottleneck, i.e., 10, 15, 20 Mbps,
the LossR,N,A columns show that the total throughput can
be reduced by as least 50%. The results also show that
our detection scheme will discover the attack after one
observation period (30 seconds). When the attack burst
rate is only half of the bandwidth of the bottleneck, i.e. 5

Mbps, the attack can deplete approximately 40% of total
throughout. In this low-rate attack, our scheme can still
detect the attack only after one observation period.

Table 2 shows other lower-rate attacks, i.e., 1, 2.5, and
4 Mbps. We use the symbol “*” to show that the cor-
responding attacks can sometimes be detected but not all
the time, and the symbol “X” to show that the correspond-
ing attacks cannot be detected in all experiment runs. The
detection outcomes are largely dependent on the choice of
detection parameters. For example, a relatively large βH

will fail to detect extremely low-rate attacks, because it
cannot differentiate between the traffic fluctuations caused
by the attack and the normal traffic fluctuations. More-
over, a relatively small Ptolerance will increase the false
positive rate, because it would be too sensitive to the
changes in the ACK traffic and will therefore raise many
false alarms.

4.1.2 AIMD-based attacks

In this section, we re-examine the issues discussed
in the last section for attacks that are dominated by
the AIMD-based attack. Therefore, we have em-
ployed the same topology and parameter settings as be-
fore. But for the purpose of comparison, we consider
only the New-Reno flows. The results are presented
in Figs. 10-11. There are two different PDoS at-
tacks in each figure. The graphs on the left are for
A(10ms, 100Mbps, 800ms , 667), while those on the
right are for A(10ms, 50Mbps, 400ms, 1317).

For the attack A(10ms, 100Mbps, 800ms, 667), Fig.
10 shows that the total throughput gradually decreases af-
ter an abrupt change at the beginning of the attack. The
first high-rate pulse causes many flows to decrease their
cwnds. After that, the AIMD-based attack will force the
senders’ cwnd to gradually decrease to WC . It may not be
easy to observe in Fig. 10(a) the differences in the wavelet
coefficients before and after the attack. However, our de-
tection scheme can still quickly discover it by combining
the detection results in both Fig. 10(b) and Fig. 11(b).

As for the attack A(10ms, 50Mbps, 400ms, 1317),
Fig. 10(a) shows that this attack also forces most TCP
flows to converge to WC during the period between 600s
and 720s, i.e., the relationship between the AIMD-based
attack and TCP flows is stable. Fig. 10(b) captures the
phenomena in which the CUSUM value YZ(n) drops from
its maximum value. Since the throughput is very low dur-
ing that period, the fluctuation also become weak. Other-
wise, the severe fluctuation will continue because of the
increase in the probability of timeout. In either case, our
detection mechanism can detect it quickly.

Table 3 compares the three PDoS attacks (one from
section 4.1.1). All three attacks have similar aver-
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Figure 8. The incoming traffic and the detection results for the timeout-based attacks.
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Figure 9. The outgoing ACK traffic and the detection results for the timeout-based attacks.
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Figure 10. The incoming traffic and the detection results for the AIMD-based attacks.
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Figure 11. The outgoing ACK traffic and the detection results for the AIMD-based attacks.



Table 2. Detection time and loss rate caused by the timeout-based attacks.

RAttack τFinal
Reno LossR τFinal

NewReno LossN τFinal
AIMD LossA

20 30 0.8039 30 0.7781 30 0.7757

15 30 0.7341 30 0.6962 30 0.6594

10 30 0.6234 30 0.5679 30 0.5098

5 30 0.4538 30 0.4024 30 0.3221

4 30 0.3969 30 0.353 60* 0.281

2.5 30* 0.2933 30* 0.2547 X 0.1877

1 X 0.1076 X 0.0805 X 0.0463

age attack rates, which is computed by RAverage =
TExtent∗RAttack

TExtent+TSpace
, but they differ in their values of

RAttack, TExtent, and TSpace. It is interesting to note
that, although it has the lowest attack rate, the attack
A(10ms, 50Mbps, 400ms, 1317) causes the worst dam-
age to the TCP throughput. The results suggest that the
AIMD-based attack can achieve the same effect as the
timeout-based attack, but with a lower attack rate. More-
over, our detection scheme can detect all of these pulsing
attacks in a timely manner after one observation period.

4.2 Test-bed experiments and results

The test-bed topology is shown in Fig. 7(b). We use
NIST Net [7] to simulate the network and iperf to
measure the TCP throughput. The link between NIST
Net and the victim is 10 Mbps, whereas the links con-
necting the legitimate users and the attacker to the NIST
Net are 100 Mbps. We also set the RTTs of both the
legitimate users and the attacker to 100ms. In this set-
ting, the legitimate user is running Linux 2.4.20-8 (Red
Hat 9 (Shrike)), whose RTOmin is 200 ms, instead of
the 1 second suggested in [19]. There are two reasons
for using this setup. First, it is important to see what ef-
fect the PDoS attack will have on the TCP/IP stacks that
may not follow the standard RFCs. Even though an at-
tacker may not be able to determine the actual value of
RTOmin, it is still possible for the attack to seriously
degrade the victim’s throughout. The second is to test
the detection scheme under a “nonoptimal” PDoS attack.
For this purpose, we launch a PDoS attack at 181 sec-
onds with RAttack = 10Mbps, TExtent = 200ms, and
TSpace = 1000ms.

As shown in Figs. 12-13, our scheme can detect the on-
going attack in a timely manner. Fig. 12(a) shows that
the PDoS attack not only successfully degrades the TCP
throughput, but also causes severe fluctuations in the in-
coming traffic as shown in Fig. 12(b). The detection time
for ZH(n) is given by T In = 210s; therefore, the de-

lay time is τ In = 30s. The outgoing TCP ACK traffic
begins to decrease after the attack is launched, as shown
in Fig. 13(a). The detection time for ZL(n) is given by
TOut = 240s. Thus, the final detection time is given by
max{T In, TOut} = 240s, and the detection delay is only
max{τ In, τOut} = 60s. Thus, the results obtained from
the test-bed are quite consistent with those from the simu-
lation experiments presented in the last section.

The NIST NET implements the Derivative Random
Drop (DRD) algorithm instead of the Random Early De-
tection (RED) algorithm. Although both of them are su-
perior to the drop tail method in terms of effectively con-
trolling the average queue size, DRD is more sensitive
to the traffic burst than RED[7]. Hence, we have con-
ducted experiments on RED-based routers by replacing
NIST NET with dummynet[21]. We set the parame-
ters of RED with the following values: minth = 80,
maxth = 160, wq = 0.002, maxp = 0.1, and the queue
size is 250 packets. The iperf generates 15 TCP flows
with RTT = 150ms. We have conducted a total of 15
PDoS attacks with different parameters as shown in Ta-
ble 4.

The results from Table 4 have clearly shown that the
PDoS attack can still seriously degrade TCP throughput
even when the RTOmin is not equal to 1 second, as
suggested by [19]. For Linux (2.4.20-8), which sets the
RTOmin to 200ms and TCP flows with an RTT of 150ms,
a periodic timeout-based attack may not be effective be-
cause it is very difficult to estimate the RTO. However, the
AIMD-based attack can still reduce the throughput with a
reasonable attack rate, e.g., the 5th PDoS in Table 4 can
cause a 41.5% loss in throughput with a relatively small
average attack rate (1.25 Mbps).

Given the same values of RAttack and TExtent, a PDoS
attack with a smaller TSpace causes a bigger loss, e.g. 1st,
4th, 7th, 10th, and 13th attacks in Table 4. Another inter-
esting observation is that those PDoS attacks, which have
the same value of RAttack × TExtent(n), may have dif-



Table 3. Detection time and loss rate for three different PDoS attacks.

A(150ms, 10Mbps, 1050ms, 450) A(10ms, 100Mbps, 800ms, 667) A(10ms, 50Mbps, 400ms, 1317)

Average Rate 1.25Mbps 1.235Mbps 1.22Mbps

Loss Rate 0.5679 0.6073 0.7639

τ In 30 30 30

τOut 30 30 30

τFinal 30 30 30

Table 4. Different pulsing attacks and the detection time

Seq TExtent(ms) RAttack (Mbps) TSpace (ms) RAverage (Mbps) Loss τFinal (s)

1 100 10 900 1 0.239 60

2 200 10 1800 1 0.328 60

3 100 15 1400 1 0.258 60

4 100 10 700 1.25 0.272 60

5 200 10 1400 1.25 0.415 30

6 100 15 1100 1.25 0.371 30

7 100 10 566 1.5 0.293 60

8 200 10 1133 1.5 0.484 30

9 100 15 900 1.5 0.374 30

10 100 10 471 1.75 0.308 30

11 200 10 943 1.75 0.521 30

12 100 15 757 1.75 0.449 30

13 100 10 400 2 0.318 30

14 200 10 800 2 0.535 30

15 100 15 650 2 0.476 30

Rbottleneck (bandwidth of the bottleneck) : 10 Mbps.

ferent effects on the TCP flows. For example, from our
experiments, the PDoS attack with TExtent = 200ms and
RAttack = 10Mbps always has a more severe effect than
the other two types of PDoS attacks when all of them have
the same average attack rate. This may be due to its large
TExtent value, which can clog the bottleneck link for such
a long period that the packet-marking probability in RED
[10] increases and the packets belonging to many flows
are dropped. The experiment results also show that the
proposed two-stage detection scheme can effectively dis-
cover the pulsing DoS attack. In most cases, the detection
delay is only one observation period, i.e., 30s.

5 Conclusions

In this paper, we have identified a new class of PDoS
attacks. Unlike the traditional DoS attack, the PDoS at-
tack can effectively achieve the same purpose with a much
lower attack rate. We have presented two specific attack
methods: timeout-based and AIMD-based, and their vari-
ants. Our analysis has confirmed that the attacks can be
very effective by forcing the affected TCP senders to con-
tinuously re-enter the fast recovery state or the timeout
state.

Another important contribution of this paper is a novel,
two-stage detection scheme for the PDoS attacks. The de-
tection is based on an unusually high variability in the
incoming data traffic and a drastic decline in the outgo-
ing ACK traffic observed in the midst of a PDoS attack.
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Figure 12. Detection based on incoming traffic.

As a result, we have employed wavelet transform to ob-
serve the incoming data traffic and outgoing ACK traffic,
and a nonparametric CUSUM algorithm to detect change
points. The results from both the simulation and test-
bed experiments show that the proposed scheme is effec-
tive at detecting a low-rate PDoS attack. Moreover, our
scheme is feasible for on-line detection because of the low
time complexity for both the computation of the discrete
wavelet transform and the CUSUM method.
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A Discrete wavelet transform

Wavelet transform is very suitable for analyzing irregu-
lar signals, such as network traffic, because it gives a more
accurate local description of signal characteristics in both
time and frequency domains. Indeed, wavelet transform
has been applied to analyze network traffic and identify
traffic anomalies. For example, wavelet analysis has been
employed to identify traffic anomalies caused by flooding-
based DoS and flash crowds through a deviation score
[16]. Compared with the work in [16], there are two main
differences in our wavelet analysis. First, the wavelet
analysis there is used to perform a postmortem analysis of
trace data, whereas ours concentrates on a real-time anal-
ysis of incoming data. Second, the analysis there only
considers the signal variations in the high and medium-
frequency bands that are not sufficient to detect the PDoS
attack. Our analysis requires both high and low-frequency
bands.

The discrete wavelet transform (DWT) represents a
signal f(t) ∈ L2(R) using scaling functions ϕj,k(t),
and a translated and dilated version of wavelet functions
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Figure 13. Detection based on outgoing ACK traffic.

ψj,k(t):

f(t) =
∑

k

cj0(k)ϕj0,k(t)+
∑

k

∑
j=j0

dj(k)ψj,k(t), (21)

where {ϕj,k(t) = 2−j/2ϕ(2−jt − k), j, k ∈ Z} and
{ψj,k(t) = 2−j/2ψ(2−jt − k), j, k ∈ Z}. In this expan-
sion, the first summation describes a coarse approxima-
tion of f(t), and the second summation depicts the details
of f(t). In practice, the coefficients cj(k) and dj(k) are
calculated via the Mallat’s pyramid algorithm:

cj(k) =
∑
m

h0(m − 2k)cj−1(m), (22)

dj(k) =
∑
m

h1(m − 2k)cj−1(m), (23)

where h0 and h1 are the coefficients of low-pass and
high-pass filters, respectively. If the scaling functions and
wavelet functions form an orthonormal basis, Parseval’s
theorem states that f(t)’s energy is equal to the energy in
its scaling coefficients and wavelet coefficients [5]. That

is,
∫

|f(t)|2dt =
∑

k

|cj0(k)|2 +
∑

k

∑
j=j0

|dj(k)|2. (24)

Since the wavelet functions operate like high-pass filters
that use narrow time windows to compute differences in
signals [23], they can capture the variability of the incom-
ing traffic volumes. On the other hand, the scaling func-
tions perform like low-pass filters; therefore, they can be
used to extract the trend of the outgoing TCP ACK traffic.

In order to realize an on-line detection, we use a moving
window to group W continuous samples for the computa-
tion of DWT. Let S = s(t), t ≥ 1, be the traffic samples,
and SW (n) = {s(t)}n×W

t=(n−1)×W+1, n ≥ 1, be the se-

quential windows of the samples. We use SIn and SOut

to denote the traffic samples for the incoming data traf-
fic and outgoing ACK traffic, respectively. We also use
SIn

W (n) and SOut
W (n) to refer to the observation periods

for the two respective cases.
Since the fluctuation of the incoming traffic can be cap-

tured by its high-frequency part, we continuously process
SIn

W (n) through the DWT and obtain their wavelet coeffi-



cients dIn
j,k. In order to quantify the degree of variability,

we define a statistic based on the signal energy as follows.

EH(n) =
1
W

∑
k

|dIn
1,k|2, (25)

where dIn
1,k is the wavelet coefficient at the finest scale

(j = 1). A similar approach was used in [17] to inves-
tigate the scaling properties of the network traffic.

On the other hand, we process SOut
W (n) to obtain the

trend of the outgoing TCP ACK traffic. We also define a
statistic based on the signal energy to represent the trend
of the outgoing TCP ACK traffic as follows.

EL(n) =
1
W

∑
k

|cOut
L,k |2, (26)

where cOut
L,k is the scaling coefficient at the highest decom-

posed scale (j = L).

B The nonparametric CUSUM algorithm
for change-point detection

In order to automatically locate the change point in the
statistics EH and EL as soon as possible, we apply the
nonparametric sequential detection algorithm at the end
of every observation period. Here, we employ the non-
parametric CUSUM algorithm for this purpose. This al-
gorithm has also been used in other detection methods for
D/DoS attacks [20, 12, 11].

The formal definition of the nonparametric CUSUM al-
gorithm is summarized as follows [3, 4]:

y(n) = (y(n − 1) + x(n))+, y(0) ≡ 0, n = 1, 2, . . . ,
(27)

where (y(n))+ is equal to y(n) if y(n) > 0 , and 0, other-
wise. Its decision rule is:

dN (·) = dN (y(n)) = I(y(n) > Ccusum), (28)

where Ccusum is the threshold. x(n) is defined on the
probability space (Ω,F , P ) by the model

x(n) = a + h(n)I(n ≥ m) + ξ(n), (29)

where ξ = {ξ(n)}∞n=1 is the random sequence such that
its mathematical expectation ξ(n) ≡ 0, and {h(n)} is the
deterministic sequence representing the profile of changes
that take place at the moment m [4]. As suggested in [3,
11], we calculate the threshold Ccusum by the following
equation:

Ccusum = (τ − m)+(h − ‖a‖), if m ≥ 1, (30)

where τ is the preferred detection time.

The CUSUM method assumes that a < 0 and h + a >
0, which together implies that the mean value of x(n) will
change from negative to positive when a change occurs.
Therefore, it may necessary to first transform the statis-
tics under the change-point detection to new random se-
quences which have negative mean values under normal
conditions.
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