Dissertation Title:

SOCK Sb-based Firewall Support For UDP-based
Application

Author: Fung, King Pong

MScin Information Technology
The Hong Kong Polytechnic University
June 1999

Abstract

Abstract of dissertation entitled:
SOCK S5-based Firewall Support For UDP-based Application
submitted by Fung, King Pong
for MScin Information Technology

at The Hong Kong Polytechnic University in June 1999.

At present, firewalls are mostly designed for outgoing traffic or for some well-known incoming application protocol such
as http, ftp or smtp. But there is no generic way of accepting incoming UDP traffic viaafirewall. This project aimsto
provide a generic mechanism for all UDP-based protocol to traverse through afirewall. The transport proxy protocol

SOCKS5 model is adopted as the foundation for devel opment.

To achieve this, an enhancement to the SOCK S5 protocol is proposed. This enhanced SOCK S5 protocol will support the
establishment of incoming UDP association via a SOCK S5-based firewall. It will resolve the issues with the current
SOCKS5 protocol support for incoming UDP traffic. The enhanced SOCK S5 protocol will aso support the outgoing UDP
traffic via the SOCK S5-based firewall. A prototype for the enhanced SOCK S5 protocol was implemented by using the
existing source code for SOCKS5. The Real Time Streaming Protocol (RTSP) application, which is using UDP for
delivering multimedia stream, is used to test the enhanced SOCK S5 protocol. The testing was found to be successful.
This enhanced SOCK S5 protocol will provide secure traversal of al UDP traffic through the SOCK S5-based firewall

which will be transparent to the applications layer.

Acknowledgement

My special thanks go to my supervisor Dr. Rocky K. C. Chang for his valuable guidance, ideas,
comments and advice. | would aso like to thank my co-examiner Dr. Jiannong Cao for his comments
and advice. Lastly, | would like to express my gratefulness to my families for their support in my
dissertation work.

TABLE OF CONTENTS
ABSTRACT I
ACKNOWLEDGEMENT [
1. INTRODUCTION 1
1.1 Issueswith UDP Traversal VIAFITEWallccooiiiiiiiiiei e 1
111 Dynamic ASSIGNMENE OF UDP POITS.........oiiitiiiiiiiiie ettt sbee e seae e sbe e s be e sbee s saseesaneens 1
112 Network Address Tranglation by the Firewall ... 2
1.2 Proxy FOr the FIFBWEILoi ittt ettt ettt e b et e s at e e s s e e st e e s be e e nbee e sabeesareaas 5
121 Application Proxy FOr the FIr@Wall ... 5
122 Generic Transport Proxy FOr the FIreWallcooiioiii e 5
1.3 Unresolved Issues with SOCKS5 Support For Incoming UDP CONNECLIONS.........ccoiveeiieeiieeiieeesieeesiie e 7
14 SUMMAIY OF WOTK ...ttt ettt b et bt sh et e s ab e e s a b e e e be e et e e e shee e smbeesmbeeebeeeabeeeanbeesareans 8
15 OVEIVIEW OF CRaEErS ... eeiiiii ettt ettt et ettt e bt e ehe e e sabe e sabe e e be e e be e e saeeesmbeesmbeeabeeeabeeeanbeesnreasn 9
2. SOCKS5 PROTOCOL SUPPORT FOR UDP 10
21 OvErVIEW Of SOCKSE PrOLOCO!ccueiitiiieeirieisiierieesiee sttt sin e anneeane s 10
211 Transport Model of SOCKSS TCP BiNAING.....cccueiiiiieiiiiiiie ettt sae e saee e sane e 12
212 Transport Model of SOCK S5 UDP BiNGiNGcccoueieiiieiieeiieeeriie et sieesiee et seessteessseesssneesneeesns 13
2.2 Overview of Real Time Streaming ProtOCOIcooieiiiieiiiieeiiee ettt see e sbe e sre e e 14
221 Transport Establishment Procedure FOr RTSP SIream........c.cooiiiiiiiiiie e 16
2.3 Using SOCKS5 Server as a Generic Proxy Firewall FOr RTSP.........cooiiiiiiiiiieee e 18
24 Issueswith the “Remote Address’ in SOCK S5 Protocol FOr UDP...........cccoiiiiiiiiieiieee e 20
241 SOCK S5 UDP and Multicast Extensions to Facilitate Multicast Firewall Traversal............cccecvenee. 21
242 Revised SOCKS5 Protocol With UDP SUDPPOITcoouiiiiiieieieiee ettt 22
243 Unavailability of “remote address’ in UDP Bind Socket Call ..o 24
244 Deadlock Situation in the Information Exchange Between RTSP Client & SOCKS5 Server 24
245 Workaround of SOCK S5 protocol implementation to support incoming UDP connection.................... 25
25 New Requirements For the SOCKSE ProtOCOIccoouiiiiiiiiiiie ettt 26
251 A New Approach To Resolve the Issues with “remote addreSs”ocevoieeiiee e 26
252 Protocol Interface Procedure between RTSP Clients and SOCK S5 Transport Layer.........cccceeeveeeeen. 27
26 Connection States of the UDP SIream fOr RTSPcooviiiiiiiiiiie e 29
3. PROPOSED ENHANCEMENT OF SOCK S5 PROTOCOL FOR UDP 30
3.1 Passing the “remote address’ 10 SOCKSE LAYENciiieiiiieiiee ettt ettt sbe e 30
3.2 TyPeSOf UDP POt BINAINGcccuiiiiiiiiiieitie ettt sttt sbe e saee e ss e e s bt e e be e e abee e saeeesabeesnneeanees 31
321 ACHVE UDP OPEN ..ottt sttt bbbt bbb bt skt e b e s bt s bt et e s b e sbeebe e b e sbesbeeaneneseas 31
322 0T o I (= o TR U TR PRTURRPP 32
323 PESSIVE UDP OPEN ...ttt sttt et b b bt bt bt s ae et s bt bt e he e b e s b e s be e b e ebesbeeaeebesbenbeenne e e 32
324 State transition & network address exchange of UDP bindingcccveveieiiiiiiiniiiceiee e 33
3.3 TWO StEP UDP BiNGING PrOCESS.ueiitiiaitiieitieestee ettt stee e stee et e st e s sbe e sbee e saee e ssbeesbeeabeeesbeeesaeeesabeasnbeeanees 35
34 Two Steps UDP Binding Process and the New half-binding State............ooooiiiiiiiiiiini e 39
341 Two Steps UDP Binding Process For Three types of UDP bindingcccooveiiiiiiiiiiiiiiniiieeeee 39
34.2 Two Steps UDP Binding Process and the Socket Call Procedure...........oocevviiieiieiiei e 42
3.5 UDP & Multicast Extension vs Revised SOCK S5 For UDP SUPPOITcooveieiiierieeiiee e 44
3.6 SOCKS5 UDP bind commands for the Two Step UDP Binding ProCess...........cooveiiieiiniieniie e 45
3.7 Comparison of current SOCK S5 protocol and the proposed modifiCation.............ccoceveieeeniieniee e 47

4. PROPOSED TRANSPORT ESTABLISHMENT PROCEDURE IN RTSP PROTOCOL TO

WORK WITH SOCKS5 PROTOCOL 48
4.1 Transport HEBOEr OF RTSP..... .ottt ettt ettt e bt sbe e e sate e sabe e s beeeabeeesaneesaneaas 48
4.2 Socket Call Procedure FOr UDP SITEAIM.........coiieiieiieeiteeie ettt ettt e 49
4.3 Procedure for Establishing RTSP SEIEAIM......ccooiiiii ettt sane e saae e 50

5. IMPLEMENTATION 52
5.1 Configuration of the Program Development Platformc.ooooiiiiiiiiii e 52
5.2 Source Code For Program DeVElOPMENLcoiiiriiiiaiee ettt siee ettt be e b e sbee e saee e sabeesreeeees 53
5.3 Compilation & Testing of the Original SOUrCE Program..........cocueeiiiiiiieiiiii ettt 54

531 Testing of the original source code for SOCK S5 Client & SOCKSS SErVercceeiveriiieinieeenieenieee 54
53.2 Testing of the original source code for RTSP Client & RTSP SErVErccoviiieiiiiiiee e 55
L R IS e O 0 . oo = o PSSR 56
54.1 Organisation of the Original PrOGIaMcoiiii it sab e b ees 56
54.2 Function of the revised program for the RTSP transport establishment procedure.............ccococeeveeenen. 57
543 Addition / Modification to the original RTSP client programcccceoveeiieenee e 57
5.5 SOCKSS ClIENE PrOOraIM.......eiiiieiiiiietet ettt et e te e saee e sabe e s be e s be e e abee e saeeassbeesabeeabeeaabeeesaeeesabeesbeeanses 60
551 Organisation of the Original PrOGIaMcoiiii it sab e b ees 60
55.2 Function of the revised program for the SOCK S5 Client Program.............ccceieeenieenieesiee e 61
55.3 Addition / Modification to the original SOCK S5 Client Program..........cccceevieieeiien e 62
5.6 SOCKSS SEIVE PIrOQIEIMcooiiiie ettt ettt ettt e st e e s et et e e s b be e e e st ee e e s aabeeeeabbeeeeaabeeeesanbeeaeanneaans 64
5.6.1 Organisation of the Original PrOGIraMcoiiii it saee e s be e e 64
5.6.2 Function of the revised program for the SOCK S5 Server Programccocceeieeeneeenieesiee e 65
5.6.3 Addition / Modification to the original SOCK S5 Server Program............oc.eeveeerieerieesneeeseeesieesieens 65
5.7 RTSP SEIVEN PrOQIaIMoeiiiiiiiie ettt ettt et e e s et e e e e s b b e e e e aabee e e s aabe e e e anbe e e e anbeeeesanbeeeeanneaans 66
57.1 Original RTSP SErVEr PrOQraM.......coceii ittt ettt ettt e sbe e saee e saee e sabe e s beeasbeeesaeeesnbeesnbeeenees 66
5.7.2 Function of the revised program for the RTSP Server Programcocooeiiiiieniee e 67
57.3 Addition / Modification to the original RTSP Server Program.........cocceoiieeiieeiien e 68

6. TESTING ON THE PROTOTYPE 69
6.1 Test Performed 0N the PrOtOYPE.ci ittt ettt sttt sb et e et e bt e e be e e ebe e e saee e sabe e sbeeenees 69
6.2 Screen Capture DUMNNG the TESE..... ..o ittt ettt ettt e b e e e sbe e e saee e sabe e sbeeeees 69

6.2.1 RS RS = 4V SO PO P P UPPOPRPPRO 70
6.2.2 SOCKSE SEIVEL ...ttt h bt h b et h ek e s h e s h et e h e e sa et e e bt e an e s ab e sab e e e e ean e eaneeaneenne s 72
6.2.3 RIS O 1= o SO OO TSRO P PP UPRTOPRPPRO 80

O T == 110 2 L= U ST TS TRRRR 83
7. CONCLUSIONS 83
8. FUTURE WORK 84

9. REFERENCES 85

List of Figures

Figure 1: Diagram Illustrating the Issues For UDP Stream ViaaNAT Firewall ... 4
Figure 2: SOCK S5 Transport Proxy EstabliShment SEQUENCEoo.uii ittt 12
Figure 3: Transport Model of SOCKSS PIOLOCOIc..ueiiiiiiiiie ettt sae et e st e e e sbe e e saee e saneens 14
Figure 4: Transport Model For Real Time Streaming ProtOCOLcooiiiiiiiiiie e 15
Figure 5: Protocol Exchange Sequence To Play a RTSP Multimedia Stream ..o 17
Figure 6: Generic SOCK S5 Transport Proxy Model For Real Time Streaming Protocolooceeiiiiiiiiiii e 19
Figure 7: Basic Packet Structure Of SOCKSE PACKELccoiuiiiiiieiiee ittt saee e 21
Figure 8: Packet Structure Of Enhanced UDP Mode in SOCK S5 UDP & Multicast EXtENSIONSccceeieeeneeenieeiieenne 22
Figure 9: Packet Structure of SOCK S5 Sub-command for UDP............coiiiiiiiiiiiee et 23
Figure 10: Deadlock Situation between RTSP & SOCK SE PIrOtOCOIS.ciitiiaiiieiieeiieeeiee ettt ettt e ste e siee e saee e saeee s 25
Figure 11: State Diagram of Three Types of UDP Binding over SOCK S5 ProtoColcoooeieiiieiieeiieeiiee e 34
Figure 12: Command segquence for setting up a UDP association via SOCK S5 server for RTSP clients.........oooeeveeiiene 38
Figure 13: State Diagram of the Two Step SOCK S5 UDP Binding PrOCESS........ccocuiiiiiiiiiieiie ettt 41
Figure 14: RTSP Stream Establishment Procedure and the Socket Call Procedureccooeiiiiiiiiiiiniiic e 51
Figure 15: Configuration of the program development platform............coo i 53

List of Tables

Table 1: Mapping of socket call against the proposed two steps SOCKS5UDP Binding.........coovveiieriierinieeiiee e 44
Table 2: Comparisons of Revised SOCK S5 Protocol and the SOCK S5 Protocol with UDP & Multicast Extension........... 45
Table 3: Summary of limitations, issues of existing SOCK S5 protocol and the proposed solution.............ccoveeevieeiienenee 48

1. Introduction

1.1 Issues with UDP Traversal via Firewall

1.1.1 Dynamic Assignment of UDP Ports

At present, firewall provides packet filtering by means of the static configuration on the security rules. The security rules

arein the form of source address - destination address pair and the application protocol . The application protocol defines
the TCP or UDP destination port number used by the applications. For example, telnet protocol will use TCP port 23 and

DNS protocol will use UDP port 53. With thistype of static packet filtering rules, the firewall will support applications

which are using well-known TCP or UDP destination ports for communications.

Recently, there is a growing demand in using dynamic UDP ports for communications over the internet. Both the source
UDP address and the destination UDP address are assigned dynamically by the clients and the servers. One of the major
categories of application, which makes heavy use of it, is the multimedia applications. Some of the popular applications
like Real Audio Player by Real Networks, VDOLive by VDONEet , Streamworks by Xing are using dynamic UDP port for
sending multimedia stream to the clients. Other than that, there is an emerging multimedia communications protocol

called Real Time Streaming Protocol (RTSP, Ref.1) which is using dynamic UDP port for sending multimedia stream.

Most of these multimedia applications assume there is a direct communication path between the client and the server. But
with the growing issues of internet security, the servers and clients are usually separated by afirewall. Asthe UDP
connection made from the server back to the client is using a dynamically assigned UDP port, the security rule in the
firewall does not have in advance the UDP port number for the connection. The firewall could not perform the packet
filtering for the dynamically assigned UDP port on the client and the server. Only the applications clients and the

applications servers know about this dynamically assigned UDP port number as they communicate these information

through their application protocol. But there is no way for the applications clients to inform the firewall the dynamically
assigned UDP port so that the firewall could adjust its security rules dynamically to allow the UDP traffic through that

UDP port. So the UDP packet for the clients and the servers will be rejected by the firewall.

One workaround for thisis to fix the destination UDP port to a particular UDP port. Thisis not scalable as multimedia
applications may need a number of UDP ports for different media types. Moreover, the particular UDP port at the firewall
will need to be always open up to permit incoming UDP traffic to each client which may run that particular applications.
It will be insecure and difficult to be managed. Any source UDP address could send UDP traffic to the fixed destination
UDP port. Real audio player is using this approach when it needs to work through afirewall. It uses afixed destination

UDP port for the incoming UDP stream.

The best approach is to have on-demand assignment & permission of UDP ports on the firewall based on the requirement
of the multimedia applications. UDP ports will be assigned and open up in the firewall subject to the request by the
applications running by the client. Once the clients do not need the UDP ports, the UDP ports assigned by the firewall
will be closed and no more packets could go through those particular UDP ports. In addition to that, there should be a
mechanism for the firewall to learn the source UDP address and the destination UDP address so that it could carry out the

proper packet filtering for the UDP traffic.

1.1.2 Network Address Trandation by the Firewall

Another issue posed by the existing firewall on the applications is the network address trandlation (NAT) performed by the
firewall. Firewall usually hides the internal network from the Internet by means of network address translation (RFC
1631). Theinternal address of the client will be translated to the external address of the firewall when the packets go

through the firewall. The applications servers in the Internet are communicated with the external address of the firewall

instead of the actual internal address of the clients. Most of the applications will work with network address translation as

the applications are not aware of the actual network address of the clients on which they are running.

However, most of the multimedia applications are aware of the actual network address of the clients and the servers. The
clients will communicate using the application protocol their actual network address to the server. The server will then
send the UDP packet to the actual network address of the clients. The UDP packets could never reach the clients as the

actual network address of the client is a private network address which is not existing in the Internet.

In order to make it work, the clients need to know the transated address at the firewall. They could then communicate
the translated address of the firewall to the applications servers. The serverswill then send the UDP packets to the
translated address of the firewall. But there is no way for the client applications to learn the translated address from the

firewall. unlessthe network address translation is configured statically at the firewall.

Fig. Lillustrates the classical example of the impact of the network address translation by the firewall on the Real Time
Streaming Protocol (RTSP) applications. The RTSP client just knows its actual network address (A.B.C.D) and it will tell
the RTSP server this actua network address (A.B.C.D) viathe RTSP TCP control connection. The RTSP server will send
UDP packets to the network address A.B.C.D which is not existing in the Internet. So the UDP packets from the RTSP
server will never reach the RTSP clients. In fact, the RTSP server should send UDP packets to the external address of the

firewall (W.X.Y.Z). Thefirewall will then relay the packets to the actual network address (A.B.C.D) of the RTSP clients.

RTSP Server

Remote Address

— =S IS

o @~ <~
° O oo oo
:b = 0 = 0
= 0> 0>
o o c o
O-g 0o 0o
oo S S
02 o= a -
EE hE—~—6 e
X o = =

O ad ad

External Address of Firewall:
W.X.Y.Z
Firewall Using NAT
(Only W.X.Y.Z is accessible from outside,
A.B.C.D is hidden and is not accessible directly)

_o & < & <
o O - R
=5 GEB FEB
c
8 5 a c—; X a c—; X
= 0o ® aonv
o9 D %O D %O
2 380 380
x S o c o c
o ~ W = W
O x ~ x ~
Call-back Address:
A.B.C.D
RTSP Client

Figure 1: Diagram Illustrating the Issues For UDP Stream Viaa NAT Firewall

1.2 Proxy For the Firewall

1.2.1 Application Proxy For the Firewall

To overcome the three issues mentioned above, one solution is to develop an application proxy for the application on the
firewall and to add in proxy support for the client . Thiswill be similar to the approach of the http proxy. The client will
treat the firewall as an application proxy server and send the application request to the pre-defined TCP port of the
application proxy on the firewall. The firewall will act like the actual application server and send the application reply
back to the client. On the other side, the application proxy on the firewall will then act like the application clients and
relay the request to the actual application server. The application server will treat the application proxy on the firewall as
the application client. The issues with dynamic UDP port assignment and network address translation no longer exist.
The dynamically assigned UDP port by the application proxy will be learnt by the firewall asthey are in the same box.
The application proxy will use the external address of the firewall to communicate with the application servers. No

address trandlation is needed for the application proxy when it talks to the applications servers.

However, this arrangement will require each firewall developer to produce a specific application proxy for each
application. Thiswill complicate the firewall design as the firewall needs to use additional overhead to process each
application protocol. The firewall needs to interpret the application protocol, extract any application protocol statements
related to the UDP transport establishment and perform appropriate transport establishment procedure. If there are future
enhancements and modifications to the application protocol, the applications proxy on each firewall needs to be modified
to support those changes. Besides that, the applications need to be aware of the application proxy server. Additional
coding needs to be implemented in order to support the application proxy. This additional proxy support needs to be built

in each clients of the application so that it could work with application proxy.

1.2.2 Generic Transport Proxy For the Firewall

Another approach to resolve the two issues discussed above is to use a generic transport proxy to handle those types of
applications. It will simplify the design of firewall by developing a generic transport proxy to fulfil different transport
reguirement by the applications. The generic transport proxy will act as a proxy server in the transport layer. Itis
transparent to the application layer. The client application does not know the existence of the generic proxy. The generic
proxy will intercept the socket call procedure invoked by the application and set up the proxy connection based on the
transport requirement of the application. UDP port will be assigned dynamically by the generic proxy server based on the
requirement from the application layer. Theissue with NAT at the firewall will be resolved as the application will be able

to learn the translated address at the firewall from the generic proxy server.

In the past few years, there is an effort to develop a generic transport proxy for the firewall using the SOCK'S protocol
(Ref. 2). The current version of SOCK S5 protocol (RFC 1928) has limited support for UDP. It could only learn the local
address of the SOCK S5 client. It could not learn the “remote address’. 1t does not have the complete local address —
remote address pair to do the proper packet filtering. So, the issue with dynamic address assignment for UDP protocol at
the firewall is only resolved partially by this SOCKS5 protocol. The issue with NAT at the firewall is still unresolved.
The application client is still unable to learn the transated address at the firewall from the SOCK S5 protocol. So it could
not support incoming UDP association. As aresult of these two unresolved issues, it supports only outgoing UDP
association by setting the “remote address’ to “any address’. With such setting, the outgoing UDP packets could go to

any destination UDP address and the level of access control will be reduced alot.

To overcome the outstanding issues of the SOCK S5 protocol (RFC 1928), there are two recent Internet draft which try to
tackle the issues with the support for the UDP. The Internet draft “ SOCK'S Protocol version 5, draft-ietf-aft-socks-pro-vs-
03" (Ref. 5) isarevised version of RFC 1928. Another Internet draft “ SOCKS5 UDP and Multicast Extensions to
Facilitate Multicast Firewall Traversal, draft-ietf-aft-mcast-fw-traversal-01.txt” (Ref. 3) propose an enhanced UDP mode
to handle the UDP binding at the SOCK S5 proxy server. Both of these two Internet drafts resolve the issues with NAT.

The trandlated address at the firewall is communicated via these revised SOCK S5 protocols from the SOCK S5 server to

the SOCK S5 client. They aso attempt to resolve the issues with the “remote address’ for UDP packets filtering. But the
SOCK S5 model's they adopt have fundamental problem on the assumption of the availahility of the “remote address’ from

the application layer. Asaresult of that, these SOCK S5 protocols are not able to resolve the issues with the “remote

1.3 Unresolved Issues with SOCKS5 Support For Incoming UDP Connections

As mentioned above, the two revised Internet drafts for SOCK S5 protocol try to resolve the issue with dynamic UDP port
assignment at the firewall and the issue with NAT for UDP at the firewall. However, thereis still some fundamental

problem with the availability of the “remote address’ by these SOCK S5 protocols.

When the UDP binding is carried out by these SOCK S5 protocals, the “remote address’ needs to be communicated from
the SOCK S5 client to the SOCK S5 server. For outgoing UDP connections, the “remote address’ is available during the
UDP binding. But for the incoming UDP connections, the “remote address” is not readily available by the client during
the UDP binding. So these two SOCK S5 protocols could not support the incoming UDP connections. In fact, most of the
multimedia applications make use of the incoming UDP connections for the delivery of the multimedia stream from the
server to the client. These types of applications cover a major proportion of the UDP-based applications in the Internet.

So it isimportant that the SOCK S5 protocol will provide support for the incoming UDP connections.

Usually, the “remote address” is available to the client application after the UDP binding. So if the provisioning of the
“remote address’ could be postponed after the UDP binding, this issue with SOCK S5 UDP binding for incoming

connections could be resolved.

However, another issue with SOCK S5 UDP support will come up. Thisissueis how the SOCK S5 client acquires the
“remote address’ from the application layer. Thisis not currently addressed in the SOCK S5 protocol. Although it seems

that thisissueisrelated to the implementation, it will be shown in later section that this needs to be clearly defined in the

SOCKSS protocol. Otherwise, SOCK S5 will not operate properly with the applications layer. The interface between
SOCKS5 protocol and the application layers needs to be well defined in the SOCK S5 protocol so that the exchange of

address information could be carried out properly.

1.4 Summary of Work

To support the incoming UDP connections, this project proposes an enhancement of the SOCK S5 protocol to overcome
the issues discussed above. The SOCK S5 support for outgoing UDP connection will also be modified to match the socket
call sequence. The proposed enhancement is a new SOCK S5 model for UDP association. This new model adopts the
enhanced UDP mode packet structure of the Internet draft “SOCK S5 UDP and Multicast Extensions to Facilitate
Multicast Firewall Traversal, draft-ietf-aft-mcast-fw-traversal-01.txt” (Ref. 3). This enhanced SOCK S5 protocol will

provide complete support of UDP connections across the firewall.

The following protocol enhancements are made to SOCK S5 protocol:
Passive UDP opening & UDP listening are introduced in the SOCK S5 protocol model to support the incoming
multimedia stream.
UDP binding through the SOCK S5 protocal is transformed from a single step binding process into a two step binding
process with the introduction of a half-binding state.
Active UDP opening which is already available in existing SOCK S5 protocol is also incorporated into the new two
steps binding process to provide a generic UDP binding mechanism via SOCK S5 protocol.
Wrapper socket calls from SOCK S5 library are mapped properly to the new two steps SOCK S5 UDP binding process

so that the source and destination address are communicated properly between the application layer and the SOCK S5

layer.

As discussed earlier, most of the multimedia applications make use of the incoming UDP connections to deliver the

multimedia stream from the multimedia server to the multimedia client. To test the modified SOCKS5 protocol, a

multimedia application should be used. This provides us an insight into the interaction between the multimedia
application and the SOCK S5 transport proxy. The application selected for testing should be a good representation of
most of the multimedia applications. It should adopt the transport model which is used by most of the other multimedia
applications. With these criteria, the Real Time Streaming Protocol (RTSP) is selected as the multimedia application for
the testing of the enhanced SOCK S5 protocol in this project. RTSP has a transport model similar to other popular
multimedia applications like Real Audio, VDOL ive and StreamWorks. A RFC (RFC 2326) for RTSP has already been
published. There will be more and more applications adopting this standard. So it will be good to test the interface
between RTSP and the enhanced SOCK S5 protocol to ensure that the enhanced SOCK S5 protocol will support the

incoming UDP connections for the multimedia applications.

The transport establishment procedure for the UDP stream in existing RTSP is not well defined. So a guideline for the
UDP transport establishment procedure for RTSP stream is specified to ensure the proper socket calls are made to set up
the UDP stream via the enhanced SOCK S5 protocol. This guideline will also be applicable for other multimedia

applications as well.

1.5 Overview of Chapters

Chapter 2 begins with an overview on the existing SOCK S5 protocol and the Real Time Streaming Protocol (RTSP). The
model using SOCKS5 server as an generic proxy firewall for RTSP will then be explained. The issues in terms of the
incoming UDP support with the two recent Internet drafts for SOCK S5 will be discussed. The requirement for the

application interface with SOCK S5 layer is outlined at the end of this Chapter.

Chapter 3 will detail the proposed enhancement to the SOCK S5 protocol. Socket call procedures for RTSP clients to
interface with SOCK S5 protocol is proposed. Three types of UDP port binding are analysed. Based on the analysis, atwo
steps SOCK S5 UDP hinding process is proposed for the three types of UDP port binding. The proposed two step binding

process will then be mapped to the socket call procedure and fit into the existing SOCK S5 protocol model.

10

Chapter 4 will specify the required transport establishment procedure in Real Time Streaming Protocol to work with the

proposed SOCK S5 protocol.

Chapter 5 will describe the program implementation of the prototype for the proposed SOCK S5 protocol enhancement and
the program modification of the RTSP applications for the testing of the SOCK S5 prototype. Analysis of the existing

source code and the required modification of the source are highlighted in these sections.

Chapter 6 will give the testing results when the prototype for the enhanced SOCK S5 protocol was tested with RT SP-based
applications. Chapter 7 concludes al the works and the contribution of this dissertation. Chapter 8 will propose some

future work that could be carried out to extend the capability of the SOCK S5 model.

2. SOCK S5 Protocol Support For UDP

2.1 Overview of SOCKS5 Protocol

SOCKS5 protocol is a session layer protocol which provides a generic mechanism for 1P traffic to traverse afirewall. It
acts as an generic transport proxy for TCP and UDP protocol. A TCP/UDP data connection isinitiated by the SOCK S5
server to the remote server on behalf of the actual SOCK S5 client. The SOCK S5 client is hidden away from the remote

server.

In addition to that, SOCK S5 protocol provides authentication, access control and network address translation. The
transport layer is established on demand. Each SOCK S5 client will be authenticated. The access requirement will be
provided by the SOCK S5 client and will be compared against the access control policy established in the firewall. This

provides a more dynamic way of performing access control viathe firewall.

11

The current version of SOCK S5 protocol RFC 1928 provides transport proxy for outgoing TCP connections and outgoing

UDP connections. The SOCK S5 protocol standard does not support the incoming UDP connections.

The SOCK S5 protocol exchange involves two main processes. The first process is the transport proxy establishment.

First, a TCP control connection will be established between the SOCK S5 client and the SOCK S5 server. After that, a
standard SOCK S5 packet format will be used for the TCP/UDP binding request. The SOCK S5 server will do the binding
at its external interface and set up the internal TCP/UDP relay data connection between the SOCK S5 server and the
SOCKSS5 client. The second process is the actual datarelay for the TCP and UDP connection. The TCP /UDP data packet

from the SOCK S5 client to the remote server will be relay viathe SOCK S5 server.

12

The diagram below illustrates the SOCK S5 protocol exchange sequence:

SOCKSS5 Client SOCKS5 Server

Remote Server

Established

proxy
establishment for
TCP/UDP

SOCKSS5 transport ‘ Sock5 Authentication Request >

Socks5 Authentication Reply ‘

Sock5 TCP/UDP binding request>

Reply for Socks5 TCP/UDP binding

TCP/UDP data relay < TCP/UDP data relay via SOCKS5 > < TCP/UDP connection to remote server >

Figure2: SOCK S5 Transport Proxy Establishment Sequence

2.1.1 Transport Model of SOCKS5 TCP Binding

The transport model of the SOCK S5 protocol for TCP connection is an in-band model. One TCP control connection is

established for each SOCK S5 TCP connection. Initially, the SOCK S5 authentication and the SOCK S5 TCP binding will

be performed using the SOCK S5 protocol over the TCP control connection. After the successful SOCK S5 binding for

TCP connections, the TCP control channel will become the TCP data connection for TCP datarelay. TCP data, which is

destined for the remote server, will be relayed from the SOCK S5 client to the SOCK S5 server. This TCP data will

13

subsequently be sent via the external TCP connection to the remote server. Similarly, TCP data from the remote server

will be transported in the reverse direction using the SOCK S5 server asa TCP datarelay.

2.1.2 Transport Model of SOCK S5 UDP Binding

The transport model of the SOCK S5 protocol for UDP makes use of an out-of-band transport model. It consists of one
TCP control connection for each SOCK S5 UDP data connection and one UDP data relay connection. SOCK S5
authentication and SOCK S5 UDP port binding will be performed through the TCP control connection. A separate UDP
data relay connection will be set up to relay UDP data between the SOCK S5 client and SOCK S5 server. The UDP datais
encapsulated in SOCK S5 UDP datarelay packet. The encapsulated UDP data packet from the SOCK S5 client will be sent
to the SOCK S5 server. The SOCK S5 server will extract the actual UDP data and send it to the remote server. On the
other side, the raw UDP packet from the remote server will be encapsulated by the SOCK S5 server and will be sent to the

SOCKS5 client. The SOCK S5 client will then extract the UDP data and pass the data to the applications layer.

The diagram below illustrates the transport models of the SOCK S5 protocol for TCP and UDP:

14

UDP proxy
UDP data
Connection
(Encapsulated in

OCKS5 TCP

Connection For

Remote
Server
| Remote Address
|
|
|
g§ TCP | UDP o5
© = =
< 9| Rela Rela S 9
5 o ’ 3 <
R —> 58
|
|
|
External | External
Address | Address
: SOCKS V5
SOCKS5 | Server SOCKS5
server Local | server Local
Address | Address
t
|
|
|
|
|
|
|
|
|
|
|
|

SOCKS5
client Local

SOCKS5 Address
Client

Figure 3: Transport Mode of SOCK S5 Protocol

2.2 Overview of Real Time Streaming Protocol

In the Internet community, there is a growing number of multimedia applications in the past few years. Asthereisno
common standard on how to deliver multimedia stream between servers and clients, each vendor has its own method to
implement their applications. The usual pattern for the delivery of multimedia traffic consists of two parts. One part is
the control connection and the other part is the incoming UDP packets from the multimedia servers to the multimedia
clients. The control connection is usually a pre-defined TCP port while the incoming UDP packets will go through a

randomly assigned UDP port.

15

In 1996, an initiative was established by the MMUSIC group in IETF to develop a Real Time Streaming Protocol (RTSP)
(Ref. 1) which will provide a common protocol for multimedia applications across the Internet. Various vendors of the
Internet community and research institutions participated in the development of the protocol. The transport model of the
RTSP protocol adopts the common approach described above with one TCP control connection and one or more
UDP/multicast stream for multimedia data (Fig. 4). So this transport model could be used as a foundation for future

development work on network transport facilities to carry multimedia stream.

RTSP Server

] RTSP Multimedia Stream
RTSP Control Connection (RTP on UDP)

(TCP/UDP)

RTSP Client

Figure 4: Transport Model For Real Time Streaming Protocol

16

2.2.1 Trangport Establishment Procedure For RTSP Stream

RTSP makes use of UDP to transport multimedia stream from RTSP server to RTSP client. The transport establishment
procedure for RTSP multimedia stream needs to be understood so as to see how the SOCK S5 protocol will support the

UDP transport proxy.

RTSP provides a common framework for the establishment and manipulation of various types of audio and video stream.
This is achieved through the TCP control connection between the RTSP client and the RTSP server. Initially, the RTSP
client will set up the TCP control connection to awell-known port 554 of the RTSP server. Then it will begin RTSP
protocol exchange viathis TCP connection. The following diagram indicates the sequence of protocol exchange between

RTSP client and RTSP server to play a multimedia stream:

17

RTSP Client RTSP Server

Describe RTSP Stream Request sent from RTSP client

Describe Response sent from RTSP server

(QDI’\IPI‘ address, server pnrt)

Play RTSP Stream Request

Play RTSP Reply From RTSP Server ‘

Incoming UDP data stream from RTSP Stream Server (Via a separate UDP Port) ‘

ANVAN

RTSP Teardown Request

RTSP Teardown Reply

N

Figure5: Protocol Exchange Sequence To Play a RTSP Multimedia Stream

The RTSP client sends a “ Describe” request to ask for the description of a particular multimedia object. The RTSP server
will reply with the description of the multimedia object such as media type or medialength. The RTSP client will then
issue a” Set up” request to set up a multimedia stream for a multimedia object. Thiswill involve the establishment of the
proper transport mechanism for the delivery of the multimedia stream. The common transport mechanism are RTP over

unicast UDP or RTP over multicast. After the “Set up” request finishes the transport establishment procedure, the “ Play”

18

request will specify where to start the playback and how long it should play. Thisisvery similar to the playback control of
aCD player. One could program the player to play from track 3 to track 5 instead of playing al the tracks. The
multimedia stream will then be delivered from the RTSP server to the RTSP client via the established transport
mechanism. In the above diagram, thisis delivered viaa UDP stream. After the RTSP client finishes playing the
multimedia stream, it issues a“ Teardown” request. Thiswill remove the transport established for the multimedia stream
between the RTSP client and the RTSP server. If the RTSP client wants to play the same multimedia object, it needs to

issue the “ Set up” request again to initiate the transport for the multimedia stream.

2.3 Using SOCKSS5 Server as a Generic Proxy Firewall For RTSP

The SOCK S5 model and the RTSP model will be combined together to see how the RTSP will make use of the SOCK S5
protocol to traverse through afirewall. The combined model will illustrate how the RTSP applications interact with the
SOCKSS layer and the role of the SOCK S5 transport proxy. It will serve as a framework to understand the issues with the
incoming UDP connections via the SOCK S5 server and to analyse the requirement for supporting incoming UDP

connections via SOCK S5 server. The following diagram illustrates the combined SOCK S5 and RTSP mode!:

19

RTSP Server

Remote Address

~ IS IS
56 g a g a
g - f=la) =la)
c (2] ()
S g o c a c
O = Qo Qo
o o
o= 0o nx
xs = =
O 14 x
External Address External Address

SOCKSS5 Server

SOCKSS5 server
Local Address

P LIDP Straam
o oorr—oteamt
P LIDP Straam
o oor—oteamt

COCK)
OUCNSI)
COCK Y
OUCNSI)

RTSP TCP Control
(Encapsulated in
(Encapsulated in

(\()Qjection via SOCKS!

RT

SOCKS5 TCP Control
Connection for UDP
RT

SOCKSS5 client

SOCKSS5 Client Local Address

RTSP Client

Figure 6: Generic SOCK S5 Transport Proxy Model For Real Time Streaming Protocol

The SOCK S5 server will act as a generic transport proxy for both the RTSP TCP control connection and the RTSP UDP
stream from the RTSP server to the RTSP client. The RTSP client and the SOCK S5 client are running in the same
machine. The RTSP client interfaces with the SOCK S5 client using the standard socket library calls. The SOCKS5

connection isinitiated from the SOCK S5 client to set up the proxy transport for the RTSP TCP control connection. Once

20

this RTSP TCP control connection is established, the RTSP request and reply will be relayed via this SOCKS5 TCP proxy
connection. Then a second SOCK S5 connection will be initiated from the SOCK S5 client to set up the proxy transport for
the incoming UDP stream. Once this SOCK S5 UDP association is established, a UDP binding will be established at the
external address of the SOCK S5 server by the RTSP client. The RTSP server will send the UDP stream to the external
address of the SOCK S5 server. Thisincoming UDP stream will subsequently be relayed to the SOCK S5 client viaa
separate UDP channel by encapsulation in SOCK S5 UDP packet. The RTSP client will receive the actual UDP data from

the SOCK S5 Client.

It could be seen that the SOCK S5 server acts both as afirewall and atransport proxy. The RTSP server is communicating
directly with SOCK S5 server and it treats the SOCK S5 server asthe RTSP client. In fact, this SOCK S5 server is sending
and receiving packet on behalf of the RTSP client which islocated inside the internal network. Theinternal network is
hidden from outside. The TCP and UDP binding are done on-demand from the internal RTSP client. 1t will last only for
the duration that the internal client needs that. Once the RTSP client application is closed, the TCP and UDP binding on
the SOCK S5 server will be removed. The SOCK S5 server should be able to accept TCP & UDP binding dynamically
based on the requirement from the client applications. Thereis no need to pre-configure this SOCK S5 server statically the

address trandlation for each binding required by different client applications.

This generic transport proxy supports both TCP and UDP. So effectively any applications making use of TCP & UDP as
the transport protocol could make use of the SOCK S5 transport proxy to traverse through the firewall. The SOCKS5
transport proxy islocated at the session layer and is transparent to the applications. The application server and the
application client are not aware of the existence of the SOCK S5 transport proxy. Hence, it will simplify the application

development process for those applications which need to go through afirewall.

2.4 |Issues with the “Remote Address” in SOCKS5 Protocol For UDP

21

As mentioned in section 1.2.2, the current version of SOCK S5 protocol RFC 1928 (Ref. 2) supports only outgoing UDP
associations. To support incoming UDP connections, the SOCK S5 protocol needs to be extended to include support for
incoming UDP associations. As stated earlier, there are two Internet drafts proposing two approaches to enhance the
UDP associations in RFC1928. Both of them are based on the basic SOCK S5 protocol RFC1928. They use the same
SOCKS5 transport model and SOCK S5 authentication process. The difference between them is mainly on the UDP
binding and UDP datarelay process. However, both of them have fundamental problems on the assumption of the

availability of the “remote address’. Thiswill be discussed in this section.

2.4.1 SOCKS5 UDP and Multicast Extensionsto Facilitate Multicast Firewall Traversal

The first approach is from the Internet draft for SOCK S5 UDP & multicast extension (Ref. 3) which extends the UDP
associations for both UDP & mullticast traffic. This approach introduced an enhanced UDP mode on top of the basic
SOCKSS protocol. To enter into the enhanced UDP mode, the SOCK S5 client will send the enhanced UDP mode request
(SOCK S5 command “0x04”) to the SOCK S5 server by using the basic SOCK S5 packet structure. Once the SOCK S5
client and the SOCK S5 server are in the enhanced UDP mode, a new packet structure for the enhanced UDP mode and a
new command set for enhanced UDP mode will be used. This new packet structure is used to facilitate the special
requirement of the UDP & multicast. It consists of two address fields instead of one. The two address fields are for the
local address and the remote address. Other than that, it provides an association identifier (AlID) for each UDP

association. So each SOCK S5 control channel could serve multiple UDP associations.

[RS [R [R RS- RS- +
| VER | CMD | FLAG | ATYP | DST. ADDR | DST. PORT |
[RS [R [R RS- RS- +
| 2| 1 | 1 | 1 | Variable | 2 |
[RS [R [R RS- RS- +

o oo oo oo oo S S +
| |

Fomm e - Fommm e Fommm - Fommm e Fommm e Fommmm Fommm +
| LOCAL ADDR TYPE (1) | LOCAL ADDR (var) | LOCAL PORT (2) |

22

Figure 8: Packet Structure Of Enhanced UDP Modein SOCK S5 UDP & Multicast Extensions

In the enhanced UDP mode, the SOCK S5 client will send an “enhanced UDP bind request” using the enhanced UDP
mode packet structure to the SOCK S5 server. The “local address field” will be populated with the IP address and 1P port
number at which the SOCK S5 client will receive or send UDP data. The “remote address field” will be populated with the
ultimate destination address which is the remote address. The SOCK S5 server will send a reply using the same enhanced
UDP mode packet structure. The “local addressfield” of the reply will be populated with the local address of the
SOCKS5 server and the “remote address field” will be populated with the external address of the SOCK S5 server. Asthe
“remote address’ isrequired in the “enhanced UDP bind request”, the “remote address’ has to be readily available by the

SOCKS5 client during the UDP binding process.

2.4.2 Revised SOCK S5 Protocol with UDP Support

Another approach is proposed recently as an Internet draft for the revision of SOCKS5 RFC1928 (Ref. 5) The proposed
solution makes use of the original UDP association command from RFC 1928 and the basic SOCK S5 packet structure. It
introduces two ways of performing incoming UDP associations. Both ways make use of the flag field of the SOCKS5 UDP

association packet.

The first way isto set the flag field to “use_client_port” (0x01) when the SOCK S5 client sends a SOCK S5 UDP
association request to the SOCK S5 server. The address field of the SOCK S5 packet will be populated with the local
address and local port from which the SOCK S5 client will relay UDP data. Once the SOCK S5 server sees thisflag, it will
set the external port number same as the local UDP port number specified by the SOCK S5 client in the SOCK S5 UDP
association request. It will then send back areply in which the address field will be populated with the local address and

the local port of the SOCK S5 server. The SOCK S5 client should send data to be relayed to this local address and local

23

port. In thisway, the SOCK S5 client will know the external port number of the UDP binding at the SOCK S5 server.

However, the SOCK S5 client is not able to know the external address of the UDP binding.

The second way isto set the flag field “interface_request” (0x04) in the SOCK S5 UDP association request. The address
field of the SOCK S5 packet will also be populated with the local address and the local port from which the SOCK S5 client
will relay UDP data. The SOCK S5 server will in turn send back areply in which the address field will be populated with
the local address and the local port of the SOCK S5 server. Other than that, the SOCK S5 server will expect an additional
“interface data” subcommand (0x01) from the SOCK S5 client. The subcommand will use the basic SOCK S5 packet
structure. The SOCK S5 client will make use of this subcommand to learn the external address of the SOCK S5 server for
this UDP association. The address field of the “interface subcommand” will be populated with the ultimate address which
isthe “remote address”. The SOCK S5 server will send back areply for this subcommand. The address field of the reply
will be populated with the external address and external port of the UDP binding at the SOCK S5 server. The second way
isvery similar to the enhanced UDP mode of the UDP & multicast extensions (Ref. 3). Both of them use another set of
command to learn the external address of the UDP binding. In fact, the existing SOCK S5 library available from NEC is

using a very similar approach in their implementation.

[RS [R [R RS- [R +
|RSV | SUB | FLAG | ATYP | ADDR | PORT |
[RS [R [R RS- [R +
| 2| 1 | 1 | 1 | Variable | 2 |
[RS [R [R RS- [R +

Figure 9: Packet Structure of SOCK S5 Sub-command for UDP

In order to the learn the external address of the UDP binding at the SOCK S5 server, the second approach, which makes
use of the “interface data’ subcommand, has to be used. This second approach requires the SOCK S5 client to provide the
“remote address’. Again, the “remote address’ needs to be readily available by the SOCK S5 client during the UDP

binding.

24

2.4.3 Unavailability of “remote address’ in UDP Bind Socket Call

As mentioned above in the UDP binding process of the two Internet drafts, the “remote address’” has to be available during
the SOCK S5 UDP binding. But thisis not achievable in the actual implementation. The application will make use of the
UDP bind() socket call to perform UDP binding. When the SOCK S5 client receives the UDP bind() socket call, it will
begin the SOCK S5 UDP binding using the proposed SOCK S5 UDP hinding schemes. However, the UDP bind() socket
call does not provide the “remote address’ and the “remote port” in its argument. So the SOCK S5 client will not know
the “remote address’ and the “remote port”. Without this information, the proposed UDP binding schemes in these two
Internet drafts will not work. So in these two Internet drafts, the fundamental assumption that the “remote address’ is

readily available during the UDP binding is not correct.

2.4.4 Deadlock Situation in the Information Exchange Between RTSP Client & SOCK S5 Server

As mentioned in last section, the “remote address’ is not available from the UDP bind() socket call because the argument
of the UDP bind() socket does not support this. But even if the UDP bind() socket call support the “remote address” field
in its argument, the “remote address’ is still unavailable from the applications client. Thisis due to the mismatch in the
seguence of exchange of address information between the multimedia applications and the SOCKS5 protocol. AsRTSP
will be used to test out the SOCK S5 protocol support for UDP, the RTSP protocol exchange sequence will be used to

illustrate this issue below.

One important requirement from RTSP application is that when the RTSP client sends the SETUP request, it needs to
know the assigned client address and assigned client port (which is the external address of the UDP binding at the
SOCK S5 server). But this external addressis only available after a successful SOCK S5 UDP association. But based on
the SOCK S5 protocol requirement, when the RTSP client set up the SOCK S5 UDP associations, it needs to provide the
“remote address’ to the SOCK S5 server. However, the “remote address’ will not be available until a RTSP SETUP

request is sent and the SETUP reply isreceived. So it getsinto a deadlock situation. The RTSP client needs to get the

25

“external address’ of the SOCK S5 server before it could get the “remote address’ while the SOCK S5 server needs to get

the “remote address’ before it could send the “external address’ to the RTSP client. So in terms of the sequencing of the

address information flow, the two proposed Internet drafts for SOCK S5 UDP support are still incompatible with the

reguirement of the multimedia application such as the RTSP.

The diagram below illustrates the fundamental contradiction in requirements between SOCK S5 protocol and the RTSP

protocol:

RTSP Client

2.4.5 Workaround of SOCK S5 protocol implementation to support incoming UDP connection

RTSP Server

SOCKS5
Client

SOCKS5
Server

Figure 10: Deadlock Situation between RTSP & SOCK S5 protocols

In order to resolve this fundamental issue, the NEC SOCK S5 protocol implementation tries to support the incoming UDP

streaming connections by means of some workaround. To tackle the unavailability of the remote address, the SOCK S5

26

protocol implementations make use of the remote address of the previous SOCK S5 TCP connection from the SOCK S5
client as the remote address. Thisis based on the assumptions that the TCP control connection to the application servers
and the incoming UDP connection are originated from the same remote server. Thisis correct in most cases. However,
this may not be correct all thetime. In some cases, the application server may be different from the UDP streaming server.
Thiswill happen in the scenario that multiple UDP streaming servers are used to increase the scalability of the number of
UDP stream. To tackle the unavailability of the UDP port of the remote server, the UDP port of the remote addressiis set
to “any” portsin the SOCK S5 server such that any UDP ports from the remote server will be accepted. Thisisinsecure

as the whole range of UDP ports outside the SOCK S5 firewall will be open up for the incoming UDP connection.

2.5 New Requirements For the SOCKS5 Protocol

25.1 A New Approach To Resolve the Issueswith “remote address’

In order to resolve the issues with the unavailability of the “remote address’, the proposed enhancement for SOCK S5
protocol will not base on the assumption that the “remote address” is readily available during the UDP binding. It will
assume that the “remote address’ will be available before the actual data relay takes place. The SOCK S5 server needs to
acquire the “remote address’ before actual relay of UDP data so that it could perform the proper packet filtering on the
UDP packets based on the source address and the destination address. There should be a mechanism for the application to

communicate the “remote address’ to the SOCK S5 layer.

In order to resolve the other issue with the deadlock situation, the existing SOCK S5 UDP association mechanism needs to
be extended so that it could support the RTSP protocol requirement as described above. The enhanced SOCK S5 protocol
should be able to handle the scenario that the ultimate destination address (remote address) is unavailable during an UDP
association. To achieve that, the SOCK S5 UDP protocol has to accept the reverse sequence of exchange of network

address information between the SOCK S5 client & SOCK S5 server. SOCK S5 server should send the external address to

27

SOCK S5 client before SOCK S5 client sends the “remote address’ to SOCK S5 server. But at the same time, the current

approach of UDP associations in SOCK S5 needs to be preserved to support the outgoing UDP associations.

2.5.2 Protocol Interface Procedure between RTSP Clientsand SOCK S5 Transport Layer

The main issue with the current SOCK S5 protocol support for UDP is on the availability of the “remote address’. The
“remote address’ which is provided by the RTSP client has to be communicated to the SOCK S5 layer. So the interface
between the RTSP clients and the SOCK S5 layer needs to be analysed to see how this could be achieved with the existing
transport establishment procedure in RTSP. A protocol interface procedure will be established such that the RTSP client
and the SOCK S5 layer will get the necessary information to set up the incoming UDP stream connection via the SOCK S5
server. This protocol interface procedure will be based primarily on the transport establishment procedure of the RTSP
client. The enhanced SOCK S5 protocol support will be developed based on this protocol interface procedure. Thiswill

ensure that the transport establishment procedure in RTSP could be preserved.

The existing SOCK S5 protocol library provides wrapper program to interface with the client program. So the actual
protocol interface between the RTSP client and the SOCK S5 layer is the wrapper program. These wrapper programs will
take control of al the standard socket library calls for TCP and UDP. The bind() socket call for UDP will be replaced by
the corresponding IsUdpBind() call for SOCKS5. Same arrangement for other calls such as connect() & recv(). The
wrapper program will then exchange SOCK S5 protocol with the SOCK S5 server. The wrapper program could be treated

as the SOCK S5 client in the SOCK S5 protocol model.

2.5.2.1 RTSP Control Connection

In RTSP, the RTSP control connection could be either an unreliable protocol (rtspu) or a persistent connection (rtsp). If
the persistent connection is used, a TCP control connection will be initiated from the RTSP client via the SOCK S5 server
to the RTSP server. This could be achieved with the standard SOCK S5 protocol as standard SOCK S5 protocol supports

TCP outgoing connections.

28

If an unreliable protocol (such as UDP) is used for the control connection, the existing SOCK S5 protocol version (RFC

1928) will support this. It will be an outgoing UDP connection initiated from the RTSP client to the RTSP server.

The existing SOCK S5 protocol will support the establishment of the RTSP control connection. So the existing protocol

interface procedure for the SOCK S5 layer could be used for the RTSP control connection.

2.5.2.2 RTSP Incoming UDP Stream

For the incoming UDP streaming protocol, a protocol interface procedure needs to be developed for the proper exchange of

information between the RTSP client and the SOCK S5 layer. The protocol interface procedure will be embedded as part

of the transport establishment procedure of the RTSP client.

The transport establishment procedure of the RTSP client will consist of the following sequence of steps:

1

2.

RTSP client will perform a SOCKS5 UDP binding.

SOCKSS layer will send the UDP binding address and the UDP binding port (external address of SOCK S5 server) to
the RTSP client so that the RTSP client could inform the RTSP server the RTSP client address and the RTSP client
port.

RTSP client will send the UDP binding address and the UDP binding port to the RTSP server

RTSP server will send the RTSP server address and the RTSP server port to the RTSP client.

After that, the RTSP client will send the RTSP server address and RTSP server port (remote address) to the SOCK S5
layer so that the SOCK S5 server will know the source address of the incoming connection.

RTSP server will begin sending UDP data to the external address of the SOCK S5 server.

RTSP client will begin receiving UDP data from the SOCK S5 layer.

29

Step (3), Step (4), Step (6) and Step (7) are the transport establishment procedure of the RTSP applications. Step (1), Step
(2), step (5) and step (7) are the protocol interface procedure between RTSP client and the SOCK S5 layer. Thisinterface
procedure focuses specifically on the interface between the RTSP client and the SOCK S5 layer. The enhanced SOCK S5
protocol needs to follow these four steps of information exchange so that the transport establishment procedure of the UDP

stream for the RTSP will work properly. Thiswill be discussed later in this document.

2.6 Connection States of the UDP Stream for RTSP

RTSP makes use of a TCP control connection (TCP port 554) to do the establishment of all multimedia stream. SOCK S5
server has to obtain address information & connection state of UDP multimedia stream from the RTSP clients. As
mentioned in last section, the correct exchange sequence of network address between the RTSP client and the SOCK S5
layer is essential for the establishment of the stream viathe SOCK S5 server. Other than that, the correct exchange of the

state of the UDP association between the RTSP client and the SOCK S5 layer is aso important.

Fundamentally, UDP connection usually does not have states. But in a stream-based connection, it does have a state. The
state information is maintained at the RTSP server and the RTSP client. The state indicates there is a stream connection
between a RTSP server and aRTSP client. It will be in the form of a source address and destination address. So the
stream could be treated as a connection-oriented protocol. But it is using UDP as the transport layer. The prime reason
for using UDP to transmit multimedia stream is that UDP has low over-head and it have the non-guarantee delivery
feature which is needed in the transmission of multimedia stream. Ideally, if there exists a connection-oriented protocol

with low overhead and non-guarantee delivery, it will be even more suitable than UDP.

30

Both the RTSP client and the SOCK S5 layer should be in synchronous in terms of the UDP states. When the SOCK S5
completes the UDP binding for the RTSP client, the RTSP client should be aware of this. When the RTSP clientsissue a
“TEARDOWN” command to the RTSP server and close the socket handle of the UDP binding for the UDP stream, the
UDP binding at the SOCK S5 server should be closed. Asthe UDP protocol does not provide in-band communication of
the states between end-points, the state of the UDP stream has to be communicated via the out-of band SOCK S5 control
channel. The SOCK S5 layer should be able to signal the states to the RTSP client. Alternatively, the RTSP client should

be able to signal the states to the SOCK S5 layer.

3. Proposed Enhancement of SOCK S5 Protocol for UDP

The new requirements as outlined in section 2.5 have to be fulfilled so as to resolve the issues with the SOCK S5 Protocol
support for UDP. A new mechanism will be introduced to communicate the “remote address’ to the SOCK S5 layer.
Three types of UDP binding scenario (Active UDP Open, UDP Listen and Passive UDP open) will be analysed when
SOCKSS protocol is applied for each type of these UDP bindings. A two step UDP binding process will be introduced for
the Passive UDP open scenario which is used for incoming UDP connection. The two step UDP binding will then be
extended to the UDP binding for the Active UDP Open and UDP listen scenario. To implement the two steps UDP
binding process, the enhanced UDP mode of the Internet draft “ SOCKS5 UDP & Multicast Extension” will be adopted.

The enhanced UDP packet structure and the enhanced UDP command will be used in the two steps UDP binding process.

3.1 Passing the “remote address” to SOCKS5 Layer

The RTSP client makes use of the Real Time Protocol (RTP) on top of UDP to receive the streaming packets. But as most
of the applications for RTSP client only need to receive UDP packets, it only needs to invoke the bind() socket call and the
recv() socket call. The bind() socket call and the recv() socket call do not have an argument for the “remote address’. So

thereis no way for the RTSP client to pass the ultimate destination address (remote address) to the SOCK S5 client via

31

these two socket calls. In order to overcome thisissue, the RTSP client could invoke either a connect() socket call or a
sendto() socket call. The connect() socket call and the sendto() socket call have the argument for the “remote address’.

The SOCK S5 clients will be able to get the “remote address’ from either one of these two socket calls.

A connect() socket call will associate a UDP port with a fixed remote address. This matches the concept of a multimedia
stream which isin fact a fixed source address - destination address pair. With this arrangement, it does not allow other
multimedia stream to use the same UDP port. AsRTSP uses one distinct UDP port for one multimedia stream, it will not
violate the principal of RTSP protocol if the UDP association is a one-to-one mapping. So we could make use of the
connect() socket call to associate one UDP port with a remote address. 1t will not affect the operation of the RTSP protocol
if we make use of the connect() socket call. The connect() socket call will only associate a distinct destination address for
agiven UDP socket. This could then fulfil the protocol interface requirement for the SOCK S5 protocol by passing the

“remote address’ from the application layer to the SOCK S5 layer.

3.2 Types of UDP Port Binding

The focus of this project is on the incoming UDP port binding. However, the solution should be as complete as possible so
that a different framework does not need to be established for other type of UDP port binding. In order to provide a
comprehensive and complete solution for UDP port binding using SOCK S5 protocol, the different types of UDP ports

binding scenario need to be analysed at the same time.

3.2.1 Active UDP Open

Active Open is similar to the active opening of TCP ports. The main difference is that the same UDP port may open
multiple connection to different remote servers. When aclient is performing an active open of UDP ports, it is
performing an outgoing UDP connection. The current approach of the UDP association in SOCKS5 RFC 1928 is

classified as an active opening. In thistype of UDP binding, the remote address is avail able to the SOCK S5 clients before

32

the UDP binding and will be supplied in the UDP port binding. Thisisimportant for UDP applications which need to
make outgoing UDP connections. A typical example will be a RTSP server which is sitting behind a SOCK S5-based
firewall. It could obtain the remote address of the RTSP client before it starts the UDP association with the SOCK S5-

based firewall.

3.2.2 UDP Listen

UDP Listen corresponds to the connectionless server scenario. Any hosts could send packet to it. But it will not set up a
connection with those hosts. It may or may not reply to the hosts. A client application using UDP listen may have one-to-
many UDP associations. In fact, thisisthe origina nature of UDP which could have many-to-many associations. One
typical example is Domain Name System in which the DNS server could be queried by any clients using UDP protocal. It
opens up UDP port 53 and listen to DNS requests by any clients. But there is aloophole on the SOCK S5 server in this
type of application. Thereisno control over which remote machines could send UDP packets to this listening port. This
types of application is not currently addressed in the SOCK S5 protocol for UDP. However, the SOCK S5 protocol should

be able to support such requirement as there are a number of Internet applications which need to make use of UDP listen.

3.2.3 Passive UDP Open

Thisis similar to the passive opening in TCP. Thisis exactly what is addressed in this project for the incoming UDP
connection requirement. The final outcome after the binding is similar to Active Open of UDP port. The remote address
is mapped to adistinct UDP port in the SOCK S5 server. The main difference from the Active Opening of UDP portsis
the time at which the "remote address" is available to the SOCK S5 client. The SOCK S5 client need to complete the UDP
binding at the SOCK S5 server before the remote addressis available. The enhanced SOCK S5 protocol for the UDP
associations will preserve the Active Open Mechanism and support the UDP listen. In fact, the first half of Passive Open
issimilar to UDP Listen. The SOCKS5 client will request for an external address from the SOCK S5 server. The
difference between Passive UDP Open and UDP Listen is whether the “remote address’ will be provided by the SOCK S5

client after the UDP binding. For Passive UDP Open, the SOCK S5 client will provide that. For UDP listen, the SOCK S5

33

client will not provide that. 1n Passive UDP Open, both the source address & the destination address will be available for

the SOCK S5 server to do packet filtering.

If the “remote address’ could be provided by the RTSP client to the SOCK S5 layer after the UDP binding, it will resolve
the deadlock situation produced by the inconsistency of the RTSP stream establishment procedure and the SOCK S5 UDP
port binding procedure. It will meet the address exchange sequence of RTSP. The RTSP client needsto get hold of the
external address binding at the SOCK S5 server first. The “remote address” will be available after the RTSP client send

the SETUP request with the external address binding at the SOCK S5 server and get a SETUP reply from the RTSP server.

3.2.4 Statetransition & network address exchange of UDP binding

The state diagram below indicates the Active UDP Open, UDP Listen & Passive UDP Open mechanism:

No UDP Binding

|
Passive UDP Open:

(Client sends remote address=0.0.0.0;
Server send external firewall address;
Server does not confirm the binding)

Y
Active UDP Open: . UDP Listen
(Client sends remote address; UEEmBIIZ?eza” (Client sends remote address as 0.0.0.0;
Server send external address) P Server send external address)

Passive UDP Open:
(Client send remote address;
Server confirm the binding)

UDP Bind

Completed Client - refers to

SOCKSS5 Client
Server - refers to
SOCKSS5 Server

Figure 11: State Diagram of Three Types of UDP Binding over SOCK S5 Protocol

In Active Open of UDP port, thereis only one state change. The SOCK S5 client sends the "remote address®. The
SOCKS5 server will reply with the "external address’ of the UDP port binding at the SOCK S5 server. Thiswill complete

the binding process as both source address and destination address are available to the SOCK S5 firewall.

In UDP Listen, there is only one state change. Asthe "remote address” is any server, the SOCK S5 client sends the IP
address 0.0.0.0 to indicate that the remote address is “any address’. The SOCK S5 server will reply with the "external

address' of the UDP port bind at the SOCK S5 server. Thiswill complete the binding.

35

In Passive Open of UDP port, there will be two state transitions. Asthe "remote address’ is not available before the
binding, the SOCK S5 client will send the IP address 0.0.0.0 to indicate that the remote addressis “any address’. Same as
the UDP Listen, the SOCK S5 server will reply with the "external address' of the UDP port binding at the SOCK S5 server.
However, the UDP port binding is not yet completed as the "remote address’ is not available to the SOCK S5 server. So
the UDP port binding is only half-completed and it isin a"half-binding state”. To finish the UDP port binding, the
SOCK S5 client will send the "remote address" to the SOCK S5 server. The SOCK S5 server will then confirm the UDP

binding. Thiswill bring the UDP port binding to a completion state.

As the above state transition model covers all three types of UDP port binding, this model will be used as the basis for the

development of enhanced SOCK S5 protocol support for UDP.

3.3 Two Step UDP Binding Process

As stated in last section, the Passive UDP Opening has to be used in order to resolve the deadlock situation produced by
the inconsistency of the RTSP stream establishment sequence and the SOCK S5 UDP port binding sequence. The Passive
UDP Opening will split the UDP port binding into two steps of UDP binding process. The two steps UDP binding process

involved the protocol exchange between the SOCK S5 client and the SOCK S5 server.

As stated in section 3.1, there will be a modified socket interface procedure between the RTSP client and the SOCK S5
client. Theinterface between RTSP client & SOCKSS layer is originally viathe bind() socket call only. The SOCK S5
client needs to know exactly the “remote address’ from the RTSP client. However, the bind() socket call is not able to
provide that. So the socket interface procedure has be to modified to support that. The modified socket interface
procedure will involve two socket system calls. The first socket call will be a UDP bind() socket call. Thiswill provide
the SOCK S5 client the external address binding at the SOCK S5 server. Thiswill be followed by a UDP connect() socket

call which is used to communicate the “remote-server address’ from the RTSP client to the SOCK S5 client.

36

In order to make sure that the socket interface procedure works properly with the proposed two steps UDP binding process,
these two socket call sequence need to be mapped to the proposed two steps UDP binding processin SOCKS5. If the
bind() socket corresponds to the first step of the UDP binding of Passive UDP open, the UDP bind() socket call will trigger
the first SOCK S5 protocol exchange sequence. The local address & local port of the SOCK S5 client will be sent to the
SOCKS5 server. The SOCK S5 server will reply with the external address and external port to the SOCK S5 client. This
will fulfil the UDP bind() socket call requirement as the external address and external port of the SOCK S5 server will be
available to the RTSP client upon completion of thisfirst step. 1f the UDP connect() socket call corresponds to the second
step of the UDP binding of Passive UDP open, the UDP connect() socket call will trigger the second SOCK S5 protocol
exchange sequence. When the RTSP client issues the UDP connect() socket call, it will provide the “remote address’ and
the “remote server port” to the SOCK S5 layer. The second SOCK S5 protocol exchange will then send the “remote
address’ & the “remote port” to the SOCKS5 server. The SOCK S5 server will reply with the same external address and
external port binding at the SOCK S5 server to the SOCK S5 client. The UDP connect() call will fulfil the requirement of
the second step of UDP binding in SOCK S5 as the SOCK S5 client will get the “remote address’ and the “remote port”
from the UDP connect() call. Once this second step is completed, the UDP binding process for passive UDP opening is

complete.

As discussed above, this modified UDP socket call sequence by RTSP client will match the two steps UDP binding process
of the Passive UDP opening. In fact, this socket call sequence of the RTSP client is aready part of the transport
establishment procedure of the RTSP client as discussed in section 2.5.2.2. The UDP bind() call corresponds to step (1)
and step (2). The UDP connect() call corresponds to step (5). Hence, this modified socket call sequence will fit into the
transport establishment procedure of the RTSP client as well as the two steps SOCK S5 UDP binding process for passive
UDP opening. So the transport establishment procedure of RTSP will be properly linked to the SOCK S5 UDP binding

process.

37

Fig. 9 below combines both the RTSP protocol exchange sequence and the SOCK S5 UDP protocol exchange sequence for

the passive UDP opening mechanism and show how they work together to support the establishment of an incoming UDP

stream for RTSP viathe SOCK S5 server. It indicates the protocol exchange sequence between the following entities:

RTSP clients and RTSP server (viathe RTSP protocol)
RTSP client and SOCK S5 client (viathe system socket calls)

SOCKS5 client and SOCK S5 server (via the enhanced SOCK S5 protocol)

Sequence of protocol exchange:

1

2.

RTSP client will first establish a TCP control channel to a RTSP server.

Then the RTSP client will initiate a UDP bind() socket call. Thiswill in turn trigger the first step of the UDP bind
process. The SOCK S5 protocol exchange for first step of SOCK S5 UDP bind will take place. The SOCKS5 client
will establish the SOCK S5 control channel with the SOCKS5 server. Thiswill be followed by the first step SOCKS5
UDP bind command from the SOCK S5 client to the SOCK S5 server.

The RTSP client will send a Set-up request to the RTSP server.

The RTSP server will send a Set-up reply to the RTSP client.

The RTSP client will initiate the UDP connect() socket call. Thiswill trigger the second step of the UDP bind
process. The SOCK S5 client will send second step SOCK S5 UDP bind command with the remote address to the
SOCKS5 server. Thiswill complete the two step UDP binding process.

The RTSP client will initiate the UDP recv() socket call. Incoming UDP data stream will be relay from the SOCK S5

server to the SOCK S5 client and will be retrieved by the RTSP client from the UDP recv() socket call.

38

RTSP Client

& SOCKS5 Client SOCKS Server RTSP Server

‘ Set up RTSP Stream TCP Control Channel

Q Set up Reply From RTSP Server

Set up Sock5 TCP Control Channel

udp bind() < Set up Reply From Sock5 Server
+udp

getsockname() First Step Sock5 UDP Bind
wrapper progra (local address, local port,
for SOCKS5 remote address=0.0.0.0:0)

’ o
SELUP RTSF Stredaim

(external address, external port)
AY Ld 7

(rnmnm address, remote pnrt)

udp connect(
wrapper program

for SOCKS5
‘ Play RTSP Stream Request
Play RTSP Reply From RTSP Server
udp recv() |
wrapper program Incoming UDP data via SOCKS5 ‘ Soner
for SOCKS5

‘ Close Sock5 UDP Association

Reply for Close UDP Association

Figure 12: Command sequence for setting up a UDP association via SOCK S5 server for RTSP clients

39

3.4 Two Steps UDP Binding Process and the New half-binding state

The original SOCK S5 UDP bhinding involves only one UDP bind command. To support the passive UDP open
mechanism, one UDP bind command is not sufficient and two UDP binding steps are needed. A new UDP binding state
UDP half-binding is introduced to denote that the UDP binding is not completed. After receiving the first step SOCK S5
UDP bind command, the SOCK S5 server will in turn provide the external address and the SOCK S5 server will go into the
UDP half-binding state. The SOCK S5 server will expect another UDP bind command with the remote address. Once this

second step SOCK S5 UDP Bind command is received, the SOCK S5 UDP binding process will be completed.

3.4.1 Two Steps UDP Binding Process For Threetypes of UDP binding

Based on the above discussions, the two steps UDP binding process seems to apply to the passive UDP open mode only.
However, it could be seen that the two steps UDP binding process is applicable to both the UDP listen and the Active UDP

open. Thiswill be discussed in the following paragraphs.

Based on the state diagram for the three types of UDP binding (Fig. 11), when the SOCK S5 client is using the UDP listen
mode, it will send the “remote server address’ 0.0.0.0 to the SOCK S5 server. Only one SOCK S5 UDP bind step is
needed for UDP Listen. If the first step SOCK S5 UDP bind command is used for that, there is no way for the SOCK S5
server to differentiate between the passive UDP open mode and the UDP listen mode. This is because both of them are
using the same SOCK S5 UDP bind command and they carry the same “remote address’ which is 0.0.0.0. One solution
for that is to create a SOCK S5 UDP bind command for UDP listen and not to use the first step UDP bind command. The
SOCK S5 server will then be able to identify the SOCK S5 UDP binding for UDP listen mode. However, this will increase

the complexity of the SOCKS5 command set.

40

The other solution isto transform the SOCK S5 UDP binding for UDP listen into the two steps UDP binding process. The
first step of the SOCK S5 UDP Listen is the same as the first step of the SOCK S5 passive UDP open. The SOCK S5 client
will send the first step SOCK S5 UDP bind command with the remote address 0.0.0.0 to the SOCK S5 server. The
SOCKS5 server will then be at the “half-binding state”. To complete the binding, the SOCK S5 client will issue the
second step SOCK S5 UDP bind command with remote address 0.0.0.0 to the SOCK S5 server. When the SOCK S5 server
receives that, it knows that thisis a UDP Listen binding because the remote address is not a specific IP address. So the

two steps SOCK S5 UDP binding will work for UDP Listen mode.

The two steps SOCK S5 UDP binding could be introduced into the Active UDP open mechanism as well. The original
SOCKS5 UDP binding of Active UDP open involve only one UDP binding step. This one step process will be transformed
into the two steps UDP binding process. In the Active UDP opening mode, the first step SOCK S5 UDP binding is the
exactly same as the first step of the Passive UDP open. The SOCK S5 client will send the first step SOCKS5 UDP bind
command with the remote address 0.0.0.0 to the SOCK S5 server. The SOCK S5 server will then be at the “half-binding
state”. To complete the binding, the SOCK S5 client will issue the second step SOCK S5 UDP bind command with the
specific remote address to the SOCK S5 server. In fact, thisis exactly the same as the protocol exchange sequence of

passive UDP open.

The following diagram indicates how the three types UDP port opening are handled with the introduction of the two step

SOCKS5 UDP hinding process and the new half-binding state.

41

No UDP Bind Association

Active UDP Open: UDP Listen:

Udp Bind call (Client send Udp Bind call (Client send
remote address=0.0.0.0; | remote address=0.0.0.0;
Server send external firewall address; Passive UDP Open: Server send external firewall address;
Server does not confirm the binding) ~ Udp Bind call (Client send Server does not confirm the binding)

remote address=0.0.0.0;
Server send external firewall address;
Server does not confirm the binding)

\

Active UDP Open Passive UDP Open UDP Listen
UDP Bind half completed UDP Bind half completed UDP Bind half completed

Passive UDP Open:
Udp Connect() call (Client send

Active UDP Open: remote address; UDP Listen:
Udp Sendto() call (Client send Server confirm the binding) Udp recv() call (Client send
remote address; remote address =0.0.0.0
Server confirm the binding) Server confirm the binding)

UDP Bind Completed
Client - refers to
SOCKSS5 Client
Server - refers to
SOCKSS5 Server

Figure 13: State Diagram of the Two Step SOCK S5 UDP Binding Process

The new two steps UDP SOCK S5 UDP Binding and the "half-binding states' are introduced for the three types of UDP
port binding as mentioned above. Thiswill give a consistent framework for UDP port binding. The “half-binding state”
is communicated from the SOCK S5 client to the SOCK S5 server by sending afirst step SOCKS5 UDP bind command

with aremote address of 0.0.0.0. When the SOCK S5 server receive this command, it will go into the “half-binding state”

42

and send back the external address of the SOCK S5 server. It will then wait for the second step SOCK S5 UDP bind
command. Once this second step SOCK S5 UDP bind command is received, it will complete the two steps of UDP binding

process.

3.4.2 Two Steps UDP Binding Process and the Socket Call Procedure

To indicate which types of UDP port binding is using, the appropriate socket calls need to be invoked from the client to
signal the SOCK S5 client. Normally, one UDP bind() socket call isused for UDP port binding in most applications. In
the bind() UDP call, there is no remote address carried in the UDP bind() socket call. So it could not provide sufficient
information for the second step of the SOCKS5 UDP binding process. In order to solve this problem, a second socket call

need to be used to communicate the remote address to the SOCK S5 client.

The first socket call for al three types of UDP port binding is the UDP bind() socket call. The second socket call will then
indicate the types of UDP port binding and it will inform the SOCK S5 client the remote address. For the new active
UDP open, it will invoke either a UDP sendto() or a UDP connect() socket call For the passive UDP open, it will just
invoke a UDP connect () socket call. . Both of the UDP sendto() and UDP connect() socket call have a destination address
argument which will carry the remote address. For the UDP listen, it will invoke the UDP recv() socket call. For active
and passive UDP open, the actual "remote address:" will be sent to the SOCK S5 server via the second step SOCKS5 UDP
bind command. For UDP listen, the "remote address" will still be set to 0.0.0.0. When the server receive this second step

SOCKS5 UDP bind command, it will complete the binding and let UDP traffic to go through.

As discussed previoudly, the two steps SOCK S5 UDP binding process need to make use of the SOCK S5 protocol exchange
between the SOCK S5 client and SOCK S5 servers to carry out the SOCK S5 UDP binding and to indicate the type of the
UDP binding. The two steps SOCK S5 UDP binding aso need to be tied closely with the socket calls from the
applications as mentioned above. The table below summarises how the new binding state istied to the existing socket

cdls.

43

Type of UDP Opening

half-binding

Complete binding

New active UDP open

Socket call interface- UDP bind()

SOCKS5 protocol - SOCKS5
client sends "loca UDP address"
& "remote address’ 0.0.0.0 to

SOCK S5 server

Socket call interface - UDP

sendto() or UDP connect()

SOCKS5 protocol - SOCKS5
client sends "local UDP address’
and specific "remote address' to

SOCK S5 server.

New passive UDP open

Socket call interface- UDP bind()

SOCK S5 protocol - SOCKS5
client sends "loca UDP address"
& "remote address’ 0.0.0.0 to

SOCK S5 server

Socket call interface - UDP

connect()

SOCKS5 protocol - SOCKS5
client sends "local address’ and
specific "remote address’ to

SOCK S5 server.

New UDP listen

Socket call interface- UDP bind()

SOCK S5 protocol - SOCKS5
client sends "loca UDP address"
& "remote address’ 0.0.0.0 to

SOCK S5 server

Socket call interface - UDP recv()

SOCK S5 protocol- SOCK S5
client sends "local address" and
"remote address’ 0.0.0.0 to

SOCK S5 server.

Table 1: Mapping of socket call against the proposed two steps SOCK SS5UDP Binding

3.5 UDP & Multicast Extension vs Revised SOCKS5 For UDP Support

As mentioned in section 2.4, there are two Internet drafts which propose ways to support SOCK S5 UDP associations.
During the initiation of this project, only the UDP & multicast extension proposal (Ref. 3) was available. It provides more
information in the enhanced UDP mode packet structure (see the diagram for the packet structure in section 2.4.1). The
second approach which is arevised version of SOCK S5 RFC1928 was proposed by the recent Internet draft (Ref. 5). The
second approach tries to adopt the existing SOCK S5 packet structure (see the diagram for the packet structurein 2.4.2).

Hence, the UDP & muilticast extension approach provides a much better foundation for future growth and enhancement.

Other than that, the UDP & muilticast extension approach makes use of a hierarchical command structure. The UDP &
multicast command are located in second level command set which have a different packet structure. This hierarchical
command structure provides extra flexibility in terms of future expansion. In future, different protocol requirement could
be implemented as a second level command set with different packet structure. However, the revised SOCK S5 approach is
still using the flat command structure of the original SOCK S5 protocol. So it does not have the additional flexibility
which could provide future enhancement on the SOCK S5 protocol. It is bound by the basic SOCK S5 packet structure. In
terms of efficiency, UDP & multicast extension approach is able to support multiple UDP binding with one SOCK S5
control while revised version of SOCK S5 (Ref. 3) could support only one UDP binding per SOCK S5 control connection.

Hence, the UDP & multicast extension will produce less overhead.

Based on the above discussion, the UDP & multicast extension approach has obvious advantage over the revised SOCK S5

approach. So the UDP & mullticast extension approach will be adopted as the basis for development in this project.

The table below summarises the difference of the revised SOCK S5 protocol & the UDP & multicast extension protocol.

45

Revised SOCK S5 Protocol (Ref. 5)

SOCK S5 Protocol with UDP & Multicast Extension (Ref.3)

One address field for either remote or local address

information

Two address fields for both remote & local address

information

One byte flag to support options negotiation

Two byte flag to support more options negotiation

No transaction identifier (TID)

Provide transaction identifier (T1D) which could support

multiple UDP association in one SOCK S5 control channel

No association identifier (AID). Need to make use of the

destination address to identify each UDP association.

Provide a unique association identifier (A1D) which identify

each UDP association.

Flat Command Structure — Both the basic SOCK S5
packet and the packet for UDP sub-command have the

same packet structure

Hierarchical Command Structure — The packet structure of the
enhanced UDP packet provides extra field for SOCK S5

protocol exchange.

Table 2: Comparisons of Revised SOCK S5 Protocol and the SOCK S5 Protocol with UDP & Multicast Extension

3.6 SOCKS5 UDP bind commands for the Two Step UDP Binding Process

In the two steps UDP Binding process, it involves two distinct steps. To identify these two steps, one simple solution isto

use two separate UDP binding commands. Inthe UDP & multicast extension for SOCK S5 protocol, there is only one

enhanced UDP bind command (with command code 0x05). This enhanced UDP bind command could be used in the first

step SOCK S5 UDP binding. An extra enhanced UDP bind command for SOCK S5 has to be created for the second step

SOCKS5 UDP binding.

46

In fact, it is not necessary to have two separate commands for each step. In each step of the two steps UDP binding
process, it requires only the local address field and the remote address field. The enhanced UDP bind command aready
has these required fields to carry the address information. The main problem is how the SOCK S5 server identifies these
two steps from the enhanced UDP bind command it receives. This could be achieved by using the TID (Transaction ID) of
the enhanced UDP mode packet. The transaction ID will be the same for the first enhanced UDP bind command and the
second enhanced UDP bind command. So when the SOCK S5 server receives a SOCK S5 UDP bind command, it will
check if it has received the TID before. If it finds the same TID in the previous SOCK S5 UDP binding, it will treat the
SOCK S5 UDP bind command received as the second step of the SOCK S5 UDP binding process. Otherwise, it will treat
the SOCK S5 UDP bind command as the first step of the two steps binding process. Hence, the existing enhanced UDP
bind command could be used in both steps of the two steps SOCK S5 UDP binding process. There is no need to add an

extra UDP bind command for the second step.

The two steps SOCK S5 UDP binding will support al three types of UDP port binding and it will be incorporated into the
SOCK S5 server. The same SOCK S5 server will still be able to support the original one step SOCK S5 UDP binding for
the active UDP opening. The SOCK S5 server is able to differentiate the enhanced UDP bind command for two steps
process and the enhanced UDP bind command for the one step process. For the first step SOCK S5 UDP binding, the
“remote address’ field of the enhanced UDP bind command will be filled with 0.0.0.0. For the second step of the
SOCKS5 UDP binding, the “remote address’ of the enhanced UDP bind command will either be filled with 0.0.0.0 or a
specific address. For the one step SOCK S5 UDP binding, the “remote address’ field will always be filled with a specific
address. So if the “remote address’ is 0.0.0.0 and the TID is new, the SOCK S5 UDP bind command represents afirst
step SOCKS5 UDP bind. If the “remote address” is a specific |P address and the TID has occurred before, the SOCK S5
UDP bind command represents a second step SOCK S5 UDP bind. If the “remote address” is a specific |P address and the
TID is new, the SOCK S5 UDP bind represents a one step SOCK S5 UDP hind. Base on these criteria, the SOCK S5 server
could determine whether a SOCK S5 UDP bind command is representing the first step SOCK S5 UDP binding, the second

step SOCK S5 UDP binding or the original one step SOCK S5 UDP binding.

47

3.7 Comparison of current SOCKS5 protocol and the proposed modification

The proposed solution overcomes the existing limitations of the SOCK S5 protocol and the issues with the current

SOCK S5 implementations in terms of the support of UDP-based protocol. Other than that, the proposed modification of

the SOCK S5 protocol provides a complete solution to handle all UDP binding viaa SOCK S5 firewall. The table below

summarises the limitations and issues and how the proposed modifications tackle those limitations and issues:

Limitation of Existing SOCK S5

protocol for UDP

I ssues with current SOCK S5

implementations

Proposed M odification of SOCK S5

protocol

The current protocol does not support
passive UDP opening. The remote
address has to be available before the

UDP binding take place.

The current NEC implementation
work around this limitation by using

the remote address of previous

SOCKS5 connection for UDP binding.

The passive UDP open isintroduced
into the protocol. A two steps UDP
binding processisintroduced in the

SOCK S5 protocol.

The current protocol does not consider
the interface requirement of UDP
socket binding process. The UDP
bind() socket does not provide the

remote address in the argument.

Since the socket call UDP bind() does
not provide the remote addressin the
attribute, the remote address of

previous SOCK S5 connection is used

instead.

The mapping from the socket call to
the SOCK S5 protocol is re-defined to
provide the remote address for

SOCK S5 protocol.

NA

The UDP port no. of the remote
addressis not checked. Access

control isonly up to the host level.

With the full remote address available
from the socket call, the UDP port no.

of the remote address will be available.

The current protocol does not support

UDRP listen.

NA

The UDP listen is supported by means

of the two steps UDP binding process.

48

Table 3: Summary of limitations, issues of existing SOCK S5 protocol and the proposed solution

4. Proposed Transport Establishnment Procedure In RTSP Protocol To
Work With SOCK S5 Protocol

Asdiscussed in last section, the socket call procedure for each type of UDP binding will consist of two socket. All UDP-
based application need to follow the same socket call procedure to properly set up the UDP transport via SOCK S5 layer.
In this section, the transport establishment procedure of RTSP protocol will be discussed to illustrate what are the
mandatory requirements for that. This same model will be applicable to al other UDP-based applications which need to
traverse through the SOCK S5-based firewall. In fact, this transport establishment procedure is similar to the normal UDP
transport establishment procedure without a firewall. The same transport establishment procedure will work for a normal
direct connectivity without a firewall. The main differenceisin passive UDP open which requires an additional step of

UDP connect() socket call after the UDP bind() socket call.

4.1 Transport Header of RTSP

RTSP establishes the transport for the multimedia stream by using the RTSP transport header in the RTSP “ Set up”
reguest and reply. Although the transport header contains source address, source port, destination address and destination
port, there is no control whether these fields are mandatory in RTSP. For example, it is stated in RTSP that the source
address of the RTSP stream server may be specified when it is different from the RTSP server. In one of the example of
the Internet draft for RTSP, the source address and the source port is not specified in the transport header. In the other
example, both the source address and the destination address are ignored in the transport header. Thisis applicable only
when the source address and the destination address of the RTSP stream is the same as those of the RTSP TCP control
connection. Hence the source address and the destination could be derived from the address of the RTSP TCP control

connection. Aswe look at the protocol interface between the RTSP client and the SOCK S5 layer, it could be seen that

49

some of these fields are essential for the operation of the SOCK S5 protocol. In order to provide sufficient information for

transport establishment with the SOCK S5 protocol, some of these fields need to be mandatory.

If the RTSP client and RTSP server could talk to each other directly, the “ destination address’ is same as the client
address of the RTSP TCP control connection. So it may be skipped in the transport header when there is no firewall in
between them. But with the SOCK S5 firewall between the RTSP server & the RTSP client, the “destination address” will
be the “external address’ of the SOCK S5-based firewall. So the external address of the SOCK S5-based firewall hasto be
communicated to the RTSP server. The RTSP server will then send the UDP stream to the “external address’ of the
SOCK S5-based firewall and the UDP stream will be subsequently relay to the RTSP client. The RTSP client should not
assume that the “destination address’ of the RTSP stream is the same as that of the RTSP TCP control connection. It
should use the IP address obtained from the getsockname() socket call as the “destination address”. 1t should not skip the
“destination address’ in the transport header unlessit could confirm that the “destination address’ of the UDP binding

and the client address of the RTSP TCP control connection are the same.

On the other hand, the RTSP server must reply with the “source address’ and the “ source port”. With the “ source

address’ and the “source port”, the RTSP client could inform the SOCK S5 server the source address of the incoming UDP
stream. The " source address’ and the “source port” is communicated to the SOCK S5 layer via the socket library call. The
SOCKSS firewall will allow only the incoming UDP stream from the specified source address. Thisinformation is

essential for the filtering of the incoming UDP packets by the SOCK S5 server.

4.2 Socket Call Procedure For UDP Stream

Although RTSP does not specify the transport establishment procedure for the UDP stream, it isimportant that the source
address and the destination address for the UDP stream are properly communicated to the SOCK S5 transport layer. The
current implementation of RTSP does not provide sufficient address information from the application layers of RTSP to

the SOCK S5 transport layer.

50

The socket call is the prime channel for the communication between the RTSP application layer and the SOCK S5
transport layer. At present, only the bind() socket call isinvoked to set up the UDP stream. The bind() socket call does
not provide the RTSP server address to the SOCK S5 transport layer. In order to provide the RTSP server address to the
SOCKS5 transport layer, the connect() socket call will be invoked once the RTSP server addressis obtained. This will

align with the proposed two step UDP binding sequence in SOCK S5 protocol.

Infact, it is agood practice to add the additional connect() socket call after the bind() socket call for RTSP applications.
The reason for thisis that the UDP port for a multimedia stream is always bind to a single UDP port and asingle RTSP

server. Soitisaone-to one UDP binding instead of the one-to-many UDP binding.

4.3 Procedure for Establishing RTSP Stream

The requirement in the transport header of RTSP and the socket call procedure described above are the essential
components for the establishment of RTSP stream via the SOCK S5-based firewall. These components need to tie tightly
with the RTSP request and reply sequence so that the proper sequence of information is exchanged between the RTSP
clients and the SOCK S5 clients in the same machine. Fig. 14 outlines the sequence of events between RTSP clients,
RTSP servers and the SOCK S5 clients. The sequence of events should be organised in this order so that the RTSP stream

could be set up properly viathe SOCK S5 firewall.

The UDP bind() socket call, the UDP connect() socket call and the UDP recv() need to be executed at the right sequence
between the RTSP request and response. The UDP bind() and the getsockname() socket call need to be executed before
the RTSP Setup Request. The UDP connect() socket call needs to be executed after receiving the RTSP Setup Reply and

before sending the RTSP Play Request. The UDP recv() socket call needs to be executed after receiving the RTSP Play

Reply.

51

RTSP
Client

SOCKS5
Client

RTSP
Server

client

senver

Set up RTSP Stream Request

(RTSP header with URL of RTSP stream, destination address,

(RTSP header with source address, source port)

destination port)

udp connect() socket ¢a
with source address &

Play RTSP Stream Request

Play RTSP Reply From RTSP Server

udp recv() socket call

Stream Server

RTSP Teardown
Reguest
4

- "l
RTSF TEAraownn

Reply
Liab 4

Figure 14: RTSP Stream Establishment Procedur e and the Socket Call Procedure

52

5. Implementation

5.1 Configuration of the Program Development Platform

As mentioned earlier, the RTSP will be used as the multimedia streaming applications to test the enhanced SOCK S5
protocol with the streaming UDP protocol support. A configuration is set up which consists of the RTSP clients, the RTSP
server, the SOCK S5 client and the SOCK S5 server. The following diagram illustrate the configuration of the program

development platform:

TCP & UDP transport are
redirected via SOCKS5 proxy
transport protocol

RTSP Client SOCKSS5 Server
(hostname: ulx-175) (hostname:ulx-173)
with SOCKSS5 client acting as a proxy firewall

as transport proxy

T
@ ‘ Ethernet

RTSP Server
(hostname: ulx-170)

53

Figure 15: Configuration of the program development platform

The RTSP client, RTSP server , SOCK S5 client and SOCK S5 server are all running in SUN Solaris 2.6 environment.
The RTSP client and SOCK S5 client are running on the same SUN Solaris machine (hostname: ulx-175). The SOCK S5
server are running in a standalone SUN Solaris machine (hostname: ulx-173) and it is acting as afirewall. All the TCP
and UDP traffic between the RTSP client and the RTSP server needs to go through the SOCK S5 server. The RTSP server

is running on another standalone SUN Solaris machine (hosthame: ulx-170).

The TCP control connection between the RTSP client and the RTSP server makes use of the TCP port 554 for
communication. The RTSP server applications will listen to request on TCP port 554. Asthe TCP port 554 isa
privileged port, it is accessible only by root users. In order to facilitate program development without using the root

access, the TCP port for RTSP control connection is changed to TCP port 1554 which is accessible by non-root users.

The TCP control connection between the SOCK S5 client and the SOCK S5 server makes use of the TCP port 1080 for
communication. The SOCK S5 server will listen to request on TCP port 1080. Asthe TCP port 1080 is a non-privileged

port, it is accessible by non-root users. So there is no need to change the TCP port for SOCK S5 server.

5.2 Source Code For Program Development

The source code for SOCK S5 program development is obtained from NEC laboratories. NEC has developed commercial
products for SOCK$4 and SOCK S5 protocol. They have released part of the SOCK S5 source code for third party program
development. Version 1.4 of the SOCKS5 source code was obtained from NEC to develop the enhanced SOCK S5 protocol

for UDP support.

The source code consists of SOCK S5 server and some popular SOCK S5 clients such as telnet and ftp. The source code is
based on the SOCK S5 standard RFC 1928 (Ref. 2) with some additional enhancement for UDP as discussed in another
internet draft (Ref. 5). The source code for system socket call such as bind() and connect() are in the SOCK S5 clients and
server source code library. In order to make use of the SOCK S5 proxy for other applications, these source code for the
system socket call need to be compiled with the source code of the applications so that the socket calls made by the

applications will be redirected to the SOCK S5 client.

The source code for RTSP program development is obtained from Progressive Network. Progressive Network is the
developer of the commercial Real Audio Player & Real Audio Server. They are the one of the key playersin the
development of the RTSP standard. They have developed RTSP reference implementation. The source code was available
for interoperability testing by other parties. Version 0.4 Alpha of source code for RTSP reference implementation was

obtained from Progressive Network to develop the necessary interface with the SOCK S5 clients.

The source code for SOCK S5 and RTSP are all in ANSI C language. GCC compiler is used to compile the source code to

do the program development.

5.3 Compilation & Testing of the Original Source Program

In order to make sure that the source code support the basic function for the program devel opment, the source code need to
be compiled to test the basic functionality. These tests will ensure that the original program is running properly so that the

enhancement to the origina program could be made in a proper foundation.

5.3.1 Testing of the original source code for SOCK S5 Client & SOCK S5 Server

The source code for SOCK S5 server and the SOCK S5 telnet client were compiled to test the interoperability. The

SOCK S5 server was running on the host machine ulx-173. The SOCK S5 telnet client was running on the host machine

55

ulx-175 which is the same host machine which was going to be used for the RTSP client. The host machine ulx-170 is
used as atelnet server. Telnet sessions were initiated from ulx-175 using the SOCK S5 telnet client and the TCP session
was redirected to the SOCK S5 server. But it was found that it does not get redirected to the SOCK S5 server and relay to
the telnet server. Instead, the TCP session is connected directly from the telnet server. This was checked by using the
UNIX “netstat —a“ command to show al the TCP & UDP binding of the telnet server. After checking the codes of the
SOCK S5 socket library, it was found that one of the function call (IsHowToConnect()) for checking how to connect to the
destination server in the SOCK S5 socket library is causing the problem. The function call will check the destination host
address of the TCP connection. If the destination address is on the same network, it will not redirect to the SOCK S5
server and it will connect directly to the destination address. As the telnet client and the telnet server are on the same IP
network of the computer department, the SOCK S5 socket library will not redirect it to the SOCK S5 server. In order to
allow the testing of the SOCK S5 program, some of the codes for the checking how to connect to the destination addressin

that function call is commented out so that it will aways redirect to the SOCK S5 server.

After commenting out the source code mentioned above, the telnet client was recompiled again. It was then tested again
by initiating atelnet session to the telnet server. From the telnet server, it was confirmed that the telnet session is coming
from the SOCK S5 server. From the SOCK S5 server, it could be seen that a SOCK S5 connection to TCP port 1080 is

initiated from the telnet client. So the SOCK S5 redirection works properly after the change.

5.3.2 Testing of the original source code for RTSP Client & RTSP Server

The source code for RTSP Client and RTSP Server were compiled to test the interoperability. The RTSP server was
running on the host machine ulx-170. The RTSP client was running on the host machine ulx-175. The RTSP server
program (rtsp-server) was running in the foreground and the TCP port for the control connection is configured to 1554.
The RTSP client program (rtsp-player) was executed. A RTSP connection was then initiated from the RTSP client to the
RTSP server by specifying the RTSP server address and the TCP port 1554(open RTSP://ulx-170:1554). It could be seen

from the messages on both the RTSP client and the RTSP server that the TCP control connection is established. To

56

further confirm that, the “netstat —a“ command was executed to verify the TCP control connection from the RTSP client

to the RTSP server.

After the successful establishment of the TCP control connection, the delivery of UDP stream from the RTSP server to the
RTSP client was tested. The RTSP command “get rtsp.wav” was executed in the RTSP client. This command is
equivalent to the “play” request in the RTSP protocol. The audio stream “rtsp.wav” will be delivered by UDP from the
RTSP server to the RTSP client and it will be played by the RTSP client. The messages from the RTSP client and RTSP
server indicated that the stream file was successfully delivered and played. To further confirm that, the * netstat —a’
command was executed to verify the UDP stream from the RTSP client to the RTSP server. Asthe UDP port binding will
only exist during the delivery of the UDP stream, the “netstat —a” command need to be executed during the delivery time.
The messages from the RTSP server will indicate the UDP port on the RTSP client to which it will send the UDP stream.

So this UDP port number could be used to match the output from the “netstat —a” command in the RTSP client.

5.4 RTSP Client Program

5.4.1 Organisation of the original program

The transport establishment procedure of the RTSP client is performed in a Send_setup_request() function call &
Handle_setup_reply() function call in the RTSP player program. The Send_setup_request() function performs the RTSP
“Set up” request and sends the RTSP “Set up “ request packet to the RTSP server. The Handle_setup_reply() function

receives the RTSP “ Set up” reply from the RTSP server and completes the RTSP Set up process.

The Send_setup_request() perform the following functions:
1. Conduct UDP binding for the UDP stream
2. Get the UDP port of the binding

3. Send the UDP port of the binding to the RTSP server

57

The Handle_setup_reply() function of the original program perform the following functions:
1. Receivethe RTSP“Set up” reply from the RTSP server

2. Check if the status code of the reply is an error condition.

3. Check if the transport settingsis present in the reply.

4. Retrieve the UDP port number of the RTSP server from the reply.

5.4.2 Function of therevised program for the RTSP transport establishment procedure
Send_setup_request()

1. Thefirst step of the passive UDP port opening is performed by using the UDP bind() socket call to do a half-binding.
2. Theexterna address and the external port number of the SOCK S5 server is obtained.

3. Thisfunction issues a RTSP “Set up” request to the RTSP server with the external address and external port binding.

Handle_setup_reply()
1. Thisfunction handle the setup reply message from the RTSP server.
2. Theremote addressis obtained from the reply of the RTSP server.

3. A UDP connect() socket call is performed to communicate the remote address to the SOCK S5 interface.

5.4.3 Addition / Modification to the original RTSP client program
Send_setup_request()
The following function calls highlight the location that is related to the modification requirement. The bolded function is

the location where changes / addition is required.

/* Send RTSP Set up Request to RTSP Server */

Send_setup_request() player.c

58

/* Assign udp file handle for the UDP data stream */

Assign_udpfd() player.c

/* Perform UDP bind() socket call for the UDP stream*/

Udp_open() player.c

/* Perform UDP recv() socket call to receive UDP stream data */

Udp_data_recv() player.c

/* Perform UDP getsockname() socket call to get the IP address and the port no. of the UDP binding */

Udp_getport() player.c

/* Send the RTSP Set up Request packet to RTSP Server */

bwrite() player.C

The sequence of events of the original program has already fulfilled the requirement for the half-binding of the UDP port.
UDP bind() socket call is performed. It isthen followed by UDP getsockname(). However, only the port no. of the UDP
binding is put in the RTSP Set up Request packet and is delivered to the RTSP server. Hence, the IP address of the UDP
binding has to be retrieved by the UDP getsockname() call aswell. Then it hasto be delivered in the RTSP Set up Request

packet.

The other difference from the requirement is the recv() function. The recv() socket call should be called after the UDP
connect() socket call. 1f the UDP recv() socket call is called right after the UDP bind() socket call, it will be treated as a

UDP listen in the proposed UDP port opening model. But since the implementation is focus only on the passive UDP open

59

scenario, this could be skipped in thisimplementation. In an actual full implementation of the proposed model, the UDP

recv() socket call should be performed after the UDP connect() call in the Handle_setup_reply() function.

Minor coding change is needed in the Send_setup_request() function. The only coding change required is to retrieve the

I P address of the UDP binding and then put it in the RTSP Setup Request. In addition to that, the wrapper socket calls
from SOCK S5 has to be used instead of the system socket call. The wrapper socket call will redirect the bind(), recv() and
getsockname() socket call to the wrapper program by SOCKS5. In order to do that, the code needed to be recompiled with
the socket call library from SOCKS5. Thisis done by modifying the “Makefile” of the RTSP clientsand recompiling the
codes. After that, check point was established in the wrapper socket program to make sure that the wrapper socket call

from SOCK S5 was used instead of the system socket call.

Handle_setup_reply()

/* Handle the RTSP Set up Reply from the RTSP Server */

Handle_setup_reply() player.c

/* Addition code for retrieving the RTSP server address and RTSP server port from the RTSP Set up Reply */

New Codes

/* Addition code for performing UDP connect() to the RTSP server */

connect() player.c

The original code for the Handle_setup_reply() function call does not retrieve the RTSP server address. In fact, it does not
check whether the transport header of the RTSP Reply consists of the server address. It just checks the server port and

recordsit. The server addressis not arequired field in the transport header.

60

In the proposed transport establishment scheme, the server address and the server port is required in the transport header.
New codesis put in the Handle_setup_reply() function to retrieve the RTSP server address and RTSP server port from the

transport header.

The RTSP server address and server port will then be used as the argument for the UDP connect() socket call which is
added to the Handle_setup_reply() function. The connect() socket will complete the UDP binding by providing the remote

address and the remote port.

As mentioned previoudy in the Send_setup_request() function call, the UDP recv() socket call should be performed after
the UDP connect() socket call. This could be skipped in this implementation as the prime focus of thisimplementation is
on the passive UDP opening. In afull scale development of the proposed model for UDP port opening, this should be

done properly to prevent wrong interpretation by the SOCK S5 client.

5.5 SOCKSS5 Client Program

5.5.1 Organisation of the original program

The wrapper socket calls UDP bind() and UDP connect() is the key program that need to be used for the proposed model

for passive UDP port opening. The RTSP client will call up these two socket call programs to do the UDP port binding.

The UDP bind() perform the following functions:

1. Establish SOCKS5 TCP control channel to the SOCK S5 server
2. Perform authentication with the SOCK S5 server

3. Send the UDP assocation request to the SOCK S5

4. Receive the UDP association reply from the SOCK S5 server.

61

5. Exchange UDP sub-command with the SOCK S5 server and use the SOCK S5 server address as the remote address.

6. Retrieve the UDP bind port from the SOCK S5 server’s reply to the UDP sub-command.

The UDP connect() perform the following functions:

1. Check if the SOCKS5 TCP control connection exist.

2. If SOCKS5 TCP connection does not exist, establish SOCKS5 TCP control channel to the SOCK S5 server

3. Check if thereis a UDP connection to the destination address

4. If thereis no previous UDP connection to the same destination address, Send the UDP association request to the

SOCK S5 server.

5.5.2 Function of therevised program for the SOCK S5 Client Program

UDP bind() socket call:

1. Establish enhanced UDP maode by sending the enhanced UDP command (0x04) via SOCK S5 standard mode.

2. Bind area UDP port and put thislocal UDP address & UDP port in the local address field of the enhanced UDP bind
request. Send this enhanced UDP binding request to the SOCK S5 Server with the enhanced UDP mode packet
structure. Use 0.0.0.0 as remote address to indicate half-binding.

3. Receive enhanced UDP binding reply from SOCK S5 Server and retrieve the external UDP address & UDP port bind
at the SOCK S5 server. This external UDP address & port will be located at the remote address field of the enhanced
UDP binding reply.

4, Set the status to be “half bind”.

UDP connect() socket call:

1. Check if the statusis “half bind”.

62

2. If thestatusis “half bind”, send another enhanced UDP binding request to the SOCK S5 Server with the enhanced
UDP mode packet structure. Use the destination address argument in the connect() call as the remote address in the
enhanced UDP binding request.

3. Set the status to be “connection established”.

5.5.3 Addition / Modification to the original SOCK S5 Client Program

IsUdpbind()

/* Thisisthe wrapper program for UDP bind(). It calls up proxy_bind() to perform the UDP binding. */

[sUdpbind() wrap_udp.c

/* Thisfunction call IsLibProtoExchg() and Is LibExchgUdpCmd to set up the SOCK S5 UDP half-binding. */

proxy_bind() wrap_udp.c

/* Half-binding state is established by setting the remote address to 0.0.0.0. */

New Codes

/* This function perform the establishment of SOCK S5 connection to the SOCK S server. It sends the
enhanced UDP command to switch to the enhanced UDP mode.*/

IsLibProtoExchg() libproto.c

/* This new function perform the exchange of enhanced UDP command*/

LsLibExchgeUdpCmd() libproto.c

63

/* This new function send the SOCK S5 enhanced UDP binding request and read the enhanced
UDP binding reply from the SOCK S5 server. */

L sEUDPSendRequest() protocol.c

/* This new function packed information into the enhanced UDP maode packet format
and send it to the SOCK S5 Server */

L sEUDPSendPr oto() protocol.c

The structure of the function call within IsUdpbind() socket call is preserved. Instead of issuing the UDP association
reguest in IsLibProtoExchg() function, the enhanced UDP command (0x04) is used to switch to the enhanced UDP mode.
A new function LsLibExchgeUdpCmd() which resembles the original LsLibExchgUdpCmd() function isintroduced. The

original function performs the UDP sub-command while the new functin performs the enhanced UDP command.

The new function LsEUDPSendRequest() resembles the original LsEUDPSendRequest() function and it sends the
enhanced UDP bhinding request and receives the enhanced UDP Reply. The new function LsEUDPSendProto() packed the
address information into the enhanced UDP mode packet format. Some of the additional fields such as the transaction
identifier (TID) and the association identifier (AID) in the enhanced UDP mode packet structure is not essential to the

operation of the UDP port binding process. These fields are left empty at the moment to simplify the implementation.

At the end of the IsUdpBind() call, the status of the binding will be set to “CON_HALFBIND” indicating a“half bind”

status.

IsUdpconnect()

/* Thisisthe wrapper program for UDP connect() */

IsUdpconncect() wrap_udp.c

/* Send the remote address to the SOCK S5 server to complete the UDP binding from the half-binding state. */

New Codes

/*Make use of the function calls used by IsUdpbind() to send the remote address via enhanced UDP bind request
to the SOCK S5 server */

LsLibExchgEUdpCmd() libproto.c

LsEUDPSendRequest() protocol.c

LsEUDPSendProto() protocol.c

The IsUdpConnect() function call makes use of the same set of functions used by IsUdpbind() to complete the UDP binding
process. It will check the status of the connection. If it is*“half bind”, it will complete the binding by sending another
enhanced UDP binding request to the SOCK S5 server. It will include the remote address in the enhanced UDP binding
request. After completing the binding, the status will be set to “CON_ESTABLISHED” indicating that the binding is

complete. Other codes of the IsUdpConnect() function call is preserved for compatibility with existing functions.

5.6 SOCKSS5 Server Program

5.6.1 Organisation of the original program

The UdpSetup() is the main function call performing the UDP association in the original program. Thisisthe key

program for handling UDP association request and UDP binding sub-command. For the proposed model, the enhanced

65

UDP binding request will be handled similarly by this function. The original UdpSetup() function call performs the

following functions:

1

2.

3.

Authorisation of the SOCK S5 request.

Receive SOCK S5 UDP association request.

Send reply for SOCK S5 UDP association.

Receive SOCK S5 UDP bhinding sub-command.

Send reply for SOCK S5 UDP binding sub-command.

Perform real UDP binding for the UDP port for relaying UDP traffic.

Perform real UDP binding for the external address of the SOCK S5 server.

5.6.2 Function of therevised program for the SOCK S5 Server Program

UdpSetup():

Switch to enhanced UDP mode.
Handle SOCK S5 enhanced UDP binding request.
Perform half-binding upon receiving the first enhanced UDP binding request.

Complete the binding upon receiving the second enhanced upd binding request.

5.6.3 Addition / Modification to the original SOCK S5 Server Program

HandleS5Connection():

/* This function receive the standard SOCK S5 command. The enhanced UDP mode command (0x04) is added to support

the enhanced UDP mode The UdpSetup() function will be called once the enhanced UDP mode command is received */

HandleS5Connection() proxy.c

66

/* This function will bind Socks5 Server local UDP address by using MakeOutSocket() to associate file handle u-
relay for relaying UDP traffic to the SOCK S5 client. It will send thislocal UDP address (& pri->bndAddr) to Socksb

client.

UdpSetup() udp.c

/* This function will make an outgoing UDP port to the SOCKS5 client */

Make out_socket() udp_util.c

/* This function will receive SOCK S5 enhanced UDP request & perform UDP datarelay.*/

UdpRecvMsg() udp.c

/* This function will handle SOCK S5 Enhanced UDP request (UDP bind, UDP release)

EUDPHandleCommand() udp.c

/* This function will read the SOCK S5 packet in enhanced UDP mode. Details will be
extracted from the enhanced UDP packet. */

LsEUDPReadRequest()

/* This function will handle the SOCK S5 enhanced UDP binding request. 1t will
perform both half-binding or complete binding based on the current binding status. */

EUdpBindhalf() udp.c

5.7 RTSP Server Program

5.7.1 Original RTSP Server Program

67

The Handle_setup_request(), Handle_setup_reply() and Handle_play_request() perform the function of handling the RTSP

Request for transport establishment for the UDP stream.

The Handle_setup_request() perform the following functions:
1. Check the transport header and retrieve the destination port from the RTSP Setup request.

2. Check the stream setting and stream format for the media from the RTSP Setup request.

The send_setup_reply() performs the following functions:
1. Sendthe stream ID to the RTSP client viathe RTSP Setup Reply.

2. Sendthe RTSP server port number using the RTSP client port number via the RTSP Setup Reply.

The Handle_play request() performs the following functions:

1. Check the url of the multimedia object from theRTSP play request.
2. Check the play settings from the RTSP play request.
3. Check if the stream is already available.

4. Set up stream by establishing a new UDP port.

5.7.2 Function of therevised program for the RTSP Server Program

Handle_setup_request():

1. Check the transport header from the RTSP Setup request.
2. Retrieve the destination address and destination port from the RTSP Setup request.
3. Establish UDP port binding on the RTSP server for the UDP stream.

4. Check the stream setting and stream format for the media from the RTSP Setup request

68

Send_setup_reply():

1. Sendthe stream ID to the RTSP client viathe RTSP Setup Reply.

2. Sendthe RTSP server address and server port number via the RTSP Setup Reply

5.7.3 Addition / Modification to the original RTSP Server Program

Handle_setup_request():
Handle_setup_request() server.c
/* Thiswill retrieve the RTSP client address from the transport header and store it in the state variable */

New Codes

/* Thiswill establish a UDP port binding for the UDP stream. */

New Codes

Send_setup_reply():

Send_setup_reply() server.c

/*This will send the RTSP server address and the RTSP server port in the RTSP Setup reply. */

New Codes

Handle play request():

Handle_play request() server.c

69

Start_stream() streamer.c
/*Thiswill use the UDP port binding established in Handle_setup_request() function to start the media stream */

New Codes

6. Testing on the Prototype

6.1 Test Performed on the Prototype

The test was based on the sequence of eventsin Fig.12. The RTSP TCP control connection would be initiated from the
RTSP client to the RTSP server viathe SOCK S5 server. A “get rtsp.wav” command would be issued from the command
line interface to the client and it would trigger the RTSP “setup” request and the RTSP “play” request”. In the RTSP
“setup” request, the RTSP client would set up the UDP transport for the stream file “rtsp.wav”. The two steps SOCK S5
UDP binding would be performed. Inthe RTSP “play” request, the RTSP client would initiate a*“play” request and the
audio stream “rtsp.wav” would be delivered from the RTSP server to the RTSP client. After that, the RTSP client

application would be closed.

6.2 Screen Capture During the Test

The following key steps will be identified in the screen capture:
Establishment of TCP connection for RTSP control connection via SOCK S5 server.
UDP wrapper bind() socket call.
First step SOCK S5 UDP binding.
UDP wrapper getsockname() socket call.
Send RTSP “ Setup” Request to RTSP server.
Send RTSP “ Setup” Reply to RTSP client.

UDP wrapper connect() socket call.

70

Second step SOCK S5 UDP binding.

UDP wrapper recvfrom() socket call.

6.2.1 RTSP Server

[ulx-170:c5717021] /home/ nmsc/yr95/it/c5717021/s5/rtsp_server:>rtsp-server-1|oop
(start RTSP server program

Fri May 21 02:52:01 HKT 1999

Control channel port set to 1554.

BasePath set to "."

Li sten on port 1554.

TCP control channel established.

(Establish TCP control connection for RTSP client)
HELLO request received.

HELLO r esponse sent.

HELLO sent.

HELLO reply received.

DESCRI BE request received.

Descri be response nessage:

RTSP/ 0.6 200 2 K

Date: 20 May 1999 18:52:57 GVI

Content-type: application/sdp

Content - Lengt h: 231

v=0
0=- 2890844256 2890842807 IN I P4 158.132.8.170
s=RTSP Sessi on

i =An Exampl e of RTSP Sessi on Usage

71

u=rtsp://ulx-170/rtsp. wav
t=0 0

mraudi o 0 RTP/ AVP 101
a=MaxBi t Rat e: 176400
a=MaxPkt Si ze: 1102

a=TypeSpeci fi cDat a: " AAEAAQAAVI | ACAAB"

DESCRI BE response sent.

SETUP request received.

(Receive “Setup” request fromRTSP client)

server_name is ulx-170

rtsp_client : 158.132.8.173

(RTSP client address is the SOCKS5 server address for ulx-173)

Set up response nessage:

Session: 1

Content-Length: O

Transport: rtp/udp; source=158. 132. 8. 170; port =34309; server _port =36064;
(Send RTSP “setup” response with source address 158.132.8.170 and source port

36064)

SETUP response sent.

PLAY request received.

PLAY response sent.

(Receive the “play rtsp.wav” conmand from RTSP client and play via the established
UDP stream

TEARDOMN request received.

72

TEARDOM r esponse sent.

(RTSP client close)

6.2.2 SOCKS5 Server

[ulx-173:¢5717021] /home/ msc/yr95/it/c5717021/s5/ socks5-vl. Or4/ server: >source ~/

s5/ set Ser ver

[ulx-173:c5717021] /home/ nmsc/yr95/it/c5717021/s5/ socks5-v1l. Or4/server: >socks5 -s
-d —f

(start the SOCKS5 server)

02007: Socks5 starting at Fri My 21 02:52:40 1999 in normal node

02007: Config: Reading config file: /home/nmsc/yr95/it/c5717021/ sock5/ socks5. conf
02007: Interface Query: if0O addr/mask is 7f000001:ff 000000

02007: Interface Query: ifO is 100(1) with 1 IPs

02007: Interface Query: ifl addr/mask is 9e8408ad:fffffe00

02007: Interface Query: ifl is hme0O(1l) with 1 IPs

02007: Config: Config file read

02007: Socks5 Logging (re)started at Fri May 21 02:52:40 1999

02007: Unresol vabl e servi ce nane: socks

02007: Socks5 attenmpting to run on port: 1080

02007: Accept: VWaiting on accept or a signa

02008: Child: Starting

02008: [sChecklintfc

02008: Route: dst on the sane subnet

02008: Checki ng Aut henti cation

02008: Auth: No I|ine matched

02008: Socks5: Told client to do authentication nmethod #0

02008: Socks5: Read initial protoco

73

02008:

02008:

Socks5: Read address part of protocol

Proxy: vers:5 cnmmd: 1 addr: 158.132.8. 170 port: 1554 user:

(Recei ve SOCKS5 TCP Bi nd Command and establish TCP proxy for the RTSP TCP control

connecti on)

02008:

02008:

02007:

02007:

02008:

02008:

02008:

02008:

02008:

02008:

02008:

02008:

02008:

02008:

02008:

02008:

02008:

02008:

02008:

02008:

02008:

ser

02008:

02008:

Resol ve Nanes: Starting

Resol ve Nanes: Looking up service nane

Parent: 1 child

Accept: WAiting on accept or a signa

Resol ve Nanes: Looki ng up next proxy

Proxy: dst on the sanme subnet

Resol ve Nanes: No Next Proxy

TCP Connection Request: Connect (ulx-175:33070 to ulx-170:1554) for user
Checki ng Aut hori zati on

Check: Checking commands: Anything is ok

Check: Checking auths: Anything is ok

Check: Checking port range (0 <= 33070 <= 65535)?
Check: Checking port range (0 <= 1554 <= 65535)~?
Check: Checking usernane, is in -

Perm Line 2:matched

| sChecklntfc

Route: dst on the sane subnet

| sSendResponse: reply is (158.132.8.173:33069)

| sSendResponse: response sent

TCP out interface 158.132.8.173: 33069

TCP Connection Established: Connect (ulx-175:33070 to ulx-170:1554) for u

Fl ow Setup: Allocated Buffer

Fl ow Recv: Reading fromclient socket

74

02008:

02008:

02008:

02008:

02008:

02008:

02008:

02008:

02008:

02008:

02008:

02008:

02008:

02008:

02008:

02008:

02008:

02008:

02008:

02009:

02009:

02009:

02009:

02009:

02009:

02009:

02009:

02009:

Fl ow Recv: Read 70 bytes fromclient socket
Fl ow Send: Witing 70 bytes to server socket
Fl ow Send: Wote 70 bytes to server

Fl ow Recv: Reading from server socket

Fl ow Recv: Read 116 bytes from server socket
Fl ow Send: Witing 116 bytes to client socket
Fl ow Send: Wote 116 bytes to client

Fl ow Recv: Reading fromclient socket

Fl ow Recv: Read 50 bytes fromclient socket
Fl ow Send: Witing 50 bytes to server socket
Fl ow Send: Wote 50 bytes to server

Fl ow Recv: Reading fromclient socket

Fl ow Recv: Read 95 bytes fromclient socket
Fl ow Send: Witing 95 bytes to server socket
Fl ow Send: Wote 95 bytes to server

Fl ow Recv: Reading from server socket

Fl ow Recv: Read 333 bytes from server socket
Fl ow Send: Witing 333 bytes to client socket
Fl ow Send: Wote 333 bytes to client

Child: Starting

| sChecklntfc

Route: dst on the sane subnet

Checki ng Aut hentication

Auth: No |ine matched

Socks5: Told client to do authentication nmethod #0
Socks5: Read initial protocol

Socks5: Read address part of protocol

Proxy: vers:5 cmmd: 4 addr: 158.132.8.175 port:33072 user:

75

(Recei ve enhanced UDP node command “0x04” from SOCKS5 client and switch to enhanced

UDP node)

02009:

02009:

02009:

02009:

02009:

02009:

02009:

02009:

02009:

02009:

02009:

02009:

02009:

02009:

02009:

02009:

02009:

02009:

02009:

02009:

02009:

02009:

02009:

02009:

02009:

02009:

UDP Set up

UDP Proxy Request: (ulx-175:33071) for user

Checki ng Aut hori zati on

Check: Checking commands: Anything is ok

Check: Checking auths: Anything is ok

Check: Checking port range (0 <= 33072 <= 65535)?

Check: Checking port range (0 <= 33072 <= 65535)?

Check: Checking usernane, is in -

Perm Line 2: matched

Make Qut Socket UDP bind successful for address 158.132.8.173:0: Error O
| sSendResponse: reply is (158.132.8.173:34305)

| sSendResponse: response sent

UDP Proxy Established: (ulx-175:33072) for user

UDP Setup 1

UDP Recei ve: Sel ecting on outer sockets...

UDP Recei ve: Sel ecting on inner socket..

UDP Recei ve: Sel ecting...

select results : 1

UDP Recv Msg

S51 CCheck: Checki ng socket status

S51 CCheck: ok

EUDPHandl eConmand request &pri->bndAddr (158.132.8.173: 34305)
EUDPHandl eConmand request &pri->srcAddr (158.132.8.175:33072)
Socks5: Read initial protocol

| ength of |ocal address 6

I ength of renote address 6

76

02009:

02009:

02009:

02009:

02009:

(First step SOCKS5 UDP bi nd: Recei ve SOCKS5 enhanced UDP bind command with renote

Socks5: Read address part of protocol

Socks5: Read address part of protocol 1.5

Socks5: Read address part of protocol 1.6

| ocal address is 158.132.8.175: 38054

renpte address is 0.0.0.0:0

address 0.0.0.0:0)

02009:
02009:
02009:
(First
SOCKS5
02009:
02009:
02007:
02007:
02009:
02009:
02009:
02009:
02009:
02009:
02009:
02009:
02009:

02009:

02009:

Socks5: Read address part of protocol 2

EUDPHandl eCommand request &pri->ret Addr

EUDP Conmmand: Read command (5) request

(0.0.0.0:0)

step SOCKS5 UDP bi nd: Receive SOCKS5 enhanced UDP bi nd command “0x05” from

client)

UDP Command: Doi ng BI ND conmand
Resol ve Nanes: Starting

Parent: 2 children

Accept: WAiting on accept or a signa
Resol ve Nanes: Looking up service nane
Resol ve Nanes: Looki ng up next proxy
Resol ve Nanes: No Next Proxy

| sChecklntfc

Route: dst on the sane subnet

Make Qut Socket UDP bi nd successful for

Make Qut Socket UDP connect for address 158.132.8.173:34309: Error

UDP Qut interface: 158.132.8.173:34309

EUDPHandl eCommand request &pri->bndAddr
| sEUDPSendResponse: |ocal is (158.132.8.173:34305)

| sEUDPSendResponse: renmpote is (158.132.8.173:34309)

(158.132. 8. 173: 34305)

address 158.132.8.173:0: Error

0

0

77

(First step SOCKS5 UDP bind: Send SOCKS5 enhanded UDP bind reply with the externa

address 158.132. 8. 173: 34309)

02009:

02009:

02009:

02009:

02009:

02009:

02009:

02009:

02009:

02009:

02009:

02008:

02008:

02008:

02008:

02008:

02008:

02008:

02008:

02009:

02009:

02009:

02009:

02009:

02009:

02009:

version is 5

| SEUDPSendPr ot o

| SEUDPSendPr ot o

| SEUDPSendPr ot o

| SEUDPSendProto size of local host: 4

| SEUDPSendProt o size of packet: 27

| sSendResponse: response sent

| sSendResponse: response sent

UDP Recei ve: Sel ecting on outer sockets...
UDP Receive: Selecting on inner socket..

UDP Recei ve: Sel ecting...

Fl ow Recv: Reading fromclient socket

Fl ow Recv: Read 112 bytes fromclient socket
Fl ow Send: Witing 112 bytes to server socket
Fl ow Send: Wote 112 bytes to server

Fl ow Recv: Reading from server socket

Fl ow Recv: Read 152 bytes from server socket
Fl ow Send: Witing 152 bytes to client socket
Fl ow Send: Wote 152 bytes to client

select results : 1

UDP Recv Msg

S51 CCheck: Checki ng socket status

S51 CCheck: ok

EUDPHandl eConmand request &pri->bndAddr (158.132.8.173: 34305)

EUDPHandl eConmand request &pri->srcAddr (158.132.8.175: 38054)

Socks5: Read initial protocol

78

02009:

02009:

02009:

02009:

02009:

02009:

02009:

| ength of |ocal address 6

I ength of renote address 6

Socks5: Read address part of protocol

Socks5: Read address part of protocol 1.5

Socks5: Read address part of protocol 1.6

| ocal address is 158.132.8.175: 38054

renpte address is 158.132.8.170: 36064

(Second step SOCKS5 UDP bi nd: Recei ve SOCKS5 enhanced UDP bind conmand with renote

address 158.132. 8. 170: 36064)

02009: Socks5: Read address part of protocol 2

02009:

02009:

02009:

02009:

02009:

02009:

02009:

02009:

02009:

02009:

02009:

02009:

02009:

02009:

02009:

02009:

02009:

02009:

EUDPHandl eCommand request &pri->ret Addr (0.0.0.0:0)

EUDP Conmmand: Read command (5) req
UDP Command: Doi ng BI ND conmand
Resol ve Nanes: Starting

Resol ve Nanes: Looking up service

uest (158.132.8.170: 36064)

namne

Resol ve Nanes: Looki ng up next proxy

Proxy: dst on the sanme subnet

Resol ve Nanes: No Next Proxy
CheckCache: The dst (158.132.8.170
Checki ng Aut hori zati on

Check: Checki ng commands: Anyt hing
Check: Checking auths: Anything is
Check: Checking port range (0 <=
Check: Checking port range (0 <=
Check: Checking usernane, is in -
Perm Line 2:matched

| sChecklntfc

Rout e: dst on the sane subnet

:36064) is not cached

is ok
ok
38054 <= 65535) ?

36064 <= 65535)?

79

02009:

02009:

02009:

02009:

02009:

Make Qut Socket UDP connect for address 158.132.8.173:34309: Error

UDP Qut interface: 158.132.8.173:34309
EUDPHandl eConmand request &pri->bndAddr (158.132.8.173: 34305)

| sEUDPSendResponse: |ocal is (158.132.8.173:34305)

| sEUDPSendResponse: renpote is (158.132.8.173:34309)

0

(Second step SOCKS5 UDP bind: Confirmthe binding by re-sendi ng SOCKS5 enhanded UDP

bind reply with the external address 158.132.8.173: 34309)

02009:

02009:

02009:

02009:

02009:

02009:

02009:

02009:

02009:

02009:

02008:

02008:

02008:

02008:

02009:

02008:

02008:

02008:

02008:

02009:

02009:

version is 5

| SEUDPSendPr ot o

| SEUDPSendPr ot o

| SEUDPSendPr ot o

| SEUDPSendProto size of local host: 4

| SEUDPSendProt o size of packet: 27

| sSendResponse: response sent

| sSendResponse: response sent

UDP Recei ve: Sel ecting on outer sockets...
UDP Recei ve: Sel ecting on inner socket..

Fl ow Recv: Reading fromclient socket

Fl ow Recv: Read 54 bytes fromclient socket
Fl ow Send: Witing 54 bytes to server socket
Fl ow Send: Wote 54 bytes to server

UDP Recei ve: Sel ecting...

Fl ow Recv: Reading from server socket

Fl ow Recv: Read 50 bytes from server socket
Fl ow Send: Witing 50 bytes to client socket
Fl ow Send: Wote 50 bytes to client

select results : 1

UDP Recv Msg

80

02009: UDP Recv before recvfrom

02009: UDP Recv recvfrom

02009: UDP Receive: received a nmessage from 158. 132. 8. 170: 36064
(Receive the UDP data packet from RTSP server)

02009: [sChecklintfc

02009: Route: dst on the sane subnet

02009: UDP Server Receive: Received valid nessage of length 1114
02009: UDP Recv end

02009: UDP Send: Sending to 158.132.8.175: 38054

(Rel ay the UDP data packet to the SOCKS5 client)

02009: UDP Send: Sending a nessage of length 1124

02009: UDP Send: dient Recveived Message from 158. 132. 8. 170: 36064

6.2.3 RTSP Client
[ulx-175:¢5717021] /home/ nmsc/yr95/it/c5717021/s5/rtsp/ pl ayer: >rtsp-pl ayer-test

(start the RTSP client program)

Fri May 21 02:52:51 HKT 1999

handl e_comand: o rtsp://ulx-170: 1554

(Set up RTSP TCP connectin to RTSP server ulx-170)

| sGet CachedHost nanme: Not a fake hostnanme: 158.132.8. 170l sLi bProt oExchg: Connecti
ng to socks server 158.132.8.173:1080test |ibproto Exchg dest : 158.132.8.170: 15
54

enter command ("?' or 'h' for help):

HELLO

get rtsp.wav

(Send RTSP “setup” request and “play” request to the RTSP server)

81

handl e_comand: get rtsp.wav

connection found | sGet CachedHost nane: Not a fake hostnane: 158.132.8.170l sLibPro

t oExchg: Connecting to socks server 158.132.8.173:1080test |ibproto Exchg dest
158. 132. 8. 175: 33072

test proxy_bind na: 0.0.0.0:0

test proxy_bind dest: 158.132.8.175: 38054

(Run wrapper programfor UDP bind() call, send First step SOCKS5 UDP bi nd conmand)

udp open testing 7 testing assign_udpfd: 7

connection found | sGet CachedHost nanme: Not a fake hostnane: 158.132.8.170 proxyca

chefound test |sUdpGet Socknane: 158.132.8.173:34309

testing udp_getport 34309

(Run getsocknane() call and retrieve the port nunber 34309 of the external address

of the SOCKS5 UDP bi ndi ng)

connection found | sGet CachedHost nanme: Not a fake hostnane: 158.132.8.170 proxyca

chefound test |sUdpGet Socknanme: 158.132.8.173: 34309

udp_get socknane() 158.132.8.173

(Run getsocknane() call and retrieve the |IP address 158.132.8.173 of the externa

address of the SOCKS5 UDP bi ndi ng)

send_set up request

Send setup nessage:

SETUP rtsp://ulx-170/rtsp.wav RTSP/ 0.6 3

Stream 1 D: 0

Transport: rtp/udp; destination=158.132. 8. 173; port=34309

(RTSP client send RTSP “setup” request with destination address and destination

port to the RTSP server)

82

strlen of b: 112 New session: 0O

RTSP Stream server
RTSP Stream server

(RTSP client

port:

addr ess:

158.132. 8. 170

36064

recei ve RTSP “set up”

port fromthe RTSP server)

UDP connect ()

(RTSP client cal
address 158.132.8.170: 36064 to the SOCKS5 | ayer)

connection found | sGet CachedHost nanme: Not a fake hostnane: 158.132.8.170 proxyca

chef ound PLAY started.

testi

testi

testi

testi

testi

testi

testi

testi

testi

testi

testi

(RTSP client

ng

ng

ng

ng

ng

ng

ng

ng

ng

ng

ng

| ayer)

UdpRecvfrom t est
UdpRecvfrom t est
UdpRecvfrom t est
UdpRecvfrom t est
UdpRecvfrom t est
UdpRecvfrom t est
UdpRecvfrom t est
UdpRecvfrom t est
UdpRecvfrom t est
UdpRecvfrom t est

UdpRecvfrom t est

t he wrapper

ng

ng

ng

ng

ng

ng

ng

ng

ng

ng

rtp_ssrc=0
rtp_ssrc=0
rtp_ssrc=0
rtp_ssrc=0
rtp_ssrc=0
rtp_ssrc=0
rtp_ssrc=0
rtp_ssrc=0
rtp_ssrc=0
rtp_ssrc=0

rtp_ssrc=0

run UDP recvfron() w apper

testi

testi

testi

testi

testi

testi

testi

testi

testi

testi

testi

programto get the UDP data

UDP connect () socket cal

ng

ng

ng

ng

ng

ng

ng

ng

ng

ng

ng

UdpRecvfrom t est
UdpRecvfrom t est
UdpRecvfrom t est
UdpRecvfrom t est
UdpRecvfrom t est
UdpRecvfrom t est
UdpRecvfrom t est
UdpRecvfrom t est
UdpRecvfrom t est
UdpRecvfrom t est

UdpRecvfrom t est

ng

ng

ng

ng

ng

ng

ng

ng

ng

ng

rtp_ssrc=0
rtp_ssrc=0
rtp_ssrc=0
rtp_ssrc=0
rtp_ssrc=0
rtp_ssrc=0
rtp_ssrc=0
rtp_ssrc=0
rtp_ssrc=0
rtp_ssrc=0

rtp_ssrc=0

reply and retrieve the source address and source

programto pass the renote

fromthe SOCKS5

83

6.3 Testing Results

Based on the screen capture of the RTSP server, SOCK S5 server and the RTSP client, it could be seen that the two steps
SOCKS5 UDP binding was carried out successfully. Each step is mapped correctly to the corresponding wrapper socket
call program. UDP port binding at the SOCK S5 server was communicated from the SOCK S5 layer to the RTSP client.
Source address and source port for the UDP stream were communicated from the RTSP client to the SOCK S5 layer. On
the RTSP side, the external address binding at the SOCK S5 server was communicated from the RTSP client to the RTSP

server. The source address and the source port for UDP stream was sent from the RTSP server to the RTSP client.

So the prototype demonstrated that the two step SOCK S5 UDP binding model will work with the passive UDP connection

viathe firewall.

7. Conclusions

The existing SOCK S5 protocol support for UDP is still having the two fundamental problems with the availability of the
“remote address’ from the applications client. The first problem is due to the limitation of using UDP bind() socket call to
communicate the “remote address’ to the SOCK S5 layer. The second problem is due to the deadlock situation between the

SOCKS5 UDP hinding process and the transport establishment procedure of the multimedia applications such as RTSP.

To resolve these problems, the two steps UDP binding process for SOCK S5 UDP binding is proposed. UDP binding is
classified into three types which include active UDP open, UDP listen and passive UDP open. The two steps UDP
binding processis applied to al three of them. The socket call procedure for the interface between the applications layer

and the SOCK S5 layer is aso clearly defined to support the two steps binding process.

A prototype for SOCK S5 client and SOCK S5 server is developed for the proposed two steps UDP binding process by using
the SOCK S5 source code from NEC. The transport establishment procedure for the RTSP client and the RTSP server is
also modified to use the socket call procedure required for the enhanced SOCK S5 protocol. Tests were performed
successfully to set up a multimedia stream in UDP from the RTSP server to the RTSP client via the SOCK S5-based
firewall. It demonstrated that the proposed SOCK S5 model will be able to be fully implemented in an actual environment

and the enhanced SOCK S5 model will have no incompatibility issues with the applications client.

With this enhanced SOCK S5 protocol for UDP, al the UDP-based applications will be able to traverse through the
firewall. The only requirement on the UDP-based applications is that they need to follow the proper socket call procedure
to set up the UDP transport. By using this same socket call procedure, the UDP-based applications will work in an
environment without a firewall aswell. So this enhanced SOCK S5 protocol will simplify the applications development as

the applications do not need to be aware of the existence of afirewall.

8. FutureWork

The prototype is limited to the passive UDP open which is commonly used in multimedia applications. More work could

be carried out to extend the prototype to the active UDP open mode and the UDP listen mode.

The two steps SOCK S5 UDP binding process provides a mechanism for the applications to inform the SOCK S5 layer the
“remote address’. Thiswill improve the security of the firewall as the firewall would be able to filter incoming connection
based on the " source address’ of the packets. For the existing SOCK S5 TCP binding and the proposed SOCK S5 multicast
support, the “remote address” is not available from the application clients. Hence, this two step model may be applicable

for them to get this information. Further work could be carried out to see how the incoming TCP connection model and

85

the IP multicast model could work with the two steps SOCK S5 binding model. Thiswill provide a more secure way for

the firewall to do packet filtering on the incoming TCP connections and the incoming multicast traffic.

9. References

1. H. Schulzrinne, A. Rao, R. Lanphier, “Real Time Streaming Protocol (RTSP)”, IETF Internet-Draft (draft-ietf-
mmusi c-rtsp-05.ps), October 28, 1997.

2. M. Leech, M. Ganis, Y. Lee, R. Kuris, D. Koblas, L. Jones, “SOCKS Protocol Version 5", RFC 1928, IETF, March
1996.

3. D. Chouinard, “SOCKS V5 UDP and Multicast Extensions to Facilitate Multicast Firewall Traversal”, IETF Internet-
Draft, draft-ietf-aft-mcast-fw-traversal-01.txt, Nov 20, 1997.

4. H. Schulzrinne, S. Casner, R. Frederick, V. Jacobson, “RTP: A Transport Protocol for Real-Time Applications’, RFC
1889, IETF, Jan 1996.

5. Marc VanHeyningen, “SOCKS Protocol Version 57, IETF Internet Draft, draft-ietf-aft-socks-pro-v5-04, Aventail
Corp., 22 Feb, 1999.

6. RealNetworksInc., Using RTSP with Firewalls, Proxies, and Other Intermediary Network Devices, Version

2.0/rev.2, 1998.

