

FlashyPath: A Flash-based visualization

tool for Internet path measurement

By

Chun Ping Lim

(05765925G)

A Dissertation submitted in fulfillment

of the requirement for the degree of

Master of Science in Software Technologies

Hong Kong Polytechnic University 2008

 I

STATEMENT OF AUTHORSHIP

Except where reference is made in the text of this dissertation, this dissertation

contains no material published elsewhere or extracted in whole or in part from a

dissertation presented by me for another degree or diploma.

No other person’s work has been used without due acknowledgement in the main

text of the dissertation.

This dissertation has not been submitted for the award of any other degree or

diploma in any other tertiary institution.

Name:

Dated:

 II

ABSTRACT

Abstract of dissertation entitled:

FlashyPath: A Flash-based visualization tool for Internet path measurement

Submitted by Chun Ping Lim

For the degree of MSc in Software Engineering

at The Hong Kong Polytechnic University in July 2008

Visualizing end-to-end path measurement data is important for monitoring

network performance, diagnosing network problems, identifying trends and faults.

However, the current visualization systems, such as VisoNETUI and Smokeping,

suffer from a number of shortcomings. One of the problems is to only provide

static presentation on measurement results. Moreover, most systems are short of

interactive model that restricts to explore more performance metrics of Internet

path. In essence of archive functions, most are reluctant because it does involve

too complex technical designs. In this report, we have proposed and developed

new monitoring approaches to overcome these shortcomings.

We build new network monitoring tool called FlashyPath for the issues addressed

which visualizes interactive measurement results on multiple Internet paths. For

the sake of visualizing continuous monitoring results, the tool is required to read

the measurement results for every five minutes and compute averaged statistics on

 III

each client request. Having FlashyPath integrated interactive model can provide

ISP and institutional operators with

In the report, FlashyPath provides Internet path measurement on Round-trip time

(RTT), Time- To-Live (TTL), and packet and path loss. A visual mechanism for

network topology would also be useful to better understand and debug network

problems with utilizing measurement result in multiple paths. The report will

mainly illustrate the worked approach on user interaction and data integrity.

 IV

ACKNOWLEDGEMENTS

I would like to express my gratitude to my supervisor, Dr. Rocky Chang, for his

guidance, encouragement, and support. Being advised and mentored by Rocky has

been a very rewarding learning experience for me.

I am deeply grateful that Edmond Chan provides comments and great efforts with a

huge amount of sample Internet measurement data for my dissertation design.

Finally, I would like to dedicate this work to my parents, wife, and son, who have

always support me.

 V

TABLE OF CONTENTS

STATEMENT OF AUTHORSHIP... I

ABSTRACT..II

ACKNOWLEDGEMENTS .. IV

LIST OF FIGURES..VII

LIST OF TABLES... IX

1. INTRODUCTION.. 1

1.1. BACKGROUND.. 1

1.2. MOTIVATIONS... 4

1.3. IMPLMENETATION... 5

1.4. CONTRIBUTIONS.. 6

1.5. RELATED WORKS... 7

1.6. OBJECTIVES .. 10

1.7. DISSERTATION LAYOUT ... 10

2. LITERATURE REVIEW ... 12

2.1. E2E ARCHITECTURE ... 12

2.2. FLASH AS INTERACTIVE PACKAGES.. 23

2.3. AUTONOMOUS SYSTEM TOPOLOGICAL GRAPH 26

2.4. GRAPH THOERY ... 33

2.5. FLEX AND FLASH... 35

2.6. FLASH AND JAVA ... 38

3. DESIGN AND IMPLMENTATION .. 41

3.1. OVERALL ARCHITECTURES ... 42

3.2. DEVELOPMENT CYCLE .. 43

3.3. WRAPPER DESIGN ... 46

3.4. ALIGNMENT OF RESULTS.. 52

3.5. DATABASE DESIGN... 54

3.6. VISUALIZATION MODULE... 59

4. SOFTWARE DEVELOPMENT .. 61

4.1. HTTP SERVICE... 64

4.2. ADOBE FLEX AND PHP ... 67

4.3. FLEX GRAPH ... 69

 VI

4.4. CSS & SYTLE ... 75

4.5. FLEX APPLICATION WITH RRDTOOL .. 76

4.6. RRDTOOL (ROUND-ROBIN DATABASE) 79

5. LIMITATIONS... 82

5.1. UNUSED RRD SPACE ... 83

5.2. TIME LAG... 85

5.3. PHP INTERFACE BETWEEN FLASH AND SQL DATABASE..... 86

5.4. SQL INJECTION ... 87

5.5. TCP SOCKET VULNERABLE... 88

6. CONCLUSION & FUTURE WORK .. 90

7. APPENDIX .. 93

7.1. INSTALL APACHE 1.2.2 WITH PHP 5.0... 93

7.2. INSTALL MYSQL AND RRDTOOL DATABASES........................ 95

7.3. INSTALL FLASHYPATH BINARY DISTRIBUTION 96

7.4. INSTALL FLASH PLAYER 9.0 OR ABOVE................................... 97

7.5. SOURCES CODE.. 99

8. REFERENCES... 107

 VII

LIST OF FIGURES

Figure 1-1 Perfuse visualization framework .. 2

Figure 1-2 VisoNETUI as visualization for multiple Internet path measurement ... 8

Figure 1-3 Smokeping for latency visualization .. 9

Figure 1-4 Cytoscape for network topology .. 10

Figure 2-1 Rich Internet Application for interaction of measurement results 14

Figure 2-2 Typical three–tier Architecture ... 16

Figure 2-3 implementation of the MVC pattern .. 17

Figure 2-4 Visual PerfSONAR on SOA architectures ... 18

Figure 2-5 Skitter visualizes network connectivity without interaction model 23

Figure 2-6 Animated Atlas - http://www.animatedatlas.com/movie.html 25

Figure 2-7 Comparison of the two AS mapping approaches 27

Figure 2-8 Sample measurement results for Internet path 30

Figure 2-9 The development of RIA application through Flex modules 36

Figure 2-10 Platform comparison (Source: UWEBC) ... 39

Figure 3-1 Software requirement of FlashyPath .. 43

Figure 3-2 Development cycle of FlashyPath designed on each Flex application 44

Figure 3-3 Design of wrapper of measurement result collection........................... 51

Figure 3-4 Mechanism of alignment of round-robin and MySQL databases 53

Figure 3-5 Database schema is developed for FlashyPath on AS paths and

measurement results ... 55

Figure 3-6 The database of FlashyPath .. 55

Figure 3-7 RRD control wrapper is to create and update RRD file using RRDTool

for each analyze item ... 57

Figure 3-8 Diagram showing FlashyPath executing topology graph with

measurement result chart.. 60

Figure 4-1 Adobe Flex Builder 2 built on Eclipse version 2.0.1............................ 61

Figure 4-2 Create Flex application in XML or web service from PHP 62

Figure 4-3 Flex Development Workplace in designer window.............................. 63

Figure 4-4 Source window can allow adjust the parameter of each Flash

component .. 64

Figure 4-5 login mxml invoke HTTP Service for user authentication................... 65

Figure 4-6 Main FlashyPath application with authentication function.................. 67

Figure 4-7 PHP coding for user authentication functions 68

Figure 4-8 The Graph XML result object is data source of measurement points for

Visual Graph library... 70

Figure 4-9 The AS graph using flexvisgraphlib package....................................... 71

Figure 4-10 The measurement points for which monthly and daily measurement

 VIII

results are visualized .. 72

Figure 4-11 Create empty Flex Chart for measurement result 73

Figure 4-12 Monthly interactive timeseries panel for multiple measurement points

.. 75

Figure 4-13 RRDTool command line... 77

Figure 4-14 Reload the browser and have a nice XML-version of dataset............ 78

Figure 4-15 Using RRDTool export function, daily measurement result from

round-robin database is created on the fly.. 79

Figure 5-1 List of available performance metrics .. 83

Figure 5-2 Physical size of each Internet path on analyze item 84

Figure 5-3 Percentage of impression of vulnerability (Source: adambarth) 89

Figure 7-1 Binary distribution can be downloaded from Apache project web site 94

Figure 7-2 PHP official web site .. 94

Figure 7-3 Install Apache 1.2.2 with PHP packages .. 95

Figure 7-4 MySQL official web page .. 96

Figure 7-5 RRDTool official web page.. 96

Figure 7-6 rrdtool support for PHP .. 96

Figure 7-7 Flash component in HTML tag .. 97

Figure 7-8 Flash Player 9.0 for executing FlashyPath ... 98

 IX

LIST OF TABLES

Table 2-1 Traceroute from 1.1 to the University of Hong Kong............................ 29

Table 2-2 Sample traceroute measurement result tuple ... 29

Table 3-1 Open-source package for FlashyPath development 42

Table 3-2 FlashyPath MXML in which measurement tasks are performed........... 45

Table 3-3 Sample meta data description file for each sub experiment................... 46

Table 3-4 Traceroute showing timeout result... 48

Table 3-5 IP-to-AS mapping function returns XML result storing AS information

on prefix, ip address, IPs/Prefix, AS name, AS description, Country and BGP

Prefix of IP address. ... 49

Table 3-6 AS file describes traceroute and AS relationship between two

measurement points.. 49

Table 3-7 The XML hierarchy of RRDTool xport function 54

Table 3-8 RRD create function for source and destination nodes for June 2008... 58

Table 4-1 the sample procedures of Flash to be implemented 62

Table 4-2 HTTPService Tag for Flash object communicate data source through

PHP gateway .. 65

Table 4-3 HTTP Service tag can specify any value of parameters for mx:Request

tag... 66

Table 4-4 Named Object is created for send method of HTTPService class 66

Table 4-5 the function for return object from PHP .. 67

Table 4-6 the return object in form of XML containing user object 68

Table 4-7 Flex Visual Graph library for creating hierarchical graph for

measurement points.. 69

Table 4-8 the procedures of building Flex Graph for measurement results 72

Table 4-9 DateTimeAxis and VerticalAxis... 74

Table 4-10 Sample CSS and Style on Flex application.. 76

Table 4-11 RRDTool xport command for daily measurement results.................... 77

Table 5-1 The file size of RRD for performance metrics....................................... 84

Table 5-3 absolute URL locator if FlashyPath serves as standalone tool 86

Table 5-4 Drop table SQL command if query value of FlashyPath request is

changed .. 87

Table 5-5 The SQL query will be amended that table is permanently removed. ... 88

Table 7-1 Sample MySQL functionalities.. 95

Table 7-2 SELECT statement for measurement results on MySQL database........ 96

Table 7-3 RRDTool fetch function... 96

 1

1. INTRODUCTION

1.1. BACKGROUND

Visualizing end-to-end path measurement data is important for monitoring

network performance, diagnosing network problems, identifying trends and faults.

Internet Service Provider (ISP) and institutional operators exploit monitoring

traceroute measurement results for Internet paths with interactive channels that

help diagnose Internet paths in a timely manner. More importantly, integration

of real-time data with advanced presentation skill is expected for timely responses

that the operators are quickly informed the faults and errors of Internet path

performance [3].

In this report, we aim at incorporating interactive measurement tool on visualizing

continuous measurement results for ISP operators. The term interactive

measurement tool [49] generally describes operators can monitor Internet paths

through interactive tools to query concrete measurement results on Internet paths.

Implementing interactive model would allow operators serve their customers with

instantaneous monitoring results, thus enabling the service-level quality to detect

 2

errors or provide correct diagnosis on Internet paths. Heer, Card, and Landay [60]

have illustrated multiple views, semantic zooming, data and visual transformations,

and application extension and customization in model-view-controller

environment in future user interactive tool [61]. Perfuse, in Figure 1-1, enables

multiple visualizations of a shared data set by using separate filters, and different

views of a specific visualization by reusing the same filtered items.

Figure 1-1 Perfuse visualization framework

However, the current visualization systems suffer from a number of shortcomings.

Most of the applications, such as VisoNETUI [48], integrated with RRDTool and

server-side scripting that provides limited user interface and static graphical

outputs for operators that restrict diagnosis purpose. VisoNETUI visualize

traceroute measurement results, which are in advance generated, in limited time

basis. Moreover, The RRDTool provides fixed time interval and measurement

unit on X- and Y-axis respectively that cannot be easily adjusted for zooming

 3

function that impedes the flexibility and scalability. In functional, absence of

archive functions on most monitoring system that measurement data cannot be

compared, which disallows ISP operators distinguish current and previous

performance metrics on different months and to determine what has changed on

Internet paths. On the other hand, some measurement tools, such as Smokeping,

tend to combine all performance metrics in a single graph that ISP operators

hardly determine diagnosis results. However, the single graph is displayed for

Internet characteristics derived from ping packet responses that hampers operators

on further diagnosis. Moreover, some monitoring systems, especially active

probing, are seldom to ensure error-free data because the measurement results is

displayed in streaming mode, which hardly determines data integrity for good

measurement tool.

A new monitoring tool will be therefore designed to address these problems.

Compared with current monitoring systems, FlashyPath should be visualized on

Internet paths measurement more interactive that operators can easily adjust their

needs. If we develop the tool as web-based application, it can greatly enhance

to realize interactive manner on monitoring and diagnosing purpose. The

experience has also shown that interactive model integrated with server-side

 4

programmin that does not hamper monitoring functionalities. Supposing Flash

integrates Flex objects can promote interoperable features that allows others who

design network monitoring interactively tasks on their own sake. In light of

secured data binding service through HTTP channel, FlashyPath ensures

measurement results to be quickly response to multimedia features. Having,

though, much similar functionality among existing network monitoring systems,

FlashyPath would focus on developing interactive approach that continuous

measurement results are visualized on multiple measurement points.

1.2. MOTIVATIONS

Considering the current applications, we would develop new application, named as

FlashyPath, which attempts to develop interactive monitoring tool for

measurement results, in view of developer’s perspective, by following:

� We can provide more interactive visualization on measurement of Internet

Paths

� We develop network monitoring function with Flash technologies that builds

the application quickly and further develop or deploy easily.

� We build up visual component in which other monitoring systems can be

 5

extended.

� Allows end users or ISPs that can monitor multiple measurement paths

continuously and can be compared simultaneously with integration of visual

components.

� Synchronize measurement results on the database for interactively displaying

very large volume of data.

1.3. IMPLMENETATION

According to motivations we have stated, the design of our measurement tool for

e2e topology, the system is to be composed of several major components:

1. Data collection components extracts the measurement results in every ten

minutes from source of data that is gathered, computed and stored into the

databases in which visualization tool displays the result continuously.

2. Data analysis component reads the measurement results which are valid and

well formatted under source directory and stores it into database on each

analyze item.

 6

3. Visualization components exhibit monitoring functions in interactive features

that is capable of displaying measurement results more efficiently. The

module would design the features through hierarchical AS topology and

time-series chart for measurement points that enables ISP operators easily

navigate.

1.4. CONTRIBUTIONS

Our system makes key contributions to the network monitoring tool:

1. The tool can systemically visualize the measurement results for Internet paths

on every ten minutes

2. Show multiple Internet path measurement in same performance metrics that

can be compared.

3. Provide interactive monitoring panels for ISP operators who can navigate

measurement results for diagnosis purpose.

4. In order to provide measurement tool for monitoring and diagnosis purpose,

we work out the guidelines of integration of multimedia packages that

monitoring system can be more interactive.

 7

1.5. RELATED WORKS

In this section we briefly present some of the most widely used state-of-the-art

networking monitoring tools and provide some indications why the multi-domain

performance monitoring scenario might be not well suited for most of them..

1. Cacti [34] is front-end graphing solution of network monitoring tool, which

provides features including fast poller, advanced graph templating, multiple

data acquisition methods, and user management features. It stores all of the

necessary information to create graphs and populate them with data in a

MySQL database. It contributes Cacti provides a user friendly interface to

RRDTool [31] without requiring users to understand how RRDTool works

2. VisoaNETUI [45] is a visualization tool which visualizes measurement data

in structured format like tables and graphs written in server-side scripting

PHP languages. Like other tools, VisoNETUI generates too many RRD

graphs for different metrics of Internet paths. On the other hand,

measurement units and time intervals are fixed that ISP operators cannot

adjust measurement items for next navigation.

 8

Figure 1-2 VisoNETUI as visualization for multiple Internet path measurement

3. Another popular network performance measurement tool is SmokePing [6]. It

measures, stores, and displays latency, latency distribution, and packet loss.

SmokePing uses RRDtool for maintaining a long term data-store, as well as for

its graphing functions. It also implements a latency measurement plug-in

interface for seamless extendibility and features a powerful anomaly detection

and alarm reporting mechanism. When used together, CACTI and

SmokePing provide a very good summary and detailed overview of network

performance metrics like interface rate, round trip time, latency distribution,

and packet loss. However, a higher level of integration between metrics

reporting across multiple domains is desirable in many cases.

 9

Figure 1-3 Smokeping1 for latency visualization

4. PerfsonarUI [16] is written as Java and supports several RRDs, shows the

network topology using a set of hierarchical topology, supports error handling

and reporting functions on link utilization. The application employs

database that stores topology and measurement data and also implements

wrapper around existing RRD files and SQL databases.

5. Cytoscape [32] works as a web service client, which provides data integration

and visualization. It visualize as cyclic or force-directed graph layout. It

can be used to visualize and analyze network graphs of any kind involving

nodes and edges.

1 Smokeping (http://homepage.mac.com/duling/halfdozen/Smokeping-Howto.html)

 10

Figure 1-4 Cytoscape for network topology

1.6. OBJECTIVES

The major part of report is to propose design and development of new

measurement tool using interactive model with server-side scripting that can be

built in order to achieve monitoring and diagnosis purposes. We also suggest

methodologies on alignment of continuous measurement results from databases

that interactive advantage can be integrated. The report would address how

system can gather and display interactive large volume of measurement results.

1.7. DISSERTATION LAYOUT

Besides the chapter 1 of introduction of the dissertation, Chapter 2 provides an

introductory background for the readers who can understand FlashyPath design

and implementation for e2e topology infrastructure that can develop interactive

 11

model for network monitoring and diagnosis purpose. Chapter 3 describes the

proposal of how e2e topology infrastructure is to be constructed using available

multimedia techniques and software. Chapter 4 would outline development of

FlashyPath and demonstrate network measurement tools in Flash environment in

developer’s perspective. The limitation and experience of development cycle are

also described in Chapter 5. Finally, Chapter 6 summarizes our work and

contributions. Possible future research directions for further development of the

tool are also discussed.

 12

2. LITERATURE REVIEW

This chapter mainly provides overview of e2e topology that can be worked out by

interactive components with server-side scripting languages. The reader should

already be familiar with basic networking terminology, including terms such as

ASes, links and IP addresses. Moreover, the readers should also be professional

on software development that can shorten the learning time for integration of e2e

topology.

2.1. E2E ARCHITECTURE

Current network monitoring tool are built as Internet path measurement over e2e

infrastructure. Challenges have been addressed that are to simplify the design of

monitoring tool and exchange meta-information about testing packets [59], in

which current monitoring systems do not support. If meta information from other

domains is available, ISP operators enable to eliminate useless packets. The e2e

infrastructure generally refers to network components, which include routers,

switches, or end-to-end paths, between the endpoints could be monitored. The

framework facilities precious measurement result of each component, in which

 13

standard schemas, discovery mechanisms, and access policies for monitoring data,

can be exchanged. On the other hand, historical data as data archive can be

managed to establish a baseline to compare current and predict future performance

in the framework. Summing up all features in the framework can visualize on the

display windows for their customers. In this report, we would propose

architecture in which the monitoring tool may extend from rich Internet

application (RIA) framework with three-tier architecture integrated with

model-view-controller (MVC) technologies.

2.1.1. RICH INTERNET APPLICATION (RIA)

Technically, monitoring tools may work with employing RIA allows ISP operators

who explore the Internet paths issues interactive approach, through generation of

different diagnosis graphs. One of the obvious differences between interactive

application and conventional monitoring system is that any button or hyperlink of

the monitoring tool is clicked which doesn’t reload. Only the measurement

results or other network information related to Internet paths is updated. This

produces responsive and seamless interfaces more effectively enables the

operators to concentrate on the diagnosis task that the results are never delayed or

distracted by the mechanics of the interface itself. It indicates that visualizations

 14

are processed more effectively when key structural elements in the display do not

change from one view to the next, illustrated in Figure 2-1. This gives operators

a set of continuously visible reference points, which prevent ISP operators from

becoming confused or disoriented as they navigate around the application.

Figure 2-1 Rich Internet Application for interaction of measurement results

Rich Internet Applications2 (RIA) are defined as the combination of the best user

interface functionality of desktop software applications with the broad reach and

low-cost deployment of Web applications and the best of interactive, multimedia

communication. RIA technologies such as Adobe Flex and Asynchronous Java

and XML (AJAX) are to view data without refreshing the screen or streamline

interactive process. The important differentiator between an RIA and a more

traditional website is that an RIA is a true application that allows you to perform a

2 RIA http://www.azavar.com/solutions/rich_internet_applications.aspx

 15

task. This task can include finding a product, customizing a service, learning new

information, playing a game, or mixing information to create something new.

Another difference with RIAs is the way they handle and process information.

Traditional desktop applications rely exclusively on client-side processing. When

a task is initiated, the local system’s resources are leveraged to process the request.

In contrast, web application on the server technology depends on client request.

With RIAs the load is shared by both client- and server-side tasks. With an

HTML website, when a user fills in data, changes options, or checks boxes and

hits, the page must be submitted to the server for data validation and then the

screen is reloaded with the new data incorporated.

2.1.2. THREE-TIER ARCHITECTURE

Interactive monitoring framework can be extended from traditional measurement

design over e2e topology that could be exploited, which allows end-users who

explore network issues from different angles of measurement results on Internet

paths. The traditional framework is mainly integrated with programming skills in

three-tier architecture implementing Model-view-controller (MVC) approach for

monitoring framework. Three-tier is a client-server architecture in which the

user interface, business process and data storage and data access are developed and

 16

maintained as independent modules or most often on separate platforms. Basically,

there are 3 layers, tier 1 (presentation tier, GUI tier), tier 2 (business objects,

business logic tier) and tier 3 (data access tier). These tiers can be developed and

tested separately.

Figure 2-2 Typical three–tier Architecture

2.1.3. MODEL-VIEW-CONTROLLER (MVC)

In the MVC paradigm the user input, the modeling of the external world, and the

visual feedback to the user are explicitly separated and handled by three types of

object, each specialized for its task. The view manages the graphical and/or textual

output to the portion of the bitmapped display that is allocated to its application. The

controller interprets the mouse and keyboard inputs from the user, commanding the

model and/or the view to change as appropriate. Finally, the model manages the

behavior and data of the application domain, responds to requests for information

 17

about its state (usually from the view), and responds to instructions to change state

(usually from the controller).

Figure 2-3 implementation of the MVC pattern

Compared with other development tool, such as Java, multimedia package is not

well defined for monitoring features [62]. PerfSONAR3 is implemented as

Service Oriented Architecture (SOA) for data exchange. However, the

application seldom integrates with visual effect and difficult to deploy with

multimedia packages on this stage. If we extend SOAP4 and XML schema with

visual and audio effect on data exchange, monitoring and diagnosis would become

more interested. In the face of challenges on visualized network monitoring,

measurement data can be joyfully compared in same network property.

3 PerfSONAR is now released as v3.0 and downloaded from here
4 SOAP, abbreviation of Service Oriented Access Protocol)

 18

Figure 2-4 Visual PerfSONAR on SOA architectures

There are much ongoing visualization efforts for e2e topology infrastructures in

which develop interactive methods of implementing measurement results in

monitoring system. These efforts are directed towards scalability and efficient tool.

For network monitoring application to be able to use smart interactive technique

that visualizes measurement points, the requirement is that the technique should

provide more interaction that measurement results can be explored for diagnosis

purpose. Alternatively, if it is capable of providing rich information from original

traceroute results between two endpoints, then monitoring measurement tool can be

built.

 19

Assuming e2e topology having built over web environment, interactive

programming languages, such as Flash, is considered and questioned to visualize

network measurement results.

1. Does Flash development tool primarily help minimize a barrier to the

deployment of network monitoring tool?

2. Can Flash application retrieve relevant set of measurement results in a timely

manner?

3. May Flash-based monitoring system serve as inter-domain machine?

4. Have Flash been better visualization effect on network monitoring tool?

Flash presentations are assumed to be interactive model and can incorporate with

measurement results that can be integrated. It can be also integrated into Web site

to display continuously for better visualization effect. For network monitoring

purpose, flash-based application is to visualize measurement points interactive

with multimedia visual effect. For example, we can display interactive and lively

sequences on how Internet paths perform between two endpoints in multimedia

manner. If any of the paths operate below threshold, special visual effects, such

as blurring, will be displayed that end-users can catch the issue. With multimedia

features, flash application can have faster responses on measurement results than

 20

other non-multimedia languages, such as Java. Moreover, flash application can

allow multiple paths to be compared in form of movie show on basis of

measurement metrics, such as round-trip time, forward and backward packet loss

rate, and reordering rate with different probe and response size. In the paper on

algorithmic mechanism design, Nilsan and Ronen [18] advocate combining an

economic approach with the more traditional protocol-design approach to the

networking problem. Having monitoring system been designed as multimedia

package, people are more fun and interested on networking issues than traditional

design.

Having FlashyPath been considered as interactive diagnose purpose; traditional

measurement function may be extended with the following interactions between

user interface. Given the web technologies, standard diagnosis functions for a

pair of measurement points are generally included in the following:

1. Looks up available source and destination measurement points from data store.

2. Retrieve monitoring characteristics between a particular source and destination

and the statistics that the framework can apply to the result

3. Query particular source, destination, characteristic and statistic

 21

4. Add visual effects, such as flow, fade, mask and tween properties5 , on

characteristic and statistics information

5. Display the result on the AS topological graph.

In essence these monitoring activities may be separated on the basis of time.

Background monitoring looks over days, weeks and months may be animated in

different speed or velocity at the behaviour of the network whilst immediate

monitoring provides a snapshot of existing conditions within the network.

1. Looks up available source and destination measurement points from data

store.

2. Retrieve monitoring results in days, weeks or months between a particular

source and destination.

3. Add animation effects, such as Zoom, Dissolve, and Blur properties, for

different Internet path

4. Display the measurement result on the chart

Given Flash as interactive visualization tool, e2e topology can be visually worked

with connectivity of graph in Autonomous Systems (ASes). The hierarchical

5 More visual effect can be referenced from flash visual effect packages on
http://livedocs.adobe.com/flex/2/langref/mx/effects/package-detail.html

 22

graph layout is merely constructed with IP address nodes, which may incur long

animation processing time on the graph in multiple Internet paths, thus making

monitoring tools complicated. If we construct the e2e topology in term of IP

address, it would cause complex and time-consuming approach. The novel

example on IP-based graph is that Skitter [36] probes the Internet paths to many

destination IP addresses spread throughout the IPv4 address space and visualizes

the directed graph from a source on the Internet in static manner. Reducing

processing time would forgo the global network information. Cheswick and

Burch [37] has examined IP address level graph layout would restrict coverage of

a globally diverse set of network. Therefore, connectivity of graph in ASes is

easily deployed and animated in the Internet environment. Generally, Internet

connects thousands of ASes operated by different Internet Service Providers (ISPs).

Routing within an AS is easily controlled by interdomain protocols such as static

routing, OSPF, IS-IS and RIP. Border Gateway Protocol (BGP) is an interdomain

routing protocol that allows ASes to select routes and propagate routing

information. Depending on the connectivity of upstream ISPs and traffic patterns,

ISP will therefore suit the available bandwidth of the respective connections to

varying degrees. However, the current AS topological graphs seem to be short of

interactive features for end-users. Skitter, in Figure 2-4, is famous connectivity

tool for visualizing IP addresses in graphical representation. Getting much IP

 23

addresses construct complex spherical layout. Therefore, it does also not provide

interactive feature for ISP operators who easily locate the Internet path

measurement between two endpoints.

Figure 2-5 Skitter visualizes network connectivity without interaction model

2.2. FLASH AS INTERACTIVE PACKAGES

In order to visualize interactive networking monitoring purpose, Flash is assumed

to be good multimedia package for e2e topology design. Flash, by definition, is a

multimedia graphics program especially for use on the Web. Specifically, it

enables to create interactive movies on the Web and uses vector graphics, which

means that the graphics can be scaled to any size without losing clarity/quality.

Integration with multimedia of Flash is to natively support streaming audio and

video. If we are working with multimedia, Flash is definitely the Rich Internet

Application (RIA) platform to build network monitoring application. Flash comes

 24

with UI toolkits for such multimedia object as tree views and data grids. It is

important to Flash is a much better option compared with other programming

packages.

On the other hand, Flash can integrate with Actionscript languages for enhancement

of visual effect. ActionScript is the scripting language of Macromedia Flash. A

scripting language is a way to communicate with monitoring system; you can use

it to tell Flash what to do and to ask Flash what is happening as a movie runs. This

two-way communication lets ISP operate create interactive images on Internet path

measurement. For example, Flash can capture measurement results and show on

the Internet map with different color and animation that ISP operators can easily

navigate the Internet paths. Therefore, the operators can drill down the

red-colored state to look thoroughly at the current state of each Internet path.

Figure 2-5 is an example that Internet map could exploits the interactive model

that end-users can zoom the affected area. Moreover, the map also provides

color scheme for threshold that end-users can navigate different scenario for

Internet paths.

 25

Figure 2-6 Animated Atlas - http://www.animatedatlas.com/movie.html

In brief, Flash can be summarized as following benefits on interactive monitoring

tool.

1. Flash can make a web site more attractive, interactive and dynamic.

2. Within a 300 second period Flash can show measurement result on Internet

paths.

3. Flash has now become a very well-recognized format on the internet, and it is

estimated that over 90% of web users now have the Flash Player installed on

their computers

4. Flash distribution object can be stored in very small file sizes, so they can be

downloaded rapidly, thus achieving the interactive model for continuous

Internet path measurement

 26

2.3. AUTONOMOUS SYSTEM TOPOLOGICAL GRAPH

For interactively visualizing measurement results, AS graph is constructed to

describe Internet paths for connectivity from router-level information. An

autonomous system (AS) is known as either a single network or a group of networks

under the control of a single administrative entity, typically an ISP or large

organization with independent connections to multiple networks. ASes in the

topology may differ which varies in size, type and number of relationships with

their neighbours. The ASes graph [55] better visualizes Internet path measurement

from traceroute data due to unreachable IP addresses on Internet space. Khalifa

[57] describes two techniques, namely BGP-based and probing-based, on AS

topology from router-level data. The former continuously update best routes

information in BGP routing tables, which can be publicly announced. The latter

constructs ASes connectivity relationships from traceroute utility on all possible

forwarding paths. The two techniques have been summarized for collection of AS

topological data for graph in Figure 2-1. For completeness of topology

information, the probing-based technique may provide complex relationship

between each router on physical connectivity. Moreover it also provides low-level

directed reachability graph on Internet path.

 27

Figure 2-7 Comparison of the two AS mapping approaches

Studies have previously shown that mapping IP addresses to AS number is not

simple because of incomplete and out of date in WHOIS database. Mao et al [58]

identified that 10% of traceroute paths contained one or more hops that did not map

to a single AS number. Furthermore, mapping IP addresses to AS numbers paths

resulted in loops in the inferred AS-path for about 15% of the node-level paths

examined.

2.3.1. TRACEROUTE

For probing-based technique, AS connectivity data is mapping from traceroute

program, which returns the path taken by packets sent to a particular IP address with

time-to-live (TTL) counter. In theory, the TTL field is given an initial value

which is decreased by one every time it is forwarded by a router and eventually

dropped when its value reaches zero. This ensures that the packet will be dropped

 28

once the maximum number of hops is reached. The router that discards the packet

returns an ICMP time exceeded message to the packet source, thus unveiling its IP

address.

The traceroute starts by sending a packet to a given destination with a TTL equal to

one. The first router reached by the packet will then discard it and reply by a time

exceeded packet showing in its source field one of the router’s IP addresses. This IP

address corresponds to the interface on which the reply packet was sent, most

probably the interface through which the traceroute source address is routed. An IP

address of the first router is thus known, but not necessarily the destination address

of the probe packets. Traceroute then sends a packet with a TTL of 2 to the same

destination, discovers an IP address of the second router, and so on. The probing

ends when the maximum number of hops is reached or when a reply indicates the

destination has been reached. Its output shows up as a list of IP addresses

belonging to routers which responded to the probe packets at each TTL with their

response times.

1 158.132.10.28 0.426 ms 0.299 ms 0.262 ms

 2 158.132.254.65 0.972 ms 0.882 ms 0.620 ms

 3 158.132.254.38 1.903 ms 1.002 ms 1.098 ms

 4 158.132.12.20 1.525 ms 4.875 ms 4.465 ms

 5 203.188.117.69 6.402 ms 4.107 ms *

 29

 6 203.188.117.6 98.433 ms 18.120 ms 10.407 ms

 7 147.8.239.15 5.336 ms 5.650 ms 17.551 ms

 8 147.8.240.228 11.314 ms 4.310 ms *

 9 147.8.240.238 34.478 ms * *

10 * * *

11 www.hku.hk (147.8.145.43) [open] 4.552 ms 13.732 ms 11.576 ms

Table 2-1 Traceroute from 1.1 to the University of Hong Kong

2.3.2. TRACEROUTE MEASUREMENT RESULT

The traceroute measurement result is assumed to collect performance metrics

between two endpoints, constructed with specified tuple, which illustrated in Figure

2-7. The tuple of each line in a file represents measurement result on particular

analyze item between Internet paths in which probe and response sizes are specified.

<monitoring timestamp>,<measurement analyze item>,<measurement result>

Table 2-2 Sample traceroute measurement result tuple

 30

Figure 2-8 Sample measurement results for Internet path

The measurement results from the input file is analyzed and computed for Internet

path measurement. The source code of function is to be listed in Appendix 7.5.1.

For each source node, the traceroute measurement files will be looked up in which

filename pattern is extracted, assuming all filename path remains constant. The

filename tells us three properties of measurement

1. The date in which traceroute measurement is to be implemented

2. The probeSize and responseSize of each Internet path

3. The measurement result for the Internet path on performance metrics

The implementation of traceroute measurement result for each Internet path

 31

measurement would be described later.

2.3.3. IP-TO-AS MAPPING FOR E2E TOPOLOGICAL GRAPH

Autonomous system number (ASN) for each router-level IP could map traceroute

data in forward path from external lookup algorithm. Govindan and

Tangmunarunkit [35] have developed Internet discovery tool, but does not use

animated effects on client side. In our implementation, we repeatedly convert all

IP addresses on Internet paths and show visually in the AS topology graph.

Minimizing monitoring workload should FlashyPath convert IP addresses into AS

numbers and drawn as Internet topology graph. In face of AS topological graph

layout design, we can build multiples paths between animated source and

destination nodes. Usually, the AS graph is reconstructed by merging information

collected by a number of repositories managed by private and public research

organizations. IP-to-ASN mapping tool6 has been developed that provides quick,

summarized, view of prefixes seen in an entire set of measurement results.

Theoretically, traceroute IP addresses on Internet path are an approximation of the

hop-by-hop router-level forward path a packet would take to a destination.

Nevertheless, there is no direct method of obtaining ASes path from IP path,

6 The IP to ASN translation in RouteViews project is undertaken by RIPE in 2003

 32

external tasks on IP-to-ASN mapping approach would be employed that convert

traceroute IP addresses to AS path information for each hop. Traceroute is widely

used to detect routing problems, characterize end-to-end paths, and discover the

Internet topology. Providing an accurate list of the ASes along the dual paths

would make traceroute even more valuable to researchers and network operators.

A workable algorithm for IP-to-ASN translation has been developed. Given IP

addresses, we need gather routing tables from several routers all over the world and

extract a view of the Internet from each of them. The following procedures would

be then executed for mapping for IP-to-AS for each import. A third-party Perl

script is to implement the translation for IP addresses in each Internet path on

measurement results. The perl script describes that it collects the measurement

result files from the wrapper program and performs IP-to-AS mapping algorithm.

This indicates the ASes that announce a given prefix as its origin ASes.

The IP-to-ASN algorithms draw on analysis of traceroute probes, reverse DNS

lookups, BGP routing tables, and BGP update messages collected from multiple

locations. The mapping allows us to home in on cases where the BGP and

traceroute AS paths differ for legitimate reasons. Much research has experienced

 33

that the algorithm is to reduce the initial mismatch ratio of 15% between BGP and

traceroute AS paths to 5% while changing only 2.9% of the assignments in the

initial IP-to-AS mappings. The algorithm is robust and can yield near-optimal

results even when the initial mapping is corrupted or when the number of probing

sources or destinations is reduced.

2.4. GRAPH THOERY

In Autonomous Systems (ASes) topology, we design visually directed graphs

reflecting Internet connectivity of each measurement point. The hierarchical AS

graph is a layout algorithm that portraits the precedence relation of directed graphs.

The layout algorithm aims to highlight the main direction or flow within a directed

graph. Cyclic dependencies of nodes will be automatically detected and resolved.

Nodes will be placed in hierarchically arranged layers. Additionally, the ordering

of the nodes within each layer is chosen in such a way that the number of line (or

edge) crossings is small. For Actionscript-based graph package, which names

Flex Visual Graph Library [10], it is available for our graph layout algorithm. The

Flex library is to advance the design and development of an open source data

visualization library and component suite for Adobe Flex. Enabling to create

complex data visualization interfaces for the analysis of relational data sets using

 34

texts and images, the library is purposely extendable and provides for separation of

base, interface, and layout code. Additional layout algorithms can be readily

integrated as an extended class containing only the mathematical calculations and

controls needed specifically for the layout.

Upon completion of IP-to-AS mappings mechanism, the visually directed graph can

be drawn. When the measurement points have been selected from monitoring

system, the Actionscript will invoke HTTPService object which retrieves the AS

data from domain database. The XML objects containing AS file and path

information will then be returned. FlashyPath will execute Flex Visual Graph

Library and draw the hierarchical layout for end-users. Moreover, the library will

also provide other information, such as source IP, destination IP, experiment ID, that

users can select measurement results with probeSize and responseSize. The Flex

Visual Graph support the creation of vertices and edge connected with Edge. As

usual, we build the graph of the ASes starting from a set of AS paths generated from

measurement results. Each AS path is associated with a number of paths and

sequence of ASes traversed by the traceroute data to be delivered.

 35

2.5. FLEX AND FLASH

In a multi-tiered model, FlashyPath applications can be served as the presentation

tier, which is mainly integrated with Flash player and Actionscript programming.

The Flash applications in form of Flex architectures can take advantage of data

streaming and rich media integration to provide compelling functionality that would

be inexpensive to develop e2e technologies. Since Flex applications are accessed

via standard web browsers, they can take advantage of the web deployment model’s

traditional benefits such as single-sign-on and secure data transfer.

Flash integrating Flex is a framework that helps build dynamic, interactive rich

Internet applications. Flex applications are delivered on the web via the Flash Player

or to the desktop. In Flex, a higher-level language named MXML, an XML

language that sits on top of ActionScript. Because MXML is a domain-specific

language targeting the rapid development of Flex user interfaces, you can quickly

become productive with MXML. The MXML syntax allows inserting complex

component into network monitoring application with limited lines of code.

MXML's XML tags can have children, and it's through XML child elements that

you can do layouts inside containers. Unlike Java, Flex provides well-structured

layout, such as VBox and HBox, components, which is a container that lays out its

 36

components vertically and horizontally respectively. You specify child elements of

the VBox XML tag to put child components inside the box, and the box knows how

to lay those components out. Moreover, the containers, such as Panel, Canvas, and

TitleWindows are supplied that developers can develop application-like

measurement tool.

Figure 2-9 The development of RIA application through Flex modules

Although a Flex client can use direct socket connections, the most common way to

communicate between a Flex client and a back-end service is through HTTP.

HTTP communication is very easy with Flex, because we provide a simple HTTP

client API with the HTTPService component. HTTPService is an API on top of the

Flash VM's HTTP connectivity that, in turn, uses the browser's HTTP library.

 37

HTTPService provides a higher-level abstraction for Flex developers to have a nice

API to make HTTP requests. In most cases, the only things you need to specify to an

HTTPService are a URL and a call-back handler function. The callback function

will be invoked when the HTTPService gets back a response.

The HTTPService supports REST-style HTTP URLs as well as SOAP URLs. If you

organize your back-end API such that the action you want to perform come in as a

parameter to a single URL, then you can just have one HTTPService for all those

calls. With multiple URLs for the various requests to the server, you can easily set

the URL value on one HTTPService. In larger applications, you typically write a

singleton model locator object to access all your data objects.

Adobe Flex relies on the Flash 9 browser plug-in, which needs to be present in the

browser of the website visitor. Ajax uses the various Internet browsers as its runtime.

Some Ajax Frameworks have an additional JavaScript engine that abstracts away

from differences in browser implementations: developers use the engine which in

turn communicates with the browser. The benefit of using a proprietary plug-in as

Flash 9 is the controlled runtime environment, which is identical across all web

browsers. This makes development easier and it allows Adobe to add additional

 38

features and to improve performance. The downside is that the plug-in needs to be

installed, which can pose a problem in environments with locked-down operating

systems. Adobe periodically publishes data on the market penetration of the Flash

Player. Some critics of Flash state that reliance on a plug-in is a break with web

standards, as the web browser is only used to launch the player which does not use

web standards such as HTML, CSS and JavaScript. The Flash plug-in offers some

support for HTML, CSS and an extended version of JavaScript

2.6. FLASH AND JAVA

Most of network monitoring tools are preferable using Java because Java supports

multi-threading and remote procedures on data-binding services. The application

of Java technology helps greatly in making truly portable and less dependent on

slow Internet collection [4]. For concerns of visual consistency, Java serves as

certain function with user-customized parameters, and displays both the original

and the resultant images. It also allows end-users to choose operating parameters

according to their own wish. Java moreover can be used either as client-side

applet for rich application or can be used on the server-side for writing the

application code delivered to browsers through HTML/PHP. However, Java

runtime object on the separate environments cannot be equally operated because

 39

Java built as desktop application must be redesigned in form of client-side applet

because of different development cycle.

From the source of UWEBC, Flash is obviously better than Java on the area of

graphical richness, various computing environment and audio/video support. It is

fairly easy development tool on XML, DOM, Javascript and Actionscript that meet

open standard requirement. As Flash executable files are binary compressed,

Flash application can be developed as sandbox that network measurement results

are security protected.

Figure 2-10 Platform comparison (Source: UWEBC8)

8 UWEBC: Report on platform comparison of Rich Internet Application (RIA) published by UW

 40

Let us turn the page on deficiency of Flash application. Because Flash

applications require fully download, we experience low response time when

network applications operate low-bandwidth network environment. On the other

hand, Flash requires a flash player as plugin for activation within the web page that

is highly vulnerable due to frequent upgraded from Adobe development team.

Unlike Java, Flash cannot be edited and duplicated because the source is a

multimedia file that is loaded onto the web page. Aside from interoperability

features on each kind of components, experimental statistics has shown that Flash

application achieves better average file size including images and average load

time than Java runtime [27]. It also concludes that Flash is most practiced for

network transmission.

In short, Flash application is relatively light-weighted solution for the development

of monitoring measurement and will be illustrated later in more detail.

E-Business Consortium on 2005

 41

3. DESIGN AND

IMPLMENTATION

The core components of FlashyPath that we, as developer’s perspective, have

implemented are interactive model of visualizing measurement result collected by

external wrapper. In this section we complete the description of FlashyPath by

showing how the interactive application is to be designed. Moreover, we have

shown FlashyPath of how visualizes the measurement results are to be

post-processed in Flash environment.

Throughout the report, Flash integrating Flex with Actionscript 2.0 will be mainly

used to illustrate the development of FlashyPath application. FlashyPath will

provide a set of API which implements core part on AS-level topology with

measurement results. For other programming languages, XML as common data

interchange format between the application and server-side programming.

FlashyPath will employ PHP programming to interface with alignment of MySQL

and round robin database which store continuous measurement data. It helps

improve the speed and integrity of data and relieve the job of round-robin database.

The Open-source packages are proposed in the application and illustrated in Table

 42

3-1

1. Apache 1.2.2 with Actionscript 2.0

2. PHP 5.0 and Perl 5.8.8 programming

3. Flash player 9.0 or above

4. MySQL 5.0.32

5. RRDTool 1.2.15

6. Flex Visual Graph Library package

7. Flex Chart Component

8. XML and DOM

Table 3-1 Open-source package for FlashyPath development

3.1. OVERALL ARCHITECTURES

The following open-source components are used for developing applications for

FlashyPath. Figure 4-1 illustrates FlashyPath architecture that can be performed

under web technologies. Apache HTTP server is primarily to serve measurement

results over the Internet. Integrating PHP and Perl script packages, FlashyPath can

communicate backend database through the package that implement measurement

results to be worked. MySQL and round-robin databases are used to gather

autonomous systems (ASes) and timeseries results respectively.

 43

Figure 3-1 Software requirement of FlashyPath

3.2. DEVELOPMENT CYCLE

For FlashyPath, development cycle is firstly determined for entire architecture on

programming level that builds network monitoring system. A development cycle

is the sequence of events in the development of network application. Figure 3-2

illustrates each MXML operating specific function on monitoring system.

 44

Figure 3-2 Development cycle of FlashyPath designed on each Flex application

 45

9.

The following table shows description of each MXML file.

File name Description

1. Login.mxml It is to authenticate end-users who have

access right of FlashyPath and moreover

load the template end-users already saved

2. FlashyPath.mxml Core container which operates one or

multiple measurement results.

3. FlashyPathMain.mxml Main measurement panel

4. MeasurementPointSelector.mxml End-users can select multiple

measurement points for which AS graph is

to be built

5. MeasurementResult.mxml Having AS graph built can select one or

multiple measurement results on monthly

data

6. TraceRouteChart.mxml The traceroute chart for monthly

measurement results that end-users can

drill down daily results

7. MeasurementPath.mxml The function is to visualize daily

measurement results on multiple paths.

It contains measurement boxes and bars

for users who choose each measurement

time.

8. RRDChart.mxml The RRDChart for time-sensitive data

from HTTPService result object

9. RRDSeries.mxml It is dynamically to draw series of

measurement results depending on the

selection of measurement points

10. MeasBarPanel.mxml Shows measurement results in bar-style

format

11. MeasBoxPanel.mxml Show measurement results in box-style

format, which determines from

experiment meta-data

Table 3-2 FlashyPath MXML in which measurement tasks are performed

 46

3.3. WRAPPER DESIGN

Having considered each functionality on FlashyPath, the architecture is also

designed the wrappers which manage measurement results from other applications

within fixed interval. Due to FlashyPath developed as non-active probing system,

wrapper programs are necessary to absorb new measurement results continuously.

Figure 4-2 illustrates wrapper architectures for data management. The

object-oriented wrapper is useful when a legacy program becomes the server in a

client/server application. The measurement result control wrapper is the

component which implements new measurement results in every ten minutes,

controlled by crontab scheduling. The crontab job runs as background job that

starts importing experiment results in every ten minutes.

start_time:1212609900

end_time:1213214700

expr_name:Harnet

expr_hrs:168

expDurPerSite_min:2

numSubExp:1008

curr_subExp:994

numMinReturnResult:10

data_path:/home/usthk_measure1/EXP0000018/analysis

src_list:/home/usthk_measure1/EXP0000018/analysis/opairlist

dest_list:/home/usthk_measure1/EXP0000018/analysis/targetlist

Table 3-3 Sample meta data description file for each sub experiment

The main wrapper control program, which is written in Perl script, executing a list

 47

of job for new measurement results and summarized below

1. Given import directory, the wrapper reads measurement results in form of

meta-data description file and experiment files from BACKUP directory.

2. Execute meta-data description file on each sub-experiment.

3. Read Traceroute result and execute IP-to-AS mappings that translate to

Autonomous System (ASes) data.

4. Read and Update measurement result file for each target node.

5. Execute Housekeeping functions to clean up measurement result for next

scheduling.

For wrapper design, we have performed seven days of experiments between 5 June

and 12 June 2008. Each experiment contains traceroute and measurement results

among measurement points. For each measurement result, we have traceroute

result which contains hop-by-hop information between source and target nodes

shown on Table 4-2. As we draw autonomous systems (ASes) graph layout, the

traceroute result must be translated as AS-like topology structure that contains AS

information on each IP address. Executing IP-to-AS mapping for traceroute file

has shown in Table 4-3. For each IP address on the file, the perl script will translate

 48

ASNum by using ip address through the URL

http://eu.asnumber.networx.ch/asnumber/asnum?ip=158.132.10.28. Therefore, the AS Num

will be returned as 4616 when ip address is registered and found, which is shown on

Table 4-4. Upon completion of IP-to-AS mappings, the output of AS file is stored

on the database for AS graph. Beginning at line 10 in figure 3-4, there is a sudden

timeout means packet does not return within the expected timeout window. For

IP-to-AS mapping, no AS path is returned because IP does not guarantee that all

the packets take the same route

#200806156201106

158.132.10.28 0.493 ms 1.049 ms 0.422 ms

158.132.254.65 0.706 ms 0.641 ms 0.672 ms

158.132.254.38 0.923 ms 0.720 ms 0.692 ms

158.132.12.20 1.324 ms 0.915 ms 1.047 ms

203.188.117.69 2.152 ms 1.994 ms *

203.188.117.6 3.097 ms 2.714 ms 2.724 ms

147.8.239.15 3.447 ms 3.557 ms 4.153 ms

147.8.240.228 2.778 ms 2.798 ms *

147.8.240.238 18.582 ms 18.623 ms 18.893 ms

* * *

www.hku.hk (147.8.145.43) [open] 3.448 ms 3.182 ms *

Table 3-4 Traceroute showing timeout result

 49

- <div class="asinfo"><div

class="title">AS 4616</div><table> <tr><td>Prefixes</td><td>:</td><td>22</td></tr><tr> <td>IP addrs</td><td>:</td>

<td>70912</td></tr> <tr><td>IPs/Prefix</td> <td>:</td><td>3223</td></tr><tr><td>AS name</td>

<td>:</td><td>PRISTINE-COMM</td></tr><tr><td>AS descr</td><td>:</td><td>Pristine Communications Limited

Information Technology

Services</td></tr><tr><td>Country</td><td>:</td><td>HK</td></tr><tr><td>Allocated</td><td>:</td><td>19950707</td></t

r><tr><td>RIR</td><td>:</td><td>APNIC</td></tr><tr><td /><td /><td /></tr></table><div class="title">BGP

Prefix</div><table><tr><td>Prefix</td> <td>:</td><td>158.132.0.0/16</td></tr></table></div>

Table 3-5 IP-to-AS mapping function returns XML result storing AS information on prefix, ip

address, IPs/Prefix, AS name, AS description, Country and BGP Prefix of IP address.

The processASmain perl script will reformat the XML result object and print below

AS path file format. The * symbol represents line 10 in traceroute results

mentioned above shows timeout mechanism.

11|158.132.10.28,4616,PRISTINE-COMM,HK

158.132.254.65,4616,PRISTINE-COMM,HK 158.132.254.38,4616,PRISTINE-COMM,HK

158.132.12.20,4616,PRISTINE-COMM,HK 203.188.117.6,3662,HARNET,HK9

203.188.117.6 147.8.239.15,4528,HKU-AS-AP,HK

147.8.240.228,4528,HKU-AS-AP,HK 147.8.240.238,4528,HKU-AS-AP,HK *

147.8.145.43,4528,HKU-AS-AP,HK

##DistinctPaths:1

##AllPaths:1

Table 3-6 AS file describes traceroute and AS relationship between two measurement points

For each experiment, the measurement results are controlled with a meta-data

description file in which it describes experiment activity.

Having completed importing AS measurement results, the wrapper implements the

measurement result data with respect to analyze items, such as RTT and forward

and backward loss. The PHP script read the results and computes average,

 50

minimum and maximum values for each item and update SQL database. Vern

Paxson warns that collection of Internet measurement data will affect performance

of wrapper program depends on system limitations, such as maximum file sizes and

number of result data file. Therefore, the wrapper program would take a few

seconds before starting importing measurement result data. Moreover, the

program enables to be executed with MySQL configuration data that users can

adjust wrapper result.

 51

Figure 3-3 Design of wrapper of measurement result collection

The performance of wrapper program would be affected by physical file

environment. Having created RRD file, the size approximates more 20M bytes

on each analyze item.

 52

3.4. ALIGNMENT OF RESULTS

Alignment of measurement results on source of data in different databases must be

aligned. Recalling FlashyPath is to keep continuous measurement result stored

on two databases, which output results are different. For this purpose,

FlashyPath is proposed to only receive XML data wherever the measurement

result is stored. It is known that RRDTool already provides standard xport

command, which dynamically export measurement results as XML format, as

visualization purpose for e2e infrastructures. Therefore, the SQL control

wrapper for constructing XML data from SQL database is required. Figure 3-4

illustrates the flow of measurement results between FlashyPath and SQL database.

It is found that object-to-XML wrapper for the database is to be built. The

wrapper would store measurement results as XML format from database and send

back to FlashyPath.

 53

Figure 3-4 Mechanism of alignment of round-robin and MySQL databases

Figure 7-1 in Appendix illustrates object-to-XML converter as PHP script which

converts SQL result object to XML output. Having embedded root element, each

result value will be quoted with user-defined child element. The advantage is not

to restrict that enrich flexibility for the developers. Started with HTML

Content-type as text/xml, the result will be thought of XML object and sent back

to FlashyPath for visualization.

RRDTool export function is executed by PHP function, which control the

 54

parameters sent from HTTP service in FlashyPath. The xport command provides

description of RRD such as

1. Start time

2. End time

3. Number of rows

4. Number of columns to be displayed

5. The names of legend

6. The time and value of each row

Table 3-7 The XML hierarchy of RRDTool xport function

3.5. DATABASE DESIGN

For database design for FlashyPath, we build a list of core tables which stores ASes

and timeseries information about measurement results. Generally, the user table is

end-users whose userID are placed on each experiment that can place different

measurement result templates that have created. FlashyPath defines template for

the experiment for which exprID is placed the measurement has taken place. The

userID and exprID are then actually derived from templateID field. For importing

function, the measurement will be stored when we have computed the statistics, it

will then update d_to_graph_item table with other important parameters, such as

destID, sourceID, probeSize, responseSize and itemID. Figure 3-5 shows

complete relationship between each table for measurement result for template

management.

 55

Figure 3-5 Database schema is developed for FlashyPath on AS paths and measurement results

Figure 3-6 The database of FlashyPath

 56

For the database design, the wrapper monitors specified directory hierarchy and

automatically restarts PHP programs which update measurement result to the table

d_to_graph_item. Supposed result data existed in default directory, a Perl program

called create_new_rrd.perl would create new RRD file storing one-month data if it

does not exist. Previous RRD file would be removed from directory. It ensures

that the RRD file would not be continuously grown. Moreover, the backup

directory will also be created when the measurement data has been updated for later

stage. Note that the create wrapper is to be executed once on each month and the

size approximately estimates 20M for each analyze item. Figure 3-7 has clearly

shown that the flow of create and update RRD for measurement results. The

2-minute aggregated values will be stored on MySQL database for monthly

measurement result. The timeseries data with respect to aggregated value will be

separately stored on each itemized RRD files for daily measurement purpose.

The RRD file is updated continuously until the end of month.

 57

Figure 3-7 RRD control wrapper is to create and update RRD file using RRDTool for each analyze

item

In detail, the round-robin database is to store measurement results on each item

among measurement points on every ten minutes continuously. On first day of

 58

each month, round-robin database for source and destination points is newly created

using RRDTool standard command. For example, a measurement result file name,

20080604200401836181_www.bre.polyu.edu.hk-80_0.measure.result, is stored

under a directory 1.1/result/20080604_result_1/1460_1460. The control wrapper

[create_new_rrd.php] will get information from the filename. The directory 1.1

tells us source of measurement result. The date 20080604 knows the experiment is

to be done. The target www.bre.polyu.edu.hk indicates the endpoint is to be

measured. Moreover, 1460_1460 shows the probeSize and responseSize on each

experiment. Therefore, RRDTool would create monthly RRD file using RRD create

function and illustrates below

rrdtool create rrd/1.1/1460/1460/2008-06-30_www.bre.polyu.edu.hk-80_23.rrd

-s 1 -b 1212249600

DS:ID_RTT_BY_PCAP_0:GAUGE:2592002:0:10000

RRA:AVERAGE:0.5:1:2592003

Table 3-8 RRD create function for source and destination nodes for June 2008

In other words, the RRD file is stored under the directory rrd/1.1/1460/1460 in

which the file is named 2008-06-30_www.bre.polyu.edu.hk-80_23.rrd. The file

name tells us that measurement results from the target www.bre.polyu.edu.hk are

stored between 2008-06-01 and 2008-06-30. The analyze item, 23, would be

appended at the end of the file in which data source (DS) is specified by

ID_RTT_BY_PCAP_0. The RRD would compute average on each second.

 59

Moreover, the parameter –s and –b are the step between measurement results and

start time of RRD file respectively.

3.6. VISUALIZATION MODULE

FlashyPath application is mainly designed as a Graphical User Interface so that we

can visualize measurement results by calling it. The visualization module is

mainly made up by Flash and Actionscript programming. The GUI allows the end

users to specify the AS paths between two measurement points to be measured,

together with traceroute result for the paths. That is, the user is requested login that

the system can load the template of measurement points.

FlashyPath requires authentication requests from end users. The login module

returns USER_ID of user upon the completion of authentication. The USER_ID is

primary key for users that not only determines the role in application; the key is also

used for linkage of other module, such as measurement template. The system

would automatically retrieve templates from database by SQL query upon

successful authentication. The measurement template, on the other hand, for

measurement points can be newly created, users can select measurement templates

stored on the system that minimizes the selection of measurement points every time.

 60

Figure 3-8 illustrates the flow of FlashyPath from AS topology infrastructures to

measurement results on multiple Internet paths.

Figure 3-8 Diagram showing FlashyPath executing topology graph with measurement result chart

 61

4. SOFTWARE DEVELOPMENT

In this section, we demonstrate how flash object as function or plugin is to be

created for FlashyPath application. As part of that demonstration I generally

develop a simple application that consists of a DataGrid, a Button and a WebService.

This is great for showing layout management, events, RPC calls and data binding.

Figure 4-1 Adobe Flex Builder 2 built on Eclipse version 2.0.1

The development tool enables intelligent coding, interactive step-through

debugging, and visual design of the user interface layout, appearance, and

behavior of rich Internet applications. In detail, Flex SDK comes with a set of

user interface components including buttons, list boxes, trees, data grids, several

text controls, and various layout containers. Charts and graphs are available as an

 62

add-on. Other features like web services drag and drop, modal dialogs, animation

effects, application states, form validation, and other interactions round out the

application framework. We outlined the basic skill that the simple application by

the Flex builder can create application quickly.

1. Define an application interface using a set of pre-defined components (forms,

buttons, and so on)

2. Arrange components into a user interface design

3. Use styles and themes to define the visual design

4. Add dynamic behavior (one part of the application interacting with another,

for example)

5. Define and connect to data services as needed

6. Build the source code into an SWF file that runs in the Flash Player

Table 4-1 the sample procedures of Flash to be implemented

Figure 4-2 Create Flex application in XML or web service from PHP

 63

We start developing FlashyPath with Flash integrating Flex with the builder is used.

Having launched successfully, Flex application can be built different level of data

management. For simplicity, FlashyPath is now picked the basic level on XML

or web service from PHP or JSP, shown on Figure 4-2. The other two options are

more complicated for advanced data binding services on large-scale infrastructure.

When the project is newly created, the source and design workplaces are displayed

in Figure 4-3, which designs MXML-based components. In designer view, the

Flash object can select and drag component directly from components list.

Figure 4-3 Flex Development Workplace in designer window

Alternatively, the designer may adjust the parameter of each component in source

 64

windows that can efficiently fine tune the property of components in making Flash

objects.

Figure 4-4 Source window can allow adjust the parameter of each Flash component

4.1. HTTP SERVICE

For data binding service, Table 4-2 is a simple example that shows how to use the

HTTPService tag within the Flex Builder to load data from a third domain.

<?xml version="1.0" encoding="utf-8"?>

<mx:Application xmlns:mx="http://www.macromedia.com/2005/mxml" xmlns="*">

<mx:Script>

<![CDATA[

import mx.controls.Alert;

private var url:String = "http://localhost/yourapp/getapp.php";

private function submitHandler ():void {}

]]>

 65

</mx:Script>

<mx:HTTPService id="httpserv" url="example.php" useProxy="false" resultFormat="xml"

method="POST" result="httpserv_result(event);" fault=" fault(event);"/>

<mx:Panel width="400" height="350" label="HTTPService Remote Data Test" >

<mx:TextArea id="outputField" width="100%" height="100%" />

<mx:Button label="Submit" id="mxSelectButton" click="submitHandler()"/>

</mx:Panel>

</mx:Application>

Table 4-2 HTTPService Tag for Flash object communicate data source through PHP gateway

Figure 4-5 login mxml invoke HTTP Service for user authentication

Flex has an MXML tag named mx:HTTPService that can also be used to connect to

a URL and get the data the provided by that URL. As with the HTTPService

ActionScript class, you use the URL property to identify the resource to connect to

and the send method to make the connection. You can embed an mx:Request tag

inside the mx:HTTPService to specify the values for any parameters the web service

 66

requires. The value for the mx:Request tag can be bound to a Flex control such as a

bindable variable or combo box. Nested inside the mx:Request tag will be tags that

have the name of the parameter and these tags will contain the values. For example:

<mx:request>

 < username >{_ username }</ username >

 < password >{_ password }</ password >

</mx:request>

Table 4-3 HTTP Service tag can specify any value of parameters for mx:Request tag

Alternatively, we could pass data to the URL web service is to create an Object that

includes the name-value pairs and use this Object as the argument for the send

method as we did with class HTTPService. Table 4-3 is code fragment for sending

request for authentication using named object value.

private function submitHandler ():void{

var param:Object = new Object();

param["username"] = _username;

param["password"] = _password;

httpserv.send(param);

}

Table 4-4 Named Object is created for send method of HTTPService class

When the data is returned to the Flex application, a result object is available. If you

set the result Format property of the mx:HTTPService tag to "xml", the result object

is recognized as XML for further processing in Table 4-5. You can bind the result

XML or a node value to other Flex controls.

 67

public function httpserv_result (evt:ResultEvent):void{

var res:XML = new XML(evt.result);

.....

}

Table 4-5 the function for return object from PHP

Figure 4-6 Main FlashyPath application with authentication function

4.2. ADOBE FLEX AND PHP

In PHP script, it will response the result on the request though HTTP services from

FlashyPath that create XML-format result. Figure 4-7 is code fragment managing

the authentication functions which the parameters of username and password are

sent from FlashyPath. If users are registered, the USER_ID and role of end-users

will be quoted and sent back to FlashyPath directly.

 68

Figure 4-7 PHP coding for user authentication functions

As a result, FlashyPath would receive returning XML looks something like this:

<user>

<username>admin</username>

<userid>1</userid>

<role>A</role>

<status>Y</status>

</user>

Table 4-6 the return object in form of XML containing user object

 69

4.3. FLEX GRAPH

As mentioned before, FlashyPath design AS-level graph to construct the Internet

Paths for measurement points. The Flex Visual Graph Library (flexvisgraphlib)

package is used for the FlashyPath, which is Flash object that enables to create

hierarchical graph for measurement points. As the library can be initialized as

form of MXML, the parameter of library can be adjusted for requirement of

autonomous system (AS) graph.

Table 4-7 Flex Visual Graph library for creating hierarchical graph for measurement points

Having the Internet paths from database selected, the Actionscript will generate

XML as the input of visual graph class. Each GraphXML file contains <Graph>

tag of which is a list of <Node> tag and <Edge>. ID attributes of nodes are used as

references in edge definitions, edges carry an attribute that defines directed edge in

which two nodes are connected. Node attribute contains description of node in

which whether node is host type.

 70

Figure 4-8 The Graph XML result object is data source of measurement points for Visual Graph

library

When visual graph object has been initialized in the application, the last thing is the

AS result object for drawing graph in Figure 4-9. The top of graph shows the

source node which the Internet Path comes from. The bottom is the destination

node the measurement results are monitored. Between the source and destination

nodes, the AS-level node will be hierarchically drawn. The red line represents

the measurement points to be examined from the end-users.

 71

Figure 4-9 The AS graph using flexvisgraphlib package

For the measurement result on Internet Paths, the dialogue box in Figure 4-9 shows

the selection with probeSize and responseSize. End-users may select all or some

of the Internet paths for showing measurement results separately.

 72

Figure 4-10 The measurement points for which monthly and daily measurement results are

visualized

As measurement results are drawn as Time sensitive graph, Flex Chart provides an

interface for developers binding the results. The following example is to

demonstrate how Flex Chart is to be created in easier way.

1. Create a new file and save it as RRDChart.mxml in the project

2. At the beginning of the file, insert a basic application skeleton with a

reference to the ActionScript file that is part of this tutorial's sample files:

3. Add a simple Line Chart control inside the application and connect it to a

simple dataProvider object.

4. Save your application and load it in the browser. Your chart should look

similar to Figure 4-11

Table 4-8 the procedures of building Flex Graph for measurement results

 73

Figure 4-11 Create empty Flex Chart for measurement result

To map the column's position by category, place a CategoryAxis object in the chart's

horizontalAxis property. Use a CategoryAxis object when you want to map a series

of discrete categories evenly along the axis onscreen. The CategoryAxis object

draws the categories from its own dataProvider property. In this tutorial, you use the

same dataProvider property to generate the category labels and specify which field

of the dataProvider property's content it should draw from by setting the

categoryField property.

1. Add a DateTimeAxis object to the horizontalAxis property inside the Line

Chart tag which can display time-sensitive data

2. Add a LinearAxis object to the verticalAxis property inside the Line Chart

tag

 74

<mx:horizontalAxis>

<mx:DateTimeAxis id="dtAxis" baseAtZero="false" displayLocalTime="true"

dataUnits="months"

dataInterval="1" parseFunction="dateParse" labelFunction="formatDateLabel" title="Time" />

</mx:horizontalAxis>

<mx:verticalAxis >

<mx:LinearAxis id="myLinearAxis" baseAtZero="false" autoAdjust="true"

alignLabelsToInterval="true" labelFunction="formaLabel" minimum="0"

maximum="100" interval="0.1"/>

</mx:verticalAxis>

Table 4-9 DateTimeAxis and VerticalAxis

A chart's relationship to its series is similar to a DataGrid control's relationship to its

columns: just as the DataGridColumn control indicates which fields of the

dataProvider property the grid should display, a series object indicates which fields

of the dataProvider property to render as columns, lines, plots, and so on. In

Figure 4-12, the monthly measurement results have been displayed by using the

Flex chart component. The legend of each measurement points will be

dynamically created that can be compared.

 75

Figure 4-12 Monthly interactive timeseries panel for multiple measurement points

4.4. CSS & SYTLE

Take a look at some styling code I added to my final version of the application (if

you've coded any CSS before, this will look familiar):

Panel

{

borderStyle: solid;

headerColors: #e7e7e7, #d9d9d9;

backgroundAlpha: 100;

paddingTop: 10;

}

List

{

paddingLeft: 10;

paddingRight: 10;

 76

paddingTop: 10;

paddingBottom: 10;

}

Table 4-10 Sample CSS and Style on Flex application

Flex's style system includes many different properties, and by creating your own

assets inside Flash or Photoshop, you can change the appearance of your application

entirely. Imagine changing the skin to match your company's branding and

marketing materials. With a little work, you could even create a skin to match the

default theme of Windows or Mac OS X. The possibilities are endless!

4.5. FLEX APPLICATION WITH RRDTOOL

To draw time series chart for daily measurement result that needs RRDTool and

PHP.

Start by setting up server with PHP. Create a PHP, e.g., t_select_rrd_data.php, in

your directory. It is note that RRDTool has been installed in the server. You may

type the command “rrdtool” to check the version

 77

Figure 4-13 RRDTool command line

The PHP script invokes system command on RRD like running in terminal. The

RRDTool would export the measurement results for two minutes started from

2008-06-05 08:06:06 and finished on 2008-06-05 08:08:06 from RRD file

2008-06-30_www.bre.polyu.edu.hk-80_23.rrd with respect to probeSize and

responseSize.

<?php

header("content-type: text/xml");

system('rrdtool xport --step 1 --start 1212624366 --end 1212624486

DEF:xx=rrd/1.1/1460/1460/2008-06-30_www.bre.polyu.edu.hk-80_23.rrd:ID_RTT_BY_PCAP_0:AVERAGE

XPORT:xx:"1.1-www.bre.polyu.edu.hk-80"');

?>

Table 4-11 RRDTool xport command for daily measurement results.

 78

Figure 4-14 Reload the browser and have a nice XML-version of dataset.

For daily measurement result for date 2008-06-06 has been created using RRDTool

result record. The right-top side of screen shows measurement boxes showing the

selection of time frame for user request. If the users click the period between 7:14

and 7:16, the timeseries chart for two-minute graph will be generated.

 79

Figure 4-15 Using RRDTool export function, daily measurement result from round-robin database

is created on the fly.

4.6. RRDTOOL (ROUND-ROBIN DATABASE)

RRDTool provides visualization features on displaying time-series measurement

result using standard xport command. It is a tool which uses RRD storing

time-series data in a round-robin format. Older data is average and finally moved

out as newer data is inserted. The theory behind is that granular data is helpful

when looking at recent events, but when looking at longer history, taking

two-minute averages is more than adequate. Another advantage of RRDs is that

old data is continually being removed. The size of the RRD does not change,

which means that each measurement in the RRD has a timestamp associated with it.

 80

Old items cannot be removed; you cannot enter items out of sequence. Based on

the features, users should carefully determine how large RRD adequate for data

storage. Experience has shown that small-sized RRD results recent data, such as 1

hour earlier, will be quickly removed while too large RRD may increase processing

and searching time.

For example, PHP scripting file named t_select_rrd_data is to query RRD files and

provide the value output of the files as a XML formatted file. It uses the rrdtool

xport function; although it polls RRD files for the values it has some "features"

which need to be implemented. However, the rrdtool xport function is restricted

by default to 400 rows. This means that querying an RRD for a timespan that

returns more than 400 rows (e.g. 5 minute Average RRA for a timespan of 2 weeks)

rrdtool transforms the results to fit the 400 rows restriction (changing the stepping

of the result, so that the results drop to 400). This behavior can be changed by using

the --maxrows flag, by using a custom value for the maxrows flag and overriding

the default maxrows setting of RRDTool we are able to produce the results with the

exact points needed (instead of the reduced that the default settings provide).

However, FlashyPath does not restrict maximum rows requirement. It is because

the measurement results are kept in each second with 2 minutes.

 81

I would suggest modifying the RRDTool xport function inside the

t_select_rrd_time.php to compute the rows needed for a provided RRDs file

including the timespan (e.g. 2 minutes AVERAGE for the timespan of 1 month) and

dynamically producing the needed --maxrows number.

 82

5. LIMITATIONS

During the development of FlashyPath, we have encountered difficulties for usage

of components on data-binding services and large volume of measurement results.

Moreover, possible vulnerability issues of Flash-based application will be also

outlined. This section would outline the difficulties we faced that can solve in

the future days.

 83

5.1. UNUSED RRD SPACE

FlashyPath is to read and visualize daily measurement results from RRD file of

Internet paths. Not only does the objective alleviate workload of MySQL

database, it also minimizes the database size and velocity of visualization between

client and server. However, we have experienced that RRD file size will vary

directly with the increasing number of analyze item and Internet paths. For the

start date of each month, round-robin database will be newly created on

performance metrics of two endpoints. In the project, ten analyze items are

available for Internet path measurement and shown in Figure 5-1. The statistics

has shown that the size is approximately computed as 20 Mbyte and 200 Mbyte

for one Internet path on monthly and yearly respectively.

Figure 5-1 List of available performance metrics

 84

Figure 5-2 Physical size of each Internet path on analyze item

On the other hand, the number of RRD file largely depends on number of Internet

path that is to be measured. Therefore, the total capacity of RRD will be

progressively increased for previous and current measurement results. Table 5-1

estimates the file size of RRD keeps growing when the number of analyze items

increased.

 10 15 20

Monthly 200M 300M 400M

Yearly 2400M 3600M 4800M

Table 5-1 The file size of RRD for performance metrics

Besides this, the current practice is to measure twenty-four Internet path on every

2 minute sequentially in an hour. Therefore, it only contains 86400 (2 * 60 * 24

* 30 days) seconds measurement results on each RRD file. Recalling the RRD

 85

create function, it however already create provide 25920000-second

(60*60*24*30 days) space on each month. Therefore, less than 1/30

(86400/25920000) file space would only be used for measurement results and

others are not used.

rrdtool create rrd/1.1/1460/1460/2008-06-30_www.bre.polyu.edu.hk-80_23.rrd

-s 1 -b 1212249600

DS:ID_RTT_BY_PCAP_0:GAUGE:2592002:0:10000

RRA:AVERAGE:0.5:1:2592003

5.2. TIME LAG

FlashyPath is originally to visualize the measurement results, which have been

collectively updated and computed, that exist time lag between collection and

visualization, incurring delays around ten minutes. ISP operators may only

monitor the performance metrics of Internet path from last update time that affects

the operation of diagnosis purposes. Most Internet monitoring systems are

streaming for any probing results from existing tools, such as Ping, Traceroute,

and display on the output screen. However, it would not ensure the data integrity

and avoid error-free data because the tools cannot verify the measurement results

instantaneously on the fly. Therefore, the time gap seems to act as buffer for

FlashyPath which has enough adequate resources for computation of measurement

results. However, it would determine wrong diagnosis decisions for Internet

 86

paths because of synchronization issues.

5.3. PHP INTERFACE BETWEEN FLASH AND SQL DATABASE

In order to retrieve large volume of measurement results on the fly, FlashyPath

transmits the XML result data through PHP interface, which directly connect to the

MySQL and round-robin database. Using POST/GET method, FlashyPath sends

request through HTTPService and invoke the PHP interface, which read the

database and create XML result object. Therefore, in Figure 5-1, FlashyPath

considers data binding over PHP interface that restricts the URL locator in

absolute mapping

<mx:HTTPService id="as_graph_item_serv"

url="http://10.20.30.40/FlashyPath/t_as_graph_item.php" useProxy="false" resultFormat="xml"

showBusyCursor="true" method="POST" result="as_graph_item_result(event);"

fault="as_graph_item_fault(event);"/>

Table 5-2 absolute URL locator if FlashyPath serves as standalone tool

On the other hand, large-sized measurement results harm FlashyPath stands Idle.

During the development, FlashyPath sends one-month data retrieval request to the

server, where XML result is to be constructed according to the response from

MySQL server. If the multiple requests send continuously, status of database

 87

becomes busy while XML is constructing. Therefore, FlashyPath needs awaiting

the response from server but server keeps busy. Consequently, FlashyPath

becomes white screen wait too long to refresh on the browser. The shortcoming

also appears on round-robin database, which shows daily measurement results.

5.4. SQL INJECTION

PHP interface between FlashyPath and database as backend infrastructure may be

susceptible to SQL injection. During the development, it is found that FlashyPath

visualizes incorrect measurement result if the SQL query is incorrect. FlashyPath

now sends HTTP request in plain text by POST method when I accidentally pass

wrong URL parameters. Therefore, it is further thought that attackers can inject

SQL by terminating the intended SQL statement with the single quote character

followed by a semicolon character to begin a new command, and then executing the

command of their choice.

If attacker amend the exprID as following value

1; DROP TABLE d_to_graph_item --

Table 5-3 Drop table SQL command if query value of FlashyPath request is changed

This results in the following statement being submitted to the database for execution.

Consequently, the table d_to_graph_item will then be permanently removed by the

 88

amended SQL query shown on Table 5-3. It notes that the double dash (--) denotes

a SQL comment and is used to comment out any other characters added by the

programming, such as the trailing quote.

SELECT start_time, end_time, stat_avg FROM v_to_graph_item_23 where

date_format(from_unixtime(start_time) , '%Y-%m-%d') = '2008-08-06' AND

exprID = 1; DROP TABLE d_to_graph_item --‘

Table 5-4 The SQL query will be amended that table is permanently removed.

5.5. TCP SOCKET VULNERABLE

Flash application would be vulnerable if the TCP socket connection is alive. It is

because plug-in does not retrieve FlashyPath directory from the network. Instead,

the browser downloads the application and spawns Flash, transferring origin by

host name. When the attackers crack the application, which attempts to open a

socket, Flash does a second DNS resolution and would pin to the target’s IP

address. FlashyPath restrict to employ URLLoader class for the loading image

and data because the class is not vulnerable to attacks which the browser to request

the URL. However, the Socket class on most application could still be used to

read and write on arbitrary TCP sockets. Figure 5-1 has shown that Flash player

version 9 stands high vulnerability on network attack.

 89

Figure 5-3 Percentage of impression of vulnerability (Source: adambarth9)

9 Experiment for dnrebinding.net Flash 9 advertisement on 2007

 90

6. CONCLUSION & FUTURE

WORK

In this paper, we have demonstrated FlashyPath developed as network monitoring

system which can visualize measurement results on e2e topology on multimedia

concepts. We have moreover designed methodologies on how Flash

multimedia objects integrate for monitoring functions that help display large

multiple measurement points on the web browsers. In order to accelerate design

monitoring tools on measurement points, FlashyPath employs IP-to-ASN mapping

task that translates IP address of traceroute result as AS-level nodes for

measurement points. Visual graph components can then efficiently display

monthly and daily measurement results between the source and destination nodes

on continuous purpose. For the sake of processing large volume of measurement

result, FlashyPath provides efficient visual chart components, which import

XML-style data, that performance of Internet paths can be continually shown.

Experience has shown that FlashyPath can be efficient on e2e topology if

interactive components for network monitoring data are well integrated.

 91

Moreover, the design of monitoring tool is also important when economical and

efficient advantages can be taken of. Therefore, one of the future improvement is

to revamp RRD module for new measurement results, which can minimize the

disk usage and capacity of Internet paths. For example, RRD file can eliminate

the unused space of RRD file that increases fetch time. We may newly create

RRD file for Internet path for 2-minute measurement results on demand and store

the meta information on MySQL database. One the other hand, FlashyPath

integrates with PHP interface is regarded as barrier, which restricts to develop

interoperability feature. Through the interface, the result from domain database

to XML object must be manually constructed. Moreover, the large-sized

measurement results for multiple points simultaneously would bring FlashyPath

become idle. One of the solutions is to strictly fragment the requests and time

controlled, which each fragmented requests is sent in fixed period, say, 5 seconds.

However, the alternative will be foreseeable that FlashyPath becomes slower on

multimedia components. For each request, it is highly recommended that unique

sequence number should be inserted that avoid out-of-order issue. Otherwise, the

measurement results will be reordered that diminishes the performance of

FlashyPath.

 92

For sake of developing interactive network monitoring tool, FlashyPath may be

inadequate model for ISP operators who can diagnose Internet paths that are

efficiently informed. Therefore, the tool should be integrated more interactive

model, such as radar graph, for visualization of Internet paths. Moreover,

FlashyPath currently supports XML-style format on exchange of measurement

results between client and server architecture. Therefore, it is highly

recommended that interactive monitoring tool support portable data type, such as

SOAP messages, for ease of data-binding feature, thus allowing the tool handle

measurement results more efficiently.

 93

7. APPENDIX

In the section, we would briefly illustrate how FlashyPath can be executed in your

environment with following software packages.

7.1. INSTALL APACHE 1.2.2 WITH PHP 5.0

Apache 1.2.2 is an open-source HTTP server for modern operating systems

including UNIX and Windows NT version. The binary distribution can be

downloaded in official website10 in Figure 7-1 and install in the home directory.

Having Apache been installed, PHP [48] can be integrated that enables to produce

dynamic web pages. PHP is a widely-used general-purpose scripting language

that is especially suited for web development and can be embedded into HTML.

For FlashyPath, PHP is to create XML object of measurement results with user

request and receive response from databases, and finally send back as data-binding

services.

10 The latest version of Apache HTTP server can be downloaded from
http://httpd.apache.org/download.cgi

 94

Figure 7-1 Binary distribution can be downloaded from Apache project web site

Figure 7-2 PHP official web site

 95

Figure 7-3 Install Apache 1.2.2 with PHP packages

7.2. INSTALL MYSQL AND RRDTOOL DATABASES

In order to store measurement results for FlashyPath, databases are required to be

stored. MySQL is a relational database management system (RDBMS) worked

on many platforms. Simple functions are included

1. Cross-platform support

2. Stored procedures

3. Triggers

4. Cursors

5. Updatable Views

Table 7-1 Sample MySQL functionalities

On the other hand, RRDTool is the industry standard, high performance data

logging and graphing system for time series data. MySQL differs from RRDTool

in command syntax on data management and illustrate sample for selection of

measurement results from each database.

 96

SELECT * from d_to_graph_item;

Table 7-2 SELECT statement for measurement results on MySQL database

rrdtool fetch rrdfile AVERAGE -r 900 1216537200 1216537800

Table 7-3 RRDTool fetch function

Figure 7-4 MySQL official web page

Figure 7-5 RRDTool official web page

Having RRDTool successfully installed in your environment, you may check by

phpinfo.php and find that RRDTool extension for PHP environment is supported.

Figure 7-6 rrdtool support for PHP

7.3. INSTALL FLASHYPATH BINARY DISTRIBUTION

Create source directory in Apache directory in which FlashyPath can be executed

 97

Flashypath-bin-1.0 zip is latest distribution of FlashyPath including the binary

component with PHP scripting for wrapper programs and data-binding services.

Figure 7-7 Flash component in HTML tag

7.4. INSTALL FLASH PLAYER 9.0 OR ABOVE

In order to execute FlashyPath object on the web, you should download flash player

9.0 in client machine. Flash player 9.0 is minimum requirement that FlashyPath

can only be executed.

 98

Figure 7-8 Flash Player 9.0 for executing FlashyPath

 99

7.5. SOURCES CODE

7.5.1. TRACEROUTE MEASUREMENT RESULTS FOR

PERFORMANCE METRICS

if (count($res_expr) > 0){

foreach ($res_expr as $expr) {

 $path = $dir . $sep . $planetLab["hostID"];

 if (is_dir($path) && is_readable($path)) {

 $cur_subExp_dir = $dir . $sep . $planetLab["hostID"] . $sep . "result" . $sep .

$expr["folder"] . "_result_" . $expr["curr_subExp"];

 $curDir = scanDirectories($cur_subExp_dir, array(".result"));

foreach ($curDir AS $file){

 list($h, $var1, $www, $asgraph, $pid, $result, $result_dir, $probing,

$result_file) = split("/", $file);

 list($edate, $result_id, $counter) = split('_', $result_dir);

 list($probeSize, $responseSize) = split('_', $probing);

 list($udate, $destip, $inst) = split('_', $result_file);

/* ---

 Get planetlab source id

 -- */

$sql = sprintf("SELECT s.expr_source_id, s.expr_ID, s.hostID, s.hostname FROM

d_expr_source s, d_expr e WHERE s.expr_ID = e.id and e.exprID ='%s' and s.hostID = '%s'",

$curr_exp, $pid);

 $expr_source_id = db_fetch_cell($sql,"expr_source_id");

/* ---

 Get destination id

 -- */

 $sql = sprintf("SELECT d.expr_ID, d.expr_destip_id , d.expr_destip, d.expr_ip FROM

d_expr_destip d, d_expr e WHERE d.expr_ID = e.id and e.exprID ='%s' and d.expr_destip = '%s'",

$curr_exp, $destip);

$expr_destip_id = db_fetch_cell($sql,"expr_destip_id");

$fp = fopen($file, 'r') or exit("Unable to open file!");

 $results = array();

 while (!feof($fp)){

 $s = fgets($fp);

 100

 if ($s != ""){

 $results[] = $s;

 }

 }

 fclose($fp);

 $result = array(); // $result[$type][$time][$count] = value

$result_time = array(); // $result_time[$type] = time

 foreach ($results AS $res){

 $data = split(',', $res); // 0 - time, 1 - eventid, 2 - value

 if (!isset($data[1]) || !isset($data[2])){

 continue;

 }

 $sec = floor($data[0]);

 // check event id

 if (checkExist($typeID_list, $data[1], "itemID")){

 if (!isset($result[$data[1]][$sec])){

 $result[$data[1]][$sec][0] = $data[2];

 if (!isset($result_time[$data[1]])){

 $result_time[$data[1]] = array();

 }

 array_push($result_time[$data[1]], $sec);

 }else{

 array_push($result[$data[1]][$sec], $data[2]); // insert to the end

 }

 }else{

 handle_special_type($result, $result_time, $data);

 }

 }

 aggregate_special_case($result, $result_time);

//---

// Each item

//---

foreach ($typeID_list as $type){

if (!isset($result[$type["itemID"]]) || !isset($result_time[$type["itemID"]])){

 continue;

 }

 101

 sort($result_time[$type["itemID"]]);

 reset($result_time[$type["itemID"]]);

 $dates = getDateV($edate);

 $range = extract_trial($result_time[$type["itemID"]]);

 //for a combined graph of this type

 $type_length = 0;

 $type_start = 0;

 $type_end = 0;

 $rrdFile_type = $dates["format"] . "_" . trim($destip) . "_" . $type["itemID"] ;

 $cmd_type = "rrdtool update " . DIR_RRA . $sep. $pid . $sep . $probeSize . $sep .

$responseSize . $sep . $rrdFile_type . ".rrd ";

 $stat_type = cal_statistics($result[$type["itemID"]], $result_time[$type["itemID"]],

in_array($type["itemID"], $type_multiple), in_array($type["itemID"], $type_percent),

in_array($type["itemID"], $type_ignore_zero), in_array($type["itemID"], $type_ignore_negative));

 $vrule = '';

 $trial_count = 0;

 $rra_value_type_count = 0;

 foreach ($range as $trial){

 //------------ create rrd file

 if ($type_start == 0){

 $type_start = $trial["start"] - 1;

 }

 $rra_value_count = 0;

 $trial_count++;

 //Create the period separator, use blue color to indicate every 5 period

 if ($vrule != '')

 $vrule .= ',';

 $vrule .= ($type_length + $type_start + $expect_expr_length + 1);

 if (($trial_count % 5) == 0){

 $vrule .= '#00CCFF';

 }else{

 102

 $vrule .= '#EDD3D5';

 }

 if (!isset($trial["keys"])){

 $cmd_type .= ($type_length + $type_start + 1) . ':0 '; // set null period as 0

 $type_length += $expect_expr_length + 1;

 $cmd_type .= ($type_length + $type_start - 1) . ':0 '; // set null period as 0

 continue;

 }

 $rrdFile = $udate . "_" . trim($destip) . "_" . $type["itemID"] . "_" . $trial_count;

 $rrd_create = array("filename" => (DIR_RRA . $sep . $pid . $sep . $probeSize . $sep .

$responseSize . $sep . $rrdFile . ".rrd"), "step" => 1, "start" => ($trial["start"] - 1));

 $rrd_create["ds"][0] = array("name" => $type["item_short_name"], "type" => "GAUGE",

"length" => ($expect_expr_length + 2), "min" => 0, "max" => 10000000);

 $rrd_create["rra"][0] = array("type" => "AVERAGE", "step" => 1, "length" =>

($expect_expr_length + 3));

 create_rrd_dbase($rrd_create);

 $cmd = "rrdtool update " . DIR_RRA . $sep . $pid . $sep . $probeSize . $sep . $responseSize .

$sep . $rrdFile . ".rrd ";

 $type_end = $trial["end"];

 $stat = cal_statistics($result[$type["itemID"]], $trial["keys"], in_array($type["itemID"],

$type_multiple),

 in_array($type["itemID"], $type_percent), in_array($type["itemID"], $type_ignore_zero),

in_array($type["itemID"], $type_ignore_negative));

 foreach ($trial["keys"] as $time){

 if ($time-$trial["start"] > $expect_expr_length){ // ignore those data outside expected

experiment length

 $result[$type["itemID"]][$time] = -10000; // indicate the end of period

 break;

 }

 $row_count = 0;

 $total = 0;

 foreach ($result[$type["itemID"]][$time] as $row){

 if (in_array($type["itemID"], $type_multiple)){ //convert floating point number

like ms to integer

 $row *= 1000;

 103

 }

 if (in_array($type["itemID"], $type_percent)){

 $row *= 100;

 }

 if (in_array($type["itemID"], $type_ignore_zero)){

if (round($row) == 0){

 continue;

 }

 }

 if (in_array($type["itemID"], $type_ignore_negative)){

 if ($row < 0){

 continue;

 }

 }

 // find out those values that > 3sd or <3sd and ignore it

 if ($row > ($stat["average"] + ($stat["sd"] * 3)) || $row < ($stat["average"] -

($stat["sd"] * 3))){

 $content = "In file : " . $path . $each . " Key = " . $time . "\n" . "Type : " .

$type["itemID"] . " Average : " . $stat["average"] . " Standard deviation = " . $stat["sd"] . " value

= " . $row . "\n";

 if (fwrite($log_file, $content) === FALSE) {

 echo "Cannot write to log file";

 exit;

 }

 if (in_array($type["itemID"], $type_need_filter)){

 continue;

 }

 }

 if ($stat["max"] < $row){

 $stat["max"] = $row;

 }

 if ($stat["min"] > $row){

 $stat["min"] = $row;

 }

 104

 if ($stat_type["max"] < $row){

 $stat_type["max"] = $row;

 }

 if ($stat_type["min"] > $row){

 $stat_type["min"] = $row;

 }

if (in_array($type["itemID"], $type_average)){

 $total += $row;

 $row_count++;

 }else{

 $total += $row;

 }

}

if (in_array($type["itemID"], $type_ignore_zero)){

 if ($total == 0){

continue;

 }

}

if ($row_count > 0){

 $sec_value = ($total/$row_count);

}else{

$sec_value = $total;

}

if (in_array($type["itemID"], $type_integer)){

 $sec_value = round($sec_value);

}

$rra_value_count++;

$cmd .= $time . ':' . $sec_value . ' '; // concat time and value into rrdtool update command

$cmd_type .= ($time - $trial["start"] + $type_length + $type_start) . ':' . $sec_value . ' ';

}

$type_length += $expect_expr_length + 1;

if ($rra_value_count == 0){

 105

 continue;

}

$rra_value_type_count += $rra_value_count;

cal_special_type($result, $type["itemID"], $trial["keys"], $stat);

$hrule = '';

 // put the period graph detail into mysql and input data into rrd format file

 $sql = "insert into d_to_graph_item (destID, sourceID, probeSize, responseSize,

itemID, graph_start_time, graph_end_time, start_time, end_time, rra_location, image_location,

instance_no, expr_ID, stat_max, stat_min, stat_avg, stat_sd, num_of_sample, num_total,

other_comment, hrule) values (" . $expr_destip_id . ", " . $expr_source_id . ", " . $probeSize . ", " .

$responseSize . ", " . $type["itemID"] . ", " . $trial["start"] . ", " . ($trial["start"] +

$expect_expr_length) . ", " . $trial["start"] . ", " . ($trial["start"] + $expect_expr_length) . ", '" .

$rrdFile . ".rrd', '" . $rrdFile . ".png', 0 , '" . $curr_exp . "', " .$stat["max"] . ", " . $stat["min"] . ", " .

$stat["average"] . ", " . $stat["sd"] . ", " . $stat["count"] . ", " . $nall_value[$trial_count] . ", '', '" .

$hrule . "')";

 shell_exec($cmd);

 mysql_query($sql);

 }

 $fname = $dates["format"] . "_" . trim($destip) . "_" . $type["itemID"] ;

cal_special_type($result, $type["itemID"], $result_time[$type["itemID"]], $stat_type);

 $hrule = '';

 // create horizontal lines on rrd graph

 if (in_array($type["itemID"], $type_integer)){

 $hrule = round($stat_type["average"]) . '#00FF66:Average,' .

round($stat_type["median"]) . '#FFFF00:Median,' .

 round($stat_type["lq"]) . '#0000FF:Lower-quartile,' . round($stat_type["uq"]) .

'#FF00FF:Upper-quartile';

 }else{

 $hrule = ($stat_type["average"]) . '#00FF66:Average,' . ($stat_type["median"]) .

'#FFFF00:Median,' . ($stat_type["lq"]) . '#0000FF:Lower-quartile,' . ($stat_type["uq"]) .

'#FF00FF:Upper-quartile';

 }

 106

 // update statistical information in MYSQL database

 $sql = "insert into d_to_graph_item (destID, sourceID, probeSize, responseSize,

itemID, start_time, end_time, graph_start_time, graph_end_time, rra_location, image_location,

instance_no, stat_max, stat_min, stat_avg, stat_sd, stat_lq, stat_uq, stat_median, num_of_sample,

num_total, other_comment, vrule, hrule, source_file,backup, expr_ID) values (" . $expr_destip_id .

", " . $expr_source_id . ", " . $probeSize . ", " . $responseSize . " , " . $type["itemID"] . ", " .

$type_start . ", " . ($type_start + $type_length) . ", " . $type_start . ", " . $type_end . ", '" . $fname .

".rrd', '" . $fname . ".png', 0, " . $stat_type["max"] . ", " . $stat_type["min"] . ", " .

$stat_type["average"] . ", " . $stat_type["sd"] . ", " . $stat_type["lq"] . ", " . $stat_type["uq"] . ", " .

$stat_type["median"] . "," . $stat_type["count"] . ", 0, " ."'From " . date('Y/m/d G.i.s O', $first) . "

To " . date('Y/m/d G.i.s O', $last) . "', '" . $vrule . "', '" . $hrule . "', '" . addSlashes($result_file) .

"','N','" . $curr_exp . "')";

if ($debug){

//print "\n [update_result_data.php] DEBUG : sql = $sql\n";

}

// update rrd file with data

shell_exec($cmd_type);

mysql_query($sql);

}

unset($nall_value);

unset($result);

unset($result_time);

}

}

}

}

 107

8. REFERENCES

1. Adobe's Flex SDK http://www.adobe.com/products/flex/

2. Adobe Flex http://en.wikipedia.org/wiki/Adobe_Flex

3. Asgarit, P. Trimintzios, M. Irons, G. Pavlou, R. Egan, S. V. D. Berghe, A

Scalable Real-time Monitoring System for Supporting Traffic Engineering

4. Ahluwalia A K, Jonker P, Young I T, 2000, An interactive image processing

course for the web, Proceedings of First International conference on Image and

Graphics, pp. 589-593

5. Hussain, G. Bartlett, Y. Pryadkin, J. Heidemann, C. Papadopoulos, and J.

Bannister. 2005, Experiences with continuous network tracing infrastructure,

In Proceeding of the 2005 ACM SIGCOMM workshop on Mining Network

Data, pages 185-190, 2005.

6. Donnet, P. Raoult, T. Rriedman, M. Crovella, Efficient Algorithms for

Large-Scale Topology Discovery, In Proc. ACM Sigmetrics. Jun. 2005

7. Courcoubetis and V. A. Siris, 1999, Measurement and analysis of real network

traffic, University of Crete and Institute of Computer Science, Greece.

8. Plonka, 2000, Flowscan: A network traffic flow reporting and visualization

tool. In LiSA ’00: Proceedings of the 14th USENIX conference on System

Administration, pages 205-318: USENIX Association, 2000.

9. N. Hu, 2006, Network Monitoring and Diagnosis Based on Available

bandwidth Measuremnt, Carnegie Mellon University.

10. Flex Visual Graph Library from http://code.google.com/p/flexvizgraphlib/

11. F. Qi, J. Zheng, W. Jia, and G. Wang, Available Bandwidth Measurement

Schemes over Networks, Central South University, China

12. Inferring AS-level Internet Topology from Router-Level Path Traces, in Proc.

of SPIE ITCom, 2001.

13. J. Alberi, T. Chen, S. Khurana, A. Mcintosh, M. Pucci and R. Vaidyanathan,

2001, Using Real-Time Measurements in Support of Real-Time Network

Management, Applied Research at Telcordia Technologies, Inc.

14. J.Oberheide, M. Karir and D. Blazakis, 2006, VAST: Visualizing

Autoonomous System Topology

15. N. Hu and P. Steenkiste, Emodis – An End-Based Network Monitoring and

Diagnosis System, 2005 (http://www.cs.cmu.edu/~hnn/thesis/)

 108

16. N. Brwonlee and K.C., Claffy, Internet Measurement, IEEE, 2004

17. perfSONAR (Performance focused Service Oriented Network monitoring

ARchitecture) http://www.perfsonar.net/

18. T. Hansen, J. Otero, T. McGregor, H Braun, 2000, Active Measurement Data

Analysis Techniques, University of Waikato, New Zealand

19. N. Nilsan and A. Ronen, 2001, Algorithmic mechanism design, Games and

Economic behaviour, pages 166-196.

20. P. Sessini, 2005, Internet Traffic Measurement, Department of Computer

Science, University of Calgary, Canada.

21. R. Caceres, N. Duffield, A. Feldmann, J. Friedmann, A. Greeberg, R. greer, T.

Johnson, C. kalamanek, B Krishnanam, F True, and J Merwe, 2000,

Measurement and Analysis of IP Network Usage and Behavior, IEEE

Communications Magazine, 38(5)

22. S. Jaiswal, G. Iannaccone, C. Diot, J. Kurose, D. Towsley, 2004, Inferring TCP

Connection Characteristics Through Passive Measurement, IEEE

23. V. Paxson, Strategies for Sound Internet Measurement, Berkeley, USA

24. Continuous online extraction of HTTP traces from packet traces

25. Visualizing Internet Topology at a Macroscopic Scale

http://www.caida.org/research/topology/as_core_network

26. P. Saraiya, P. Lee, C. North, Visualization of Graphs with Associated

Timeseries Data, Department of Computer Science, Virginia Polytechnic

Institute an State University, USA

27. V. Paxson, Strategies for Sound Internet Measurement

28. W. Yurick, Visualizing NetFlows for Security at Line Speed, NCSA

29. Xiao Qing Zhu, Yu Jin Zhang, 2001, Wei Jin Liu, Evaluation and Comparison

of Web Developmental Tools and Technology, Tsinghua University, Beijing

30. Y. Zhao, Y. Chen and D. Bindel, 2006, Towards Unbiased End-to-End

Network Diagnosis, SIGCOMM

31. RRDTool http://oss.oetiker.ch/rrdtool

32. Cytoscape: Analyzing and Visualizing Network Data

http://www.cytoscape.org

33. SmokePing http://oss.oetiker.ch/smokeping

34. Cacti: The Complete RRDTool-based Graphing Solution http://www.cacti.net

35. R. Govindan, H. Tangmunarunkit, 2000, Heuristics for Internet map

discovery. In Proceeding of IEEE Infocom, Tel Aviv, Israel.

36. Skitter: Macroscopic Topology Measurements

http://www.caida.org/tools/measurement/skitter/

37. B.Cheswick, H. Burch, 2000, Internet Mapping Project,

http://cm.bell-labs.com/who/ches/map

 109

38. IP-to-ASN Translation

http://rainbow.mimuw.edu.pl/SR/prace-mgr/szymaniak/node35.html

39. R. Siamwalla, R. Sharma, and S. Keshav, 2006, Discovering Internet

Topology, Cornell network Research Group, Cornell University, Ithaca, NY

40. Neil Spring, 2004, Efficient discovery of network topology and routing policy

in the Internet, PhD Thesis, University of Washington, 2004

41. B. Lowekamp, B. Tierney and L. Cottrell, 2003, Enabling Network

Measurement Portability through a Hierarchy of Characteristics, IEEE

42. A. Ciuffoletti and Y. Marchetti, 2008, End-to-end Network Monitoring

Infrastructure, INFN-CNAF

43. A. Phipps, 2005, Network performance monitoring architecture. Technical

Report EGEEJRA4-TEC-606702-NPM NMWG Model Design, JRA4 Design

Team, September.

44. EGEE Network Perfomance Monitoring - Diagnostic Tool

http://www.egee-npm.org/dt/

45. VisoNETUI

http://158.132.10.164:25001/cacti/plugins/visonetui/main_visonetui.php

46. D. Agarwal, J. González, G. Jin, B. Tierney, 2003, An Infrastructure for Passive

Network Monitoring of Application Data Streams, Proceedings of the 2003

Passive and Active Monitoring Workshop

47. Multimedia Definition http://en.wikipedia.org/wiki/Multimedia

48. PHP http://en.wikipedia.org/wiki/PHP

49. A list of Interactive tools http://www.vbns.net/stats/flows/html/level0/

50. Rich Internet Applications: Extraordinary interactive experiences, Gartner

RAS Core Research

51. L. Colitti, G. Battista, F. Mariani, M. Patrignani, M. Pizzonia, 2005 Visualizing

Interdomain Routing with BGPlay, Journal of Graph Algorithms and

Applications, vol. 9, no. 1, pp. 117–148

52. Z. Mao, J. Rexford Jia, W, Randy and H. Katz, 2003, Towards an Accurate

AS-Level Traceroute Tool, SIGCOMM'03

53. Visualizing Internet topology at a macroscopic scale,

http://www.caida.org/analysis/topology/as_core_network/.

54. H. Chang, S. Jamin, and W. Willinger, 2001, Inferring AS-level internet

topology from router-level path traces, In Processing of Workshop on

Scalability and Traffic Control in IP Networks, SPIEITCOM Conference

55. R. Mahajan, D. Wetherall, and T. Anderson, Understanding BGP

misconfigurations, in Proc. ACM SIGCOMM, August 2002.

56. Z. Mao, D. Johnson, J. Rexford, J Wang and R. Katz, 2004, Scalable and

Accurate Identification of AS Level Forwarding Paths, IEEE

 110

57. I. Khalifa, 2002, Characterization of the Internet at the AS Level, School of

Engineering Science, Simon Fraser University

58. Z. Mao, J. Rexford, J. Wang, and R. Katz, 2003, Towards an accurate as-level

traceroute tool, Proceedings of the 2003 conference on Applications,

technologies, architectures, and protocols for computer communications,

pages 365–378, New York, NY, USA

59. F. Zhao, V. R. Vemuri, S. F. Wu, 2006, Interactive Informatics on Internet

Infrastructure

60. J. Heer, S. Card, J. A. Landay, 2005, prefuse: a toolkit for interactive

information visualization, ACM 1-58113-998-5/05/0004

61. B. Myers, S. Hudson, and R. Pausch, 2000, Past, Present, and Future of User

Interface Software Tools, ACM Transactions on Computer-Human Interaction

62. P. Gestwicki and B. Jayaraman, Interactive Visualization of Java Programs,

Department of Computer Science and Engineering, University at Buffalo,

Buffalo, NY, USA

