
Novel approaches to end-to-end packet reordering measurement

Xiapu Luo and Rocky K. C. Chang
Department of Computing

The Hong Kong Polytechnic University
Hung Hom, Kowloon, Hong Kong, SAR, China
Email: {csxluo|csrchang}@comp.polyu.edu.hk

Abstract

By providing the best-effort service, the Internet Protocol
(IP) does not maintain the same order of packets sent out
by a host. Therefore, due to the route change, parallelism
inside a switch, and load-balancing schemes, IP packets
can be received in an order different from the original one.
Such packet reordering events could cause serious perfor-
mance degradation in TCP and UDP applications. As a re-
sult, a number of measurement methods have recently been
proposed to enable any Internet host to detect packet re-
ordering from itself to another host. However, these meth-
ods have encountered a number of practical difficulties,
such as rate-limiting and filtering imposed on ICMP and
TCP SYN packets. Moreover, some of the methods can-
not detect packet reordering in all scenarios. In this paper
we present three new methods for end-to-end packet re-
ordering measurement. Since these methods are based on
the TCP data channel, the probing and response messages
will not be affected by any intermediaries on an Internet
path. We have validated and tested the methods in 20 most
common systems and implemented them in a tool called
POINTER. We also present measurement results obtained
from 200 websites in the Internet.

1 Introduction

Packet reordering, which was first identified in the pioneer-
ing work of Paxson [1], is still a common phenomenon
in the Internet today [2, 3]. The packet reordering is the
result of parallelism in network components, e.g., routers
and switches, route instability, and load balancing mech-
anisms [2]. It is well known that packet reordering can
adversely affect the performance of TCP and UDP based
applications [4, 5, 6]. For example, a TCP flow may enter
the fast retransmit state or timeout state if it misinterprets
out-of-order delivery as packet losses [4]. To alleviate the
effect on the TCP throughput, several proposals have been
made to make TCP more robust to packet reordering events

[7, 8, 9, 10, 11]. Furthermore, malicious packet reordering
can be used to launched Denial-of-Service attacks [12].

Therefore, it is important to measure packet reordering
[17] and to quantify the degree of reordering [13, 14]. Pre-
vious works have studied various characteristics of packet
reordering, such as its frequency, magnitude, and its re-
lationship with other factors. They can be categorized
into two main classes—passive measurement [15] and ac-
tive measurement [1, 2, 3, 5, 6, 16, 17, 18]. In this pa-
per, we concentrate on the active measurement approaches,
which can be further classified into two groups. The first
is referred to as bulk-transport based measurement that ex-
changes a relatively large amount of real application traffic
between many participating sites [1, 3, 5, 6, 16]. The sec-
ond is packet-train based measurement that sends a train of
probing packets, and the feedback information is then used
to infer the presence of packet reordering [2, 17, 18].

The main advantage of the bulk-transport based mea-
surement is their ability to measure the impact of packet re-
ordering on real applications and on different transport pro-
tocols. Moreover, they can observe the packet reordering
phenomena in both the forward-path and backward-path by
examining traffic traces in different directions. However,
these approaches require coordinations among various par-
ticipating sites, which obviously cannot be done easily for
an arbitrarily large network scale. The packet-train based
measurement, on the other hand, allows any Internet host to
measure packet reordering on the paths between itself and
any other host. Moreover, this approach usually requires
only a small number of packets to conduct the measure-
ment.

The focus of this paper is on the packet-train based mea-
surement methods, which unfortunately still suffer from a
number of practical limitations. First, the ICMP and TCP
packets used in the ICMP-based approach [2] and the TCP
SYN Test [17] are often rate-limited or even filtered by fire-
walls [19]. Second, both the Dual Connection Test [17]
and Tulip [18] rely on the assumption that the ID field in
the IP header (IPID) increases monotonically across TCP

connections for the same server. This assumption, unfor-
tunately, does not hold in some popular systems, such as
Linux and OpenBSD. Third, the Single Connection Test
[17] may yield inaccurate results due to the delayed ac-
knowledgment algorithm. The Dual Connection Test also
suffers from inaccurate results in the presence of load bal-
ancing schemes. Fourth, both the TCP Data Transfer Test
[17] and the ICMP-based method [2] cannot distinguish all
packet reordering scenarios. Moreover, all the aforemen-
tioned methods detect end-to-end packet reordering. That
is, two packets can arrive inorder even though they may be
reordered in an even number of times on the path.

In this paper we propose three new methods to end-
to-end packet reordering measurement, which can detect
all four reordering cases: no-reordering, forward-path re-
ordering, backward-path reordering, and dual-path re-
ordering. Since they use TCP data as probing messages
in a single connection, the probing messages and the re-
sponses will not be filtered by firewalls or routers. More-
over, each measurement is conducted in one TCP session;
therefore, the measurement result will not be affected by a
content-blind load balancing scheme. To reduce the impact
on the normal network traffic, each method injects only a
minimal number of packets into the network, and the size
of the response packets is also small.

The three methods differ from each other only in the
mechanisms to trigger the required responses from the re-
mote host, catering for the diverse TCP implementations
in the Internet. Another important feature of our methods
is that they only rely on the TCP sliding window protocol,
which is supported by all TCP variants (e.g. TCP Tahoe,
TCP Reno, TCP NewReno, etc.) [21, 22]. Moreover, our
approaches make use of customized receiving window size
and MSS (Maximum Segment Size) to control the num-
ber and size of response packets. Furthermore, we have
employed a timeout mechanism to discard suspicious sam-
ples as a result of packet losses. We have implemented the
three methods in a tool called POINTER, and have thor-
oughly tested and verified the approaches in a test-bed and
200 websites.

The rest of the paper is organized as follows. In sec-
tion 2, we introduce the principles behind the three new
approaches, including a short review on the TCP sliding
window protocol. Based on the general approach, we de-
tail in section 3 the three measurement methods. In sec-
tion 4, we present the measurement results obtained from
a test-bed and the Internet for the validation of the meth-
ods. Moreover, we have analyzed the correlation of packet
reordering events on a backward path from two websites,
and discovered that they share the same path where packet
ordering occurs. We finally conclude this paper in section
5 with current work.

2 The fundamental principles of the new ap-
proaches

In the next subsection we first discuss some general fun-
damental principles for the design of a reordering detec-
tion scheme. The results presented there will then lead to
a general requirement for designing a comprehensive and
effective scheme to detect packet reordering. After that, we
sketch our approach of meeting this requirement based on
the TCP sliding window mechanism. In the rest of this pa-
per, we refer the host that performs packet reordering mea-
surement to a client, and the host on the other side of the
TCP connection to a server.

2.1 The fundamental principles

Proposition 1. Assume that during each probing session a
client can trigger k distinguishable responses out of a set of
n possible ones from a server. Then, n must be at least 3 in
order to discriminate all the 4 packet reordering scenarios.

Proof. Note that the k responses received from the server
are ordered according to their times of generation. There-
fore, the client can trigger a set of P (n, k) = n!/(n−k)! k-
response. In order to differentiate the 4 reordering scenar-
ios, clearly n ≥ 3, because P (2, k) < 4, and P (n, k) > 4
for some k > 0 when n ≥ 3.

Proposition 2. Given that the smallest n is used, the min-
imum number of distinguishable responses from a server
required for a complete reordering detection during each
probing session is 2. Therefore, if one probing message
will trigger at least one distinguishable response, then the
client only needs to send 2 probing messages during each
session.

Proof. There are two possible cases for n = 3: k = 2, 3
for which P (3, 2) = P (3, 3) = 6 > 4.

Corollary 1. Consider that a client sends 2 probing
messages—M1 first and then M2—to trigger a generation
of 2 normal, distinguishable responses from a server, de-
noted by R1 and R2. Then, the scheme can distinguish all
4 reordering cases if M1 and M2 can trigger another dis-
tinguishable response R3, and, by definition, R3 is not a
normal response.

Proof. This is a direct consequence of Proposition 2, which
requires one more distinguishable response for a complete
reordering detection.

The result of Corollary 1 gives us a hint in designing a
comprehensive and effective reordering detection scheme.
First of all, consider that the server responds with R1 and
R2 upon receiving M1 and M2 in order. That is, if there
is no forward-path reordering, R1 will be generated first

Table 1: Variables used in the TCP sliding window mecha-
nism.

Name Description

SND.UNA Oldest unacknowledged sequence number (SN)

SND.NXT SN of the next segment to be sent

SND.WND Size of the send window

RCV.NXT SN of the next segment to be received

RCV.WND Size of the receive window

SEG.ACK Acknowledgment number (AN) of a segment

SEG.SEQ First SN of a segment

SEG.LEN The length of a segment in bytes

and then followed by R2. Therefore, the order of receiving
R1 and R2 on the client side can differentiate between the
cases of no-ordering and backward-ordering.

To trigger the third response R3, we need an “erroneous
event” taken place at the server. The novelty here is that we
use the reordering of M1 and M2 to serve as the erroneous
event. That is, if there is forward-path reordering, the re-
ceiver will be compelled to send R3 and another normal
response (R1 or R2). For instance, the receiver responds
with R3 first and then R1. Then the order of receiving
them by the client can differentiate between the cases of
forwarding-reordering and dual-path reordering.

Based on the discussion above, we only need a pair of
probing messages M1 and M2 to detect all four reordering
cases. Note that we have so far assumed no packet losses
and a reasonable amount of latency between the message
arrivals at the server. Moreover, the server’s responses to
M1 and M2 only depend on the information inscribed in
the messages and the relative order of the two messages
received by the server. We will address the effect of packet
losses and the solution to them in section 3.4. In the next
section, we first present several possibilities of selecting
M1 and M2 based on the TCP sliding window mechanism.

2.2 The TCP-based probing message pair

Since our methods are based on the TCP data channel, we
first review the TCP sliding window algorithm. We adopt
the notations in Table 1 [20] for the following discussion.
A TCP sender uses a send window to control the transmis-
sion of segments, while a TCP receiver maintains a receive
window for receiving segments from the sender. When a
TCP receiver is in the ESTABLISHED state and a segment
arrives, it will process the segment according to the follow-
ing order [20]: (1) check the SN, (2) check the RST bit,
(3) check security and precedence, (4) check the SYN bit,
(5) check the AN, (6) check the URG bit, (7) process the
segment text, and (8) check the FIN bit.

In our proposed methods, a client sends a probing mes-

sage pair to induce two TCP data segments from the server
when there is no packet reordering on the forward path,
i.e., the probing message pair passes all eight steps. On
the other hand, the reordering of the probing message pair,
which is perceived as an erroneous event at the server, will
induce the transmission of a pure ACK and a data seg-
ment. There are altogether three ways of generating the
pure ACK.

First of all, a pure ACK can be generated as a result of
not passing step 1 where a TCP receiver performs a se-
quence number check (SNC). The purpose of the SNC is to
determines whether the received segment’s SN is accept-
able according to Eq. (1) or Eq. (2). If the segment fails
the SNC (an erroneous event), some TCP implementations
will drop the segment and return a pure ACK whose value
is specified in the second part of Eq. (3).

A pure ACK can also be generated as a result of not pass-
ing step 5, where a TCP receiver performs an acknowledg-
ment number check (ANC) based on Eq. (4). If the ACK
is acceptable, the receiver will update its send window by
setting SND.UNA = SEG.ACK. Otherwise, if SEG.ACK <
SND.UNA, i.e., a duplicate ACK, the receiver will ignore it.
Moreover, if SEG.ACK > SND.NXT (an erroneous event),
i.e., acknowledging bytes that have not been sent, some
TCP implementations will drop the segment and send back
a pure ACK whose value is specified in the second part of
Eq. (3).

Finally, if a TCP implementation does not respond to
both failed SNC and failed ANC, a pure ACK can still
be induced by sending a out-of-ordered segment. Accord-
ingly, we have designed three different probing message
pairs based on the server’s responses discussed above. The
corresponding methods are referred to as ACM (ACknowl-
edgment based Measurement) for the response to a failed
SNC, SAM1 (Sequence number and ACK based Measure-
ment) for the response to a failed ANC, and SAM2 for the
response to a out-of-order segment.

RCV.NXT ≤ SEG.SEQ < RCV.NXT + RCV.WND. (1)

RCV.NXT ≤ SEG.SEQ + SEG.LEN − 1 < RCV.NXT + RCV.WND.
(2)

SEG.SEQ = SND.NXT, SEG.ACK = RCV.NXT. (3)

SND.UNA < SEG.ACK ≤ SND.NXT. (4)

We have tested 20 common systems to observe their re-
sponses to the failed SNC and failed ANC. As shown in
Table 2, the majority of the tested systems responded to
unacceptable ACKs. Therefore, the ACM method can be
applied to detect packet reordering on the paths to these
systems. Although the Linux systems do not respond to un-
acceptable ACKs, they respond to unacceptable SNs. Thus,
the SAM1 method can be applied to them. Finally, the
SAM2 method can be applied to the VM and HP-UX sys-
tems which ignore both unacceptable ACKs and unaccept-
able SNs.

Table 2: Popular operating systems and the new measurement methods.

Operating systems Response to Response to Measurement

unacceptable SNs unacceptable ACKs Methods

NT4/Win98, Win2000, WinXP, Win2003,

MaxOSX, NetWare, SCO UNIX, NetBSD, Not tested Send a pure ACK ACM

AIX, OS/2, IRIX, Tru64, FreeBSD,

Solaris 9 , Solaris 8, Solaris*, OpenVMS

Linux Send a pure ACK No response SAM1

VM and HP-UX No response No response SAM2

3 Three new measurement methods

The three measurement methods use different pairs of TCP
data segments to induce from the server two data segments
in the absence of reordering in the forward path, and one
pure ACK and one data segment in the presence of reorder-
ing in the forward path. Moreover, they do not assume any
specific TCP-based application running at the server. The
only assumption is that the server replies with at least sev-
eral hundreds of bytes of data in response to the client’s
probing messages, which is clearly possible for most pop-
ular TCP-based services. For example, the HTTP GET can
be used to fetch a sufficiently large web object from a web
server. The GET command in most FTP clients can be used
to download a suitable file from a public FTP server. In the
following, we illustrate the three methods using HTTP, but
they can be easily adapted for FTP, POP3, or other TCP
applications.

The probing session can be carried out at any time in the
ESTABLISHED state. To keep the following discussion
simple, however, we start the probing procedure immedi-
ately after the TCP three-way handshake is completed. The
notations used in the remaining of this paper are summa-
rized in Table 3, and the segments involved in the 3-way
handshaking are given in Table 4. Note that these segment
exchanges are the same for all three methods. C0 and S0

are the initial SNs for the client and server, respectively.
In TC1, the client initiates a SYN segment with a small
advertised window size of WC . The main function of the
small window size is to ensure that the server will adopt
WC for its send window size. Therefore, even before issu-
ing the HTTP request in TC2, the client is able to predict
correctly that the server will return one data segment and
the size of the TCP payload (WC), provided that the size
of the requested document is larger than WC . The packet
sequence concerned is shown in (3)-(5) in Table 4. As we
shall see later, the ANs in the probing message pair are
the same for all three methods, because they all exploit the
predicability of the server’s payload through the small WC .
However, they differ in their SNs and the TCP payloads.

3.1 The ACM method

Recall that the ACM method is based on the server’s re-
sponse to the recipient of an unacceptable ACK. In this
case, the server is expected to drop the corresponding seg-
ment and to respond with an ACK. Figs. 1(a) and 1(c) first
show the packet sequences in the absence of packet reorder-
ing in the forward path. The probing message pair used in
this method are two back-to-back, pure ACKs (TC3 and
TC4). Notice from Table 5 that TC3 acknowledges the
receipt of DataS0, whereas TC4 acknowledges a “yet-to-
receive” data segment. Because of the predicability of the
payload length in DataS1, the client is able to send TC4
with a correct AN immediately after TC3.

If these two ACKs arrive at the server in order (Figs. 1(a)
and 1(c)), the server will expectedly transmit two data seg-
ments TS4 and TS5, one after the other, which contain
the requested document. The order that TS4 and TS5 are
received at the client can then be used to differentiate be-
tween the no-ordering and backward-path ordering cases.

However, if these two ACKs are reordered in the forward
path (Figs. 1(b) and 1(d)), the server will discover that
TC4 is an unacceptable ACK, because SND.UNA = S1

and SND.NXT = S1 + WC at the time of receiving the
ACK. In this case, the server, which is implemented un-
der the first group of systems in Table 2, is expected to
drop TC4 and to send back a pure ACK TS4. When TC3,
the first ACK, later arrives, the server will send out the re-
quested data in TS5. Thus, the order of receiving TS4 and
TS5 can be used to differentiate between the forward-path
and dual-path reordering cases.

To ensure a proper working of this method, the size of
the requested document must be at least 3 × WC bytes.
Since the probing message pair used in the ACM method
are pure ACKs, the active probings have a minimal impact
on the normal network traffic. Furthermore, the server’s re-
sponse involves at most 3 × WC bytes of data (DataS0,
DataS1 and DataS2) for differentiating between the no-
reordering and backward-path reordering cases. For the
other two cases, the amount of data required is even less:
2 × WC bytes (DataS0 and DataS1).

Table 3: Notations used in the description of the new measurement methods.

Notations Description

TCi, (i = 1, . . . , 4) The ith segment dispatched by the client

TSi, (i = 1, . . . , 5) The ith segment dispatched by the server

SY N The TCP SYN packet sent by the client

SY N -ACK The TCP SYN/ACK packet responded by the server

CmdCi, (i = 1, 2, 3) ith HTTP request sent by the client

Xi, (i = 1, 2, 3) Size of CmdCi in bytes

ACKCi, (i = 1, 2) ith pure ACK sent by the client in the ESTABLISHED state

ACKSi, (i = 0, 1, 2) ith pure ACK sent by the server in the ESTABLISHED state

DataSi, (i = 0, 1, 2) ith data segment containing the HTTP response sent by the server

WC The size of the client’s advertised window

WS The size of the server’s advertised window

Table 4: The packet sequence common for all three methods.

No. Segment Sequence Acknowledgment Segment Type Payload

Number Number Length

1 TC1 C0 0 SYN 0

2 TS1 S0 C1=C0+1 SYN/ACK 0

3 TC2 C1 S1=S0+1 HTTP request (CmdC1) X1

4 TS2 S1 C2=C1 + X1 Pure ACK (ACKS0) 0

5 TS3 S1 C2 HTTP reply (DataS0) WC

3.2 The SAM1 method

The second method is based on the server’s response to un-
acceptable SNs which can be applied to Linux systems.
In this case, a Linux server drops the corresponding seg-
ment and responds with an ACK. Figs. 2(a) and 2(c) show
the packet traces when there is no packet reordering in the
forward path. The probing message pair in this case are
TC3 and TC4 which are a second HTTP request and a
pure ACK, respectively. Similar to the case for the ACM
method, TC4 acknowledges a “yet-to-receive” data seg-
ment from the server. The purpose of sending the second
HTTP request message, on the other hand, will be clear
from the following explanation.

From the parameters in Table 6, it is not difficult to see
that the server will send two more data segments, each in
the size of WC , in response to the probing message pair
when there is no forward-path reordering. Therefore, the
order of receiving the two data segments can be used to
differentiate between the no-ordering and backward-path
reordering cases.

On the other hand, if the probing message pair is re-
ordered (Figs. 2(b) and 2(d)), TC4 will fail the SNC on
the server side, because the SN falls outside the legal range
according to Eq. (2). Specifically, from Table 6, TC4’s SN

is given by SEG.SEQ = C2 +X2 +WS − 1 (X2 > 1) and
SEG.LEN = 0 (0 payload length). On the other hand, at
the time of receiving TC4, the server’s states as a TCP re-
ceiver are given by RCV.NXT = C2 and RCV.WND = WS .
According to Eq. (2), TC4’s SN is therefore illegal, i.e.,
SEG.SEQ > RCV.NXT + RCV.WND. As discussed be-
fore, the server is therefore expected to discard this pure
ACK and to respond with an ACK (ACKS1). When TC3
that contains a correct SN arrives, the server will clearly
respond with DataS1. Therefore, the order of receiv-
ing ACKS1 and DataS1 can differentiate between the
backward-path reordering and dual-path reordering cases.
Thus, unlike the ACM method that sends out two pure
ACKs, this method sends a second HTTP request, so that
the TC4’s SN is different from TC3’s.

Same as the ACM method, the total size of the requested
document must be at least 3×WC to ensure a proper work-
ing of this method. In terms of the overhead, the size of
the probing message pair for the SAM1 method is larger
than that in the ACM method by X2 bytes, the size of the
second HTTP request message. However, the maximum
amount of HTTP data returned by the server is the same
for both methods, i.e., 3 × WC bytes.

Client Server

SYN

SYN/ACK

CmdC1

ACKC1
ACKC2

ACKS0

DataS0

DataS1

DataS2

TC1

TC2

TC3
TC4

TS1

TS2
TS3

TS4
TS5

(a) No reordering

Client Server

SYN

SYN/ACK

CmdC1

ACKC1
ACKC2

ACKS0

DataS0

ACKS1

DataS1

TC1

TC2

TC3
TC4

TS1

TS2
TS3

TS4
TS5

(b) Forward-path reordering

Client Server

SYN

SYN/ACK

CmdC1

ACKC1
ACKC2

ACKS0

DataS0

Data
S1

DataS2

TC1

TC2

TC3
TC4

TS1

TS2
TS3

TS4
TS5

(c) backward-path reordering

Client Server

SYN

SYN/ACK

CmdC1

ACKC1
ACKC2

ACKS0

DataS0

ACKS1

DataS1

TC1

TC2

TC3
TC4

TS1

TS2
TS3

TS4
TS5

(d) Dual-path reordering

Figure 1: Packet sequences for the ACM method under the four packet reordering scenarios.

Table 5: The packet sequence for the ACM method (continued from Table 4).

No. Segment Sequence Acknowledgment Segment Type Payload

Number Number Length

The probing message pair

6 TC3 C2 S2 = S1 + WC Pure ACK (ACKC1) 0

7 TC4 C2 S3 = S1 + 2WC Pure ACK (ACKC2) 0

Server’s responses in the absence of packet reordering in the forward path

8 TS4 S2 C2 HTTP reply (DataS1) WC

9 TS5 S3 C2 HTTP reply (DataS2) WC

Server’s responses in the presence of packet reordering in the forward path

8’ TS4 S2 C2 Pure ACK (ACKS1) 0

9’ TS5 S2 C2 HTTP reply (DataS1) WC

3.3 The SAM2 method

Recall from the beginning of this section that the TCP im-
plemented in HP-UX and VM do not respond to both failed
SNC and failed ANC. The SAM2 method described in this
section is designed to cater for this set of TCP implemen-
tations. Figs. 3(a) and 3(c) illustrate the packet sequences
for this method when there is no packet ordering in the for-
ward path. After receiving the first data segment TS3, the
client sends out the probing message pair TC3 and TC4.

Similar to the SAM1 method, the probing message pair
uses different SNs. However, notice from Table 7 that the
SNs are offset by Off and 2 × Off respectively, where
Off is a small value. That is, both messages contain unex-
pected but acceptable SN (out-of-order segments). There-
fore, the recipient of TC3 will enable the server to advance
its send window and to send a data segment. When TC4
later reaches the server, this segment acknowledges all the

outstanding data sent by the server (AN = SND.NXT =
S1 +2WC); therefore, the server will also advance its send
window. As a result, the server will reply with another data
segment TS5. The server therefore responds with a total
of two data segments whose order of arriving at the client
can be used to differentiate between the no-ordering and
backward-path reordering cases.

If the two messages are reordered, as shown in Figs. 3(b)
and 3(d), the message TC4 contains an unacceptable ACK.
However, the HP-UX and VM server will ignore the ille-
gal AN, but, similar to other TCP implementations, it will
definitely respond to the out-of-ordered segment with a du-
plicate ACK, TS4. There is a minor difference between
the HP-UX and VM systems though. TS4 contains a SN
of S1 for an HP-UX server) whereas TS4 contains a SN
of S1 + WC for a VM server, and both contain an AN of
C2. However, this difference does not affect our measure-

Client Server

SYN

SYN/ACK

CmdC1

CmdC2
ACKC1

ACKS0

DataS0

DataS1

DataS2

TC1

TC2

TC3
TC4

TS1

TS2
TS3

TS4
TS5

(a) No reordering

Client Server

SYN

SYN/ACK

CmdC1

CmdC2
ACKC1

ACKS0

DataS0

ACKS1

DataS1

TC1

TC2

TC3
TC4

TS1

TS2
TS3

TS4
TS5

(b) Forward-path reordering

Client Server

SYN

SYN/ACK

CmdC1

CmdC2
ACKC1

ACKS0

DataS0

Data
S1

DataS2

TC1

TC2

TC3
TC4

TS1

TS2
TS3

TS4
TS5

(c) backward-path reordering

Client Server

SYN

SYN/ACK

CmdC1

CmdC2
ACKC1

ACKS0

DataS0

ACKS1

DataS1

TC1

TC2

TC3
TC4

TS1

TS2
TS3

TS4
TS5

(d) Dual-path reordering

Figure 2: Packet sequences for the SAM1 method under the four packet reordering scenarios.

Table 6: The packet sequence for the SAM1 method (continued from Table 4).

No. Segment Sequence Acknowledgment Segment Type Payload

Number Number Length

The probing message pair

6 TC3 C2 S2 = S1 + WC HTTP request (CmdC2) X2

7 TC4 C2 + X2 + WS − 1 S3 = S1 + 2WC Pure ACK (ACKC1) 0

Server’s responses in the absence of packet reordering in the forward path

8 TS4 S2 C2 + X2 HTTP reply (DataS1) WC

9 TS5 S3 C2 + X2 HTTP reply (DataS2) WC

Server’s responses in the presence of packet reordering in the forward path

8’ TS4 S2 C2 Pure ACK (ACKS1) 0

9’ TS5 S2 C2 + X2 HTTP reply (DataS1) WC

ment method, and in fact it can be used to remotely iden-
tify these two systems [19]. On the other hand, the sec-
ond message TC3 contains an acceptable AN of S1 +WC .
In this case, the server will advance its SND.UNA and re-
ply with a data segment TS5 with SN = S1 + WC and
AN = C2. Therefore, the order of receiving the ACK
and data segment from the server can be used to differen-
tiate between the backward-path reordering and dual-path
reordering cases.

The size of the requested document must again be at least
3×WC to ensure a proper working of the method. It is not
difficult to show that the maximum amount of data required
by the SAM2 method is the same as that for the SAM1
method, which is only 3×WC bytes. The size of the prob-
ing packets in the SAM2 method is larger than that of the
ACM method by the size of CmdC3.

3.4 Packet losses control

Packet losses in the probing packets and responses will
clearly affect the measurement results. Some of them can
be easily detected by observing abnormal responses from
the server, and they merely delay the observation period.
On the other hand, other kinds of packet losses may intro-
duce a bias in the measurement results, such as when the
responses are lost and then retransmitted. Due to the lim-
ited space, we only describe the solutions for the ACM
method under the second type of packet losses, which can
be easily modified for the SAM1 and SAM2 methods.

To illustrate the problem, consider the scenario in
Fig. 4(a) where there is backward-path reordering and the
segment TS5 is lost. If the client interprets the segment
TS4 and the retransmitted segment TS5 as the server’s
responses to its probing messages, it will arrive at a false
conclusion that there is no packet reordering.

Client Server

SYN

SYN/ACK

CmdC1

CmdC2
CmdC3

ACKS0

DataS0

DataS2
DataS1

TC1

TC2

TC3
TC4

TS1

TS2
TS3

TS4
TS5

(a) No reordering

Client Server

SYN

SYN/ACK

CmdC1

CmdC2
CmdC3

ACKS0

DataS0

ACKS1

DataS1

TC1

TC2

TC3
TC4

TS1

TS2
TS3

TS4
TS5

(b) Forward-path reordering

Client Server

SYN

SYN/ACK

CmdC1

CmdC2
CmdC3

ACKS0

DataS0

Data
S1

DataS2

TC1

TC2

TC3
TC4

TS1

TS2
TS3

TS4
TS5

(c) backward-path reordering

Client Server

SYN

SYN/ACK

CmdC1

CmdC2
CmdC3

ACKS0

DataS0

ACKS1

DataS1

TC1

TC2

TC3
TC4

TS1

TS2
TS3

TS4
TS5

(d) Dual-path reordering

Figure 3: Packet sequences for the SAM2 method under the four packet reordering scenarios.

Table 7: The packet sequence for the SAM2 method (continued from Table 4).

No. Segment Sequence Acknowledgment Segment Type Payload

Number Number Length

The probing message pair

6 TC3 C2 + Off S2 = S1 + WC HTTP request (CmdC2) X2

7 TC4 C2 + 2Off S3 = S1 + 2WC HTTP request (CmdC3) X3

Server’s responses in the absence of packet reordering in the forward path

8 TS4 S2 C2 HTTP reply (DataS1) WC

9 TS5 S3 C2 HTTP reply (DataS2) WC

Server’s responses in the presence of packet reordering in the forward path

8’ TS4 S1 or (S1 + WC) C2 Pure and duplicate ACK (ACKS1) 0

9’ TS5 S2 C2 HTTP reply (DataS1) WC

To remedy this problem, we impose a deadline for
receiving responses from the server. As illustrated in
Fig. 4(a), after the client sends TC4, it will not accept
any response arriving after the deadline and declare the
measurement unsuccessful. In another example, Fig. 4(b)
depicts that the dual-path reordering would be mistaken
for the forward-path reordering if the deadline mechanism
were not used. It is obvious that the server can only use the
timeout mechanism to retransmit the lost packet because it
is impossible to trigger the fast retransmit mechanism. We
therefore set the deadline to 1.5×RTT , where RTT is the
mean value of RTT between the client and the server.

4 POINTER and the measurement results

We have developed a measurement tool called POINTER
(Packet reOrderINg tesTER) that implements the ACM,

SAM1, and SAM2 methods. The implementation uses
the packet filter API available from [27] to block the TCP
RST packets generated by the local host, and the WinPcap
library [28] to generate customized TCP packets. With
POINTER, we can validate the three measurement meth-
ods on a test-bed and in the Internet, and analyze the packet
reordering statistics.

4.1 Measurement results from a test-bed

We have validated the ACM and SAM1 methods on a
test-bed environment. As shown in Fig. 5, the test-bed con-
sists of two servers, a POINTER client, and an Iperf host.
The Iperf client is responsible for generating background
traffic. Apache web servers are running on both the Linux
server (Linux 2.4.20-8) and Windows 2000 server for val-
idating the SAM1 method and the ACM method, respec-

Client Server

SYN

SY N /AC K

CmdC 1

AC KC1
AC KC2

A C KS0

D ataS0

Data
S 1

Dat aS 2

TC1

TC2

TC3

TC4

TS1

TS2
TS3

TS4
TS5

D ataS2

Timeout

Waiting

Period

TimeS1

Deadline

(a) A packet loss in the presence of backward-path re-
ordering

Client Server

SYN

SY N /ACK

C mdC 1

A CKC1
ACKC2

A C KS0

D ataS0

ACKS1

D at aS 1

TC1

TC2

TC3

TC4

TS1

TS2
TS3

TS4
TS5

D ataS1

Timeout

Waiting
Period

TimeS1

Deadline

(b) A packet loss in the presence of dual-path reorder-
ing

Figure 4: Handling packet losses in the ACM method.

tively. Both the servers and the POINTER client use tcp-
dump or Windump to capture the probing packets and re-
sponse packets. The servers and clients are connected by a
FreeBSD-based router running Dummynet [31] to simulate
multipath between a client and a server.

Linux Server

Iperf Client

POINTER
Client

Dummynet

SD

S tat us

1 2 3 4 5 6 7 8 9 10 1 1 12 P ac ke t

S ta tus

SU P ER

ST A CK

S up erS ta ck II

B as elin e 10/ 10 0 S wi tch

gr een =e nab led , lin k O K

fl ash ing gre en= dis ab led, lin k O Kof f=lin k, fail

1 2 3 4 5 6 7 8 9 10 1 1 12

1 x 6 x

7 x 12 x

Co m3

Windows 2000
Server

192.168.1.0/24 192.168.2.0/24

S D

Sta tu s

1 2 3 4 5 6 7 8 91 0 11 1 2 P ack et

S tatu s

S U PE R

S T AC K

Su pe rS tac k II

Ba se line 1 0/1 00 Sw itc h

gre en= en abl ed, link OK

fla shin g g ree n=d isa ble d, l ink OKoff= link , fa il

1 2 3 4 5 6 7 8 91 0 11 1 2

1x 6x

7x 12x

C om3

Figure 5: The network configuration of the test-bed.

By setting 20 pipes between the subset of 192.168.1.0/24
and 192.168.2.0/24 in the Dummynet, we can emulate the
four packet reordering scenarios on the test-bed. We let
each method keep on probing the server until it has de-
tected 100 packet reordering events in the probing packet
pairs. The measurement results are then compared with
the packet traces. Our findings show that all the detection
results produced by the ACM and SAM1 methods are cor-
rect for all test cases. Moreover, we have validated the two
methods on other systems available in our department, in-
cluding WinXP, Netware, FreeBSD, and Solaris. To vali-

date the methods with the remaining systems listed in Ta-
ble 2, we have conducted the experiments with the WWW
servers in the Internet, to be presented next.

4.2 Measurement results from the Internet

We have made used of the service provided by NetCraft to
identify the systems running in the WWW servers [29]. We
have also obtained additional information, e.g. from [30],
to ensure correct system identification. We have altogether
selected around 200 websites, part of which are randomly
chosen from Yahoo random URL database [32] suggested
by [17] and part of which include the popular websites, e.g.
Microsoft, Apple, Hotmail, Yahoo, Google, etc. For more
popular systems, such as Linux and Windows, we have
tested 10 servers for each system. However, for OS/2 and
OpenVMS, we could just locate a handful of websites, such
as www.os2.org and www.openvms.compaq.com.
For both Solaris 2 and Solaris 7, NetCraft has identified
them to be the same, and labelled them by Solaris. There-
fore, our tests may not have covered both Solaris 2 and
Solaris 7, which are marked with ∗ in Table 2.

For each web server, the validation process consists the
following steps:

1. carry out the measurement process in no reordering
case, i.e. sending out the segments TC3 and then

TC4, and recording the responses TS4 and TS5 from
the server.

2. carry out the measurement process in forward reorder-
ing case, i.e. sending out the segments TC4 and then
TC3, and recording the responses TS4

′
and TS5

′

from the server.

3. If the responses, {TS4, TS5, TS4
′
, TS5

′} fulfill the
requirement of Corollary 1, then the packet reordering
in the path from the monitoring point to remote host
can be measured.

The measurement results obtained from these websites
have confirmed the correctness of the three methods and
produced the measurement results in Table 2. For an arbi-
trary accessible web server, we do not need to first identify
the OS type of remote host before measuring packet re-
ordering. We can conduct the validation process of ACM,
SAM1 and SAM2 sequently to find out which method is
proper.

Moreover, we have conducted more measurements from
100 WWW servers among the 200 websites used in the
above validation process, and obtained 500 measurement
results for each server. Fig. 6 shows the empirical cumu-
lative distribution function (CDF) of the forward-path re-
ordering rate and backward-path reordering rate. The mea-
sured dual-path reordering rate is zero for all cases. The
rate is given by the percentage of measurements that indi-
cate the presence of packet reordering. Then we rank all the
servers according to a nondecreasing order of their reorder-
ing rates, and obtain the CDF. The results show that more
than 35% of the paths experienced forward-path reordering
at least once, and backward-path reordering was observed
on about 10% of the paths. Moreover, the forward-path
reordering was more prevalent than the backward-path re-
ordering in terms of the percentage of reordering events.
The forward-path reordering rate could go up as high as
0.4, while that for the backward-reordering was only 0.3.

4.3 Correlation of packet reordering events

In this section we analyze the correlation of packet
reordering events. To this end, we have con-
ducted measurements on www.applecomputer.com
and kidsafe.apple.com over a 2-month period.
These two sites have been found to have more than 10%
forward-path reordering rate according to [17]. In each
measurement, the client first sends out the probing pair to
www.applecomputer.com and then another probing
pair to kidsafe.apple.com. The time gap between
sending the two probing pairs is very short. There is a ran-
dom delay (between 1 second and 2 seconds) between two
consecutive measurements. We have conducted 59 sets of
measurements and each set consists of 100 samples.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Packet reordering rate

P
er

ce
nt

ag
e

of
 s

er
ve

rs

Foward Path Reordering
Backward Path Reordering

Figure 6: The empirical cumulative distribution functions
of the packet reordering rates.

Unlike the previous results for the 100 websites, the re-
sults here indicate that there are more backward-path re-
ordering events than the forward-path ones. Fig. 7(a) shows
the mean backward-path reordering rates to both servers
obtained from the 59 sets of measurement. Each point is an
average of the 100 samples within a set of measurement.
The rates for both servers are very similar in many sets of
samples. Moreover, the overall means rates for both servers
are approximately equal to 16.7%. To probe into the issue
further, we compute the pair-difference test statistic for the
59 sets of data [33], and find that with a 99% confidence
interval the backward-path reordering rates are similar for
the two servers.

Next, we study and compare the time series of the
measurements obtained for the two servers. We use
TRSk

i,j , i = 1, . . . , 59, j = 1, . . . , 100, k =
1, 2, to denote the presence/absence of backward-
path reordering in the corresponding sample. S1

refers to www.applecomputer.com and S2 refers to
kidsafe.apple.com. TRSk

i,j = 1 in the presence of

backward-path reordering; otherwise, TRSk
i,j = 0. We

compute the autocorrelation value for the ith set of data
according to [34]

99−m∑

j=1

TRSk
i,jTRSk

i,j+m, m = 0, . . . , 99.

We then compute an average of the 59 autocorrelation val-
ues for each m and the results are depicted in Fig. 7(b).
They first show that the correlation between the reordering
events occurring at different times is not strong. Moreover,
the two autocorrelation plots are so similar that it is very
difficult to distinguish from each other.

Besides the autocorrelation function, we define a pair-

reorder index (PI) by

PI(i) =

∑100
j=1(TRS1

i,j & TRS2
i,j)

(
∑100

j=1(TRS1
i,j | TRS2

i,j))/2
, i = 1, . . . , 59,

to measure the likelihood that two packet reordering events
would occur within a measurement. The notations & and
| refer to the logical AND and logical OR operators, re-
spectively. Therefore, the higher the index is, the higher
the likelihood that backward-path reordering would occur
in the paths from both servers to the POINTER client.
Fig. 7(c) depicts the PI(i) values computed from the 59
sets of experiments. The mean value of PI(i) over the 59
sets is 15.5%, and 52 sets have nonzero PI(i) values. This
result, together with the results presented in Fig. 7(a) and
Fig. 7(b), strongly suggest that the two servers shared the
same part of the path to the POINTER client, where packet
reordering occurred. Moreover, these three sets of statisti-
cal analysis can be applied to study the correlation of other
Internet path statistics.

5 Conclusions and current work

In this paper we have presented three novel methods
for end-to-end packet reordering measurement—ACM ,
SAM1 and SAM2. Unlike the previous approaches, we
have designed the probing messages based on the TCP
data channel, thus solving the practical problems of go-
ing through routers and other intermediaries on the Inter-
net paths. Moreover, the probing message pair is carefully
crafted, so that the client can predetermine the returned
responses which can be used to confirm whether there is
packet reordering on the forward path. Moreover, the order
of the arrival of the two response packets is used to con-
firm whether there is packet reordering on the backward
path. Thus, the methods can detect all four packet reorder-
ing scenarios. The amount of data used is also kept to a
minimum.

We have implemented the three methods in POINTER
and validated the methods in 20 most common systems in
both a test-bed and the Internet. We are now in the process
of making the tool available in different platforms. With
POINTER, one can detect packet reordering on any path
in the Internet. Moreover, the tool can be used to study
other important issues, such as the correlation of packet re-
ordering events presented in this paper. Furthermore, we
are in the process of improving these three methods and
conducting a much larger-scale measurement study on the
prevalence of packet reordering in the Internet today.

Acknowledgments

The work described in this paper was partially supported
by a grant from the Research Grant Council of the Hong

Kong Special Administrative Region, China (Project No.
PolyU 5080/02E) and a grant from the Areas of Excellence
Scheme established under the University Grants Com-
mittee of the Hong Kong Special Administrative Region,
China (Project No. AoE/E-01/99). We thank Mr. Kent Le-
ung and his colleagues in the ITS office for their help in
conducting the Internet measurement. We also thank the
anonymous reviewers for their useful comments.

References

[1] V. Paxson. End-to-end internet packet dynamics. IEEE/ACM Trans-
actions on Networking, 7(3), June 1999.

[2] C. Partridge, J. Bennett, and N. Shectman. Packet reordering is not
pathological network behavior. IEEE/ACM Transactions on Net-
working, 7(6), December 1999.

[3] L. Gharai, C. Perkins, and T. Lehman. Packet Reordering, High
Speed Networks and Transport Protocol Performance. In Proc.
IEEE ICCCN, October 2004.

[4] M. Laor and L. Gendel. The effect of packet reordering in a back-
bone link on application throughput. IEEE Network, 7(6), Septem-
ber 2002.

[5] D. Loguinov and H. Radha. Measurement study of low-bitrate inter-
net video streaming. In Proc. ACM Internet Measurement Workshop,
November 2001.

[6] X. Zhou and P. Mieghem. Reordering of IP packets in Internet. In
Proc. Passive and Active Measurement, April 2004.

[7] M. Allman and E. Blanton. On making TCP more robust to packet
reordering. ACM Computer Communication Review, 32(1), January
2002.

[8] S. Floyd, M. Zhang, B. Karp, and L. Peterson. RR-TCP: A
reordering-robust tcp with DSACK. In Proc. IEEE ICNP, November
2003.

[9] J. Lee, C. Lim, S. Bohacek, J. Hespanha, and K. Obraczka. TCP-
PR: TCP for persistent packet reordering. In Proc. IEEE Conf. Dis-
tributed Computing Systems, May 2003.

[10] C. Ma and K. Leung Improving TCP robustness under reorder-
ing network environment. In Proc. IEEE GLOBECOM, November
2004.

[11] A. Sathiaseelan and T. Radzik Improving the Performance of TCP
in the Case of Packet Reordering. In Proc. IEEE HSNMC, June 2004

[12] I. Aad, J. Hubaux, and E. Knightly. Denial of Service Resilience in
Ad Hoc Networks. In Proc. ACM MobiCom, September 2004.

[13] A. Morton, L. Ciavattone, G. Ramachandran, S. Shalunov, and
J. Perser. Packet reordering metric for IPPM. draft-ietf-ippm-
reordering-05.txt, Internet Draft, IETF, 2004.

[14] A. Bare, T. Banka, and A. Jayasumana. Metrics for degree of re-
ordering in packet sequences. In Proc. IEEE Conf. Local Computer
Networks, November 2002.

[15] C. Diot, J. Kurose, J. Jaiswal, G. Iannaccone, and D. Towsley. Mea-
surement and classification of out-of-sequence packets in a tier-1 ip
backbone. In Proc. IEEE Infocom, April 2003.

[16] V. Paxson. Automated packet trace analysis of TCP implementa-
tions. In Proc. ACM SIGCOMM, November 1997.

[17] J. Bellardo and S. Savage. Measuring packet reordering. In Proc.
ACM Internet Measurement Workshop, November 2002.

[18] D. Wetherall, R. Mahajan, N. Spring, and T. Anderson. User-level
Internet path diagnosis. In Proc. ACM Symp. Operating Systems
Principles, October 2003.

[19] R. Spangler. Analysis of remote active operating system fingerprint-
ing tools. http://www.packetwatch.net, May 2003.

[20] J. Postel. Transmission control protocol. RFC 793, IETF, September
1981.

[21] J. Padhye and S. Floyd. On inferring TCP behavior. In Proc. ACM
SIGCOMM, August 2001.

[22] K. Fall and S. Floyd. Simulation-based comparisons of Tahoe, Reno,
and SACK TCP. ACM Computer Communication Review, 26(3),
July 1996.

[23] V. Paxson and M. Allman. Computing TCPs Retransmission Timer.
RFC 2988, IETF, November 2000.

[24] A. Medina, M. Allman, and S. Floyd. Measuring the evolution of
transport protocols in the Internet http://www.icir.org/tbit, Decem-
ber 2004.

[25] TCP Tunable Parameters. Solaris Reference Manual
http://docs.sun.com/app/docs/doc/816-0607/6m735r5g6.

[26] Cross-Referencing Linux. http://lxr.linux.no.

[27] Packet filtering reference, platform sdk. http://msdn.microsoft.com.

[28] Winpcap, the free packet capture architecture for Windows.
http://winpcap.polito.it.

[29] Netcraft Ltd. http://uptime.netcraft.com/up/accuracy.html.

[30] VM/ESA based WWW servers.
http://vm.cfsan.fda.gov/vmcms.html.

[31] L. Rizzo. Dummynet: A simple approach to the evaluation of net-
work protocols. ACM Computer Communication Review, January
1997.

[32] Yahoo! Inc. Random Yahoo! Link.
http://random.yahoo.com/bin/ryl.

[33] R. Jain. The Art of Computer Systems Performance Analysis. John
Wiley & Sons, 1991.

[34] S. Orfanidis. Optimum Signal Processing. An Introduction. 2nd Edi-
tion. Prentice-Hall, Englewood Cliffs, NJ, 1996.

0 10 20 30 40 50 60
0.05

0.1

0.15

0.2

0.25

0.3

Set number of the measurements

m
ea

n
ba

ck
w

ar
d−

re
or

de
rin

g
ra

te

www.applecomputer.com (17.254.0.91)
kidsafe.apple.com (17.254.4.128)

(a) The mean backward-path reordering rates.

0 20 40 60 80 100
−2

0

2

4

6

8

10

12

14

16

18

m

av
er

ag
e

au
to

co
rr

el
at

io
n

va
lu

e

www.applecomputer.com (17.254.0.91)
kidsafe.apple.com (17.254.4.128)

(b) The average autocorrelation of backward-path reordering.

0 10 20 30 40 50 60
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

P
I(

i)

Set number of the measurements

(c) The pair-reorder index for backward-path reordering.

Figure 7: Measurement results for the paths
from www.applecomputer.com and
kidsafe.apple.com to the POINTER client.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings to create PDF documents suitable for IEEE Xplore. Created 15 December 2003.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

