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Abstract 
Throughput deadlocks were observed when TCP was 
operated on high-speed networks. This deadlock problem is 
caused by the interaction of the sender-side and receiver- 
side silly window syndrome avoidance algorithms, because a 
TCP connection’s Maximum Segment Size is no longer small 
on high-speed Internet when compared with the send and 
receive socket buffer sizes. In this paper we propose a new 
Congestion-Sensitive, Adaptive Acknowledgment Algorithm 
(CS-AAA) to solve the deadlock problem. Unlike our 
previously proposed AAA, the CS-AAA is able to respond to 
and to recover from congestion much faster than AAA. The 
CS-AAA solves this problem by detecting congestion, and 
perJorming a slow-start-like mechanism. Extensive 
simulation results support that CS-AAA ‘s throughput 
pet$ormance significantly exceeds that of AAA, especially 
when the send buffer size is relatively large. 

1. Introduction 

Recently, much attention has been drawn to improving 
performance of Transport Control Protocol (TCP) because it 
provides end-to-end reliability, flow control, and congestion 
control services to a number of very popular application and 
session protocols, such as HTTP, lTP, TELNET, SSL, e.g., 
[1,2]. In this paper, we consider a TCP throughput deadlock 
problem which, unlike other TCP performance problems, is 
caused by implementation issues rather than protocol design 
issues. This problem could occur in low-speed networks as 
well as high-speed networks. However, the impact on high- 
speed networks is definitely more observable and therefore 
more detrimental. 

This problem was first reported by Moldeklev and 
Gunningberg, and by Comer and Lin independently [3,4]. In 
their investigation, they discovered that the deadlock 
problem was caused by a circular-wait condition exhibited 
between the sender-side and receiver-side Silly Window 
Syndrome Avoidance Algorithms (SWSAAs) that are 
implemented by Nagle’s algorithm and a delayed 
acknowledgment algorithm, respectively. When the send- 
receive socket buffer sizes fall in a certain region, the sender 

will not send small segments due to Nagle’s algorithm, and 
the receiver will not acknowledge because of the delayed 
acknowledgment algorithm. This deadlock can be resolved 
only by a 200-ms delayed acknowledgment timer. 

A main factor triggering the circular-wait condition is that 
a TCP connection’s Maximum Segment Size (MSS), which 
is used by the SWSAAs, is no longer small on high-speed 
Internet when compared with the send and receive socket 
buffer sizes. Nagle’s algorithm defines a small segment to be 
one whose length is less than the connection’s MSS, and it 
usually limits the number of outstanding small segments 
(nonMSS segments) to one [5]. The delayed acknowledg- 
ment strategy, on the other hand, prevents a receiver from 
acknowledging small segments by delaying acknowledg- 
ments until they can be piggybacked onto either a data 
segment or a window update packet [6]. For example, in the 
SunOS implementation, a separate window update with a 
piggybacked acknowledgment will be sent if the window can 
slide more than either (1) 35% of the receive buffer size or 
(2) two MSSs of the size. As a result, for a TCP connection 
with a large MSS (on a high-speed end-to-end connection), a 
TCP sender may not be able to compose a MSS segment if 
its send buffer size is not large enough. Similarly, a TCP 
receiver may not be able to acknowledge since the amount of 
data received is not large enough when compared with MSS. 

Several straightforward solutions to solving the deadlock 
problem are either infeasible or re-introduce the SWS 
problem [3]. In [7], we introduced a new Adaptive 
Acknowledgment Algorithm (AAA) and demonstrated that 
this algorithm ensures a deadlock-free TCP connection 
provided that the connection does not experience network 
congestion. In this paper, we probe further into this solution. 
First, we show that the algorithm’s performance is not 
significantly affected by the sampling frequency. Second, we 
show that the algorithm is not sufficient for preventing 
throughput deadlock when TCP connections experience 
network congestion. Third, we propose and evaluate an 
enhanced AAA by take into consideration network 
congestion. They are described in Section 2, 3, and 4, 
respectively. Finally, we conclude this paper with future 
work in section 5. 
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2. An adaptive acknowledgment algorithm 

In [7], we proposed a new Adaptive Acknowledgment 
Algorithm (AAA) as a new delayed acknowledgment 
strategy to remove throughput deadlocks and, at the same 
time, to maintain the SWS avoidance mechanisms. In this 
algorithm, the receiver is responsible for “resolving” 
deadlock situations. The key operation undertaken by the 
receiver is to estimate the sender’s Maximum 
UnAcknowledged Data Size (MUADS) in terms of bytes, 
which is the maximum amount of data continuously sent by 
the sender when the receiver is not acknowledging. When 
deadlock situation does not occur and there is no network 
congestion, the MUADS is upper bounded by min{B,, B,}, 
where B, and B, are the send buffer size and receive buffer 
size, respectively. The exact value of MUADS depends on 
buffer sizes, data copy rule, and other implementation 
details. An AAA receiver sends an acknowledgment when 
the segments received reach or exceed 35% of the MUADS 
estimate. It has been shown that the AAA removes all 
deadlocks by having the receiver promptly send back 
acknowledgments [7]. 

An AAA receiver performs packet samplings to estimate 
the sender’s MUADS after a TCP connection is established 
by maintaining one timer, one counter, and two thresholds: 
1. Sampling period timer (SP-timer): A timer to control the 

length of a sampling period 
2. Sampling period threshold (SP-t): A value (in time units) 

used in conjunction with the SP-timer to control the 
length of a sampling period 

3. Inter-sampling period counter (ISP-counter): A counter 
to control the inter-sampling period 

4. Inter-sampling period threshold (ISP-t): A value (in 
number of packets) used in conjunction with the 
ISP-counter to control the inter-sampling period 

In Fig. 1, we show the state transition diagram when a 
receiver enters a packet sampling period. Please refer to [7] 
for further details about inter-sampling period control and 
sampling initialization, sampling period control, and 
threshold setting. 

One possible way of further improving AAA’s throughput 
performance is to reduce the number of samplings required 
for computing MUADS. There are two ways to achieving 
that: increase the inter-sampling period and decrease the 
sampling period. Modifications to the corresponding 
algorithms are shown in Fig. 2. In Table 1, we present 
simulation results to compare the original AAA with the 
modified AAA. Although the number of samplings decreases 
significantly (not shown here), the throughput improvement 
is not as significant. 

3. Effect of network congestion on AAA 

The AAA was designed without network congestion in 
mind. In this section, we show and explain why the AAA 

fails to remove throughput deadlocks when TCP connections 
experience network congestion. 

It is well known that a TCP sender detects possible 
network congestion either by receiving three duplicate 
acknowledgments (fast retransmission) or by a timeout. In 
either case, the sender retransmits the segments that have not 
been acknowledged. At the same time, the sender also 
adju:sts its congestion window size. In the case of fast 
retransmission, the sender reduces its congestion window to 
only half of the current value. In the case of timeout, the 
window size is reset to one MSS. Both cases effectively 
reduce the sender’s sending rate. As a result, the receiver’s 
MUADS estimate that is based on pre-congestion statistics 
will over-estimate the actual value. Therefore, the receiver 
may not be able to receive enough data to trigger 
acknowledgments, and a throughput deadlock occurs again. 

To further investigate the throughput deadlock problem 
under network congestion, we have performed several 
simulation experiments. In all experiments, we assume that 
the sender will execute slow start whenever detecting 
network congestion. A C++ object simulator simtcpl was 
developed for this purpose. We simulated a 10-MB data 
transmission from a sender to a receiver in a continuous data 
stream. There are 8x8 send-receive buffer size combinations, 
ranging from 4KB to 52KB. We further divide the 64 
combinations into seven areas, as shown in Table 2. Each 
area is constructed based on send-receive buffer sizes, and 
the 1.ikelihood that throughput deadlock would occur. For 
example, areas 1-3 is a deadlock-free region, and the three 
areas are further distinguished by their send-receive buffer 
size combinations. Moreover, areas 4-6 is a low-risk 
deadlock-prone region, and area 7 is a high-risk deadlock- 
prone region. 

3.1 Deadlock-free region 

In Fig. 3, we show the throughput performance for a 
scen,ario in area 1. We injected congestion every SOOs, 
starting from time 0. Because the congestion duration is very 
shod, only a very small throughput drop is observed in the 
curve with congestion. Throughputs for areas 3-4, which are 
shown here, exhibit similar behavior as in Fig. 3. Specific 
points about this set of experiments are as follows: 
1. [n area 2, because the send buffer is small, the MUADS 

estimate cannot be very large. As a result, even if the 
(congestion window is set to one MSS after detecting 
congestion, the subsequent data sent out by the sender 
may still be 35% or higher of the MUADS estimate. 
‘Thus, the receiver could send back acknowledgments, 
and no deadlocks occur. 
[n area 3, the MUADS estimate cannot be larger than 
the actual receive buffer size, which is small in this case. 
As a result, the small amount of data sent by the sender 
may still be 35% or more of the MUADS estimate. 
Again, acknowledgments can be sent back. 
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3.2 High-risk deadlock-prone region 

In Fig. 4, we observe three significant throughput drops, 
corresponding to three network congestion instants. The 
sender responds to congestion by performing slow start, thus 
decreasing the data rate. However, the MUADS estimate 
used by the receiver was derived from pre-congestion data. 
As a result, the sender’s data is unable to meet 35% of the 
“incorrect” MUADS estimate, resulting in throughput 
deadlocks. 

3.3 Low-risk deadlock-prone region 

Here we show two cases in Figs. 5-6. Similar to the high- 
risk deadlock-prone region, both cases show significant 
throughput drops. However, the variance in the magnitude of 
throughput degradation is higher than that in Fig. 4. The 
main reason responsible for this is that the MUADS estimate 
depends very much on the connection’s state just before the 
sender detects congestion. Thus, in some cases the MUADS 
estimate does not result in deadlocks but in some other cases 
it does. 

4. A congestion-sensitive AAA (CS-AAA) 

One approach to solving the deadlock problem in midst of 
network congestion is to reset the MUADS estimate and to 
perform sampling all over again to find the new value 
whenever congestion is detected. The main disadvantage of 
this approach is that deadlock still exists before sampling is 
completed. As a result, the sampling period needs to run for 
a long time, and the overhead incurred would be great. 

4.1 Congestion detection and avoidance at receivers 

We employ another method to tackle this problem, and we 
refer the enhanced AAA to as Congestion-Sensitive AAA 
(CS-AAA). First of all, the receiver now needs to detect 
network congestion. Whenever congestion is detected, the 
receiver performs a procedure on the MUADS estimate, 
similar to slow start at the sender. That is, the MUADS 
estimate is first reset to one MSS of the connection. The 
MUADS estimate is then incremented for every nonduplicate 
acknowledgment sent back to the sender, and this step 
continues until the MUADS estimate reaches the previous 
value when congestion is detected. We postpone the detail 
explanation of this procedure to a later stage in this section. 
Instead, we first consider the ways that a receiver can detect 
network congestion. There are three situations to consider: 
1. A short-term congestion causes routers to drop a small 

number of data packets, and the receiver sends three 
duplicate acknowledgments back to the sender. In this 
case, the receiver resets the MUADS estimate to one 
MSS and starts the CS-AAA. 
The receiver’s acknowledgments are dropped by routers 2. 

due to congestion. In this case, the sender times out and 
re-sends data packets. The receiver, therefore, receives 
duplicate data segments, and it resets the MUADS 
estimate to one MSS and starts the CS-AAA. 
A longer-term congestion causes routers to drop a large 
number of data packets. The sender times out and re- 
sends packets. Thus, the receiver in this case can rely 
only on timing out the current MUADS estimate and 
starts the CS-AAA. 

The algorithm that the receiver starts after resetting the 
MUADS estimate to one MSS in response to congestion is 
summarized as follows: 
if(s-start) ( 

3. 

MUADS = min (segsize, MUADS); 
g(MUADS > segsize)( 

r-ssthresh = MUADS / 2 ;  
while (s-start) 

$(a new ACKsent out from the receiver) 
if(MUADS <= r-ssthresh) MUADS = MUADS * 2; 
else MUADS = MUADS + (segsize * segsize) / 

MUADS + MUADS/& 
$(MUADS == r-ssthresh * 2)  s-start = 0; 

J; 
else s-start = 0; 

I ;  
s-start is a flag that signals the starting of CS-AAA, and 
r-ssthresh remembers the value of the MUADS estimate 
when congestion is detected. The logic of this algorithm 
follows closely the slow start algorithm at the sender. 

4.2 Performance evaluation of CS-AAA 

We performed simulation experiments for all three regions 
to evaluate the performance of CS-AAA. Since region 1 is 
deadlock-free, we consider regions 2-3 only. In Fig. 7 we 
show a case for the high-risk region and in Figs. 8-10, three 
cases for the low-risk region. We summarize in the following 
two major observations from the simulation results. 
1. When the send buffer is relatively large, as shown in 

Figs. 7 and 10, CS-AAA responds to and recovers from 
network congestion much faster than AAA. In this 
scenario, it is highly likely that AAA will get into 
deadlock again when congestion occurs, because the 
MUADS estimate assumes a higher value due to a large 
send buffer. On the other hand, CS-AAA, by resetting 
the MUADS estimate to one MSS, is able to keep the 
packets flowing, and picks up much faster than AAA. 
When the send buffer is relatively small, as shown in 
Figs. 8-9, CS-AAA attains similar throughputs as AAA 
at the beginning, but CS-AAA again responds to and 
recovers from network congestion much faster than 
AAA in the latter congestion. In this scenario. The 
MUADS estimate may or may not be large enough to 
cause deadlock. Apparently, when the first congestion 
occurs, the CS-AAA receiver is unable to detect network 
congestion (because the timeout value is too large); 
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therefore, there is no throughput gain by using CS-AAA. 
However, in the latter congestion the CS-AAA receiver 
is able to detect congestion and to respond to it 
promptly. This shows that CS-AAA is not penalized in 
the throughput performance even though it occasionally 
fails to detect congestion. 

5. Conclusions and future works 

SIR 
4KB 
8KB 

In this paper we added a new component to AAA to 
handle the deadlock problem in midst of network congestion. 
The simulation experiments have shown that the new CS- 
AAA reacts to congestion much faster than AAA, and it also 
recovers from congestion much faster, thus resulting in a 
higher throughput performance. There are still a number of 
areas to explore. First, we need to investigate AAA’s 
performance when sender uses fast recovery procedure. 
Second, CS-AAA can be further refined by allowing a 
receiver to take different actions in response to different 
types of congestion. Third, the effect of timeout value for 
detecting congestion at the receiver needs to be further 
investigated in order to increase the chance of accurately 
detecting congestion. Fourth, we will implement a prototype 
for this new TCP and measure the performance. 

4KB I 8KB 16KB I 24KB I 32KB I 40KB I 48KB I 52KB 
Areal  Area 2 
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Begin sampling - ln i l i a l i za t ion  

I )  Send init. ack. 
2)  SP-timer = 1.5 RTT 
3 )  SP-timer starts 

counting down 

U SP-timer > 0 

T e r m i n a t i o n  

I )  Send a c t .  
2)  Update ISP-counter 

and update ack 
threshold 

I )  Count the number 

2) Reset SP-timer 
3 )  SP-timer starts 

counting down 

of packets received 

Fig. 1. State diagram of an AAA receiver during packet samplings. 

if( I MUADS,,,, - MUADS,,,,, I C MSS ) 
ISP-t = 3* ISP-1 
acknowledgment threshold unchanged 

ISP-t = IO 
else if(MUADS,,,, > MUADS,,,,, ) 

else 

if( I MUADS,,,, - MUADS,,,,, I C MSS ) 
ISP-t = 4* ISP-t 
acknowledgment threshold unchanged 

modified ‘Ise  I sp- l= 0.5 * 1sp-t 
else if(MUADS,,,, > MUADSDrm,., ) to 

acknowledgment threshold = 0.35 * MUADS,,,,, acknowledgment threshold = 0.35 * MUADSCmn, 

Fig. 2. A revised mechanism for computing threshold values for AAA. 

Fig. 3. Throughput for a 4-KB sender and a 4-KB 
AAA receiver (deadlock-free region). 

Fig. 4. Throughput for a 52-KB sender and a 52-KB 
AAA receiver (high-risk deadlock region). 
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Fig. 5. Throughput for a 24-KB sender and a 24-KB 
AAA receiver (low-risk deadlock region). 
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Fig. 6. Throughput for a 48-KB sender and a 24-KB 
AAA receiver (low-risk deadlock region). 
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Fig. 7. Throughput for a 52-KB sender and a 52-KB Fig. 8. Throughput for a 24-KB sender and a 24-KB 
receiver w/o CS-AAA (high-risk deadlock region). receiver w/o CS-AAA (high-risk deadlock region). 
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Fig. 9. Throughput for a 24-KB sender and a 48-KB Fig. 10. Throughput for a 48-KB sender and a 24-KB 
receiver w/o CS-AAA (low-risk deadlock region). receiver w/o CS-AAA (high-risk deadlock region). 
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