
A Throughput Deadlock-Free TCP for High-speed Internet

Rocky K.C. Chang2 Ho Y. Chan
Department of Computing

The Hong Kong Polytechnic University
Hung Hom, Kowloon, Hong Kong

Email: csrchang@comp.polyu.edu.hk

Abstract
Throughput deadlocks were observed when TCP was
operated on high-speed networks. This deadlock problem is
caused by the interaction of the sender-side and receiver-
side silly window syndrome avoidance algorithms, because a
TCP connection’s Maximum Segment Size is no longer small
on high-speed Internet when compared with the send and
receive socket buffer sizes. In this paper we propose a new
Congestion-Sensitive, Adaptive Acknowledgment Algorithm
(CS-AAA) to solve the deadlock problem. Unlike our
previously proposed AAA, the CS-AAA is able to respond to
and to recover from congestion much faster than AAA. The
CS-AAA solves this problem by detecting congestion, and
perJorming a slow-start-like mechanism. Extensive
simulation results support that CS-AAA ‘s throughput
pet$ormance significantly exceeds that of AAA, especially
when the send buffer size is relatively large.

1. Introduction

Recently, much attention has been drawn to improving
performance of Transport Control Protocol (TCP) because it
provides end-to-end reliability, flow control, and congestion
control services to a number of very popular application and
session protocols, such as HTTP, lTP, TELNET, SSL, e.g.,
[1,2]. In this paper, we consider a TCP throughput deadlock
problem which, unlike other TCP performance problems, is
caused by implementation issues rather than protocol design
issues. This problem could occur in low-speed networks as
well as high-speed networks. However, the impact on high-
speed networks is definitely more observable and therefore
more detrimental.

This problem was first reported by Moldeklev and
Gunningberg, and by Comer and Lin independently [3,4]. In
their investigation, they discovered that the deadlock
problem was caused by a circular-wait condition exhibited
between the sender-side and receiver-side Silly Window
Syndrome Avoidance Algorithms (SWSAAs) that are
implemented by Nagle’s algorithm and a delayed
acknowledgment algorithm, respectively. When the send-
receive socket buffer sizes fall in a certain region, the sender

will not send small segments due to Nagle’s algorithm, and
the receiver will not acknowledge because of the delayed
acknowledgment algorithm. This deadlock can be resolved
only by a 200-ms delayed acknowledgment timer.

A main factor triggering the circular-wait condition is that
a TCP connection’s Maximum Segment Size (MSS), which
is used by the SWSAAs, is no longer small on high-speed
Internet when compared with the send and receive socket
buffer sizes. Nagle’s algorithm defines a small segment to be
one whose length is less than the connection’s MSS, and it
usually limits the number of outstanding small segments
(nonMSS segments) to one [5]. The delayed acknowledg-
ment strategy, on the other hand, prevents a receiver from
acknowledging small segments by delaying acknowledg-
ments until they can be piggybacked onto either a data
segment or a window update packet [6]. For example, in the
SunOS implementation, a separate window update with a
piggybacked acknowledgment will be sent if the window can
slide more than either (1) 35% of the receive buffer size or
(2) two MSSs of the size. As a result, for a TCP connection
with a large MSS (on a high-speed end-to-end connection), a
TCP sender may not be able to compose a MSS segment if
its send buffer size is not large enough. Similarly, a TCP
receiver may not be able to acknowledge since the amount of
data received is not large enough when compared with MSS.

Several straightforward solutions to solving the deadlock
problem are either infeasible or re-introduce the SWS
problem [3]. In [7], we introduced a new Adaptive
Acknowledgment Algorithm (AAA) and demonstrated that
this algorithm ensures a deadlock-free TCP connection
provided that the connection does not experience network
congestion. In this paper, we probe further into this solution.
First, we show that the algorithm’s performance is not
significantly affected by the sampling frequency. Second, we
show that the algorithm is not sufficient for preventing
throughput deadlock when TCP connections experience
network congestion. Third, we propose and evaluate an
enhanced AAA by take into consideration network
congestion. They are described in Section 2, 3, and 4,
respectively. Finally, we conclude this paper with future
work in section 5.

’ This work is partially supported by the Hong Kong Polytechnic University Research Grant S909.
Corresponding author

0-7695-0777-8/00 $10.00 0 2000 IEEE
87

2. An adaptive acknowledgment algorithm

In [7], we proposed a new Adaptive Acknowledgment
Algorithm (AAA) as a new delayed acknowledgment
strategy to remove throughput deadlocks and, at the same
time, to maintain the SWS avoidance mechanisms. In this
algorithm, the receiver is responsible for “resolving”
deadlock situations. The key operation undertaken by the
receiver is to estimate the sender’s Maximum
UnAcknowledged Data Size (MUADS) in terms of bytes,
which is the maximum amount of data continuously sent by
the sender when the receiver is not acknowledging. When
deadlock situation does not occur and there is no network
congestion, the MUADS is upper bounded by min{B,, B,},
where B, and B, are the send buffer size and receive buffer
size, respectively. The exact value of MUADS depends on
buffer sizes, data copy rule, and other implementation
details. An AAA receiver sends an acknowledgment when
the segments received reach or exceed 35% of the MUADS
estimate. It has been shown that the AAA removes all
deadlocks by having the receiver promptly send back
acknowledgments [7].

An AAA receiver performs packet samplings to estimate
the sender’s MUADS after a TCP connection is established
by maintaining one timer, one counter, and two thresholds:
1. Sampling period timer (SP-timer): A timer to control the

length of a sampling period
2. Sampling period threshold (SP-t): A value (in time units)

used in conjunction with the SP-timer to control the
length of a sampling period

3. Inter-sampling period counter (ISP-counter): A counter
to control the inter-sampling period

4. Inter-sampling period threshold (ISP-t): A value (in
number of packets) used in conjunction with the
ISP-counter to control the inter-sampling period

In Fig. 1, we show the state transition diagram when a
receiver enters a packet sampling period. Please refer to [7]
for further details about inter-sampling period control and
sampling initialization, sampling period control, and
threshold setting.

One possible way of further improving AAA’s throughput
performance is to reduce the number of samplings required
for computing MUADS. There are two ways to achieving
that: increase the inter-sampling period and decrease the
sampling period. Modifications to the corresponding
algorithms are shown in Fig. 2. In Table 1, we present
simulation results to compare the original AAA with the
modified AAA. Although the number of samplings decreases
significantly (not shown here), the throughput improvement
is not as significant.

3. Effect of network congestion on AAA

The AAA was designed without network congestion in
mind. In this section, we show and explain why the AAA

fails to remove throughput deadlocks when TCP connections
experience network congestion.

It is well known that a TCP sender detects possible
network congestion either by receiving three duplicate
acknowledgments (fast retransmission) or by a timeout. In
either case, the sender retransmits the segments that have not
been acknowledged. At the same time, the sender also
adju:sts its congestion window size. In the case of fast
retransmission, the sender reduces its congestion window to
only half of the current value. In the case of timeout, the
window size is reset to one MSS. Both cases effectively
reduce the sender’s sending rate. As a result, the receiver’s
MUADS estimate that is based on pre-congestion statistics
will over-estimate the actual value. Therefore, the receiver
may not be able to receive enough data to trigger
acknowledgments, and a throughput deadlock occurs again.

To further investigate the throughput deadlock problem
under network congestion, we have performed several
simulation experiments. In all experiments, we assume that
the sender will execute slow start whenever detecting
network congestion. A C++ object simulator simtcpl was
developed for this purpose. We simulated a 10-MB data
transmission from a sender to a receiver in a continuous data
stream. There are 8x8 send-receive buffer size combinations,
ranging from 4KB to 52KB. We further divide the 64
combinations into seven areas, as shown in Table 2. Each
area is constructed based on send-receive buffer sizes, and
the 1.ikelihood that throughput deadlock would occur. For
example, areas 1-3 is a deadlock-free region, and the three
areas are further distinguished by their send-receive buffer
size combinations. Moreover, areas 4-6 is a low-risk
deadlock-prone region, and area 7 is a high-risk deadlock-
prone region.

3.1 Deadlock-free region

In Fig. 3, we show the throughput performance for a
scen,ario in area 1. We injected congestion every SOOs,
starting from time 0. Because the congestion duration is very
shod, only a very small throughput drop is observed in the
curve with congestion. Throughputs for areas 3-4, which are
shown here, exhibit similar behavior as in Fig. 3. Specific
points about this set of experiments are as follows:
1. [n area 2, because the send buffer is small, the MUADS

estimate cannot be very large. As a result, even if the
(congestion window is set to one MSS after detecting
congestion, the subsequent data sent out by the sender
may still be 35% or higher of the MUADS estimate.
‘Thus, the receiver could send back acknowledgments,
and no deadlocks occur.
[n area 3, the MUADS estimate cannot be larger than
the actual receive buffer size, which is small in this case.
As a result, the small amount of data sent by the sender
may still be 35% or more of the MUADS estimate.
Again, acknowledgments can be sent back.

2.

88

3.2 High-risk deadlock-prone region

In Fig. 4, we observe three significant throughput drops,
corresponding to three network congestion instants. The
sender responds to congestion by performing slow start, thus
decreasing the data rate. However, the MUADS estimate
used by the receiver was derived from pre-congestion data.
As a result, the sender’s data is unable to meet 35% of the
“incorrect” MUADS estimate, resulting in throughput
deadlocks.

3.3 Low-risk deadlock-prone region

Here we show two cases in Figs. 5-6. Similar to the high-
risk deadlock-prone region, both cases show significant
throughput drops. However, the variance in the magnitude of
throughput degradation is higher than that in Fig. 4. The
main reason responsible for this is that the MUADS estimate
depends very much on the connection’s state just before the
sender detects congestion. Thus, in some cases the MUADS
estimate does not result in deadlocks but in some other cases
it does.

4. A congestion-sensitive AAA (CS-AAA)

One approach to solving the deadlock problem in midst of
network congestion is to reset the MUADS estimate and to
perform sampling all over again to find the new value
whenever congestion is detected. The main disadvantage of
this approach is that deadlock still exists before sampling is
completed. As a result, the sampling period needs to run for
a long time, and the overhead incurred would be great.

4.1 Congestion detection and avoidance at receivers

We employ another method to tackle this problem, and we
refer the enhanced AAA to as Congestion-Sensitive AAA
(CS-AAA). First of all, the receiver now needs to detect
network congestion. Whenever congestion is detected, the
receiver performs a procedure on the MUADS estimate,
similar to slow start at the sender. That is, the MUADS
estimate is first reset to one MSS of the connection. The
MUADS estimate is then incremented for every nonduplicate
acknowledgment sent back to the sender, and this step
continues until the MUADS estimate reaches the previous
value when congestion is detected. We postpone the detail
explanation of this procedure to a later stage in this section.
Instead, we first consider the ways that a receiver can detect
network congestion. There are three situations to consider:
1. A short-term congestion causes routers to drop a small

number of data packets, and the receiver sends three
duplicate acknowledgments back to the sender. In this
case, the receiver resets the MUADS estimate to one
MSS and starts the CS-AAA.
The receiver’s acknowledgments are dropped by routers 2.

due to congestion. In this case, the sender times out and
re-sends data packets. The receiver, therefore, receives
duplicate data segments, and it resets the MUADS
estimate to one MSS and starts the CS-AAA.
A longer-term congestion causes routers to drop a large
number of data packets. The sender times out and re-
sends packets. Thus, the receiver in this case can rely
only on timing out the current MUADS estimate and
starts the CS-AAA.

The algorithm that the receiver starts after resetting the
MUADS estimate to one MSS in response to congestion is
summarized as follows:
if(s-start) (

3.

MUADS = min (segsize, MUADS);
g(MUADS > segsize)(

r-ssthresh = MUADS / 2 ;
while (s-start)

$(a new ACKsent out from the receiver)
if(MUADS <= r-ssthresh) MUADS = MUADS * 2;
else MUADS = MUADS + (segsize * segsize) /

MUADS + MUADS/&
$(MUADS == r-ssthresh * 2) s-start = 0;

J;
else s-start = 0;

I ;
s-start is a flag that signals the starting of CS-AAA, and
r-ssthresh remembers the value of the MUADS estimate
when congestion is detected. The logic of this algorithm
follows closely the slow start algorithm at the sender.

4.2 Performance evaluation of CS-AAA

We performed simulation experiments for all three regions
to evaluate the performance of CS-AAA. Since region 1 is
deadlock-free, we consider regions 2-3 only. In Fig. 7 we
show a case for the high-risk region and in Figs. 8-10, three
cases for the low-risk region. We summarize in the following
two major observations from the simulation results.
1. When the send buffer is relatively large, as shown in

Figs. 7 and 10, CS-AAA responds to and recovers from
network congestion much faster than AAA. In this
scenario, it is highly likely that AAA will get into
deadlock again when congestion occurs, because the
MUADS estimate assumes a higher value due to a large
send buffer. On the other hand, CS-AAA, by resetting
the MUADS estimate to one MSS, is able to keep the
packets flowing, and picks up much faster than AAA.
When the send buffer is relatively small, as shown in
Figs. 8-9, CS-AAA attains similar throughputs as AAA
at the beginning, but CS-AAA again responds to and
recovers from network congestion much faster than
AAA in the latter congestion. In this scenario. The
MUADS estimate may or may not be large enough to
cause deadlock. Apparently, when the first congestion
occurs, the CS-AAA receiver is unable to detect network
congestion (because the timeout value is too large);

2.

89

therefore, there is no throughput gain by using CS-AAA.
However, in the latter congestion the CS-AAA receiver
is able to detect congestion and to respond to it
promptly. This shows that CS-AAA is not penalized in
the throughput performance even though it occasionally
fails to detect congestion.

5. Conclusions and future works

SIR
4KB
8KB

In this paper we added a new component to AAA to
handle the deadlock problem in midst of network congestion.
The simulation experiments have shown that the new CS-
AAA reacts to congestion much faster than AAA, and it also
recovers from congestion much faster, thus resulting in a
higher throughput performance. There are still a number of
areas to explore. First, we need to investigate AAA’s
performance when sender uses fast recovery procedure.
Second, CS-AAA can be further refined by allowing a
receiver to take different actions in response to different
types of congestion. Third, the effect of timeout value for
detecting congestion at the receiver needs to be further
investigated in order to increase the chance of accurately
detecting congestion. Fourth, we will implement a prototype
for this new TCP and measure the performance.

4KB I 8KB 16KB I 24KB I 32KB I 40KB I 48KB I 52KB
Areal Area 2

References

[l] I,. S. Brakmo and L. L. Peterson, “TCP Vegas: End to End
Congestion Avoidance on a Global Intemet,” IEEE J. Sel.
Commun., vol. 13, no. 8, pp. 1465-1480, Oct. 1995.
[2] A. Bestavros and G. Kim, “TCP Boston: A Fragmentation-
tolerant TCP Protocol for ATM Networks,” Proc. IEEE
INFOCOM’97, pp. 1212-1219, Apr. 1997.
[3] IC. Moldeklev and P. Gunningberg, “How a Large ATM MTU
Causes Deadlocks in TCP Data Transfers,” IEEELACM Trans.
Networking, vol. 3., no. 4., pp. 409-422, Aug. 1995.
[4] ID. E. Comer and J. C. Lin, “TCP Buffering and Performance
Over an ATM Network,” Internetworking: Research and
Experience, vol. 6, pp. 1-13, May 1995.
[5] .I. Nagle, “Congestion Control on TCPlIP Intemetworks,” RFC
896, Jan. 1984.
[6] 13. D. Clark, “Window and Acknowledgment Strategy in TCP,”
RFC 813, July 1988.
[7] Wing K. Leung and Rocky K. C. Chang, “Improving TCP
Throughput Performance on High-speed Networks with a Receiver-
side Adaptive Aclaowledgment Algorithm,” Proc. SPIE’s I d .
Symp. Voice, Video, and Data Commun. (Internet Routing and
Qucrlity of Service), pp. 4-13, Nov. 1998.

Original AAA (modified AAA) : Deadlock region

Table 1. Throughput for different send-receive buffer sizes (in KB per simulation sec) using AAA.

Table 2. Seven areas of send-receive buffer size combinations.

90

Begin sampling - ln i l i a l i za t ion

I) Send init. ack.
2) SP-timer = 1.5 RTT
3) SP-timer starts

counting down

U SP-timer > 0

T e r m i n a t i o n

I) Send a c t .
2) Update ISP-counter

and update ack
threshold

I) Count the number

2) Reset SP-timer
3) SP-timer starts

counting down

of packets received

Fig. 1. State diagram of an AAA receiver during packet samplings.

if(I MUADS,,,, - MUADS,,,,, I C MSS)
ISP-t = 3* ISP-1
acknowledgment threshold unchanged

ISP-t = IO
else if(MUADS,,,, > MUADS,,,,,)

else

if(I MUADS,,,, - MUADS,,,,, I C MSS)
ISP-t = 4* ISP-t
acknowledgment threshold unchanged

modified ‘Ise I sp- l= 0.5 * 1sp-t
else if(MUADS,,,, > MUADSDrm,.,) to

acknowledgment threshold = 0.35 * MUADS,,,,, acknowledgment threshold = 0.35 * MUADSCmn,

Fig. 2. A revised mechanism for computing threshold values for AAA.

Fig. 3. Throughput for a 4-KB sender and a 4-KB
AAA receiver (deadlock-free region).

Fig. 4. Throughput for a 52-KB sender and a 52-KB
AAA receiver (high-risk deadlock region).

91

Fig. 5. Throughput for a 24-KB sender and a 24-KB
AAA receiver (low-risk deadlock region).

0 200 400 Wl Bm 10X 1200 1400
30

Fig. 6. Throughput for a 48-KB sender and a 24-KB
AAA receiver (low-risk deadlock region).

time(s) time($

Fig. 7. Throughput for a 52-KB sender and a 52-KB Fig. 8. Throughput for a 24-KB sender and a 24-KB
receiver w/o CS-AAA (high-risk deadlock region). receiver w/o CS-AAA (high-risk deadlock region).

91 : I

time($ time(s)

Fig. 9. Throughput for a 24-KB sender and a 48-KB Fig. 10. Throughput for a 48-KB sender and a 24-KB
receiver w/o CS-AAA (low-risk deadlock region). receiver w/o CS-AAA (high-risk deadlock region).

92

