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ABSTRACT
A wireless device’s energy can be saved by putting it into
the sleeping mode (power saving mode, PSM) or decreasing
its transmission power (transmission power control, TPC)
which prolongs the packet transmission time. However, de-
creasing one’s transmission power would prevent others from
transmitting their packets. Clearly, there are complex inter-
actions when each tries to optimize its own energy efficiency.
Therefore, in this paper we are considering the problem of
optimizing the energy efficiency for all wireless devices in the
network with the constraint that they are all stable. In par-
ticular, we consider the polling-based MAC protocols with
phase grouping and mobile grouping schedules, and we em-
ploy both the PSM and TPC to save the energy. We have
formulated stability-constrained optimization problems for
them, and have proposed an iterative algorithm to compute
the optimal power allocations for the wireless devices. We
have conducted a lot of experiments to validate the accu-
racy of the algorithm and to evaluate the gains in the en-
ergy efficiency for the two schedules. The mobile grouping
schedule is found to be much more energy efficient than the
PG schedule, especially when the downlink traffic is higher
than the uplink traffic. We have also studied the impact of
the optimized schedules on the delay performance.

1. INTRODUCTION
Energy efficiency is one of the important design issues

to consider in wireless networks. Various mechanisms have
been proposed to trade-off between energy consumption and
the communication quality [1]. In this paper we mainly
concentrate on the media access control (MAC) sublayer in
a wireless infrastructure network in which an access point
(AP) serves as the relay for a number of wireless clients.
The wireless MAC protocols can be based on random access
or coordinated access. For example, in the IEEE 802.11
wireless LAN, the standard prescribes the distributed co-
ordinated function (DCF) and point coordinated function
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(PCF). The DCF is based on Carrier Sense Multiple Ac-
cess with Collision Avoidance (CSMA/CA) and the PCF is
mainly based on a polling scheme.

In this paper we consider the polling-based MAC proto-
col for a wireless LAN. The polling-based MAC provides a
number of advantages over the random access MAC. For ex-
ample, it can guarantee a certain level of quality-of-service
to each client even when the channel is accessed simulta-
neously by multiple clients. As we shall see in this paper,
the polling-based MAC can also be used to optimize the
energy consumption of the entire wireless LAN. We will em-
ploy 2 mechanisms to reduce the energy consumption—the
power saving mode (PSM) and the transmission power con-
trol (TPC) [2]. The PSM reduces the energy consumption
by putting wireless devices into the sleeping mode (e.g. [3]),
while the TPC reduces the transmission power to conserve
energy.

The TPC is based on the fact that the communication
energy can be saved by transmitting packets over a longer
duration, i.e., reducing the transmission rate [4]. We adopt
the TPC with the convex rate-power curve derived from
the Shannon’s theorem. First, the ideal channel capacity
is given by Cmax = W × log2(1 + S

N
) bps, where W is the

bandwidth in Hz, N is the Gaussian noise power, and S
is the signal power. The transmission rate R is given by
αCmax bps, where α ∈ (0, 1), depicts the ratio of the real
channel capacity to Cmax. By introducing an attenuation
factor A, which is the ratio of the transmission power P to
S, the power-rate relationship (1) is shown in Figure 1(a).

R = αW log2(1 + P/(AN)). (1)

Moreover, the energy spent on transmitting 1 bit, e(t) =
tP , is a convex function of its transmission time t = 1

R
.

Therefore, e(t) can be reduced by lowering P , which results
in a smaller R and a longer t. The relationship is illustrated
in Figure 1(b).

Most of the power-saving mechanisms, including the PSM
and TPC, will nevertheless degrade the communication and
application performance. Therefore, many previous works
considered optimal trade-offs between energy consumption
and various performance metrics, such as throughput [5],
delay [6, 7, 8], network utility [9], and error rate [2, 10].
Moreover, the previous works considered the trade-offs for
individual wireless device and did not consider how the in-
dividual energy-saving actions affect each other. This paper
addresses the energy consumption problem for the entire
network. In other words, an individual device cannot slow
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Figure 1: Trade-off of energy & transmission rate

its transmission rate to the extent that other devices would
be starved. As a result, we will optimize the total energy
consumption of all devices under the constraints that all
the devices are stable, i.e., stability-constrained optimiza-
tion. By stability, we mean that the queue length would
not grow unbounded. Moreover, we will consider 2 polling
schedules—phase grouping and mobile grouping, and com-
pare their performance in terms of the energy efficiency.

2. RELATED WORK
The phase grouping schedules have been widely deployed.

The typical example is the energy conserving MAC (EC-
MAC) protocol [10] which uses an explicit transmission or-
der with reservations. In the broadcast (downlink) phase,
the wireless device listens to the downlink for the trans-
mission order. The AP’s centralized scheduler tries to re-
duce the energy consumption and support QoS in the up-
link phase. Many mobile grouping polling-based protocols
have also been proposed to minimize the energy consump-
tion by having less transitions, and control the packet trans-
mission [11], such as the disposable token MAC Protocol
(DTMP) [12], the E2MaC protocol [13], and the mobile
grouping schedule [14].

Moreover, a number of mechanisms have been proposed to
trade-off between energy efficiency and other performance
metrics. Some packet transmission schedules in wireless
communications are designed to minimize the energy con-
sumption subject to the deadline or the delay constraint,
e.g., the optimal offline/online schedules [15] and the Move-
right algorithm [16]. Cross-layer schemes are proposed to
balance the reduction of delay (transmission time) and the
energy conservation, e.g., the energy-efficient PCF [2] for
uplink data transmission. It controls the transmission rate
by the PHY rate adaptation, while uses the TPC to select
the best transmit power level to combat the co-channel in-
terference. According to the given power-rate function, the
TPC may determine the most energy efficient transmission
strategy for each data frame, e.g. an optimal rate-power
combination table in Miser [17]. Besides, Zhang and Chan-
son have attempted to minimize the energy consumption
subject to the given throughput constraints, or maximize
the throughput subject to a fixed energy storage [5]. Chiang
and Bell defined network utility based on all user utilities,
and studied the problem of maximizing the network utility
with energy constraints [9]. Nuggenhalli et al designed a
delay constrained transmission schedule that maximizes the
lifetime of a transmitter [7], and further took the energy
recovery property of batteries into consideration [18].

Instead of considering specific performance metrics, we

Figure 2: Grouping schedules of polling-based MAC

consider the guarantee of stability as a foundation require-
ment for wireless communication. The solution of our stability-
constrained energy minimization problem is the optimal trans-
mission power allocations, which is easy to deploy in wireless
nodes. That is, our optimal transmission power allocations
have provided a stable network consuming energy efficiently.
When wireless applications require specific performances,
e.g. a short delay or a large throughput, other energy ef-
ficient schemes may be applied as the complementary part
of our design.

The rest of the paper is organized as follows. In the next
section, we describe the 2 polling schedules and model them
using cyclic-service queueing models. In section 4, we for-
mulate stability-constrained optimization problems for the 2
schedules. Then we compute optimal solutions and present
an iterative algorithm in section 5. In section 6, we first
evaluate the performance of the iterative algorithm and then
compare the energy efficiency of the 2 schedules. We have
also evaluated the impact of the PSM and TPC on the de-
lay performance. We finally conclude this paper with future
directions in section 7.

3. SYSTEM MODELS
We consider 2 types of polling schedules—phase group-

ing (PG) schedule and mobile grouping (MG) schedule. In
the PG schedule, the uplink and downlink phases alternate
between them, as illustrated in Figure 2. In the downlink
phase, the AP broadcasts packets to all wireless devices M1,
M2, . . . . Thus, all devices have to stay active in order to re-
ceive their packets. However, each device is polled individu-
ally in the uplink phase. Therefore, using the PSM, a device
can be put into the sleeping mode when it is not polled, and
be awaken into the active mode when it is polled during the
uplink phase. On the other hand, the MG schedule groups
the uplink and downlink phases for each wireless device, e.g.
[12]. Each device stays in the sleeping state except when it
is polled by the AP for message reception and transmission.
Note that frequent transitioning between the sleeping mode
and the active mode also consumes a significant amount of
energy.

We model the MG and PG schedules using a cyclic-service
queueing model [19]. We first describe the common model
elements here, and then continue the model description that
differs for these two schedules. Consider that there are c
wireless devices in the network, which are serviced by an
AP according to a fixed polling schedule. Each wireless de-



Figure 3: A queueing model for the MG schedule

vice is modeled as a queue with infinite buffers, denoted
by qi (i = 1, . . . , c), and the AP is modeled as a server.
The server will leave the polled queue when it is empty or
when all packets arrived before the server visits have been
serviced. Packets are generated at the queues for uplink
transmissions to the AP, and packets are generated at the
AP for downlink transmissions to the queues. The arrival
processes of the uplink traffic and downlink traffic are as-
sumed to be independent Poisson processes, with mean ar-
rival rates equal to λu,i and λd,i for qi, respectively. The
total arrival process of qi is therefore also Poisson with rate
λi = λu,i + λd,i. The uplink (downlink) service time pro-
cesses, which are assumed to be independent and gener-
ally distributed, are denoted as Bu,i(Bd,i) for qi, with mean
equal to bu,i(bd,i) < ∞. Note that the mean service times
are not constants due to the TPC scheme.

In the model for the MG schedule, the server visits each
queue in a deterministic and cyclic order: q1, q2,. . ., qc, q1, ....
The downlink traffic is assigned a higher priority over the
uplink traffic in all queues. Moreover, there is a nonzero
walk time involved in switching between queues, which is
modeled as the wake-up period. The walk time process from
qi−1 to qi, denoted by SWi, is generally distributed with
mean si < ∞, and the walk time processes are independent
of each other. In addition, we define several quantities that
are useful for our discussion later. Consider a target queue
in the system qi. From qi’s point of view, the server is either
serving it or is on vacation, as shown in Figure 3. We define
the period, in which the server is serving qi, as qi’s busy
period, denoted by Θi. The busy period is further divided
into a uplink period Txi and a downlink period Rxi. On the
other hand, the period, in which the server is away from qi,
is called the vacation period (from qi’s viewpoint), denoted
by Vi. The cycle time Ci is given by a sum of Θi and Vi.

The model for the PG schedule depicted in Figure 4 is
similar to the one for the MG schedule, except that we sep-
arate the downlink and uplink phases. The sum of all Txi

and SWi is regarded as the uplink phase, during which the
server visits the queues in the fixed order. The uplink pe-
riods Txi are defined similarly as before. The walk time
process SWi models the time spent on switching from one
queue to another, which is usually a small amount of time.
Unlike the MG schedule, the AP transmits all packets with
the same transmission power and the same average trans-
mission time bD. Therefore, the downlink phase is modeled
as another queue with traffic generated by the AP. A walk
time SW0 is spent before all wireless devices are ready to re-
ceive data, which is generally distributed with the mean s0.
The length of the downlink phase equals to the sum of the
downlink period Rx and SW0. The cycle time C is defined
as the sum of the uplink phase and the downlink phase.

In Table 1, we present the three different energy-consuming
modes for the MG and PG schedules. In the active mode,
we separate the transmission and reception periods. Nor-

Figure 4: A queueing model for the PG schedule

Table 1: Power modes in the MG and PG schedules

System model Scheme Notation Mode, power

qi’s transmission MG, PG Txi Active, PT x,i

qi’s reception MG Rxi Active, PRx,i

Receiving period PG Rx Active, PRx

qi’s state transition MG SWi Wake-up, PI,i

PG SW0, SWi

qi’s sleep period MG Vi − SWi Sleep, PV,i

PG C − SW0 − Rx
−SWi − Txi

mally, the relative power consumption for the 3 modes are
given by: PV,i � PI,i and PRx,i < PTx,i.

4. STABILITY-CONSTRAINED OPTIMIZA-
TION PROBLEMS

Let Ei be the energy consumed by qi during a cycle. We
are interested in computing the average of E =

∑c
j=1 Ej for

the MG and PG schedules. According to the Law of Large
Numbers, the statistical average converges to its expecta-
tion, E[E]. As for the power constraint, the wireless devices
are assumed to operate within [Pmin, Pmax]. Besides, let the
AP’s transmission power when sending data to qi be PAP,i

(≤ PMAX). The second set of constraints are on the device
(queue) stability which is defined in the following [20].

Definition 1. The device qi is considered stable if the
distribution of queue length L(t) converges to some proper
distribution F , i.e.

lim
t→∞

Pr{L(t) < x} = F (x), lim
x→∞

F (x) = 1.

qi is called substable if lim
x→∞

lim
t→∞

inf Pr{L(t) < x} = 1.

A network is considered stable if all the nodes in the
network are substable; it is considered unstable otherwise.
From the analysis results of [21], the total workload ρ =∑

i∀ λibi must be strictly less than 1, if the whole network
is stable. In order to apply the standard optimization prob-
lem formulation, we relax the stability constraint to ρ ≤ 1.
The relaxation on the stability constraint in practice does
not affect the optimization results, because all the experi-
ments performed show that none of the optimal solutions
are on the stability boundary.

4.1 The mobile grouping schedule
Consider qi in the MG schedule. Ei consists of the energy

consumption during the sleep state, the transition from the
sleep state to the active state, and the active mode (trans-
mit and receive). That is, EMG,i = PTx,iTxi + PRx,iRxi +
PI,iSWi + PV,i(Vi − SWi). Therefore, the total energy con-
sumption of all queues in one cycle is given by EMG =
PT

TxTx+PT
RxRx+PT

I SW+PT
V (V−SW), where all vectors



are of dimension c. The objective function then becomes

E(EMG) = E[PT
TxTx] + E[PRx]T E[Rx] +

E[PI ]
T E[SW] + E[PV]T (E[V]−E[SW]).

Moreover, E[C] is the same for all queues which is given by∑c
j=1(E[Txj ]+E[Rxj ]+E[SWj ]). Combined with the power

constraints, the optimization problem for the MG schedule
is formulated as

min
bd,bu

E(EMG) (2)

s.t.

c∑
j=1

(λd,jbd,j + λu,jbu,j)− 1 ≤ 0.

PAP,i ≤ PMAX , ∀i.
Pmin ≤ PTx,i ≤ Pmax, ∀i.

4.2 The phase grouping schedule
For the PG schedule, qi consumes energy during the en-

tire downlink reception period, the mode transitions, the
transmission period, and the sleeping period. Therefore,
EPG,i = PRx,iRx+PTx,iTxi +PI,i(SW0 +SWi)+PV,i(C−
SW0 − Rx − SWi − Txi). Similar to the previous case, we
can obtain the objective function for the PG schedule as

E(EPG) = (E[PRx]T E[Rx] + E[PI ]
T E[SW0])I(c, 1) +

+E[PI ]
T E[SW] + E[PT

TxTx] + E[PV]T ×
(E[C − SW0 −Rx]I(c, 1)−E[SW]−E[Tx]),

where E[C] = E[Rx] +
c∑

j=1

(E[Txj ] + E[SWj ]) and I(c, 1)

is a c-dimensional identity vector, i.e. ec. Therefore, the
optimization problem for the PG schedule is formulated as

min
bd,bu

E(EPG) (3)

s.t. bD

c∑
j=1

λd,j +

c∑
j=1

(λu,jbu,j)− 1 ≤ 0.

PAP,i ≤ PMAX , ∀i.
Pmin ≤ PTx,i ≤ Pmax, ∀i.

5. COMPUTING OPTIMAL POWER ALLO-
CATIONS

In this section we solve the stability-constrained optimiza-
tion problems formulated in the last section. First, let Fi

be the r.v. for qi’s packet size in terms of the number of

bits. According to (1) and SNRi(PTx) =
PT x,i/gii

Ni+
∑c

j 6=i
PT x,jgij

defined in [9], the uplink packet service time is given by

Bu,i =
2Fi/αW

log2(1 + SNRi(PTx))
, (4)

where PTx is the transmission power vector for all wireless
devices. Besides, gij (i, j = 1, . . . , c) denotes the attenua-
tions/gains between the wireless channels of qi and qj . Ni

is the noise power of the wireless channel for qi. Similarly,
the downlink packet service time Bd,i is given by

Bd,i =
2Fi/αW

log2(1 + SNRi(PAP ))
, (5)

where PAP is the AP’s transmission power vector.

Table 2: Results for cyclic-service queuing model
Cycle period E[C] = s

1−ρ
, where

s =
c∑

j=1
sj , ρi = λibi, and ρ =

c∑
i=1

ρi

Busy period E[Θi] = ρiE[C].
Vacation period E[Vi] = (1 − ρi)E[C].

5.1 The mobile grouping schedule
The optimal solution to (2) consists of two optimal service

time vectors bu and bd. Our aim is to allocate P∗AP and
P∗Tx in order to minimize the energy consumed by all de-
vices with the assurance of stability. To make the following
analysis tractable, we assume the followings.

1. Let Pmax = PMAX and the transmission powers in
both directions are the same, i.e. Pi ≡ PTx,i = PAP,i ∈
[Pmin, Pmax],∀i.

2. No interference between wireless channels, i.e. gij = 0,
∀i 6= j. By (4) and (5), we have Bi ≡ Bu,i = Bd,i

with mean bi = Hi
log2(1+Pi/Ki)

, where Ki = giiNi and

Hi = 2E[Fi]/αW . Since SNR � 1, we have

Pi(bi) ≈ Ki × 2Hi/bi ,∀i. (6)

3. All queues have the same power consumptions when
receiving, transitioning and sleeping, i.e., PR, PI and
PV for all queues.

Denote the ratio of the downlink traffic by βi =
λd,i

λd,i+λu,i
;

therefore, we have E[Rxi] = βiE[Θi] and E[Txi] = (1 −
βi)E[Θi]. We refer the 2 special cases of β = 1 and β = 0
to as pure downlink and pure uplink, respectively. By ap-
plying the well-known results for the cyclic-service queueing
systems [19] summarized in Table 2, the optimization prob-
lem stated in (2) becomes

min
b

s
c∑

j=1

ρj [(1− βj)PTx,j + βjPR]

1− ρ
+ s(PI + PV

c− 1

1− ρ
),

s.t.

c∑
j=1

λjbj − 1 ≤ 0.

Hi

log2(Pmax/Ki)
− bi ≤ 0, ∀i.

bi −
Hi

log2(Pmin/Ki)
≤ 0, ∀i. (7)

Proposition 1. In the pure downlink case, the optimal
power allocation for the MG schedule is for the AP to trans-
mit data to all wireless nodes with the maximal power.

Proof. In this case, β = 1, and bd,i = bi, ∀i. We adopt
the Karush-Kuhn-Tucker (KKT) optimality conditions [22]
to find the optimal vector of the downlink mean service times
b∗d and the corresponding optimal power allocation P∗AP.
For a Lagrangian multiplier set {u∗ ≤ 0,v∗ ≤ 0}, we have

λis[PR + PV (c− 1)]

(1−
∑c

j=1 λjb∗d,j)
2
− u∗λi + v∗i = 0, ∀i. (8)

u∗(

c∑
j=1

λjb
∗
d,j − 1) = 0. (9)

v∗i (
Hi

log2(PMAX/Ki)
− b∗d,i) = 0, ∀i. (10)



Note that the objective function is finite if
∑c

j=1 λjb
∗
d,j 6=

1; therefore from (9), u∗ = 0. Moreover, according to (8),
v∗i is strictly less than 0. In order to satisfy (10), it is then
necessary that b∗d,i = Hi

log2(PMAX/Ki)
, ∀i. That is, the AP

transmits with the maximal power.

When the uplink traffic exists, the interaction between
Pi and bi is more complicated. Prop. 2 gives a necessary
condition for an optimal solution. Moreover, the proposition
serves as the basis for designing an iterative algorithm to
solve the optimization problem, which will be discussed later
in this section.

Proposition 2. If all wireless devices do not transmit
data using their extreme power, b∗ must satisfy L(b∗) =
R(b∗) in an optimal MG schedule.

Proof. According to the KKT conditions, b∗ is a local
minimum only when (11)-(14) are satisfied for a set of la-
grangian multipliers {u∗ ≤ 0,v∗ ≤ 0, σ∗ ≤ 0}:

sλi[Li(b
∗)−Ri(b

∗)]

(1−
∑c

j=1 λjb∗j )
2

− u∗λi + v∗i − σ∗i = 0, ∀i.(11)

u∗(

c∑
j=1

λjb
∗
j − 1) = 0. (12)

v∗i (
Hi

log2(Pmax/Ki)
− b∗i ) = 0, ∀i.(13)

σ∗i (b∗i −
Hi

log2(Pmin/Ki)
) = 0, ∀i,(14)

where ρi = λibi, ρ =
∑c

j=1 ρj , and

Li(b) = [(1− βi)Pi(bi) + βiPR](1− ρ) + PV (c− 1) +
c∑

j=1

ρj [(1− βj)Pj(bj) + βjPR], (15)

Ri(b) = (1− βi)Pi(bi)(1− ρ) ln(
Pi(bi)

Ki
). (16)

Since
∑c

j=1 λjb
∗
j 6= 1, it is easy to see from (12) that

u∗ = 0. If Pmin < P ∗i < Pmax, we have v∗i = σ∗i = 0 from
(13) and (14). Lastly, based on (11), we obtain Li(b

∗) −
Ri(b

∗) = 0 ∀i.

5.2 The phase grouping schedule
We model the downlink phase in the PG schedule as an

M/G/1 queue q0 with rate λD =
∑c

j=1 λd,j . Since the busy
period distribution of this queue is the same as that for an
M/G/1 queue with c priority classes, its mean transmission
time is bD = (1/λD)

∑c
j=1 λd,jbd,j [23]. In this case, the

total average walk time is s′ = s0 +
∑c

j=1 sj , and the ex-

pected cycle period is E[C] = s′

1−ρ′ , where the total workload

ρ′ =
∑c

j=1 ρu,j + ρD, ρu,i = λu,ibu,i, and ρD = λDbD. Fur-

thermore, the expected receiving period E[Rx] is the busy
period of q0, i.e., ρDE[C]. The expected transmission pe-
riod of qi is E[Txj ] = ρu,jE[C]. Using (4), (5), the results in
Table 2, and assuming that PR, PI , and PV are constants,
the optimization problem for the PG schedule becomes

min
bd,bu

(PI − PV )(cs0 + s) +
s0 + s

1− ρ′
[

c∑
j=1

PTx,jρu,j +

c(PR − PV )ρD + PV

c∑
j=1

(1− ρu,j)].

s.t. λDbD +

c∑
j=1

λu,jbu,j − 1 ≤ 0.

Hi

log2(Pmax/Ki)
− bu,i ≤ 0, ∀i.

bu,i −
Hi

log2(Pmin/Ki)
≤ 0, ∀i.

Hi

log2 PMAX/Ki
− bd,i ≤ 0, ∀i. (17)

By introducing the downlink ratio βi = λd,i/λi as before,
we have λD =

∑c
j=1 βjλj , and λu,i = (1 − βi)λi, where λi

is the total traffic sent from and received by qi. Similar to
the MG schedule, we have two special cases: β = 0 and
β = 1. There are therefore 2c decision variables (bd,i and
bu,i, i = 1, . . . , c) involved in the optimization formulation.
We can reduce the number of the decision variables to c
by considering the result in Prop. 3. As a result, the last
constraint in (17) can be removed.

Proposition 3. In an optimal PG schedule, the AP trans-
mits data with its maximal power PMAX .

Proof. Note that E[EPG] increases monotonically with
bD, because both ρD and ρ′ increase with bD. Therefore,
the optimal downlink power allocation is obtained by b∗D =

(1/λD)
∑c

j=1 λd,jb
∗
d,j , where b∗d,i = Hi

log2 PMAX/Ki
,∀i. That

is, the AP uses the maximal power to transmit.

Similar to the MG schedule, we use the KKT conditions to
obtain the necessary condition for an optimal PG schedule,
which is stated in Proposition 4.

Proposition 4. If all wireless devices do not transmit
data using their extreme power, bu

∗ must satisfy L(b∗u) =
R(b∗u) in an optimal PG schedule.

Proof. Let ρ∗D = b∗DλD. bu
∗ is a local minimum only

when (18)-(21) are satisfied for a set of lagrangian multipli-
ers {u∗ ≤ 0,v∗ ≤ 0, σ∗ ≤ 0}. Let Li(bu) = PTx,i(bu,i)(1−
ρ) +

∑c
j=1 ρu,jPTx,j(bu,j) + PV (c − 1 + ρD), and Ri(bu) =

PTx,i(bu,i)(1 − ρ) ln(
PT x,i(bu,i)

Ki
). The KKT conditions are

given by:

E[C]λu,i[Li(b
∗
u)−Ri(b

∗
u)]

(1−
∑c

j=1 λjb∗u,j − ρ∗D)2
− u∗λu,i + v∗i − σ∗i = 0, ∀i. (18)

u∗(ρ∗D +

c∑
j=1

λu,jb
∗
u,j − 1) = 0, (19)

v∗i (
Hi

log2(Pmax/Ki)
− b∗u,i) = 0, ∀i. (20)

σ∗i (b∗u,i −
Hi

log2(Pmin/Ki)
) = 0, ∀i. (21)

Obviously, u∗ = 0 according to (19). If Pmin < P ∗i <
Pmax, we have v∗i = σ∗i = 0 from (20) and (21). As a result,
we have Li(b

∗
u)−Ri(b

∗
u) = 0, ∀i from (18).



Proposition 5. In the pure downlink case, E(EPG) >
E(EMG) with the same downlink transmission rates.

Proof. When β = 1, bu,i = 0,∀i, and ρ = ρD. Using
the same bd,i, E(EPG)−E(EMG) is given by

cPIs0 +
ρD

1− ρD
[(cPR − PV )s0 + ((c− 1)PR − cPV )s] > 0,

because PR � PV in practice. In particular, E∗(EPG) >
E∗(EMG) when the AP transmits data with PMAX and the
same b∗d,i according to Props. 1 and 3.

5.3 An iterative algorithm
We design iterative algorithms based on the results in

Prop. 2 and Prop. 4 for the MG and PG schedules, respec-
tively. In the following we use the MG schedule as an ex-
ample to illustrate how the iterative algorithms work.

Calculate bmin and bmax;
Choose ε1, ε2, d, m = 0, and then determine P0

Tx;
Initialize L(bm) 6= R(bm);

While | Norm(L)
Norm(R)

− 1| < ε1 or | LT R
Norm(L)Norm(R)

| > 1 − ε2

m = m + 1;
for i = 1 : c

if i = 1
li = Li(b

m−1,Pm−1); ri = Ri(b
m−1,Pm−1);

else
li = Li([b

m
t(t<i)

, bm−1
t(t≥i)

], [P m
t(t<i)

, P m−1
t(t≥i)

]); (t = 1, . . . , c)

ri = Ri([b
m
t(t<i)

, bm−1
t(t≥i)

], [P m
t(t<i)

, P m−1
t(t≥i)

]);

end if
if ri < li, bm

i = max{(1 − d)bm−1
i , bmin,i}; end if

if ri > li, bm
i = min{(1 + d)bm−1

i , bmax,i}; end if

P m
i = Ki2

Hi
bm
i ;

end for
end while

We first determine the feasible region of the mean service
times, which is bounded by bmin and bmax. According to
the power constraints [Pmin, Pmax], the range of the decision
variables must be within [bP

min,i, b
P
max,i] ∀i, as derived from

(6). According to the stability constraint, we can obtain
the minimum (maximum) average service time for any qi,
when other queues adopt bP

max,j (bP
min,j), j 6= i, as bρ

min,i =

(1 −
∑

j 6=i λjb
P
max,j)/λi (bρ

max,i = (1 −
∑

j 6=i λjb
P
min,j)/λi).

By combining the stability constraint with the power con-
straints, the feasible region is therefore given by bmin,i =
max{bρ

min,i, b
P
min,i}, and bmax,i = min{bρ

max,i, b
P
max,i}. Given

λ, note that an decrease in Pmin (Pmax) will increase bP
max,i

(bP
min,i), but decrease bρ

min,i (bρ
max,i). That is, bmin,i is more

likely to be determined by Pmax, but bmax,i is more likely
to be determined by the stability constraint instead. More-
over, given [Pmin, Pmax], bρ

max decreases with λ; therefore,
bmax will be more likely determined by the stability con-
straint. On the other hand, bmin is more likely determined
by Pmax when λ decreases.

Next we consider the main loop of the algorithm. Let
bm be the vector of the mean service rates at the begin-
ning of mth iteration. We set b0 = bmin, and P0

Tx can
be computed from (6). From Prop. 2, the ideal terminating
condition is L(bm) = R(bm). To obtain a close-enough con-
dition, we exploit the fact that two vectors in the Euclidean
space are the same if their norms are the same and the angle

(a) MG schedule, β = 0.5e4 (b) PG schedule, β = 0.5e4

Figure 5: Energy consumption at iterative steps

between them is zero. Therefore, given the accuracy toler-
ance parameters ε1 and ε2, the algorithm terminates when

| Norm(L)
Norm(R)

− 1| < ε1 and | LT R
Norm(L)Norm(R)

| > 1 − ε2. When

ε1 is near zero, the norms of L and R should be very close
to each other. When ε2 is near zero, cos ∠(L,R) should be
close to 1. Inside the iterative loop, Ri decreases monotoni-
cally with bi (from (16)). Therefore, in the mth iteration for
qi, if Ri > Li, we increase bm−1

i by d ∈ (0, 1), the step size;
otherwise, bm

i is decreased by d. Although the algorithm’s
complexity has not been proven, our extensive experiments
show that it converges quickly, i.e. m ≤ 50 in most cases.
Furthermore, we have applied the idea of Gauss-Siedel iter-
ation to reduce the convergence time.

When c = 2, both objective functions are convex within
the stability area, as shown in Figure 6. In this case the it-
erative algorithm gives a single optimal solution. However,
the objective functions are not convex for c > 2. As a re-
sult, the algorithm may return more than one local optimal
solution. For these cases we select the one, whose objective
function’s value is the smallest, to be the optimal solution.
Thus, the optimal transmission power allocations (P∗) can
be obtained from (6). As shown in Figure 5(a), for example,
the iterative algorithm reaches several local minimums for
the MG schedule, and the final optimal solution is obtained
at the 14th iterative step.

The PG schedule has a similar iterative algorithm as the
MG schedule, but has different L(bm) and R(bm). The
feasible region [bmin,bmax] is given by bmin,i = max{(1 −
ρ∗D−

∑
j 6=i λjb

P
max,j)/λi, b

P
min,i} and bmax,i = min{(1−ρ∗D−∑

j 6=i λjb
P
min,j)/λi, b

P
max,i}. Moreover, the PG optimal solu-

tions include bu
∗ which determines P∗Tx for the wireless

nodes, as well as P∗AP = PMAX × ec for the AP. Figure 5(b)
shows the steps executed by the iterative algorithm.

6. PERFORMANCE EVALUATION
The experiment results presented in this section are based

on W = 1MHz, PR = 2W , PI = 1W , and PV = 0.05W ,
and the power constraints are given by PMAX = Pmax =
10W and Pmin = 1W .

6.1 Evaluation: model and algorithm
We first evaluate the performance of the iterative algo-

rithm proposed in the last section. We will show that the
algorithm can compute power allocations that are very close
to the optimal ones. For the purpose of estimating the op-
timal power allocations, we have employed an exhaustive
search method which divides the range of each average ser-
vice time [bmin,i, bmax,i] ∀i evenly into n parts. For all the



possible nc vectors of average service times, we first select
those that satisfy the stability requirement and then find
the one with the minimal energy consumption. Since the
method is very time consuming, we have carried it out only
for c = 1, . . . , 5.

We first consider a case of 2 queues in Table 3 for both
schedules. The results obtained from the iterative algorithm
are marked by A (d = 0.05, ε1 = 0.01 and ε2 = 0.001).
The results obtained from the exhaustive search method are
indicated by N . We compare the optimal power P∗ obtained
from the two methods by computing an error rate eP =
norm(P∗

A−P∗
N)

norm(P∗
N

)
× 100%. The results show that the iterative

algorithm yields optimal solutions that are very close to, if
not the same as, the exact ones obtained by the exhaustive
search. Besides the optimal results, the table also shows the
number of iterative steps required by the iterative algorithm,
denoted as m and the locth iteration at which the optimal
solution is obtained. When loc = m, bu is determined by
Pmin or Pmax. When loc = m− 1, the iteration stops after
the first local solution is found, i.e. the mth step leads to
a higher energy consumption. Therefore, the single local
solution is the global optimal and both objective functions
are convex when c = 2.

The results for c = 3, 4, 5 are given in Table 4 and Table 5
for the MG schedule and the PG schedule, respectively. Note
that β = k ∗ ec. For example, the case of k = 0.5 represents
a 50-50 mix of the uplink and downlink traffic. Once again
the iterative algorithm yields quality solutions. Besides, if
λ is small, then the initial workload ρ(0) is very small. The
final optimal solution is determined by Pmin when the op-
timal workload λT bmax is also small. For example, in the
5-queue system with a light workload, the optimal trans-
mission power allocation for the PG schedule is [1;1;1;1;1].

However, if the traffic rates are very high, ρ(0) is close to
1. Then the wireless devices should send packets as fast as
possible, i.e. the packets are transmitted with the maximal
power allowed. For example, the optimal power allocation
for the MG schedule is Pmax when λ = [50; 100; 100; 150].

6.2 A comparison of the MG and PG schedules
Figure 6 presents the energy consumption obtained from

an exhaustive search method in 3 different workload sce-
narios: light (Fig 6(a)), moderate (Fig 6(b)), and heavy
(Fig 6(c)). For both schedules, E(E) is shown to be a con-
vex function of the average service time when c = 2. The
vertical lines in these figures locate the optimal solutions.
Moreover, when the traffic arrival rate is too low or too high
in reference to the power limitations, the optimal service
rate could be determined by Pmin or Pmax, e.g. P∗ = [1; 1]
in the PG schedule when λ = [30; 60] and β = 0.3× e2.

In most cases, E(EMG) < E(EPG) within the stability
region, except when λ is high enough. For example, in Fig-
ure 6(c), E(EMG) > E(EPG) when the elements of bu are
close to the upper boundary. The reason is that the MG
schedule approaches much closer to its stability boundary
which leads to a very long cycle period. In this case, the
MG schedule consumes much more energy due to the long
cycle. Furthermore, we repeat the experiments with differ-

ent β by changing k from 0 to 0.9, and the values of
E∗

MG
E∗

P G

are given in Figure 6(d). As shown, the optimal energy con-
sumption for the MG schedule is always lower than the PG

schedule’s, i.e., E∗(EMG)
E∗(EP G)

< 1. Therefore, the MG schedule is

(a)
∑c

i=1 λi = 320, k = 0.5 (b) λi = 20 ∀i, k = 0.5

Figure 7: Minimal energy consumption v.s. c

(a) λ =[60;100], c = 2 (b) λ=[30;60;90 ], c = 3

Figure 8: Breakdown of energy consumption, k = 0.5

indeed more energy-efficient, especially when the proportion
of the downlink traffic increases.

Moreover, we use the iterative algorithm to compare the
energy efficiencies of the MG and PG schedules for c > 2.
Figure 7 compares the minimal energy consumption for the
two schedules with different traffic patterns. Again, they
show that the optimal MG schedule can save more energy
than the optimal PG schedule, which is consistent with the
result in Prop. 5. Furthermore, the gap between the two
schedules increases with the number of devices.

Finally, we identify the factors that are responsible for the
MG schedule’s high energy efficiency. To do so, we decom-
pose the total energy consumption into the 4 components—
energy due to receptions (Rx), transmissions (Tx), mode
transitions (SW), and sleeping (V). We plot the results for
both schedules in Figure 8. It is clear that the MG schedule
is able to save a significant amount of energy during the re-
ception and mode transition phases. Since the PG schedule
broadcasts the downlink traffic, all wireless devices have to
be in the active mode, thus consuming a much larger amount
of energy. Moreover, each device in the PG schedule per-
forms more mode transitions. As for the energy consumed
during the transmission and sleeping mode, the two sched-
ules consume almost the same amount of energy.

6.3 The delay analysis
In this section, we study how the delay performance is

impacted by the optimal power allocation. The delay is de-
fined to be the duration from the packet arrival to a queue to
its departure from the queue, i.e., the queuing delay. How-
ever, it is not reasonable if we compare our optimal design
with the energy efficient schemes in the term of delay perfor-
mance. Therefore, we use simulations to compare the delay
of the optimal MG with the delay of the PG schedule, and
then compare the packet delay of each schedule with and
without the optimal power allocations.



Table 3: Energy efficiency results for both MG and PG schedules, and c = 2, E[F] = [1024; 512] bytes, [N1, N2] =
[0.02, 0.01]W , [g11, g12] = [6, 8], and α = 0.7.

Schedule λ(packets/s) β [b∗1 ; b∗2 ](ms/packet) P∗(W ) eP (%) ρ∗ m loc E∗(E)(mJ)
MG (N) [30;60] [0;0] [7.6517;3.2117] [1.000,1.000] – 0.4223 – – 0.7270
MG (A) [30;60] [0;0] [7.6517;3.2117] [1.000,1.000] 0 0.4223 16 16 0.7270
MG (N) [60;100] [0.3;0.3] [5.3014;2.4305] [2.5600;2.2518] – 0.5611 – – 1.6211
MG (A) [60;100] [0.3;0.3] [5.3121;2.4330] [2.5443;2.2442] 0.5100 0.5620 21 20 1.6211
MG (N) [60;150] [0.6;0.6] [4.3852;2.0170] [4.8520;4.4637] – 0.5657 – – 2.0389
MG (A) [60;150] [0.6;0.6] [4.3922;2.0117] [4.8234;4.5116] 0.8500 0.5653 14 13 2.0391

Schedule λ(packets/s) β [b∗u,1; b∗u,2](ms/packet) P∗(W ) eP (%) ρ∗ m loc E∗(E)(mJ)

PG (N) [30;60] [0;0] [7.6517;3.2117] [1.000,1.000] – 0.4223 – – 1.2804
PG (A) [30;60] [0;0] [7.6517;3.2117] [1.000,1.000] 0 0.4223 16 16 1.2804
PG (N) [60;100] [0.3;0.3] [6.0981;2.7828] [1.7163;1.4759] – 0.5673 – – 2.5054
PG (A) [60;100] [0.3;0.3] [6.0629;2.7769] [1.7430;1.4851] 1.2500 0.5654 18 17 2.5054
PG (N) [60;150] [0.6;0.6] [5.6201;2.5684] [2.1521;1.8825] – 0.5722 – – 3.2436
PG (A) [60;150] [0.6;0.6] [5.6057;2.5675] [2.1682;1.8847] 0.5700 0.5718 19 18 3.2436

Table 4: Energy efficiency results for the MG schedule and c > 2
Methods λ(packets/s) b∗(ms/packet) P∗(W ) eP (%) ρ∗ ρ(0) E∗(E)(mJ)
N [30;60;90] [4.9960;2.2154;2.2927] [3.0340;2.6753;2.7521] – 0.4891 – 2.0997
A [30;60;90] [5.0087;2.2106;2.2940] [3.0612;2.6156;2.7464] 1.3500 0.4894 0.3584 2.0997
N [60;100;140] [4.0096;1.8156;1.8551] [7.0220;5.8684;6.2119] – 0.6813 – 6.1787
A [60;100;140] [4.0441;1.8050;1.8731] [6.6286;5.9663;6.0794] 3.8600 0.6854 0.6172 6.1784

N [25;50; 75;100] [4.6242;2.0594; [4.0075;3.4242; – 0.5839 – 4.2634
2.0594;2.1089] 3.4242;3.7462]

A [25;50;75;100] [4.6118;2.0354; [4.0455;3.5870; 3.2000 0.5809 0.4621 4.2625
2.0354;2.1123] 3.5870;3.7234]

N or A [50;100;100;150] [3.6681;1.6189; [10;10;10;10] 0 0.7592 0.7592 16.4317
1.6189;1.6800]

N or A [5;10;15;20;25] [5.7982;2.5590;2.5590; [1.9695;1.5870;1.5870; 0 0.2105 0.1248 1.7433
2.5590;2.6556] 1.5870;1.6969]

N [20;30;50;70;90] [4.4648;2.0319;2.0319; [4.5420;3.6119;3.6119; – 0.5866 – 5.5509
2.0319;2.1395] 3.6119;3.5454]

A [20;30;50;70;90] [4.5658;2.0151;2.0151; [4.1912;3.7338;3.7338; 5.1441 0.5818 0.4382 5.5472
2.0151;2.0912] 3.7338;3.8701]

Table 5: Energy efficiency results for the PG schedule and c > 2
Methods λ(packets/s) bu

∗(ms/packet) P∗
T x(W ) eP (%) ρ∗ ρ(0) E∗(E)(mJ)

N [30;60;90] [6.0583;2.6284;2.7522] [1.7466;1.4597;1.5245] – 0.4728 – 3.6379
A [30;60;90] [5.9750;2.6370;2.7366] [1.8121;1.4441;1.5503] 2.6600 0.4711 0.3584 3.6377
N [60;100;140] [4.4648;2.0319;2.0885] [4.5420;3.6119;3.8897] – 0.6903 – 10.1305
A [60;100;140] [4.5430;2.0051;2.0808] [4.2666;3.8100;3.9462] 4.9200 0.6908 0.6172 10.1291

N [25;50;75;100] [5.1022;2.2796; [2.8848;2.3404; – 0.5550 – 7.8092
2.2796;2.3540] 2.3404;2.5100]

A [25;50;75;100] [5.1100;2.2553; [2.8708;2.4321; 2.7700 0.5529 0.4621 7.8089
2.2553;2.3404] 2.4321;2.5605]

N or A [50;100;100;150] [3.6681;1.6189; [10;10;10;10] 0 0.7592 0.7592 30.3315
1.6189;1.6800]

N or A [5;10;15;20;25] [7.5121;2.9954;2.9954; [1;1;1;1;1] 0 0.1929 0.1248 3.4167
2.9954;3.2117]

N [20;30;50;70;90] [4.9960;2.1695;2.1695; [3.0866;2.8037;2.8037; – 0.5495 – 10.9766
2.1695;2.2927] 2.8037;2.7521]

A [20;30;50;70;90] [4.9157;2.1695;2.1695; [3.2548;2.8038;2.8038; 3.9131 0.5469 0.4382 10.9749
2.1695;2.2514] 2.8038;2.9365]

(a) λ = [30; 60], k = 0.3 (b) λ = [60; 100], k = 0.3 (c) λ = [60; 150], k = 0.3 (d) E∗
MG/E∗

PG v.s. k

Figure 6: Comparing the energy efficiency for PG and MG schedules and c = 2



(a)
c∑

i=1

λi = 320, k = 0.5 (b) λi = 20, k = 0.5

Figure 9: Delay comparison under optimal schedules

6.3.1 Average delay under optimal power allocations
The simulation yields the average packet delay under dif-

ferent optimal power allocations. Denote the average delay
of the downlink packets by TD and that for the uplink pack-
ets by TU, and the total energy consumed per the polling
cycle by E. For c = 4, the average delay of the downlink
packets and uplink packets under the optimal power alloca-
tion are shown in Table 6, where σT =

∑c
i=1(Ti − T )2/c is

the delay variance, and T =
∑c

i=1 Ti. Three traffic work-
loads of λ = [10; 15; 20; 25] × x, x = 1, 3, 5, and β = 0.5e4

are considered and the packet size is 512 bytes. Clearly, the
optimal MG schedule consumes less average energy per cy-
cle than the corresponding optimal PG schedule. The small
σT values show that the four queues with different arrival
rates have similar delay. In other words, the optimal power
allocations do not adversely affect the delay fairness. For all
optimal PG schedules, the average delay of uplink packets
are longer than that for the downlink packets. Additionally,
their downlink delay increases with x.

In order to simplify the delay analysis, we simulate the op-
timal power allocation in a symmetric network with λ = kec

and β = 0.5ec, c = 2, . . . , 12, and the results are shown
in Figure 9. The average delay for the downlink is TD =∑c

i TD,i/c and the average delay time for the uplink is TU =∑c
i TU,i/c. TD is close to TU in all optimal MG schedules,

while TD is less than TU in all optimal PG schedules. In
most cases, the optimal PG schedules have lower delay for
the downlink packets than the optimal MG schedules, while
the optimal MG schedules have the lower delay for the up-
link packets than the optimal PG schedules. Therefore, the
optimal PG schedule may provide the better delay perfor-
mance when β increases, and the optimal MG schedule may
provide the better delay performance when β decreases.

6.3.2 Energy efficiency v.s. delay
We investigate the relationship between the energy effi-

ciency and the delay performance. We still consider the
symmetric system with λ = 20ec and β = 0.5ec with the
MG and PG schedules. Without the optimal power alloca-
tion, we use a random power allocation which selects a power
allocation randomly from the feasible region [bmin,bmax].
For these nonoptimal power allocations, we define 2 quan-
tities in reference to the energy and delay obtained for the
optimal power allocation. Define the energy inflation ratio

(re) of a random allocation by E−E∗

E∗ , where E∗ and E are
the energy consumption obtained from the optimal power
allocation and the random power allocation, respectively.
Similarly, we define the delay inflation ratio (rd) of a ran-

dom allocation by
TD−T∗

D

T∗
D

and
TU−T∗

U

T∗
U

for the downlink and

uplink traffic, respectively.
Figure 10 depicts the results for 60 random allocations

with c = 4. Both the optimal MG and PG schedules defi-
nitely achieve the minimal energy consumption, because all
the energy inflation ratios are positive, i.e. re ≥ 0. How-
ever, neither the optimal MG schedule nor the optimal PG
schedule can achieve the best delay performance, because
some of the delay inflation ratios are negative.

We divide each figure in Figure 10 into 4 regions: Z1

(rd > re), Z2 (0 < rd < re), Z3 (−re < rd < 0), and Z4

(rd < −re). The random allocations in Z1 and Z2 have
the longer delay than the optimal allocation, i.e. rd > 0.
Therefore, the optimal allocation outperforms the random
allocations in these 2 regions on both energy efficiency and
delay performance. On the other hand, the random alloca-
tions in Z3 and Z4 have better delay performance than the
optimal allocation. However, trading the delay for energy
efficiency may still be justified in Z3, because the energy in-
flation ratio is always higher than the delay inflation ratio
in this region, i.e. |rd| < re. Figure 10 shows that most of
the random allocations fall into Z1 and Z2 (at least 94%).
Only a small percentage (at most 6%) of the random alloca-
tions belong to Z4. As a result, we can conclude that both
schedules can achieve optimal power allocation without the
expense of a higher average delay most of the time.

(a) PG’s downlink case (b) MG’s downlink case

(c) PG’s uplink case (d) MG’s uplink case

Figure 10: Energy inflation ratio and delay inflation
ratio for a random power allocation, c = 4.

7. CONCLUSIONS AND FUTURE WORK
In this paper we have considered the problem of optimiz-

ing energy efficiency for all wireless devices in a polling-
based wireless network. We have employed both the power
saving mode (PSM) and the transmission power control (TPC)
to conserve energy. Since the decrease in one’s transmission
power could adversely affect other devices, we have formu-
lated an optimization problem to minimize the energy con-



Table 6: The average delay obtained from simulation for λ = [10; 15; 20; 25]× x and β = 0.5e4

Scheduling x E(mJ) TU(ms) σT U TD(ms) σT D

MG 1 1.3564 [4.0246;3.8502;4.1127;4.1467] 0.0132 [3.6882;4.1600;4.0260;4.1960] 0.0402
MG 3 3.5190 [4.7928;4.4650;4.9875;4.6139] 0.0383 [4.5765;5.0436;4.4353;4.7767] 0.0523
MG 5 9.2480 [5.0329;4.3240;4.8556;5.2596] 0.1192 [4.3194;4.7842;4.7272;4.9750] 0.0571
PG 1 2.6617 [5.3914;5.1583;4.9916;4.9916] 0.0265 [2.8538;2.8861;2.7985;3.3033] 0.0402
PG 3 6.6091 [5.3249;5.0583;5.6859;5.0535] 0.0668 [3.8474;4.1120;3.9285;4.1517] 0.0163
PG 5 15.4546 [5.0577;5.8118;6.4648;5.6484] 0.2511 [4.8643;5.2513;5.0549;4.7520] 0.0361

sumed during a polling cycle and, at the same time, ensure
that all devices are stable, i.e., their queue lengths would
not go unbounded. The resulted stability-constrained op-
timization formulation enables us to compute the optimal
power allocations for 2 polling schedules—phase grouping
and mobile grouping. The experiment results have shown
that the mobile grouping schedule is much more energy ef-
ficient, because it decreases the number of mode transitions
and allows a device to sleep for a longer time. Using simu-
lation, we have also investigated the impact of the optimal
power allocations on the queueing delay. The results show
that the optimal power allocation does not degrade the de-
lay for over 90% of the time. Even when the average delay
becomes longer, the tradeoff is still considered beneficial as
a whole.
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