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Abstract—Recently, wearable devices have become increasingly
popular in our lives because of their neat features and stylish
appearance. However, due to the tiny size, it is inconvenient
for users to interact with a device using conventional methods,
especially for text entry. Although some methods have been
proposed to handle this problem, they have different limitations
and are not applicable to many existing mobile devices. As a
result, we take the first step to propose a digits-entry system,
i.e., AcouDigits, in which digits can be entered in the air using
a finger without taking help from any additional hardware. We
implement AcouDigits on two commercial devices and conduct
experiments to evaluate its performance in recognizing ten basic
digits. Experimental results show that AcouDigits can achieve
average accuracies of 91.7% and 87.4% in recognizing basic digits
and 26 English alphabets, respectively.

Index Terms—Text entry, Acoustic signals, Wearable devices

I. INTRODUCTION

In the most recent years, wearable devices have burst into

enormous prosperity owing to the technological progress in in-

tegrated circuit (IC), high-performance chip, energy-intensive

battery, etc.. According to a forecast, an explosively growing

number of people tend to equip themselves with at least one of

the wearable devices (e.g., smartwatch, smartband and smart-

glass) [1]. Compared with other smart devices, wearables are

mostly with tiny sizes to ensure comfortable user experience

and enhance aesthetic appearance. However, it incurs much

inconvenience for users to interact with devices, especially in

the case of text entry. Because of the tiny screens, interactive

methods, such as soft keyboards cannot work efficiently in

present wearable devices although these are widely utilized

in conventional mobile devices. In such a situation, even

dialing telephone numbers is a labor-intensive task. Another

shortcoming of soft keyboard is that it requires a user to touch

the screen with fingers. When the fingers of a user are wet or

dirty, this method no longer works.

Researchers have explored various methods for text en-

try on tiny devices. Among them, speech recognition is a

promising choice that enables users to convey commands and

sentences by speaking. Nevertheless, this method possesses

several intrinsic shortcomings, such as privacy leakage in

public places, performance degradation in noisy environments,

and inconvenience in certain occasions (e.g., in a conference or

in a library). Among other existing text-based HCI techniques,

some are based on radio-frequency (RF) signals received from

RFID or Wi-Fi networks [2]–[5], and some are based on

inertial sensors [6]–[10]. However, RF-based technique needs

specialized equipment (e.g., RFID readers and tags, multi-

antenna Wi-Fi transceiver, etc..) and/or requires users to attach

additional hardware (tags) on them, which make this method

inapplicable to mobile devices. Besides, the inertial sensor-

based scheme requires a user to hold the device with hand(s)

or wear an additional device while writing text in the air.

Consequently, these equipment-centric schemes appeared not

to be appealing to users. This observation motivates us to

pursue in this direction of research. Now, in this context, one

may ask a crucial question, i.e., can we input digits in a device-
free manner without any additional hardware?

As a preliminary attempt in responding to this question, in

this paper, we propose a system named AcouDigits, which

enables a user to enter digits using his/her finger without

touching the screen and wearing any additional devices. In

our system, acoustic sensors (e.g., microphone and speaker),

pervasively embedded in smart devices, are fully utilized to

emit and receive high-frequency signals. To input a digit, a

user just needs to write it in the air near a device as if a

virtual keyboard was placed there. Actually, acoustic signals

have already been utilized to build human-device interaction

systems in a device-free manner. For example, AirLink [11],

Dolphin [12], Soundwave [13] and FingerIO [14] are some

closely related works in this context. However, in AirLink,

Dolphin and Soundwave, a user can interact with the device

using coarse hand gestures that utilize the Doppler effect of

acoustic signals. Nevertheless, the aim of recognizing digits

in the air written by only a finger exposes several challenges.

With high precision, FingerIO solves the fine-grained finger

motion tracking problem. However, in order to recognize

digits, FingerIO requires multiple microphones to track finer

motions in 2D or 3D space, which are not available in most

existing commercial devices, especially wearable devices. To

the best of our knowledge, AcouDigits is the first work that

makes use of acoustic signals to enable text entry, and is

suitable to be deployed on the most existing commercial

devices. We claim that AcouDigits outperforms the previous

works in terms of two main aspects, which are as follows.

First, previous works mainly focused on recognizing several
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predefined coarse gestures, while AcouDigits is able to rec-

ognize a larger set of objects with finer-grained granularity.

Second, some previous works require a user to carry a device

using his/her hand(s), while AcouDigits works in a device-free

manner.

The underlying principle of AcouDigits is straightforward,

which is briefly described as follows. When a user writes

a digit in the air, the received echo wave is altered due

to the multi-path effect. Owing to the unique writing path

of a specific character or number, the multi-path pattern

reflected in received signals provides the potential intuition of

text recognition. However, the implementation of this system

exposes a key challenge, which is how to extract, and then

differentiate the minute signal patterns of each written digit is

a question. To overcome these challenges, we carefully design

the entire data processing module and adopt a two-layer fea-

ture engineering scheme to extract patterns hidden in signals.

To examine the effectiveness of AcouDigits, we implement

the system on Android platform (Samsung Galaxy Note 5),

and conduct comprehensive experiments in different settings.

The experimental results show that AcouDigits can recognize

basic digits and English alphabets with average accuracies of

91.7% and 87.4%, respectively. The main contributions of our

work can be summarized as follows.

• We make use of embedded sensors to design a text-

entry scheme for tiny devices. By carefully designing

signal processing methods, we overcome the technical

challenges of removing noise interference and detecting

writing events. By combing the physical domain knowl-

edge with machine learning, we achieve favorable digits

recognition performance.

• We implement such an scheme on mobile devices and

conduct experiments to evaluate its performance under

different settings. Experimental results show that our

system can recognize basic digits and alphabets with high

accuracy.

The remainder of this paper is organized as follows. Section

II introduces the related works. In Section III, we present the

specific technical design of AcouDigits. Section IV introduces

the experimental design and performance evaluation. Last but

not the least, we conduct discussion in Section V and conclude

the paper in Section VI.

II. RELATED WORK

AcouDigits is closely related previous works in the follow-

ing aspects.

A. Commercial text-entry approaches

As mobile devices are increasingly popular in our daily

lives, it attracts much attention to improving the interaction

experience and convenience of entering texts to these devices.

Prior to our work, various text-entry systems have been

proposed towards this goal. Soft keyboard is almost the most

common interface for text entry in present smartphones, tablets

and other kinds of mobile devices. This method possesses

advantages of low cost, efficiency and convenience. However,

(a) (b) (c)( ) ( )

Fig. 1. Possible scenarios where AcouDigits can be deployed. AcouDigits
cannot only be deployed on wearable devices, such as (a) smartwatches and
(b) smartglasses to deal with the inconvenience caused by small screens; but
also on (c) mobile devices, such as smartphones and tablets to handle the
cases where hands are wet or oil-scalded.

for devices with tiny screen sizes such as smartwatches and

smartglasses, it is usually difficult for users to enter texts

efficiently and conveniently. Some improvements such as [15],

[16] have been made to raise the inputting efficiency on

smartwatches and smartphones. Another promising and widely

applied technique for text entry is speech recognition, owing

to its high accuracy and favorable experience. Within this

scope, Siri [17] and Cortana [18] are the outstanding speech

assistants. However, it is to be admitted that speech recognition

is not perfect in all cases. For example, the recognition

performance will be affected by the surroundings and degrade

in a noisy environment. Moreover, using speech assistant in

public occasions has the risk of privacy leakage and brings

about awkward feelings to some users.

B. Sensor and RF-based text-entry systems

Besides the above commercial techniques, researchers have

also proposed some other schemes to deal with the problems,

namely sensor-based scheme [6], [7], [10] and radio frequency

(RF) based scheme [2]–[5]. In [6], the accelerometer embed-

ded in a smartphone is utilized to recognize the characters

when a user writes texts in the air with a smartphone. In [7],

[10], various sensors such as accelerometer, proximity sensor

and distance sensors have been fused to design a middleware

to enter texts to other devices. However, compared with

AcouDigits, these existing works have either shortcomings as

follows: 1) they need additional devices except the device to

interact with; 2) they require the user to carry the device in

his/her hand when entering texts. In the RF-based scheme,

Wi-Fi, RFID and 60 GHz transceivers have been adopted

to design high-precision motion tracking systems [3], [4] or

text-input system [2], [19]. Nevertheless, RF-based systems

require deploying sophisticated RF equipment and are not

applicable for present mobile devices. In contrast, with all the

aforementioned approaches, AcouDigits provides a method for

text input without any additional device and does not require

the user to carry or wear any equipment in hand or on body.

C. Acoustic signal-based HCI

Acoustic sensors, namely, microphone and speaker, have

been widely used to design interactive systems in mobile

devices. Some researchers make use of the Doppler effect of
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Fig. 2. The functional flow diagram of AcouDigits.

acoustic signals to sense gestures [11], [13], [20] and track

motions [21]–[24]. However, all these systems except [11],

[13] need the user to carry a smartphone in hand and perform

some gestures, which results in great inconvenience to a user.

Moreover, the techniques utilized in these works can not be

applied to recognize texts as demonstrated in our application

scenarios. Although [11] and [13] can sense in-air gestures

with acoustic signals, they both only utilize Doppler shift

caused by hand gestures as the feature to distinguish a limited

number of coarse gestures such as ‘PULL’ and ‘FLICK’.

In order to recognize texts written with a finger, a finer

recognition granularity is required. The most closely related

work to AcouDigits are [14], [25], [26], in which device-

free 2D finger motion tracking systems are designed with

mm-level precision. However, there are dominant differences

between our work and them. Fist, those works focus on motion

tracking instead of text entry. To recognize texts, their systems

need additional extensions. More importantly, in order to track

2D motion of a finger, those works require multiple speaker-

microphone pairs to be equipped in a mobile device. Never-

theless, limited by the cost and tiny size, an overwhelming

majority of present smartphones and smartwatches can not

fulfill this requirement. Compared with them, AcouDigits only

relies on one pair of speaker and microphone, which makes it

be easily implemented on almost all commercial smart devices.

III. SYSTEM DESCRIPTION

Fig. 2 provides an overview of AcouDigits, in which we

describe the system at the detailed functional level. To be

specific, the speaker embedded in a smart device emits sin

wave modulated acoustic signals which are bounced off by a

finger that is writing digits near that device. The microphone(s)

of the same device receives the bounced acoustic signals.

The received signals are first denoised to filter out interfering

noise and magnify the signal components of interest. Then,

writing activities are detected and the corresponding signal

segments are extracted. On the extracted segments, feature

engineering techniques, i.e., feature extraction and feature

selection are applied in a consecutive manner. In the last

stage, learning models, namely K-nearest neighbor (KNN),

support vector machine (SVM) and artificial neural network

(ANN), are trained with the processed data. We tune the

parameters of the learning models in such a way that the

recognition performance is enhanced. From the high level,

AcouDigits is composed of three main modules, which are

data preprocessor, feature engineering scheme and learning

process. The detailed functional description of each module is

provided in the following.

A. Data Preprocessing

After sampling raw audio signals, the received data is

fed into a preprocessing module which removes noise and

enhances SNR. To be precise, in this stage, we first denoise the

raw audio signals, and then detect the finger motion activities

from the denoised data. We utilize high-frequency acoustic

signals (19 KHz), since it is inaudible to most human beings.

For this reason, we only focus on the received signals of a

certain band, which is centered around 19 KHz along with

frequency shifts caused by finger motions. Signal components

beyond this band are regarded as noise, and filtered out by a

band-pass filter. To determine the parameters of the filter, it

is required to determine the amount of frequency shifts when

a finger starts writing. Considering a case where the finger

moves at 1 m/s velocity, the resultant maximal frequency shift

is about 112 Hz which is determined by:

Δf = f0 · |1− vs ± vf
vs ∓ vf

|

where f0, vs and vf represent the frequency of emitted

signals, the speed of sound and the velocity of finger motion,

respectively. Based on this, we employ a 6-order Butterworth

bandpass filter, where the passband is set to be [18850, 19150]
Hz, in order to remove irrelevant interference such as back-

ground noises and human voices to a great extent. Butterworth

filter is designed to have maximum flat frequency response in

the pass band and roll off towards zero in the stop band, which

ensures the fidelity of signals in target frequency range while

removing out-band noises greatly [27].

B. Event Detection

Followed by the denoising process, it is required to detect

the writing activity, and extract the corresponding signal seg-

ments. Different from most of the previous works that analyze

the original data, we decide to detect the writing activities

from the spectrogram of original data. The key reason of such
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(a) Writing ‘0’ (b) Writing ‘1’ (c) Writing ’2’ (d) Writing ‘3’ (e) Writing ‘4’

(f) Writing ‘5’ (g) Writing ‘6’ (h) Writing ‘7’ (i) Writing ‘8’ (j) Writing ‘9’

Fig. 3. Illustrations of spectrograms and writing activity detection.

decision is that the finger motion causes frequency shift in the

frequency domain. After transforming each frame of signal

into the frequency domain, it is straightforward to detect the

start and end points of each writing activity. Technically, we

apply a sliding Hanning window on the signal sequence and

obtain a series of audio frames. The reason why a Hanning

window is applied is to reduce spectrum leakage in the follow-

ing Fourier transform [28]. After that, we apply Fast Fourier

Transform (FFT) on each frame to obtain the spectrum [27],

and then check whether there exist frequency shifts around

19 KHz band. In detail, we set the frame length and nFFT

(the length of FFT) to be 8192 sample points (about 0.186
s) and the overlapping length between consecutive frames to

half of the frame length, by considering the trade-off between

time resolution and frequency resolution. After that, we can

obtain the spectrogram of signals in each frame. To decide

whether the frame is active or not, we check the frequency

shift of the obtained spectrogram at each frequency. When

there exists a threshold number (we set this threshold to 4) of

continuous frequency shifts, the frame is asserted to be active.

However, the frequency shifts can be caused by some random

movements instead of writing activities. Hence, after collecting

a series of active frames, we apply filtering on each frame

due to the fact that the duration of a writing activity exceeds

a certain threshold. The results of detecting writing different

digits based on spectrograms are given in Fig. 3. As we can

see, when a user writes ‘0’, his/her finger sweeps through the

microphone and back, which makes the resultant spectrum

emerge like a sine wave. As for digit ‘1’, a user writes it

with finger going away from microphone directly. As a result,

a ‘valley’ appears in the spectrogram. However, for digits ‘2’

and ‘7’, ‘3’ and ‘9’, they spectrograms exhibit similar patterns,

which makes it impossible to differentiate them only with

frequency-domain features. After detecting writing events, we

further apply a notch filter on each obtained signal sequence

in order to remove 19 KHz frequency components.

TABLE I
EXTRACTED ACOUSTIC FEATURES IN ACOUDIGITS

Feature
domain

Feature Description

Time
domain

Root mean square
(RMS)

The energy in an acoustic
frame

Zero crossing rate
(ZCR)

The point where acoustic
samples change signs

ATR The average value of top
k RMSs

Above α-mean
ratio (AMR)

The ratio of high-energy
frames in a window

AC Auto-correlation
coefficients

Frequency
domain

Spectral entropy
(SE)

The flatness indicator of
acoustic spectrum shape

Spectral flux (SF) The stability reflector of
acoustic events

Spectral rolloff
(SR)

Indicator of a frame’s
spectral energy distribu-
tion

Spectral centroid
(SC)

The balance point of the
spectral energy distribu-
tion

C. Feature Engineering

Since the quality of a feature set has a great influence on the

performance of machine learning models, feature engineering

is required for the learning models of AcouDigits. In the

following, we provide detailed description of this technique,

which includes both feature extraction and feature selection

mechanisms.

1) Feature Extraction: At this stage, we need to determine a

set of features to build effective learning models for AcouDig-

its. However, to extract effective features, it usually requires

profound domain knowledge and deep insight to the solution

structure of the problem. For this, we select some widely-

used acoustic features in both time and frequency domains,

which are shown in Table I. Let S(i), i = 1, 2, .., n represents

2019 IEEE International Conference on Pervasive Computing and Communications (PerCom)

316



a frame of acoustic signal, where n is the number of data

points. To obtain better knowledge of these features, we give

their definitions with brief introductions as follows.

• Root mean square (RMS) This feature represents the

energy in an acoustic frame, which can be calculated as:

RMS =

√∑n
i=1 S

2(i)

n
(1)

• Zero crossing rate (ZCR) ZCR describes the rate of

sign-changes along a signal. This feature can be defined

as:

ZCR =
1

2(n− 1)

n−1∑
i=1

|sgn(S(i))− sgn(S(i+ 1))|
(2)

where sgn is the sign function.

• Average value of top k RMSs (ATR) This feature

denotes the average RMS value of the first k frames with

the most energy in a window w. ATR is calculated as:

ATR(k,w) =

∑k
i=1 RMS(fi)

k
(3)

• Above α-mean ratio (AMR) AMR is a feature that can

describe the ratio of the high-energy frames in a window

w, which is defined as:

AMR(α,w) =
1

m
B[RMS(fi) > α ·RMS(w)] (4)

where B is the Boolean function.

• Auto-correlation coefficients (AC) This feature calcu-

lates the randomness (or periodicity) of a signal. Let y(n)
denotes a frame S, y(n− l) represents the signal that S
delayed l samples. AC is defined by:

AC =
1
n

∑n−l
l=1 (y(n)− ȳ)(y(n− l)− ȳ)

σ2
y

(5)

where ȳ is the mean value of y(n) (i.e., frame S), and σ2
y

refer to the sample variance of y(n). It should be noted

that AC is a sequence as same length as frame S.

In the following, we introduce features in frequency domain

as shown in Table I. Pi, i = 1, 2, ...n denotes the normalized

magnitude of the i-th frequency bin obtained by performing

FFT on a frame.

• Spectral entropy (SE) SE reflects the complexity of a

system, which can be obtained as:

SE = −
n∑

i=1

pilog2pi (6)

• Spectral flux (SF) This feature describes how drastically

the acoustic signal is changing between frames, which

is defined as the L2-norm of the spectral amplitude

difference of two adjacent frames.

SF =
n∑

i=1

(pt(i)− pt−1(i))
2 (7)

where pt(i) and pt−1(i) refer to spectral magnitude at ith
frequency bin of current and previous frame, respectively.

• Spectral rolloff (SR) SR indicates the skewness of the

spectral amplitude distribution, which can be calculated

by the frequency bin below that it contains percent of

the total spectral magnitude.

SR = max(h|
h∑

i=1

p(i) < λ
n∑

i=1

p(i)) (8)

• Spectral centroid (SC) This feature reveals the balance

point of the spectral energy distribution, it is the weighted

mean of the frequencies and weighted by magnitudes of

frequency bins.

SC =

∑n
i=1 i× p(i)2∑n

i=1 p(i)
2

(9)

In our specific design, we divide the entire acoustic se-

quence of each writing activity into frames, each of which

contains 8192 samples (i.e., 0.186 seconds), and extract the

aforementioned features on each frame. Consequently, we

obtain a set of discrete series corresponding to each writing

activity. As we employ KNN, SVM and ANN as our learning

models, we further conduct feature extraction in the second

tier. To be specific, as for KNN model, we directly feed

the extracted discrete series into the learning algorithm. In

contrast, as for SVM and ANN models, we further extract

statistical features including mean value, variance, range,

kurtosis and skewness from the aforementioned discrete series.
2) Feature Selection: Feature selection is an important

technique to filter out noisy and redundant features to improve

learning performance and reduce computational cost. For our

system, while building the learning models, we select features

heuristically using 10-fold cross validation technique. The

primary criterion of evaluating a feature set is the average

accuracy rate (AAR) of recognizing different digits. When

the AAR of different feature sets are almost similar, the next

factor, i.e., training overhead is taken into account. We ran-

domly select a subset of features and evaluate its performance

in terms of AAR and training overhead. We also observe

that the feature set {AC, SC, SF} outperforms all the other

feature sets, as shown in Fig 4, and is selected to train all

models. Theoretically, AC is able to differentiate the signal

reflected by finger writing with periodicity, like {3, 8}. SF

describes the changeability of signals, which is an indicator

of discriminating digits {1, 2, 3, 7} and {4, 5, 6, 8, 9}, since

the latter have more complex writing patterns. SC describes

the balanced point of spectral energy distribution and can be

used to distinguish digits whose signal energy concentrates

on different frequencies. In the second tier, we select {sum

(Sum), variance (Var), mean (Mean)} as the feature set, to be

utilized in SVM and ANN learning models, which can further

demonstrate the variety of features over time.

D. Model Training

As mentioned above, the learning models that we have

chosen for designing our system are KNN, SVM and ANN.
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Fig. 4. AAR of different feature sets.
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TABLE II
PERFORMANCE OF DIFFERENT TRAINING FUNCTIONS

Training functions trainlm trainbr trainbfg trainrp trainscg traincgb traincgf traincgp trainoss traingdx traingdm traingd
Training accuracy 94.80% 98.60% 77.10% 86.90% 83.60% 81.50% 82.20% 84.00% 81.40% 78.60% 16.90% 6.90%
Testing accuracy 92.80% 90.00% 77.00% 87.70% 81.00% 80.70% 82.30% 83.30% 81.00% 75.70% 20.00% 5.30%

Time(s) 19 266 3 1 1 1 1 1 1 1 2 2

TABLE III
PERFORMANCE OF DIFFERENT ACTIVE FUNCTIONS

Active fuctions compet elliotsig hardlim hardlims logsig netinv poslin purelin radbas radbasn satlin satlins softmax tansig tribas
Testing accuracy 9.80% 90.40% 9.00% 10.30% 88.30% 20.00% 84.30% 90.60% 86.30% 89.00% 73.30% 88.70% 90.30% 92.70% 65.00%

In view of that these learning techniques are well-known

model, so we just introduce the processes that we tune model

parameters, and show some related performances briefly.

1) KNN: For KNN model, the value of K can affect the

classification accuracy as small K results in great variance

and large K brings huge bias in the results. As a result, we

carefully tune K by varying it in the range of [1, 50]. As shown

in Fig. 5, we finally select K = 5 as the optimal value due to

its best performance.

2) SVM: For SVM model, we utilize one-versus-one tech-

nique [29], in which the kernel is the radial basis function

(RBF) with parameters (C, γ), which are the penalty coeffi-

cient and kernel function coefficient, respectively. Fig. 6 infers

that (210, 2−10) can be chosen as the parameters of SVM to

achieve a better result.

3) ANN: As shown in Fig. 3, each stroke has unique writing

pattern. This means that we should not use too many layers and

nodes to construct a deep neural network to differentiate them,

as it cost too much time to training and tuning. For this reason,

we only design a two-layer ANN with 10 nodes to achieve

a balance between time cost and prediction performance.

Results indicate that our ANN model also have a rather good

accuracy. For ANN model, several key parameters and kernel

functions, such as the number of layers (L), the number of

nodes (N ), training function (f ) and activation function (φ)

need to be carefully tuned in order to achieve satisfactory

performance. As revealed in Tab. II and Tab. III, different

training functions and active functions have a vital impact

on prediction performance. Considering training efficiency,

Levenberg-Marquardt algorithm was chosen since its low time

TABLE IV
PARAMETER SETTINGS OF ANN MODEL

Parameters Value
Number of layers (L) 2
Number of nodes (N ) 10
Training function (f ) Levenberg-Marquardt algorithm

Activation function (φ)
φ1 = 2

1+e−2n − 1

φ2 = en∑
en

complexity. Arbitrary value can be the input of tan-sigmoid

function (φ1), which has the best prediction accuracy, was used

as the activation function of the first layer of our ANN model.

Softmax function(φ2) is able to output multiple classification

probability, which performs well in results and thus are utilized

in the second layer of ANN. Concluding above, we set these

parameters as Tab. IV.

IV. EXPERIMENTS AND PERFORMANCE EVALUATION

In this section, we first describe the details of the experi-

mental settings and implementation of our system. And then

we conduct evaluation of our system from different aspects.

A. Experimental Setup and Data Collection

We implement AcouDigits on the Android platform with

Samsung Galaxy Note 5. The acoustic signals are modulated

by a sinusoidal scheme on 19 KHz frequency band, which

is supported by most commercial devices. The reasons of

choosing such high-frequency signals are two-fold. On one

hand, acoustic signals in such high frequency range can sense

motion with satisfactory resolution. On the other hand, signals
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Fig. 7. Basic experiment scenarios.

received from this frequency range are usually inaudible for

most of the human being. Moreover, the sampling rate is set

to 44.1 KHz, which satisfies the Nyquist sampling theorem

and is supported by current Android OS.

To do experiments, we recruit a total number of 10 par-

ticipants with ages ranging from 21 to 31 (6 males and 4
females) who are students and staffs in our university. The

experimental setup is shown in Fig. 7. As the participants have

no knowledge of the experiments, we give a brief introduction

of our project especially the experimental procedure. During

experiments, we request them to write the basic digits (i.e.,
0 − 9) in the natural way that they are used to as usual. In

order to verify the robustness of AcouDigits, we conduct two

major groups of experiments to collect data as follows.

• Different participants. Individuals are required to writing

every digit for 200 times in total at about 8 cm from mi-

crophone. Thus, we finally obtain 20, 000 (200×10×10)

instances. To make the experiments closer to practice,

participants write each digit/letter every 5 times as a

session and perform 4 sessions for each digit/letter al-

ternately in a day. As a result, this part of experiments

last for ten days.

• Different distances. To verify the robustness of AcouDig-

its, we also collect data at different positions of the

writing finger and the device by varying their distance

from 2 cm to 16 cm. Each participant is requested to

write a single digit 50 times, and consequently a total of

24, 000 (50×10×6×8) data sequences are collected. In

this session, we only request 6 participants to take part

in experiments in order to save time.

It is noted that the distance between a finger and the device

as mentioned above is measured from its starting position and

is not strictly restricted during writing. After data collection,

we feed them into the data processing module as demonstrated

in Section III. 80% data are utilized for training models and

others are left for testing. In order to obtain the optimal

performance of AcouDigits, we first implement the entire data

processing module on a server, and obtain the required optimal

parameters for this module. We then transform the entire

system into the Android platform, and run an initial version

of AcouDigits that takes the previously obtained optimal

parameters into account.

B. Experimental Results
In this part, we evaluate the performance of AcouDigits

from three main aspects, namely recognition performance,

training overhead and user diversity.
1) Recognition Performance: Fig. 8 shows the overall per-

formance of AcouDigits for KNN, SVM and ANN models.

The corresponding experiments are conducted in the scenario

where the distance between the finger and device is 8 cm.

For each digit, the recognition accuracy is calculated by

averaging the results over all participants. As shown in the

figure, the overall recognition accuracy of SVM and ANN

models are 89.5% and 91.7%, respectively, and are higher

than that of KNN by 6.3% and 8.5%, respectively. Moreover,

the running time of KNN model is much higher than that

of SVM and ANN models. For each frame of signals, KNN

model takes the entire feature sequence for the similarity

calculation, i.e., Dynamic Time Warpping (DTW) and the

remaining noise may produce large bias in the results, and

hence it incurs higher computational cost. Therefore, in the

subsequent evaluation of AcouDigits, we only demonstrate the

performance results obtained by SVM and ANN models. Fig.

9 shows the corresponding confusion matrix by averaging the

performance of SVM and ANN models. Moreover, it is clear

that different digits have different recognition accuracies due

to the variance in writing process of certain digits.
2) Safe Distance: We have tested the performance of

AcouDigits for different distances between the finger and the

device, which verifies the robustness of the system. As shown

in Fig. 10, the performance of AcouDigits decreases with

the increasing distance due to the decay of echo intensity.

However, within 8 cm, the performance remains relatively high

with an accuracy no less than 91.5%. Even when the distance

increases to 10 cm, AcouDigits still achieves an accuracy of

87.6%. Although such a distance is a not considerably large,

we think it is suitable for a user to interact with a device

especially wearables in practical usage scenarios.
3) Training Overhead: Training overhead is another im-

portant evaluation metric for a HCI system as this implies

the quality of user experience. Consequently, we evaluate the

performances of AcouDigits with the increasing number of

training samples in Fig. 11. Clearly, the performance improves

with the increasing number of training samples no matter it is

SVM or ANN model. However, when the number of training

samples exceeds the number around 40, the recognition accu-

racy increases much more slowly and remains nearly constant.

Considering the trade-off between the accuracy and running

time, we select 40 as a default number of samples to train

SVM and ANN models.
4) Cross-person performance: We also conduct evaluation

on cross-person performance, that is, training AcouDigits with

one participant’s data and testing it with another one’s data.

As there are 90 different training-testing pairs, we only display

the results of five pairs that are randomly selected limited by

the page space. The results are shown in Fig. 14. The average

accuracies over different pairs for SVM and ANN are 75.4%
and 78.0%, respectively. Compared with results in Fig. 8, the
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Fig. 8. The overall performance of AcouDigits
for KNN, SVM and KNN models.
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Fig. 9. The confusion matrix of AcouDigits
while averaging the performance of SVM and
ANN models.
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Fig. 10. The performance of AcouDigits for differ-
ent distances between the finger and device.
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Fig. 11. The performance of AcouDigits for
different numbers of training samples.
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Fig. 12. The average accuracies of the selected five
training-testing pairs.
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Fig. 14. The performance of AcouDigits for different participants in the
experiments.

cross-person performance is much lower due to the differences

in writing patterns of different participants. Nevertheless, we

think that this does not affect the practicability much as people

usually use their own devices like smartphones.

5) User Diversities: We also evaluate the performance of

AcouDigits for different users considering the user diversities

due to different writing habits. As mentioned above, we recruit

six volunteers to take part in the experiments. We calculate the

recognition accuracy for each participant, and the results are

shown in Fig. 12. As we can see, the recognition accuracy of

AcouDigits varies from (84.2%, 88.0%) to (94.8%, 95.2%)

with (0.14%, 0.06%) variance among different participants

due to different writing habits. However, from the variance

of accuracy, we can claim that the performance of AcouDigits

is consistent and satisfactory.

6) A Direct Extension to English Letters: Besides recogniz-

ing digits, we envision that AcouDigits can also be extended

to recognize English letters. In order to verify this, we conduct

experiments on a similar setup as is done for digits recognition.

Specifically, we request six of the participants to write each

English letter 100 times staying on the safe distance (i.e.,
within 8 cm) of the device. Consequently, 15600 (100×6×26)

signal consequences are collected. We take ANN as the

learning model for the recognition purpose. Similarly, we feed

80% data to ANN models and others are left for testing. The

resultant average recognition accuracy over all users are plot

on a confusion matrix in Fig. 13. With the direct extension, the

average accuracy in recognizing 26 letters is 87.4%, which is

lower than that in recognizing digits. The main reason for this

performance degradation is that several letters (e.g., ‘I’ and

‘Z’, ‘J’ and ‘L’) have very similar writing forms. Therefore,

these letters are recognized with low accuracy. However, we

expect that with the further refinement of AcouDigits, the

performance of recognizing letters will be improved. This is

basically one of our future works.
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V. DISCUSSION

The robustness of AcouDigits: Since AcouDigits is built

upon high-frequency acoustic signals, it is in nature resistant

against noise interference by filtering out unwanted frequency

components. Another interference is irrelevant motions except

user’s writing behavior. Similar to writing behavior, other

irrelevant motions such as waving and walking shall have

effect on signals as well. However, we notice that controlling

emission power of acoustic signals shall effectively restrict the

propagation range to a narrow range. Beyond this range, other

motions nearly have little influence on the signals.

The future work of AcouDigits: In the present version of

AcouDigits, we only consider the case where digital num-

bers are recognized. The principal future work is to extend

AcouDigits as to recognize characters and then words and even

sentences. The work flow of recognizing characters is much

similar to this work. However, when extending to recognize

words or sentences, linguistic models can be considered as an

assistant tool to perform words predication or correction, so

as to improve the recognition performance.

VI. CONCLUSION

Motivated by the increasing popularity of tiny wearable

devices, we propose a touch-free interface, i.e., AcouDigits,

using pervasive acoustic hardware embedded in present smart

devices. AcouDigits enables a user to enter ten basic digits

in the air using a finger and without wearing any additional

device. With such an interface, a user can not only resolve the

digits entry problem of small-size devices, such as giving a

phone call, inputting bluetooth password, but also overcome

the awkward situations like changing TV channel when clean

hands are not available. We conduct extensive experiments to

verify the effectiveness of AcouDigits. The results show that

AcouDigits can recognize ten basic digits with high accuracy,

and demonstrate the potential for future air-based text-entry

interfaces using acoustic signals.
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