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How to allocate computing and communication resources in a way that maximizes the effectiveness

of control and signal processing, has been an important area of research. The characteristic of a

multi-hop Real-Time Wireless Sensor Network raises new challenges. First, the constraints are

more complicated and a new solution method is needed. Second, a distributed solution is needed to

achieve scalability. This article presents solutions to both of the new challenges. The first solution

to the optimal rate allocation is a centralized solution that can handle the more general form

of constraints as compared with prior research. The second solution is a distributed version for

large sensor networks using a pricing scheme. It is capable of incremental adjustment when utility

functions change. This article also presents a new sensor device/network backbone architecture—

Real-time Independent CHannels (RICH), which can easily realize multi-hop real-time wireless

sensor networking.

Categories and Subject Descriptors: C.2.2 [Computer-Communication Networks]: Network

Protocols—Applications; C.3 [Special-Purpose and Application-Based Systems]—Real-time
and embedded systems

General Terms: Algorithms, Design, Performance, Experimentation

Additional Key Words and Phrases: Sensor network, real-time wireless sensor network, optimiza-

tion, pricing, distributed algorithms

1. INTRODUCTION AND RELATED WORK

Real-Time Wireless Sensor Network (RTWSN) is expected to carry out various
applications such as remote control or video/audio monitoring in ad hoc envi-
ronments. Instead of using conservative (lowest allowed) sampling/actuating
rates (since sampling and actuating rate allocation are similar, unless explic-
itly denoted, “sampling rate” is used instead of “sampling/actuating rate” in
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the following), a sampling rate allocation that maximizes global utility while
maintaining real-time schedulability is wanted.

Resource allocation has been studied in general for computing systems
[Kurose and Simha 1989; Waldspurger and Weihl 1994; Bolot et al. 1994]. Re-
cently, the problem of resource allocation and congestion control in network has
been studied together by Kelly and others [Kelly et al. 1998; Kelly 1997; Low
and Lapsley 1999]. However, these works do not consider real-time constraints,
and therefore cannot be directly applied to real-time systems.

Stoica et al. [1996] have studied a proportional share resource allocation
algorithm for real-time, time-shared systems. The scheme is for single proces-
sor scheduling and is more focused on fairness of the scheduling algorithms
rather than system optimality. Finding the optimal control rates subject to
schedulability constraints was first studied by Seto et al. [1996] and by Sha
et al. [2000] for analog and digital controllers respectively. An offline solution
method is given based on the Kuhn-Tucker condition. However, the schedula-
bility analysis is still for a single processor. Rajkumar et al. [1997] investigated
the QoS-based Resource Allocation Model (Q-RAM), which is capable of han-
dling complex multiple quality dimensions. But the solution can only be used
with single constraint scenario. In the following works, Lee et al. [1999] and
Ghosh et al. [2003] studied the scenario under multiple constraints. However,
the problem they studied is an integer programming problem, which is dif-
ferent from the model we will discuss in this article. In Lee et al. [1999], the
integer programming problem is proven to be NP-Hard. Several suboptimal al-
gorithms are proposed. According to Ghosh et al. [2003], the one that scales well
is Hierarchical Q-RAM. However, that algorithm requires the division of mul-
tiple constraints into independent groups, which is impractical for multi-hop
RTWSN.

RTWSN presents new challenges for real-time resource allocation. Routes
in a RTWSN may interleave with each other. The sampling rate optimization
must take into consideration the traffic contention at each router. This makes
the optimization problem harder than those studied before. We present an
Interior Point Method (IPM)-based solution to show how the optimal rates can
be found efficiently. On the other hand, though a centralized method is usually
efficient for small and moderately large RTWSNs, it may not scale well for very
large RTWSNs, because control messages for optimization converge at the cen-
tral node and create a bottleneck. To dynamically find the global optimum in a
very large network, a distributed solution is needed to generate balanced opti-
mization control traffic that avoids bottlenecks. In addition, the solution should
be incremental, so that when the utility functions at a few nodes change, an
updated optimum can be found with small cost.

To the best of our knowledge, the work by Caccamo et al. [2002] is the first
to provide real-time support for multi-hop RTWSN. In Caccamo et al. [2002], a
cellular base station layout is deployed as the backbone for the whole RTWSN,
as shown in Figure 1. The base station network uses seven nonoverlapping
Radio Frequency (RF) bands. At the center of each cell, there is one base sta-
tion, which also functions as a router. A router in a cell labeled i has a single
transmitter that always transmits at RF band i, and a single receiver that
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Fig. 1. A mixed FDMA-TDMA base station backbone layout.

receives from one neighbor at a time (i.e. listens to one of the six neighbors’
RF bands at a time). All RF broadcasts are one-hop. The specific geographical
layout makes each base station and its six neighbors transmit with distinct
RF bands, and any two base stations sending with the same RF band are at
least two cells apart. The intercell communication uses a globally synchronized
TDMA scheme. Specifically, all base stations’ receivers listen to their northeast
neighbors at time slot 1, listen to east neighbors at time slot 2, so on and so
forth. Therefore, the interbase station communication is a mixed FDMA-TDMA
scheme. More recently, based on the mixed FDMA-TDMA scheme, Giannecchini
et al. [2004] provide an online suboptimal approximation algorithm (CoRAl) to
dynamically reconfigure sensing rates of RTWSN. CoRAl runs fast but only
applies to exponential performance loss function. It is worth mentioning that
inside of each cell, there can be randomly distributed wireless slave sensors
with more constrained capabilities, which do the actual sensing and communi-
cating with the cell’s base station at other RF bands (which do not interfere with
interbase station communications). The intracell communication is not the fo-
cus of this article, and therefore intracell sensors are not plotted in this article’s
figures.

We adopt Caccamo et al. [2002]’s cellular base station backbone layout. In
this article, we focus on the scenario that data flows among backbone base sta-
tions are unicast flows. More sophisticated routing topologies such as multicast
and convergecast are beyond the scope of this article.1 Also, we assume routes
are already decided by given algorithms, for example SPIN [Heinzelman et al.

1Intracell communications between slave sensors and the base station are more often convergecast,

but are not the focus of this article.
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1999], GPSR [Karp and Kung 2000], GEAR [Xu et al. 2001], SPEED [He et al.
2003] or Rumor Routing [Braginsky and Estrin 2002] and soforth2; and the to-
tal data bandwidth of each one-hop wireless link is adjusted so that the wireless
medium is reliable enough for real-time communication. (According to informa-
tion theory and CDMA theory [Viterbi 1995] (also see Appendix A), if the worst
case wireless medium condition is given, there is an upper bound on data bit
throughput so that the data bit error rate can be maintained below an upper
bound.) How to incorporate routing and tolerate device failures and message
drops into our sampling rate optimization, are future research issues beyond
the scope of this article. According to information theory, the interbase station
bandwidth available is determined by wireless medium quality and reception
quality requirements, and is fundamentally irrelevant with specific multiple
access schemes, such as FDMA, TDMA or CDMA. The mixed FDMA-TDMA
multiple access scheme proposed in Caccamo et al. [2002] provides poorer flex-
ibility on bandwidth allocation adjustment, and the scheduling mechanism is
more complicated. Therefore, in this article, we propose a mixed FDMA and
Direct Sequence Spread Spectrum CDMA (DSSS-CDMA)3 scheme called Real-
time Independent CHannels (RICH), which provides better flexibility and whose
real-time scheduling is easier to implement and analyze. A brief tutorial on
DSSS-CDMA is provided in Appendix A.

The major contributions of this article are:

—Study and model the optimal rate assignment problem in RICH multi-hop
RTWSN using real-time schedulability analysis and nonlinear optimization.

—Using the state-of-the-art methods in optimization, two solutions to the opti-
mal rate assignment problem are given. One is in a centralized fashion using
the Interior Point Method, the other is in a distributed fashion based on a
pricing scheme.

—Compare the trade-offs between the centralized and distributed algorithms
under different situations.

The rest of the article is organized as follows. Section 2 describes our proposed
RICH architecture, which can easily support multi-hop real-time networking.
We also give the real-time schedulability constraints analysis in this section.
An example of RICH RTWSN is presented to show the practicability of RICH.
In Section 3, we formulate the optimal QoS sampling rate assignment problem
into a nonlinear programming problem. Sections 4 and 5 give centralized and
distributed solution for optimal QoS sampling rate assignment respectively. In
Section 6, we first compare the numerical solutions based on the example dis-
cussed in Section 2, discuss in details the trade-offs between the centralized and
distributed solution. Then we analyze the possible problems and solutions as-
sociated with both methods. Finally, conclusions and future work are discussed
in Section 7.

2A good survey of routing protocols in sensor networks is given in Akkaya and Younis [2005].
3Nowadays, the term CDMA usually refers to DSSS-CDMA.
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Fig. 2. Internal architecture of a RICH base station.

2. SUPPORTING MULTI-HOP RTWSN

2.1 RICH Architecture

We assume our wireless base stations (the so-called RICH base stations) have
the internal architecture illustrated by Figure 2. Each RICH base station has
seven DSSS-CDMA modulation/demodulation co-processors (CoPUs), each op-
erates with a distinct DSSS-CDMA Pseudo Noise (PN) sequence at a distinct
FDMA RF band. Among which, six of the DSSS-CDMA CoPUs are receivers,
and the other one is the only transmitter at the base station. We allow the data
bit bandwidths of each DSSS-CDMA CoPU to be distinct. For the time being,
suppose the singular transmitter sends packets according to Earliest Deadline
First (EDF) scheduling algorithm. A dedicated EDF scheduling queue is at-
tached to it to buffer/schedule the outgoing packets. In addition, a RICH base
station also includes a sensing CoPU, or an intracell communication CoPU that
gathers data from intracell slave sensors. The CPU interacts with each CoPU
by periodical polling.

We adopt the cellular base station layout of Caccamo et al. [2002] (see
Figure 3), and maintain the seven RF band coloring of the cells. Meanwhile,
we deploy forty-nine DSSS-CDMA PN sequences, denoted as A1, . . . , A7,
B1, . . . , B7, C1, . . . , C7, D1 . . . , D7, E1, . . . , E7, F1, . . . , F7, G1, . . . , and G7
respectively. In a cell labeled X Y , the RICH base station transmitter deploys
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Fig. 3. The mixed FDMA-CDMA base station backbone layout.

the X Y th PN sequence for DSSS-CDMA modulation, and transmits at the Y th
RF band. For example, the base station in a cell labeled G7 transmits with the
G7th DSSS-CDMA PN sequence at the 7th RF band. The transmission range of
every transmitter in our RICH RTWSN is one-hop. Each of the six receivers on
a RICH base station listens to one of its one-hop neighbor’s transmissions. Take
the RICH base station at a cell labeled A5 for example, its six receivers listen
to the 6, 7, 4, 1, 3, 2th RF band respectively, and demodulate with DSSS-CDMA
PN sequence A6, A7, A4, G1, F3, F2 respectively.

Under such a design, the broadcast of a base station is simultaneously re-
ceived by its six one-hop neighbors. The effective receiver is designated by the
broadcast packet’s “destination” data segment. More importantly, because of
the deployment of DSSS-CDMA, any transmission can be carried out indepen-
dently. For example, in Figure 3, an F2 base station and an A6 base station
can both send packets to an A5 base station (their common one-hop neighbor)
at any time. Furthermore, the schedule can be independently adjusted to be
specific per base station. For example, the F2 base station can dedicate 100%
of its time sending to the A5 base station; at the same time, the A6 base station
can dedicate 1

3
of its time to the A5 base station. There are no synchronization

requirements between any pair of transmissions. Under TDMA, however, this
is impossible. For example, F2’s sending schedule must not overlap with A6’s.
Such mutually exclusive relationships propagate throughout the network; fi-
nally all base stations’ broadcast schedules are interlocked, which complicates
analysis and reconfiguration.
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Also, the layout guarantees two base stations transmiting with same DSSS-
CDMA PN sequence (and therefore at the same RF band) are at least eight
hops away. This implies that a base station does not have to be at the center of
its cell.

2.2 Schedulability Analysis of RICH RTWSN

The broadcast of a RICH base station is overheard by all of its six neighbor base
stations. Usually, the wireless medium conditions to the six neighbors are ir-
regular [Zhou et al. 2004; Zhao and Govindan 2003]. According to DSSS-CDMA
theory (see Appendix A), given RF band, worst case wireless medium conditions,
and maximum acceptable bit error rate, the upper bound of data bit bandwidth
is determined—which we call affordable bandwidth. Suppose for a RICH base
station X , because of the irregularity of the wireless medium, the affordable
bandwidths to its six neighboring RICH base stations are B1, B2, . . . , B6. We
set the transmission data bit bandwidth of X to be B = min{B1, B2, . . . , B6}.
Therefore the broadcast of X is reliably received by all of its six neighbors—the
bit error rate of one-hop transmission is always below the maximum accept-
able bound. In another words, B models factors such as the impact of radio
irregularity on the wireless medium.

For a RICH base station, the real-time scheduling is carried out in the
EDF scheduling queue attached to its singular transmitter. Let T be the set
of all routes that go through it. For a route τ ∈ T , suppose it has a sam-
pling/reporting rate of fτ , and each report is a packet of length lτ . The corre-
sponding transmission time of the packet is therefore cτ = lτ /B. When there
are multiple contending routes through one RICH base station, the transmit-
ter should be regarded as a nonpreemptive resource, because once a packet
starts transmitting, it cannot be preempted until it is completely transmit-
ted. Therefore, the real-time scheduler of a RICH base station’s EDF queue
should be a nonpreemptive EDF scheduler to ensure both the EDF behavior and
nonpreemptive usage of the broadcast link. Under such scheduling, a packet
(job) can be blocked by at the most, one other packet. Therefore we can apply
the well-known schedulability bound for the nonpreemptive EDF scheduler as
follows [Buttazzo 1997]:

∑
τ∈T

cτ fτ + Cj f j ≤ 1, for each j ∈ T , (1)

where Cj is the maximum blocking time for sending a packet of route j .

Cj = max
{τ∈T and τ �= j }

{cτ }

= max
{τ∈T and τ �= j }

{
lτ

B

}

= max
{τ∈T and τ �= j }

{lτ }
B

.
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Therefore (1) is transformed into:∑
τ∈T

lτ

B
fτ + L j

B
f j ≤ 1, for each j ∈ T , (2)

where L j = max{τ∈T and τ �= j }{lτ }.
Multiply both sides of Equation (2) with broadcast link bandwidth B; we get:∑

τ∈T
lτ fτ + L j f j ≤ B, for each j ∈ T . (3)

Besides being a router, a RICH base station can also simultaneously function
as the source end of a route. The data are either from the base station’s local
sensing CoPU or by gathering intracell slave sensors’ readings. Either way, the
base station can be regarded as the virtual singular source end sensor for the
route, and its sampling rate is upper bounded, creating the following constraint
(for the time being, we assume each base station can be the source end of at the
most one route):

f j ≤ f max
j , (4)

where f j is the sampling rate of route j , and f max
j is the maximum afford-

able sampling rate at the route’s source end base station.4 By analyzing each
base station of the RICH RTWSN according to inequality set (3) and each route
according to inequality (4), we can derive a set of linear inequalities, which are
the sufficient real-time schedulability constraints for RICH RTWSN sampling
rate assignment. We can summarize them in the following form:{

A f ≤ W

f ≤ f max,
(5)

where f = ( f1, f2, . . . , f N )T is the vector of sampling rates assigned to each of
the N routes. f max = ( f max

1 , f max
2 , . . . , f max

N )T is the maximum sampling rate
for the N end point sensors (see (4)). Matrix A and vector W are obtained by
base station-wise analysis according to (3), which reflects the specific routing
topology of the RICH RTWSN. Suppose this schedulability analysis generates
M inequalities in total, then A ∈ R

M×N , W ∈ R
M×1.

Besides the constraints from real-time schedulability, there are often appli-
cation specific minimum sampling/reporting rate requirements. These extra
requirements can be written as:

f ≥ f min = (
f min

1 , . . . , f min
N

)T
. (6)

Inequality sets (5) and (6) constitute a complete set of real-time schedulabil-
ity constraints for RICH RTWSN sampling rate allocation. An example is given
as follows:

4In this article, we assume the capacity of CPU, internal bus, sensing CoPU and RF CoPUs are big

enough, so that as long as (4) is satisfied, we only need to be concerned about the wireless network

bandwidth schedulability.
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Fig. 4. A RICH RTWSN schedulability analysis example.

Example 1. As depicted by Figure 4, a RICH RTWSN consists of 10 base
stations (as labeled 1, 2, . . . , 10) and 5 routes (identified with different arrow
styles): Route 1: 4 → 2 → 1 → 7; Route 2: 5 → 2 → 1 → 8; Route 3: 6 → 1 →
3 → 9; Route 4: 7 → 1 → 3 → 10; Route 5: 8 → 1 → 2.

Let Bi(i = 1, . . . , 10) be the transmitting bandwidth of base station i. Suppose
the sampling rate assigned to Route j to be f j ( j = 1, . . . , 5). Let l j , f min

j and
f max

j ( j = 1, . . . , 5) be the data packet size, minimum and maximum sampling
rate constraints for Route j .

According to the topology in Figure 4, we have the following real-time schedu-
lability constraints:

Node 1: Route 1, 2, 3, 4, 5 are passing through it, hence:

(l1 f1 + l2 f2 + l3 f3 + l4 f4 + l5 f5) + max{l2, l3, l4, l5} f1 ≤ B1

(l1 f1 + l2 f2 + l3 f3 + l4 f4 + l5 f5) + max{l1, l3, l4, l5} f2 ≤ B1

(l1 f1 + l2 f2 + l3 f3 + l4 f4 + l5 f5) + max{l1, l2, l4, l5} f3 ≤ B1

(l1 f1 + l2 f2 + l3 f3 + l4 f4 + l5 f5) + max{l1, l2, l3, l5} f4 ≤ B1

(l1 f1 + l2 f2 + l3 f3 + l4 f4 + l5 f5) + max{l1, l2, l3, l4} f5 ≤ B1

Node 2: Route 1, 2 are passing through it, hence:

(l1 f1 + l2 f2) + l2 f1 ≤ B2

(l1 f1 + l2 f2) + l1 f2 ≤ B2

As the destination end for Route 5, there are no constraints (the correspond-
ing constraints are analyzed at base station 1, Route 5’s last sending hop).

Node 3: Route 3, 4 are passing through it, hence:

(l3 f3 + l4 f4) + l4 f3 ≤ B3

(l3 f3 + l4 f4) + l3 f4 ≤ B3

Node 4: As a base station along Route 1, we have l1 f1 ≤ B4.
Node 5: As a base station along Route 2, we have l2 f2 ≤ B5.
Node 6: As a base station along Route 3, we have l3 f3 ≤ B6.
Node 7: As a base station along Route 4, we have l4 f4 ≤ B7. As the destination

end for Route 1, there are no constraints (the corresponding constraints are
analyzed at base station 1, Route 1’s last sending hop).
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Node 8: As a base station along Route 5, we have l5 f5 ≤ B8. As the destination
end for Route 2, there are no constraints (the corresponding constraints are
analyzed at base station 1, Route 2’s last sending hop).

Node 9 and Node 10: As purely destination end for routes, there are no con-
straints (corresponding constraints are analyzed at the corresponding routes’
last sending hops).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

l1 + max{l2, l3, l4, l5} l2 l3 l4 l5

l1 l2 + max{l1, l3, l4, l5} l3 l4 l5

l1 l2 l3 + max{l1, l2, l4, l5} l4 l5

l1 l2 l3 l4 + max{l1, l2, l3, l5} l5

l1 l2 l3 l4 l5 + max{l1, l2, l3, l4}
l1 + l2 l2 0 0 0

l1 l1 + l2 0 0 0

0 0 l3 + l4 l4 0

0 0 l3 l3 + l4 0

l1 0 0 0 0

0 l2 0 0 0

0 0 l3 0 0

0 0 0 l4 0

0 0 0 0 l5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

f = ( f1, f2, f3, f4, f5)T

W = (B1, B1, B1, B1, B1, B2, B2, B3, B3, B4, B5, B6, B7, B8)T

(7)

In addition, because of the minimum sampling rate constraints, we have:
f j ≥ f min

j , where ( j = 1, . . . , 5). The complete rate allocation constraints are:

A f ≤ W , f ≤ ( f max
1 , . . . , f max

5 )T and f ≥ ( f min
1 , . . . , f min

5 )T, which are detailed
by (7).

Suppose the numerical values of parameters are as shown in Table I, then
the complete rate allocation constraints are transformed into (8).

3. OPTIMIZING QOS IN WSN WITH REAL-TIME
CONSTRAINTS—MATH MODELING

In this section, we model the optimal sampling rate allocation problem as a
nonlinear convex optimization problem, using constraints set (5) (6) from the
previous section.

3.1 Utility Loss Index

The base station at the source end of a route periodically samples and reports
sensor readings. Let the sampling/reporting rate (or “frequency”) for the j th
route be f j . For most applications, the higher the sampling/reporting rate f j ,
the higher is the QoS. For example, for control applications, the faster the
sampling rate, the better the control performance [Seto et al. 1996]. Ideally,
the best performance is achieved if the sampling rate is approaching ∞, that is
continuous sampling. In practice, this is not achievable, so we use the Utility
Loss Index (ULI) function to capture the performance loss at a discrete sampling
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Table I. Parameter Values for Example 1

Node Bandwidth(Bi Mbps) Max Sampling Capability ( f max Hz)

1 1.0 —

2 0.6 —

3 0.4 —

4 0.25 ( f max
1

= )30

5 0.25 ( f max
2

= )25

6 0.25 ( f max
3

= )30

7 0.2 ( f max
4

= )40

8 0.15 ( f max
5

= )30

Required Min Freq. Affordable Max Freq. Report Packet Size

Route ( f min
j Hz) ( f max

j Hz) (l j Mbit)

1 11 30 0.01

2 2.5 25 0.015

3 5 30 0.02

4 1 40 0.025

5 2 30 0.03

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A f =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

.04 .015 .02 .025 .03

.01 .045 .02 .025 .03

.01 .015 .05 .025 .03

.01 .015 .02 .055 .03

.01 .015 .02 .025 .055

.025 .015 0 0 0

.01 .025 0 0 0

0 0 .045 .025 0

0 0 .02 .045 0

.01 0 0 0 0

0 .015 0 0 0

0 0 .02 0 0

0 0 0 .025 0

0 0 0 0 .03

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

f1

f2

f3

f4

f5

⎤
⎥⎥⎥⎥⎥⎥⎦

≤ W =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.0

1.0

1.0

1.0

1.0

.6

.6

.4

.4

.25

.25

.25

.2

.15

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

f ≤ f max = (30, 25, 30, 40, 30)T, and f ≥ f min = (11, 2.5, 5, 1, 2)T.

(8)

rate f compared to continuous sampling. For control applications, Seto et al.
[1996] show the ULI is in the following form:

U j ( f j ) = ω j α j e−β j f j , (9)

where f j is the sampling rate for task j (i.e. route j ), and ω j , α j , and β j are
application-specific constraints. The values of ω j , α j , and β j can be determined
through data fitting using real-world measurements. In this article, the form
of the ULI function is generalized to be any strictly decreasing differentiable
convex function with regard to rate f .
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3.2 Mathematical Formulation

Assume each individual ULI function U j ( f j ) is strictly decreasing differen-
tiable and convex. Suppose ULIs are additive, the system’s overall ULI is
thereby the sum of the ULIs of all individual routes:

∑N
j=1 U j ( f j ). The per-

formance optimization problem becomes:

min
( f1,..., f N )

N∑
j=1

U j ( f j ) (10)

such that: A f ≤ W (11)

f ≤ f max (12)

f ≥ f min (13)

where A is a constraint matrix with dimension M ×N . M is dependent upon the
routing topology of the RTWSN, and N is the number of total routes. We call this
problem the Multiple Constraints Optimization Problem (MCOP) in contrast to
Seto et al. [1996]’s Single Constraint Optimization Problem (SCOP), and we
denote the former as MCOP(U, A, W ).5

The feasible set of MCOP is compact and convex and U j ( f j ) is differen-
tiable and convex, therefore MCOP has optimal solutions [Bertsekas 1995].
Furthermore, if U j ( f j ) is strictly convex, the optimal solution is unique
[Bertsekas 1995].

When M = 1 and there is no constraint set (12), and the ULIs are in the neg-
ative exponential form, then MCOP(U, A, W ) becomes SCOP as follows [Seto
et al. 1996]:

min
( f1,..., f N )

N∑
j=1

U j ( f j ) =
N∑

j=1

ω j α j e−β j f j (14)

such that: Af ≤ W (15)

f ≥ f min = (
f min

1 , . . . , f min
N

)T
, (16)

where W is the bandwidth (utilization) constraints, and A ∈ R
1×N , f ∈ R

N×1,
W ∈ R.

Based on the Kuhn-Tucker condition, Seto et al. [1996] provide an algorithm
to solve the SCOP problem analytically. MCOP is a generalization of SCOP. We
will show that the approach for deriving an analytical solution to SCOP is not
viable for solving MCOP. To this end, we first prove that the optimal solution
f ∗ of MCOP will make at least one of the constraints in constraint sets (11) and
(12) become the equality constraint, and show why it is not viable to tackle the
MCOP in an analytical fashion similar to Seto et al. [1996]. In MCOP(U, A, W ),
constraint sets (11) and (12) can be combined as:

A′ f ≤ W ′,

where A′ =
[

A
I

]
(M+N )×N

, W ′ =
[

W
f max

]
(M+N )×1

. (17)

5Notation used in Kelly et al. [1998].
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THEOREM 3.1. MCOP’s optimal solution f ∗, must ensure that at least one
of the (M + N ) constraints A′

i f ∗ ≤ W ′
i , i = 1, . . . , (M + N ) reaches equality:

∃i ∈ {1, . . . , M + N } such that A′
i f ∗ = W ′

i . Here A′
i is the ith row of A′.

PROOF. Please refer to Appendix B for the proof.

Though we know for the optimal rate assignment f ∗, there is at least one i
such that A′

i f ∗ = W ′
i , we do not know explicitly which constraints reach equal-

ity. This makes the Kuhn-Tucker based solution method not applicable. In con-
trast, the problem discussed in Seto et al. [1996], which is a SCOP (M = 1), is
much easier because there is only one nontrivial constraint A1 f ∗ ≤ W1, and it
is exactly this constraint that should reach equality. In addition to Seto et al.
[1996], Rajkumar et al. [1997] proposed a numerical solution. But that solution
is also for a single constraint scenario. In their more recent works, Lee et al.
[1999] and Ghosh et al. [2003] studied the scenario under multiple constraints.
However, the problem they studied is an integer programming problem, which
is different from the model we will discuss in this article. In Lee et al. [1999], the
integer programming problem is proven to be NP-Hard. Several suboptimal al-
gorithms are proposed. According to Ghosh et al. [2003], the one that scales well
is Hierarchical Q-RAM. However, that algorithm requires the division of mul-
tiple constraints into independent groups, which is impractical for multi-hop
RTWSN (see Section 6.5). Fortunately, as will become clear later, MCOP can be
solved with the state-of-art Interior Point Methods [Nesterov and Nemirovsky
1994; Ye 1997a] and Internet pricing schemes [Low and Lapsley 1999; Kelly
et al. 1998; Kelly 1997].

4. CENTRALIZED SOLUTION METHOD FOR MCOP

In this section, we apply the Interior Point Method (IPM) to solve the MCOP
problem for RTWSN.

Definition 4.1. A Constrained Optimization Problem is expressed as
min{ f (x) : x ∈ Q ⊆ R

n}, where the constraint set Q is defined by multiple
equalities and inequalities: Q = {x : h(x) = 0, g (x) ≤ 0}, where h : R

n →
R

p; g : R
n → R

q .

Definition 4.2. A Convex Optimization (CO) problem is a constrained opti-
mization problem whose objective function f (x) is continuous and convex, and
whose constraint set Q is compact (closed and bounded) and convex.

It’s easy to see that an MCOP is a constrained convex optimization prob-
lem with linear constraints. For solving a convex optimization problem, the
major difficulties come from the multiple inequality constraints. Closed form
solutions are generally unavailable. However, IPMs [Nesterov and Nemirovsky
1994; Ye 1997a] can solve linear constraint convex optimization problems nu-
merically. IPM is a numerical method that iterates in the interior of the solu-
tion space defined by constraint set Q to find the optimal solution. IPMs can be
further divided into two subcategories: primal methods and primal-dual meth-
ods. Primal-dual methods try to solve the primal and dual optimization prob-
lems [Luenberger 1984] together. In practice, the primal-dual methods are more
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efficient. The advantages of the interior-point method based numerical solution
includes: (1) Efficient. IPMs give the correct solution very fast; (2) Multi-hop
application scenarios: The objective function need not be confined as an expo-
nential form as in Seto et al. [1996], but can be a general strictly decreasing
differentiable convex function.

To solve the MCOP problem, we use optimization library COPL LC [Ye
1997b]. It is easy to transform our MCOP problem to the form used by COPL LC.
The transformation method can be found in Appendix C. To implement the IPM
based centralized solution, the whole RICH RTWSN elects a central computing
node C, which gathers ULI and constraints information from all the network,
carries out the optimization algorithm, and returns the final results.

5. DISTRIBUTED ALGORITHMS FOR OPTIMAL RATE ASSIGNMENT

However, a direct application of IPM results in a centralized solution that
requires collecting data from each node. This will create a traffic bottleneck
around the central computing node (detailed discussion is in Section 6.5). To
overcome the bottleneck problem, we give a distributed algorithm for solving
the MCOP. The distributed algorithm lets routers and routes’ end point nodes
collaborate to find the optimal rates. The algorithm is based on the recent re-
searches of Internet pricing schemes [Low and Lapsley 1999; Kelly et al. 1998;
Kelly 1997], especially Low and Lapsley [1999].

The main idea is to impose a price on each constraint in (11)∼(13). Each route
will accumulate its relevant constraints’ prices and solve a local optimization
problem based on its own ULI function. The result is the next proposed sampling
rate for the route (to simplify, we call it rate proposal in the following). The
rate proposal is then delivered to each of the route’s routers, where each of
the route’s relevant constraint updates (imagine each constraint as an active
agent) its price (called constraint price) accordingly. This procedure works in
an iterative manner until it converges.

The distributed algorithm has two main attributes:

(1) It converges to the optimal rates of MCOP (Theorem 5.1).

(2) Each route’s computation is only based on local information.

Notations used in the Distributed Algorithm:

s. is the algorithm’s iteration step, s = 0, 1, . . . .
p(s). is the updated constraint price vector for each constraint i, i ∈

{1, . . . , M } at iteration step s. p(s) = (p1(s), . . . , pM (s)).
f (s). is the updated rate proposal vector for each route j , j ∈ {1, . . . , N } at

iteration step s. f (s) = ( f1(s), . . . , f N (s))T.
The Distributed Algorithm:

The distributed algorithm is made up of iterations. Each iteration consists
of two consecutive steps: the Constraint Algorithm, and the Route Algorithm.

At the very beginning of the distributed algorithm, set f (0) = f min, and
p(0) ≥ 0.
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(1) Constraint Algorithm
During iteration s = 1, 2, . . . , for each constraint i(i = 1, . . . , M ):

C1. Receives rate proposal f j (s) from each relevant route j . Route j and con-
straint i are relevant if Ai j �= 0.

C2. Computes a new constraint price for itself using the following price update
equation:

pi(s + 1) = [pi(s) + γ ( f i(s) − Wi)]
+ (18)

Here f i(s) = Ai f (s), and Ai is the ith row of A. Function [•]+ is defined as
[x]+ = max{x, 0}, where x is a real number.

C3. Delivers new price pi(s + 1) to all routes that are relevant to constraint i.

(2) Route Algorithm
During iteration s = 1, 2, . . . , for each route j ( j = 1, . . . , N ):

R1. Receives from the network the sum of all the constraints’ prices pj (s) im-
posed on this route:

pj (t) =
M∑

i=1

pi(s)Ai j (19)

R2. Update the route’s rate proposal f j (s + 1) for the next iteration according
to the local optimization of:

min U j ( f j ) + f j p j (s)

such that: f min
j ≤ f j ≤ f max

j

i.e. f j (s + 1) = arg min
f min

j ≤ f j ≤ f max
j

(U j ( f j ) + f j p j (s)) (20)

The iteration of Constraint and Route Algorithms stops until the predefined
convergence criterion is reached. For example, when both of the following cri-
teria are met.

‖ f (s) − f (s − 1)‖n ≤ ε f , (21)

‖q(s) − q(s − 1)‖n ≤ εq , (22)

where f (s) = ( f1(s), f2(s), . . . , f N (s))T, q(s) = (p1(s), p2(s), . . . , pN (s))T. ε f > 0
and εp > 0 are sufficiently small real numbers. ‖v‖n denotes the nth-norm of
vector v = (v1, . . . , vk). If n = 1, ‖v‖1 = max(vi), i ∈ {1, . . . , k}. If n ∈ Z

+, then

‖v‖n = (
∑k

i=1 vn
i )

1
n .

Now we prove the convergence and correctness of the above iterative algo-
rithm. This is summarized in Theorem 5.1. First, we give the assumptions and
notations to be used.

Assumptions:

A1. The feasibility condition holds for each constraint i(i = 1, . . . , M ), such
that

∑N
j=1 Ai j f min

j ≤ Wi.

A2. For each route j , on the interval I j = [ f min
j , f max

j ], the utility function U j

is strictly decreasing, strictly convex, and twice continuously differentiable.
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A3. The curvature of U j for each route satisfies the following condition on

I j = [ f min
j , f max

j ], ∃ᾱ j , such that U ′′
j ( f j ) ≥ 1

ᾱ j
> 0, for all f j ∈ I j .

Notations Used in Theorem 5.1:

� L( j ) = ∑M
i=1 Ai j . It is the column sum of A;

� L̄ = max j=1,...,N {|L( j )|}, which is the maximum absolute value of the column
sum of A;

� S(i) = ∑N
j=1 Ai j . It is the row sum of A;

� S̄ = maxi=1,...,M {|S(i)|}, which is the maximum absolute value of the row sum
of A;

� ᾱ = max j=1,...,N {ᾱ j }. ᾱ is the upper bound on 1
U ′′

j ( f j )
, j = 1, . . . , N .

THEOREM 5.1. Suppose assumptions A1 ∼ A3 hold and the step size γ satis-
fies 0 < γ < 2/(ᾱL̄S̄). Then starting from any initial rates f min ≤ f (0) ≤ f max

and prices p(0) ≥ 0, the sequence {( f (s), p(s))} generated by the above distributed
algorithm will converge to a accumulation point ( f ∗, p∗), and f ∗ is the solution
of MCOP(U, A, W ).

PROOF. See Appendix D.

6. EVALUATION

In this section, we shall present the simulation results and discuss the trade-
offs between the centralized algorithm and the distributed algorithm, showing
which is more appropriate in what situations. We also show that the distributed
algorithm has the desirable incremental adjustment property.

6.1 Implementation

First let us look at the real-world feasibility of RICH architecture. Real-
world DSSS Chip-Sets consist of multiple parallel independent transmitters
and receivers are already available. For example, the QualComm CSM2000
chipset [Qualcomm 2004a], originally designed for low-cost lightweight cellu-
lar base stations, supports eight parallel users, which is enough for the seven-
transceiver RICH architecture. Higher performance chipsets can be Qual-
Comm CSM5000 [Qualcomm 2004b], CSM5500 [Qualcomm 2004c] and so on,
which can be easily reconfigured to build RICH base stations, providing no
less than 1.8Mbps data bandwidth for each of the seven transceivers. The
sizes and power consumption of these chip sets are also satisfactorilly small.
For example, a CSM5500 chip complies with BGA560 packaging, which is
35×35×2.5 mm in dimension; and is of 3 ∼ 3.6 volt I/O voltage and 1.8 volt core
voltage.

Based on the above real-world parameters, we carry out simulation using
J-Sim [DRCL 2004]. The centralized algorithm is straightforward. To simulate
the distributed algorithm, we need to devise a network protocol that matches
the algorithm described in Section 5, which is as following:
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Network Protocol for Distributed Algorithm:
The protocol is carried out in iterations, each iteration s consists of two steps:

Step 1. Each constraint’s price is updated by the router that creates that con-
straint based on (18). Next, each of these updated prices must be propa-
gated to all the relevant routes. To do that, each route’s source end sends
an empty packet toward the destination end. The packet’s payload is just
one floating-point number (4 bytes), dedicated to carry the total price pj (s),
where j refers to the j th route. As this packet travels toward the destina-
tion along the route, on each hop, it will accumulate onto pj (s) all relevant
constraints’ prices maintained by the local router. When the packet reaches
the destination end, the total price pj (s) is obtained.

Step 2. After Step 1, each route’s destination end carries out the route algorithm
(20) to update the sampling rate proposal. Then the destination end sends
another packet towards the source end, to notify every router along this
route about the updated sampling rate proposal. This packet’s payload is
also just one floating-point number (4 bytes), which is enough to carry the
updated sampling rate proposal.

If the payload of the control traffic is piggybacked to the data traffic, it will
add a 4 bytes overload. If the control traffic is sent separately from the data
traffic, it can be encoded into a 16 byte packet. Within this 16 byte packet, 4
bytes are the control payload, 4 bytes are for the source address, 4 bytes are
for the destination address, and the remaining 4 bytes are for other purposes,
such as checksum and so on. In the following, we discuss the separate control
message scheme, that is, the distributed algorithm incurs a 16 byte packet in
Step 1 and Step 2 respectively for each route.

For the distributed algorithm, we also assume all the involved routes of
the RTWSN are coarse-grain synchronized in the sense that in each iteration,
all the routes finish Step 1 and then move on to Step 2; and when all the
routes finish Step 2, they move on to the next iteration. This can be achieved,
for examples, by synchronizing all the nodes and starting each step at time
kTstep, where k ∈ Z, and Tstep is the empirical upper bound of end-to-end packet
travel time along the network diameter, assuming there is a specified upper
bound on network diameter. The GPS System [Getting 1993] can already pro-
vide global time synchronization with an accuracy of within 0.25 msec [Exit
Consulting 2004], which is enough for our application. For example, in our
simulation setup, a synchronization granularity of 2msec is enough for the
testbed.

6.2 Numerical Example of the Centralized and the Distributed Algorithm

First both the centralized and distributed algorithms are applied to the scenario
discussed in Example 1 of Section 2.2. The setup involves 5 routes. The ULI
function for each route j is in the form of ω j α j e−β j f j , so the MCOP(U, A, W )’s

total ULI (the objective function) is:
∑5

j=1 U j ( f j ) = ∑5
j=1 ω j α j e−β j f j , with pa-

rameters shown in Table II. These parameters are taken from those reported
in Sha et al. [2000]. Constraints are listed in equation (8).
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Table II. Parameters for

ULI in Example 1

Route α j β j ω j

1 0.66 0.3 1

2 0.66 1.0 2

3 0.66 0.5 3

4 0.66 0.7 4

5 0.66 0.3 5

Fig. 5. Rate proposal update trace.

Using the centralized algorithm and the COPL LC package [Ye
1997b], by 14 iterations, the optimal solution is derived: f ∗

central =
(12.35, 6.58, 5.70, 5.73, 5.00)T, with an optimal value of 0.916.6

For the distributed algorithm, we choose the initial values to be f (0) =
f min, p(0) = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) and γ = 2 × 10−7. The network
parameter settings follow Table I. The convergence criteria are described by
equations (21) and (22), where we pick ε f = 1×10−9 and εq = 1×10−9. The rate
proposal update trace is shown in Figure 5. The trace shows that the algorithm
converges in a short time (no more than 9.48sec). The converged rate proposal
value is: f ∗

distributed = (12.35, 6.58, 5.70, 5.73, 5.00)T, which matches the results
obtained from the centralized algorithm.

It is worth noting that, for many RTWSN applications, it is not necessary to
derive the exact optimum sampling rate. Instead, getting a quasi-optimum in
a relatively shorter time is often preferrable. In Table III, the convergence time
for each route with certain error bound is listed. We see that if coarser error
bound is allowed, the convergence time is even shorter.

6.3 Monte Carlo Simulation on Convergence Speed

In order to give a feeling of how fast the distributed algorithm converges, the
following Monte Carlo simulation is carried out:

6The primal objective values reported in the 14 iterations are {1.649, 1.339, 1.237, 1.072, 0.834,

0.504, 0.649, 0.683, 0.792, 0.899, 0.915, 0.916, 0.916, 0.916}.
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Table III. Convergence Time

Route 1 2 3 4 5

Convergence Time (CT) (sec) 6.58 5.80 5.59 5.66 9.48

CT when ± 1% error is allowed (sec) 1.79 1.39 0.45 0.27 2.73

CT when ± 5% error is allowed (sec) 0.74 0.46 0.23 0.13 1.6

Fig. 6. Trace of error between proposed and optimal rates. Empirically, in 100 iterations, the

proposed rates converge to a satisfactory range around the optimum.

Rate error of route j at the sth iteration of the distributed algorithm is defined
as: e f j (s) = | f j (s) − f ∗

j |, where f j (s) is the rate proposal for route j at the sth
iteration; f ∗

j is the optimal sampling rate for this route.
We still use the testbed depicted by Example 1. But in each trial of the Monte

Carlo, a different ULI function for each route is picked by setting the coefficients
of ω j , α j , and β j randomly. Then the distributed algorithm is carried out. The
rate error for iteration s = 1, . . . , 500 is traced. Eight hundred trials are run.
For each route, the eight hundred rate error traces are averaged and plotted in
Figure 6.

According to Figure 6, the rate error converges in a negative exponential
form. Empirically, in 100 iterations the distributed algorithm reaches a satis-
factory quasi-optimum.

It is worth noting that by exploiting the “incremental adjustment” property
discussed in Section 6.4, the distributed algorithm can converge even faster.
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Table IV. New

MCOP(U ′, A′, W ′) Parameters

Route α j β j ω j

1 0.33 0.3 4

2 0.22 0.2 3

3 1.32 0.5 2

4 1.98 0.7 1

5 0.66 0.3 6

6.4 Incremental Adjustment Property of the Distributed Algorithm

In real-world conditions, there are often times that the ULI functions and
the constraint set change dynamically. These changes transform the origi-
nal optimization problem MCOP(U, A, W ) into a new optimization problem
MCOP(U ′, A′, W ′), hence the optimal sampling rate f ∗ has to be recalculated.
If the distributed algorithm is used, new iterations can be carried out from the
existing optimum ( f ∗, p∗), so as to reach the new optimum ( f ′∗, p′∗) faster. We
call this the “incremental adjustment property.” An example is given as follows:

Continue with the MCOP(U, A, W ) simulation example in Section 6.2. Sup-
pose at time 15sec, the ULI coefficients switch from the old value set (see
Table II) to the new value set depicted in Table IV. Figure 7 and Table V show
the comparison between incremental and nonincremental adjustment schemes:
the incremental adjustment scheme starts with MCOP(U, A, W )’s optimum
sampling rate and its corresponding price vector ( f ∗, p∗); the nonincremen-
tal adjustment scheme starts with a constant tuple ( f 0, p0), where f 0 = f min

and p0 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0). All other settings of the testbed are
the same as those for Section 6.2, Under the incremental adjustment scheme,
in about 10.30sec, the rate proposal converges to the new optimum f ′∗. In con-
trast, starting from ( f 0, p0), the convergence to the new optimum f ′∗ is much
slower, taking 12.67sec.

Furthermore, if quasi-optimum is allowed, the new solutions can be derived
faster. The convergence time costs are listed in Table V. The incremental ad-
justment scheme still runs faster than the nonincremental version.

6.5 Control Traffic and Scalability Analysis for the Distributed
and Centralized Algorithms

In this section, the control traffic for both distributed and centralized algorithms
are analyzed. The centralized algorithm is efficient even when the network is
moderately large. However, as the network continues to scale up, the central-
ized algorithm would finally reach its bottleneck. In contrast, under certain
assumptions, the distributed algorithm provides better scalability, though it
may be inefficient for smaller networks.

Control Traffic Analysis for the Distributed Algorithm:

Let N be the set of all base stations in a RICH RTWSN. Let φdis
i be the accumu-

lated control traffic (in bytes) passing through base station i(i ∈ N ) under the
distributed algorithm. Let 	dis be the maximum accumulated control traffic (in
bytes) passing through any of the base stations: 	dis = maxi∈N {φdis

i }.
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Fig. 7. Illustration of incremental adjustment property.

Table V. Convergence Time of MCOP(U ′, A′, W ′)

Route 1 2 3 4 5

starts with Convergence Time (CT) (sec) 8.67 7.68 6.98 7.32 10.30

( f ∗, p∗) CT when ±1% error is allowed (sec) 0.01 1.13 0.25 0.07 1.24

CT when ±5% error is allowed (sec) 0.01 0.05 0.03 0.02 0.15

starts with Convergence Time (CT) (sec) 11.04 10.05 9.35 9.69 12.67

( f 0, p0) CT when ±1% error is allowed (sec) 0.002 3.51 1.25 1.61 3.61

CT when ±5% error is allowed (sec) 0.002 1.93 0.03 0.39 2.01

Let R be the set of all routers (RICH base stations that serve as routers) in
the same RICH RTWSN. Let dr be the number of routes passing through router
r(r ∈ R): the out-degree of router r. Let D be the maximum number of routes
passing through any routers: D = maxr∈R{dr}.

During each iteration, in Step 1, totally dr control packets pass through
router r. In Step 2, totally dr packets pass through router r. Without loss of
generality, we assume all control packets have 12 bytes of headers. As men-
tioned previously, each packet’s payload length is 4 bytes. Therefore the total

ACM Transactions on Sensor Networks, Vol. 2, No. 2, May 2006.



284 • X. Liu et al.

control traffic passing through each router r during each iteration is 32dr bytes,
we therefore have the following proposition:

PROPOSITION 6.1. For any base station i ∈ N , during each distributed al-
gorithm iteration, the number of control packets-passing through it is no more
than 32D bytes.

According to our simulation results in Section 6.3, the distributed algorithm
usually converges or reaches a very good approximation in K ≤ 100 steps
(exploiting the incremental adjustment property discussed in Section 6.4, or
allowing quasi-optimum, the number of iterations may be even less). Hence
after all the iterations, the accumulated control traffic passing through any
router is no more than 32K D. That is, for any node i ∈ N , φdis

i ≤ 32K D ≤
32 × 100D = 3200D (byte). Therefore we have:

	dis ≤ 3200D (23)

	dis = O(D). (24)

Traffic Load Analysis for Centralized Algorithm:

Let N be the set of all base stations in a RICH RTWSN. Let φcen
i be the accumu-

lated control traffic passing through base station i(i ∈ N ) under the centralized
algorithm. Let 	cen be the maximum accumulated control traffic passing through
any of the base stations: 	cen = maxi∈N {φcen

i }.
Suppose the total number of routes in a RICH RTWSN is 
total. Under the

centralized algorithm, each route at least needs to send the central computing
node C its ULI information together with at least one constraint. Without loss
of generality, we suppose each ULI function is expressed by 3 floating point
numbers (12 bytes) and each constraint is at least represented by 2 floating
point numbers (8 bytes). To be consistant, we still assume the control packet
header has 12 bytes. Thus the accumulated control traffic payload at node C is
φcen

C ≥ 32
total; φcen
C = �(
total). Because 	cen ≥ φcen

C , we have:

	cen = �(
total). (25)

One may argue that the routes in a RICH RTWSN may not be all directly
or indirectly connected, but rather partitioned into several disjoint maximal
subgraphs (routes within each maximal subgraph are directly or indirectly con-
nected). So that there need not be ONE central computing node. Each maximal
subgraph can elect its own central computing node, which takes charge of the
optimal sampling rate planning for, and only for, the routes within that max-
imal subgraph. In this case, let G be the set of all maximal subgraphs, for a
specific maximal subgraph g ∈ G, let 
g be the number of routes in g . Let Cg

be the elected central computing node for g . Because of the same reasoning
with which we derived (25), we have φcen

Cg
≥ 32
g . By the definition of 	cen,

we still have 	cen ≥ φcen
Cg

≥ 32
g . That is: ∀g ∈ G, 	cen ≥ 32
g , which implies

	cen ≥ maxg∈G{32
g }. Let 
 = maxg∈G{
g }, the maximum number of directly
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or indirectly connected routes of the whole RTWSN; then we have:

	cen ≥ 32


i.e. 	cen = �(
). (26)

In the following simulation for wide area monitoring, we shall show 
 ≈ 
total,
(26) is empirically equivalent to (25). We shall also show 	dis is empirically in-
sensitive to the scale of the RICH RTWSN while 	cen increases at least quadrati-
cally with the scale of the RICH RTWSN. This means the centralized algorithm’s
central computing node is a control message exchanging bottleneck. Hence the
centralized algorithm does not scale up well while the distributed algorithm
does.

Comparison of the Distributed and Centralized Algorithms:

In many cases, even for moderately large networks, the centralized algorithm is
efficient enough. But there are certain cases where the distributed algorithm is
more scalable than the centralized algorithm. An example scenario is as follows:

Suppose all routes are desseminated in a square area of l × l km2, where l
is the square edge length. The square area deploys a RICH RTWSN cellular
division with a hexagon cell edge length of 0.1km. All routes between base
stations are unicast, and we assume the network diameter is upper bounded
by a fixed constant, which, without loss of generality, is set to 10. Specifically,
the source end base stations of all routes are uniformly distributed across the
square area with density ρ = 10/km2; and the destination end is also uniformly
distributed within 10 hops from the source end. This also implies the total
number of routes is ρl2. The route is determined by the source/destination end
and a simple geographical routing protocol that always forwards the packet
closer to the destination in each hop.

For each RICH RTWSN scale (l = 5, . . . , 100(km)), thirty trials are carried
out. In each trial, ρl2 routes are generated according to the previous descrip-
tion; then the maximum number of routes passing through any router (D),
and the maximum number of directly or indirectly connected routes (
) are
counted. The results are shown in Table VI. For ease of comparision, we plot
the same data in Figure 8. We can see from Figure 8, D is bounded by a relatively
small constant, insensitive to the network scale l , while 
 rises in a roughly l2

speed.7

According to (24) and (26), 	dis = O(D) and 	cen = �(
). Therefore for the
distributed algorithm, the maximum per-base station accumulated control traf-
fic (	dis) is upper bounded by D, and D is insensitive to the scale of the network.
In contrast, for the centralized algorithm, the maximum per-base station accu-
mulated control traffic (	cen) is lower bounded by 
, and 
 is growing quadrat-
ically with the network scale l . The underlying reason is that for the cen-
tralized algorithm, the control traffic is bottlenecked at the central computing
node, while for the distributed algorithm, the control traffic is evenly the dis-
tributed among all the nodes. Hence, the distributed algorithm shows better
scalability.

7In other scenarios, the sensitivity analysis of D to network scale is left for future research.
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Table VI. Scalabillity Comparison

l 
 D
(km) mean min max mean min max

5 242 236 247 7 6 10

10 977 65 988 8 7 10

15 2203 2185 2220 8 7 11

20 3920 3894 3935 8 7 10

25 6126 6100 6145 9 8 11

30 8835 8810 8860 9 8 11

35 12020 11975 12057 9 8 11

40 15713 15681 15760 9 8 11

45 19889 19843 19951 9 8 11

50 24564 24510 24611 10 9 11

55 29726 29675 29766 10 9 12

60 35380 35317 35420 10 9 11

65 41506 41446 41551 10 9 11

70 48161 48103 48208 10 9 11

75 55294 55224 55362 10 9 11

80 62908 62831 62983 10 9 12

85 71029 70943 71106 10 9 11

90 79647 79559 79720 10 9 11

95 88722 88619 88835 10 9 11

100 98315 98214 98432 10 9 13

l (km) is the edgelength of the square area. The route density ρ = 10/km2.


 is the maximum number of directly or indirectly connected routes. The

centralized algorithm incurs a time cost 	cen = �(
).

D is the maximum number of routes passing through a router (base sta-

tion). The distributed algorithm incurs a time cost 	dis = O(D).

Thirty trials are carried out for each l . The data shows the distributed

algorithm has better scalability than the centralized algorithm.

According to Section 6.2, the centralized algorithm works efficiently when
the network scale is small or even moderately large. For the distributed algo-
rithm, from the above analysis, because of better scalability, when the network
continues scaling up, there will be a point where the distributed algorithm
starts to outperform the centralized algorithm. It is useful to set up a threshold
to determine when to switch from the centralized to the distributed algorithm.
According to Figure 8 and Table VI, D is always less than 15; whereas 
 is never
less than 1500 when l ≥ 15km. According to (23), 	dis ≤ 3200D = 48000 (byte).
According to (26), 	cen ≥ 32
 ≥ 32×1500 = 48000 (byte), when l ≥ 15km. That
is, when l is bigger than 15km, there is 	dis ≤ 	cen, which means the distributed
algorithm is more desirable.

In the end, it’s worth mentioning that there is a possible “live lock” problem
for the distributed algorithm. In the distributed algorithm, each route needs to
communicate with all its routers to exchange the updated constraint price and
rate proposal. Ideally, control messages are sent in the background using spare
bandwidth. We call this the “best-effort” approach since the bandwidth assigned
for background traffic is not guaranteed. According to Theorem 3.1, when the
optimal rate f ∗ = ( f ∗

1 , . . . , f ∗
N )T is reached, at least one of the constraints will

reach equality. This means at the router where that constraint is created, all
the bandwidth is used up by the data traffic, and no control messages can be
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Fig. 8. Scalability Comparison. l (km) is the edgelength of the square area. The route density

ρ = 10/km2. 
 is the maximum number of directly or indirectly connected routes. The centralized

algorithm incurs a time cost 	cen = �(
). D is the maximum number of routes passing through

any router (base station). The distributed algorithm incurs a time cost 	dis = O(D). Thirty trials

are carried out for each l . The results shows the distributed algorithm has better scalability than

the centralized algorithm.

sent through that router any more! This causes a “live lock” problem since if
there is future need for exchanging control messages, the saturated router can
no longer participate.

A solution to the “live lock” problem is to preserve a small amount of dedicated
bandwidth for exchanging the control messages. According to Proposition 6.1,
the maximum amount of control message payload bytes passing through each
RICH RTWSN node during each iteration is no more than 32D, where D is the
maximum number of routes passing through any router in the whole RTWSN.
Figure 8 and Table VI show when the maximum route length and density of
routes in the RTWSN are fixed, and the end points of routes are uniformly the
distributed; empirically, D is bounded by a constant, which can be estimated
via simulation. Therefore, the bandwidth to be reserved for control message
exchange can be planned accordingly. For example, according to Figure 8 and
Table VI, D is empirically bounded by 15. Therefore each iteration causes a con-
trol traffic of 32 × 15 = 480 bytes. If 100 iterations are needed to get the result,
and the distributed algorithm is supposed to finish in 4 seconds, then the con-
trol traffic bandwidth should be 480 × 8 × 100/4 = 96 (kbps). Note according to
Section 6.1, a RICH base station can achieve 1.8Mbps transmitting bandwidth
with lightweight hardware. Also note the above bound is based on worst case
analysis. In practical applications, if more detailed network information, such
as the number of routes passing through each router is available, then different
router nodes can reserve different bandwidth based on this information.
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Fig. 9. DSSS modulation/demodulation process: a simplified view.

7. CONCLUSIONS AND FUTURE WORK

In this article, we study the optimal sampling rate assignment in RTWSN, and
formalize it into a nonlinear optimization problem. By using the state-of-art
methods in optimization, two solutions are given. One is in a the centralized
fashion, the other is in a the distributed fashion. Our solutions can handle
multi-hop routing scenarios, which are not covered by previous research. We
compare the trade-offs between the centralized and the distributed algorithms
under different situations. Specifically, we quantitatively analyze the node-wise
control traffic under both algorithms. We show that though the centralized
algorithm works efficiently with small and even moderately large RTWSNs,
it has a bottleneck problem, which limits its scalability. On the other hand,
the distributed algorithm is a better choice for large-scale RTWSN and has
the desirable incremental adjustment property. Also, the convergence of the
distributed algorithm is guaranteed and empirically shown to be fast. Note
that using the GPS for synchronization in the distributed algorithm is not an
obligation; an asynchronous algorithm can be designed, for example, similar to
the asynchronous flow control algorithm in Low and Lapsley [1999]. However,
an asynchronous algorithm usually converges, more slowly.

Our ongoing research topics include: (1) Integrating QoS optimization and
error modeling for WSN; (2) Theoretical analysis of the distributed algorithm’s
convergence rate for specific WSN applications; (3) ULI function formulation
based on stochastic models.

A. A BRIEF TUTORIAL ON DSSS-CDMA

DSSS is a physical layer baseband modulation/demodulation scheme for dig-
ital communication. Without loss of generality, we assume digital “1” and “0”
are represented by +1 and −1 (volt) rectangular pulses. Unlike conventional
baseband modulation schemes, where each bit is represented with a single +1
or −1 pulse, DSSS multiplies a Pseudo Noise (PN) sequence onto the stream of
user data bits, as shown in Figure 9.

The PN sequence is also a sequence of ±1 rectangular pulses, with a +1 pulse
representing digit “1” and a −1 pulse for digit “0”. Each digit of a PN sequence
is called a chip. The number of PN chips generated per second is called chip
rate, represented by rc; chip duration Tc is defined as Tc

def= 1
rc

. Correspondingly,

the number of data bits generated per second is called bit rate, represented

by rb, and bit duration Tb
def= 1

rb
. Usually rc is a positive integer multiple of rb;
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the ratio is called processing gain, denoted as g
def= rc

rb
. According to the DSSS

modulation scheme, each modulated bit consists of g chips (see Figure 9). The
process of DSSS modulation: multiplying PN sequence chips onto user data
bits, is often called scrambling.

At the demodulator, if the same PN sequence with 0 phase shift (synchro-
nized, or say, coherent) is again multiplied to the scrambled data chip stream,
the original user data bit stream (the ±1 sequence at bit rate rb) recovers. If
the received data stream is scrambled with another PN sequence, or the phase
shift is more than a chip, the data stream cannot be recovered; instead, it looks
like a stream of random ±1s generated by independently flipping a fair coin
at chip rate rc. The multiplication carried out at the demodulator is also called
descrambling. Next, by integrating over Tb units of time, a decision logic can
decide whether a wanted user data bit is received or not.

Therefore, a specific PN sequence decides a unique DSSS data transmission
channel. Different data streams scrambled with different PN sequences are
allowed to occupy the same RF spectrum. In the time domain, data streams
of different DSSS channels may be sent out in parallel without TDMA (Time
Division Multiple Access). The matching PN sequence at the receiver can filter
out the wanted user data signal from the shared spectrum. Such a parallel
multiple access scheme is called Code Division Multiple Access (CDMA). Note
DSSS is a physical layer concept, while CDMA is a MAC layer concept. Other
MAC layer schemes, such as TDMA can also be deployed on top of the DSSS
physical layer.

Quantitatively, a number of important features of DSSS communication are
captured by its Bit Error Rate (BER) upper bound (27), which assumes QPSK
RF modulation, and per-connection pilot tone [Viterbi 1995]; [Muqattash and
Krunz 2003] (different implementation alternatives may affect details of the
formula, but will not cause fundamental differences):

Pber ≤ exp

(
− g Pu

J + ∑

i=1,i �=u Pi + ∑H

h=1 Ah + Pu

)
, (27)

.
where Pber is the BER; g is processing gain; J is the received power of External
RF Interference (EI), which specifically refers to EMI, thermal noise and the
RF interference from RF devices that are turned on accidentally or maliciously.
Pi (i = 1 . . . 
) is the received power of CDMA channel i, 
 is the total number
of received CDMA channels. u is the intended channel, whose corresponding
received power is Pu. Each transmitting node may send out several CDMA
channels in parallel. To ease the reception, the node may also transmit at addi-
tional pilot tone. In (27) the pilot tone of transmitting node h (h = 1, . . . , H) is
of power Ah.

∑

i=1,i �=u Pi + ∑H

h=1 Ah is therefore the upper bound of total Multi-
ple Access Interference (MAI), the interference caused by other CDMA channels
and pilot tones received in parallel with the intended channel. Note Pu also
appears in the denominator, adding up to the total interference power. This is
to provide a pessimistic estimation on Inter Symbol Interference (ISI), which
is usually a result of multipath fading. To simplify, we can merge

∑

i=1,i �=u Pi

and Pu together to be denoted as
∑

i Pi. The g Pu/(J + ∑
i Pi + ∑

h Ah) part
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shows the effective SNR for the intended channel, where J + ∑
i Pi + ∑

h Ah

represents the upper bound of noise power and g Pu represents effective signal
power. The bigger the SNR, the smaller the probability of bit error Pber. When
Pber is below a certain threshold �ber, the wireless communication is acceptable
for real-time communication. Therefore, to maintain a real-time DSSS-CDMA
channel in fact means to maintain the SNR of the channel from dropping below
an acceptable threshold �snr.

(27) implies that the SNR of the intended channel can be raised by increas-
ing the processing gain g . Meanwhile, g is defined as the ratio of chip rate

and bit rate: g
def= rc/rb. Usually, chip rate rc is fixed by hardware because of the

multipath effect and hardware cost constraints [Price and Green 1958]; [Viterbi
1995], therefore raising processing gain means slowing down user data bit rate
rb. DSSS hereby provides a mechanism to leverage between SNR and data bit
rate.

B. PROOF OF THEOREM 3.1

Using Lagrangian multipliers λ j , j = 1, . . . , N , and μi, i = 1, . . . , M + N , we
can write the Kuhn-Tucker condition of MCOP(U, A, W ) as:

dU j ( f ∗
j )

df j
+ μ1A′

1 j + . . . + μ(M+N )A′
(M+N ) j − λ j = 0, (28)

where ( j = 1, . . . , N )

f min
j − f ∗

j ≤ 0 (29)

λ j
(

f min
j − f ∗

j

) = 0 (30)

N∑
j=1

A′
i j f ∗

j ≤ W ′
i , (i = 1, . . . , M + N ) (31)

μi

(
N∑

j=1

A′
i j f ∗

j − W ′
i

)
= 0 (32)

μi ≥ 0, λ j ≥ 0, (i = 1, . . . , M + N , j = 1, . . . , N ) (33)

Suppose for all i = 1, . . . , M + N ,
∑N

j=1 A′
i j f ∗

j < W ′
i , then from (32), we know

μi = 0. Then
dU j ( f ∗

j )

df j
+μ1A′

1 j + . . .+μ(M+N )A′
(M+N ) j −λ j = dU j ( f ∗

j )

df j
−λ j < 0, since

dU j ( f ∗
j )

df j
< 0. This contradicts equation (28). So we know Theorem 3.1 holds.

C. CONVERSION OF MCOP TO COPL LC

The original COPL LC package is used to solve the problem of equality con-
straints as follows:

min g (x)

such that: T x = b, x ≥ 0

where A ∈ R
m×n, b ∈ R

m
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This is NOT the form of our problem formulation of MCOP. We have to do
some transformations to transform MCOP into the framework of COPL LC.
Here, we use the combined constraints set (17) of MCOP:

min
( f1,... , f N )

N∑
j=1

U j ( f j ) (10)

such that: A′ f ≤ W ′ (17)

where A′ =
[
A
I

]
(M+N )×N

, W ′ =
[

W
f max

]
(M+N )×1

.

f ≥ f min (13)

First, we let f̃ j = f j − f min
j , so that the constraints f j ≥ f min

j ⇔ f̃ j ≥ 0.

We also add a slack variable y = ( y1, . . . , yM+N )T, so that

A′ f ≤ W ′ ⇔ A′ f + y = W ′, y ≥ 0

⇔ A′ f̃ + y = W ′ − A′ f min, y ≥ 0.

MCOP is thereby transformed to the following form:

min
( f̃1,..., f̃ N )

N∑
j=1

U j ( f̃ j )

such that: f̃ j ≥ 0( j = 1, . . . , N )

y ≥ 0
N∑

j=1

A′
i j f̃ j + yi = W ′

i −
N∑

j=1

A′
i j f min

j ,

(where i = 1, . . . , M + N ).

This is in the form of COPL LC. To see this, simply let x = [ f̃1, . . . ,
f̃ N , y1, . . . , yM+N ]T, T = [A′

(M+N )×N |I(M+N )×(M+N )], where I(M+N )×(M+N ) is the

(M + N ) × (M + N ) identity matrix and b = W ′ − A′ f min.

D. PROOF OF THEOREM 5.1

First by defining I j = [ f min
j , f max

j ] and V (•) = −U (•), we can rewrite the
MCOP(U, A, W ) as:

Primary: max f j ∈I j

∑N
j=1 Vj ( f j ) (34)

such that:
∑N

j=1 Ai j f j ≤ Wi (i = 1, . . . , M ). (35)

We call this constraint optimization problem the Primary problem. The fol-
lowing proof follows Low and Lapsley’s result in Low and Lapsley [1999] with
modifications for our problem.

ACM Transactions on Sensor Networks, Vol. 2, No. 2, May 2006.



292 • X. Liu et al.

Let’s first convert the Primary problem to its dual form.
Define the Lagrangian with multipliers vector p for the Primary problem as:

L( f , p) =
N∑

j=1

Vj ( f j ) −
M∑

i=1

pi

(
N∑

j=1

Ai j f j − Wi

)

=
N∑

j=1

(
Vj ( f j ) − f j

M∑
i=1

Ai j pi

)
+

M∑
i=1

piWi.

Notice the first term is separable in f j , and hence:

max
f j ∈I j

N∑
j=1

(
Vj ( f j ) − f j

M∑
i=1

Ai j pi

)
=

N∑
j=1

max
f j ∈I j

(
Vj ( f j ) − f j

M∑
i=1

Ai j pi

)
. (36)

Then, by defining the objective function:

D(p) = max
f j ∈I j

L( f , p)

=
N∑

j=1

Bj (pj ) +
M∑

i=1

piWi,

where

Bj (pj ) = max
f j ∈I j

(Vj ( f j ) − f j p j ), (37)

pj =
M∑

i=1

Aij pi. (38)

The dual problem is:

Dual: min
p≥0

D(p). (39)

We call the unique optimizer of (37), f j (pj ). From the Kuhn-Tucker theorem,
it is easy to see:

f j (pj ) = [
V ′−1

j (pj )
] f max

j

f min
j

, (40)

where [z]b
a = min{max{z, a}, b}, V ′−1

j (•) represents the inverse of derivative
function V ′

j (•) (with respect to f j ).
The three Lemmas given below are used in the proof of Theorem 5.1.

LEMMA D.1. Under assumptions A1 and A2, the dual objective function D(p)
is convex, lower bounded, and continuously differentiable.
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PROOF. Directly follow assumption A1, A2.

For any price vector p, define β j (p) by

β j (p) =
{

1
−V ′′

j ( f j (p))
if V ′

j

(
f max

j

) ≤ pj ≤ V ′
j

(
f min

j

)
0 otherwise.

(41)

Here, f j (p) is the unique maximizer of (37), which is defined in equation
(40). Let B(p) = Diag (β j (p)), ( j = 1, . . . , N ) be the N × N diagonal matrix.

Note from assumption A3, we know for ∀p ≥ 0, 1
−V ′′

j ( f j (p))
= 1

U ′′
j ( f j (p))

≤ α j , so

0 ≤ β j (p) ≤ α j ≤ ∞. (42)

LEMMA D.2. Under assumption A1, A2, the Hessian matrix of D is given by
∇2 D(p) = AB(p)AT, where it exists.

PROOF. Let ∂ f
∂p (p) denote the N × M Jacobian matrix whose ( j , i) element is

∂ f j

∂pi
(p). When it exists,

∂ f j

∂pi
(p) =

{ Ai j

V ′′
j ( f j (p))

if V ′
j

(
f max

j

) ≤ pj ≤ V ′
j

(
f min

j

)
0 otherwise

.

using (42), we have: [
∂ f j

∂pi

]
= −B(p)AT. (43)

We know ∂ D
∂pi

(p) = Wi − ∑N
j=1 Ai j f j (p), i.e. ∇D(p) = W − A f (p), hence

∇2 D(p) = −A
[

∂ f
∂p (p)

]
; (44)

substituting equation (43) into (44) yields the results.

LEMMA D.3. Under conditions A1 ∼ A3, ∇D is Lipschitz with ‖∇D(q) −
∇D(p)‖2 ≤ αLS, for ∀p, q ≥ 0.

PROOF. Using Lemma D.2, we will show that ∇2 D(p) = ‖AB(ω)AT‖2 ≤ αLS.
The lemma then follows from Rudin [1976]. We know:

‖AB(ω)AT‖2
2 ≤ ‖AB(ω)AT‖∞‖AB(ω)AT‖1;

‖AB(ω)AT‖2 is upper bounded by the product of the maximum row sum and
the maximum column sum of the M × M matrix AB(ω)AT. Since AB(ω)AT is
symmetric, ‖AB(ω)AT‖1 = ‖AB(ω)AT‖∞, and hence:

‖AB(ω)AT‖2 ≤ ‖AB(ω)AT‖∞
= max

l

∑
l ′

[AB(ω)AT]ll ′

= max
l

∑
l ′

∑
j

β j (ω)Al j Al ′ j

= max
l

∑
j

β j (ω)Ai j |L( j )|.
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By definition |L( j )| ≤ L, β j (ω) ≤ α, and hence ‖AB(ω)AT‖2 ≤
αL maxl

∑
j |Al j | ≤ αLS.

Proof of Theorem 5.1: The dual objective function D is lower bounded and
∇D is Lipschitz from Lemma D.1 and D.3. Then any accumulation point p∗

of the sequence {p(s)} generated by the gradient projection algorithm (the
distributed algorithm) for the dual problem is dual optima [Bertsekas and
Tsitsiklis 1989].

Let {p(s)}, s = 1, 2, . . . be a subsequence converging to p∗. At least one exists
since the level set {p ≥ 0|D(p) ≤ D(p(0))} of D is compact and that the sequence
{D(p(s))} is decreasing in s and hence in the level set, provided 0 < γ < 2/(αLS).
To show that the subsequence { f (s) = f (p(s))}, s = 1, 2, . . . converges to the
primal optimal node rate f ∗ = f (p∗), note that V ′

j ( f j ) is defined on a com-
pact set I j . Moreover it is continuous and one-to-one, and hence its inverse
is continuous on [ f min

j , f max
j ] [Rudin 1976]. From (40), f (p) is continuous.

Therefore lims→∞ f (s) = f (p∗). Because our Primal problem is the same as
MCOP(U, A, W ), so Theorem 5.1 holds.
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