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Abstract. With the advancement of MEMS technologies, wireless net-
works consist of tiny sensor devices hold the promise of revolutionizing
sensing in a wide range of application domains because of their flexibility,
low cost and ease of deployment. However, the constrained computation
power, battery power, storage capacity and communication bandwidth of
the tiny devices pose challenging problems in the design and deployment
of such systems. Target localization using acoustic signal with tiny wire-
less devices is a particularly difficult task due to the amount of signal pro-
cessing and computation involved. In this paper, we provide an in-depth
study of designing such wireless sensor networks for real-world acoustic
tracking applications. We layout a cluster-based architecture to address
the limitations of the tiny sensing devices. To achieve effective utilization
of the scarce wireless bandwidth, a quality-driven paradigm to suppress
redundant information and resolve contention is proposed. One instance
of the quality-driven approach is implemented in the acoustic tracking
system, where the quality of the tracking reports can be quantified nu-
merically. We demonstrate the effectiveness of our proposed architecture
and protocols using a sensor network testbed based on UCBerkeley mica
motes. Considering the performance limitations of tiny sensor devices,
the achieved acoustic target tracking accuracy is extraordinarily good.
Our experimental study also shows that the acoustic target tracking
quality can be indeed measured and used to assist resource allocation
decisions. This application-driven design and implementation exercises
also serve to identify important areas of further work in in-network pro-
cessing and communications.

Index Terms — wireless sensor network, sink tree routing, acoustic target track-
ing, quality driven, redundancy suppression.

1 Introduction

Fueled by the increasing capabilities and ever-declining cost of computing and
communication devices, wireless networks consisting of a large number of tiny



sensors hold the promise of revolutionizing a wide range of application do-
mains such as battlefield surveillance, machine failure diagnosis, biological de-
tection, home security, smart spaces, inventory tracking etc[8]. In surveillance
applications, visual and audio data are two key sources of information. Air-
borne/satellite cameras can easily monitor a wide area while the collection of
acoustic information can only be done close to the source due to the limited
distance of propagation of sound in the air. As a result, we currently have many
eyes in the sky but not enough ears on the ground, so to speak. This makes
acoustic tracking of mobile targets using tiny sensing devices very attractive, as
massive deployment of wireless sensors in large area can provide more accurate
and timely information about the geographical location of the targets. The basic
idea of acoustic tracking is to detect the location of a target by analyzing the
specific cues such as delay and amplitude received by multiple sensors.

Generally speaking, wireless sensor networks consist of tiny sensory devices
deployed in a region of interest. Each device has limited processing and wireless
communication capabilities, which enable it to gather information from the en-
vironment and deliver this information to actuators for appropriate actions. The
major challenges in design and deployment of such wireless sensor networks are
the constrained computation power, battery power, storage capacity and com-
munication bandwidth of the tiny devices. Target tracking using acoustic signal
is a particular daunting task for the following reasons,

— Acoustic tracking needs collaborative communication/computation among
multiple sensors. The information gathered by a single sensor is usually in-
complete and inaccurate.

— Acoustic tracking requires a significant amount of signal processing and com-
putation to detect and locate the sources of interest.

— The reports generated by the sensing components need to be delivered to
the actuators in a timely fashion. Out-dated reports are of little use.

In this paper, we provide an in-depth study of the architecture and algorith-
mic issues in applying networks of tiny wireless sensors to real-world acoustic
tracking applications. The acoustic signal processing techniques used can be quite
simplistic, nevertheless, it provides a context for our research. In addition, in this
paper, we only deal with tracking impulsive acoustic signals, such as foot steps,
sniper shots etc. However, the networking aspect of the system is applicable to
any type of target localization.

The overall system architecture consists of two self-contained components,
the acoustic target tracking subsystem, which deals with the detection, pro-
cessing and triangulation of impulsive acoustic signals; and the communication
subsystem, which is responsible for reporting high quality tracking results to the
data sink in a timely fashion. To address the limited computational and battery
power of wireless sensor devices, we organize sensors into clusters. Sensors in
each cluster coordinate in sensing and communication to perform the sensing
task. To deal with the inaccuracy in measurement and unreliability typical with
low-end device in remote or hostile environment, we explore the redundancy in



a large number of sensors to obtain more robust results. To achieve effective uti-
lization of the scarce wireless bandwidth, a quality-driven scheme is proposed to
suppress redundant data and resolve channel contention. The novelty of quality-
driven scheme is that it aims to increase the flow of information as compared
to raw bits. One instance of the quality-driven approach is implemented in our
testbed, where the quality of the acoustic tracking reports can be quantified.

We demonstrate the effectiveness of our proposed architecture and protocols
using a sensor network testbed consisting a number of UCBerkeley mica mote
sensor nodes and a few pc/104 single board computers. In our experiments, with
an acoustic sensor density of 0.125/ft2, we can locate a sound source with an
average error of 13.8 inches, among which 35% of the errors are less than 3 inches
and 48.3% of the errors are less than 6 inches. Qur experimental study shows that
the data quality can be indeed measured and used to assist resource allocation
decisions. This application-oriented design and implementation exercises also
serve to identify and provide insights to important areas in in-network processing
and communications.

The organization of this paper is as follows. After the introductory part, we
give a brief overview of hardware constraints and the system architecture. Sec-
tion 3 presents the design and implementation of time synchronization, acoustic
signal processing and triangulation for acoustic target tracking. In Section 4, a
quality-driven in-network signal processing and communication scheme for re-
dundancy suppression and contention resolution is proposed, together with a
novel multi-parent sink-tree routing algorithm. In Section 5, we evaluate the
proposed architecture and algorithms using a sensor network testbed and con-
clude the paper in Section 6 with a list of future work.

2 System Overview

2.1 Networked Wireless Sensor Device

As stated in Section 1, our mission is to implement acoustic target tracking using
networked sensors. In designing our system, we face the following challenges:

1. Limited hardware capability (in terms of CPU MIPS, sampling rate, program
and data memory, wireless bandwidth etc.);

2. Error- and failure-proneness (e.g., due to the low sampling rate and low sam-
pling accuracy, loss of interrupt events, power constraints, physical damage
etc.);

3. Difficulty in programming and debugging embedded systems.

The specific hardware we use is mica mote, developed by UC Berkeley [5] [14].
Mica mote uses the ATmegal03L micro-controller [3] with a 4MHz CPU cycle
frequency and a 4KB data RAM. The wireless networking hardware component
on the mica motes is the RFM TR1000 radio transceiver [7], which operates
at the unique radio frequency of 916.5MHz. It can achieve a maximal applica-
tion layer throughput of approximately 520Bytes/sec [13]. The acoustic sensor



module on mica mote can at most reach a stable sampling rate of 4kHz. A
component-based OS — TinyOS [5] is used as the software system architecture
for manipulating motes.

As will become clearer later on, the hardware capability is very limited for
data-centric, computational-intensive acoustic tracking applications.

2.2 System Architecture

Due to the aforementioned hardware and software limitation of tiny devices, our
system architecture design has to take extra care on the application require-
ment, availability, robustness and manageability. We adopt the following design
philosophies, i) exploring the redundancy in large number of sensing devices, ii)
divide-and-conquering acoustic tracking tasks by carrying out role differentia-
tion, and iii) targeting for effective utilization of limited resources rather than
nominal utilization. Redundancy is desirable not only for the purpose of better
availability (to counteract the impact of high device failure rate), but also for
the purpose of robustness. Redundant data can statistically mitigate the nega-
tive impact of errors. Role differentiation splits the complex nationalities of the
entire system into sub-tasks that are affordable and manageable for each one
of the tiny devices. Increasing effective resource utilization makes use of limited
resources to better serve the application requirements.

Specifically, we divide the overall system into two subsystems: the acoustic
target tracking subsystem and the communication subsystem.

Acoustic target tracking subsystem: The acoustic target tracking subsystem con-
sists of multiple sensory clusters. A sensory cluster is the primary unit for track-
ing the locations of acoustic targets. It has a cluster head and several slavery
acoustic sensors which jointly monitor a specific area. A cluster can be formed
using mechanisms such as the one used in Jini [12] to account various application-
specific factors (such as geology, algorithm, device capability etc.) Dynamic clus-
tering for moving targets is one of our ongoing research work. Redundancy is
achieved by deploying extra sensors within a cluster and allowing the monitor-
ing areas of adjacent clusters to overlap with each other. Traditionally, acoustic
tracking needs only three sensors to carry out the triangulation. However, in our
implementation, we require more than three sensors in each cluster to obtain
one tracking report to combat the inaccuracy of individual sensor’s data. Role
differentiation is done by assigning cluster head and sensors different jobs and
coordinating them to jointly carry out acoustic target tracking.

We assume that geographical location of each slavery sensor can be obtained
via mechanisms such as described [4,10]. Over the runtime of the system, the
cluster head and all its slavery sensors are clock synchronized. When a sound
with the specified signature arrives, all sensors record the sound and timing
information and report them to the cluster head. By analyzing the differences of
the sound arrival times among slavery sensors, the cluster head can estimate the
location of the sound source using triangulation and then report the tracking
result back to the data sink via the communication subsystem.



The cluster head needs to handle a significant amount of computation, which
is beyond the capability of the current generation of mica motes. Therefore, in
our implementation, we use pc/104 single board computers [6] as cluster heads,
which are widely used in embedded systems.

Commaunication Subsystem: The communication subsystem is responsible for
relaying the tracking reports from cluster heads to the data sink. In order to
achieve high effective throughput and low latency, we propose a novel scheme
called quality-driven redundancy suppression and contention resolution to speed
up the delivery of higher quality tracking reports and suppress inferior /erroneous
reports. Note, the redundancy of acoustic sensory motes reduces the error in a
single cluster and thus is desirable. However, due to the overlapping of clusters,
multiple reports can be generated for a single acoustic event across multiple adja-
cent clusters, which may unnecessarily lead to congestion of the network or waste
of network resources. Quality-driven redundancy suppression picks the best one
from the multiple tracking reports, thus accomplishes the goal of achieving better
robustness out of redundant tracking reports. More importantly, quality-driven
redundancy suppression and contention resolution is the major mechanism that
realized the idea of effective utilization of communication subsystem rather than
nominal utilization. To relay the report to the data sink we introduce multi-
parent sink tree routing scheme to provide fast local recovery and higher message
delivery ratio.

3 Acoustic Target Tracking Subsystem

In this section, we present the detailed design of the key components for the
acoustic tracking system including the time synchronization, onset detection,
cross-correlation, triangulation, and determination of the quality of results.

3.1 Time Synchronization

We use delay-based triangulation to locate impulsive sound sources, hence ac-
curate timing information is a necessity. Specifically, all the sensors within the
same cluster have to be time-synchronized. The method of time synchroniza-
tion we adopt in the system is Reference-Broadcast Synchronization (RBS)[2],
which is a light-weight scheme that can achieve high accuracy. In RBS, a head
node broadcasts reference radio beacons to its neighbors. Each receiver records
the arrival time based on its local clock and sends this information back to the
originator of the head node. Under the assumption that the broadcasted radio
beacon arrives at all receivers simultaneously, after a few rounds of the beacon-
ing and replies, the head node can obtain mapping functions of clock readings
between any pair of receivers, using statistically methods such as least square
linear regression. To this end, the head node can convert any receiver’s clock
readings into a universal clock reading.



In our implementation, we have a initialization phase when n (n = 12 in our
practice) rounds of beaconing and replies are performed. After the initialization,
timing information can be piggybacked on the packets exchanged between the
cluster head and the sensors. Therefore, the clocks can be calibrated without
introducing extra control overheads. Experiment results show that the distortion
of clock readings can be kept within 30us, which is sufficient for our delay-based
acoustic tracking.

3.2 Omnset detection

Due to the limited computation capability, the current generation of mica motes
are not capable of sampling and processing acoustic data concurrently. Instead,
major functions such as sensing, wireless transceiving and processing have to be
serialized. Moreover, because of the limited memory in motes, acoustic samples
have to be stored in a circular buffer. In order to avoid buffer overflow for useful
sample data , an onset detection mechanism is needed to instruct sensors to
stop sampling data once the interested acoustic signal is captured. The way a
sensor determines whether the incoming acoustic signal is of potential interest is
based on the magnitude of the signal. A small sliding window is used to compute
the moving average of the magnitude of signals. If the energy within the window
exceeds a threshold, the sensor assumes that the current time is close to the onset
point of the acoustic signal. The sensor continues recording data into the circular
buffer until it winds back and reaches a prelude point prior to the onset point.
Once the sound of interest is captured, post-processing is conducted separately
at both the cluster head and the sensors. The cluster head extracts the sound
signature from the recorded samples and broadcasts it to the sensors in its own
cluster. Upon receiving the signature packet from the cluster head, sensors apply
cross-correlation to compare the received signature with the buffered data.

3.3 Cross-Correlation

After receiving the sound signature from the cluster head, each sensor cross-
correlates the received signature with buffered data to extract the desired pattern
and determine the starting portion of signal. There are several advantages in
choosing the starting portion as the reference portion. First, the starting portion
is less susceptible to echoes. In in-door environments, the effect of echoes is
quite significant. Fortunately, the echo is not presented in the starting portion of
acoustic signal unless the sensor is very close to a wall. Second, the uniqueness
of onset point and the salient change in sound wave shape at the onset point
makes the starting portion very easy to be consistently located among distributed
independent sensors.

The procedures of cross-correlation are summarized in Fig. 1. Two prepro-
cessing procedures are applied to buffered data before cross-correlation. The first
step is to remove the interference of noise. The average magnitude of noise is
calculated first, and then the samples whose values are close to the average are
replaced with the average so that the results of correlation do not ripple due



to the oscillation of noises. In the second step, the signal is passed through a
second-order Butterworth low-pass filter to remove the high frequency compo-
nents. After the pre-processing, cross-correlation is applied to the filtered data
with the received sound signature to do pattern matching. The final step is to
find the first significant peak in the correlation result using thresholding and
thus the arrival time is extracted.

Sound Noise Low Pass Cross— First Peak Sound Arrival
Sampling Record Cancellation Filter correlation Detection Time

Fig. 1. Procedures of cross-correlation for sensors

3.4 Triangulation (Sound Source Locating) and Evaluation of
Quality Rank

Upon receiving the sound arrival times from sensors in the cluster, the cluster
head translates the time into the universal reference time before executing the
triangulation.

Triangulation is done by comparing the differences in sound propagation
delays from the source to different acoustic sensors. Suppose the location of
sound source is (z,y) and the sound is generated at time ¢. If a sensor M;
located at (z1,y1) detects the sound reaches it at time ¢; (i.e. sound arrival
time). We shall have the following equation:

VE—21)2+ Yy —y)?=(t1—t)-v (1)

where v is the velocity of sound.

Theoretically triangulation can use three such equations generated by three
sensors to analytically compute the sound source location. In practice, due to
the coarse-grained acoustic sampling data of low-performance sensors, errors
generated in cross-correlation are not negligible (for example, the errors can
vary from 0.1 to 0.5ms). The above theoretical approach is mostly impractical.
How to counteract this problem is a big research topic. Relevant works can be
found in [11][1][9] etc. However, this topic is out of the scope of this paper. In
this paper we simply consider a maximum likelihood (ML) based heuristic as a
context for our research.

Algorithm Description: Consider n sensors, for each hypothetical source lo-
cation (Z,7) in the field A, there is a vector p(Z,9) = (di,ds,...,d,) rep-
resenting the theoretical propagation delay to each one of the n sensors. Let
p = (d1,ds,...,d,) be the observed propagation delay vector based on the re-
ports gathered at the cluster head for a single sound events. Then, the estimated

location of the sound source (Z,9) is given by

(‘@7 g) = a‘rg(i,g)EA min d(ﬁ(jz g)a p) (2)



Where d is an algorithm specific difference measurement scheme.

This algorithm only involves multiplicity, additions and comparisons. Com-
pared to equation-based solution, which usually requires division and solving of
linear and quadratic equations, our algorithm is more robust to floating point
errors or degenerations.

However, since there are infinite points in area A, to make the algorithm
work, the monitored area of a cluster is first divided into N-by-N grids (in our
implementation, we choose N so that the granularity of the grid is 3 x 3inch?).
Therefore the time complexity of the algorithm is roughly O(N?2). In addition,
it is possible to throw out out-of-bound readings based on the physical laws to
avoid unnecessarily degradation of the triangulation result.

The confidence level of estimated location can also be approximated by the
percentage of p’s elements that falls within the € boundary of p. This percentage
is defined as the quality rank of the location report. The higher the percentage,
the more confidence in the sensed result and thus the higher the quality rank.
Determination of the quality rank of triangulation results is important. In the
case of multiple clusters (whose monitored areas may overlap), multiple reports
for the same sound event may be generated and delivered to the data sink.
Ideally, only the cluster head with the best quality rank (or highest confidence)
need to send the report back. Inferior quality reports should be suppressed to
better utilize the limited bandwidth and computational power in the wireless
networks. This point will be further illustrated in Section 4.1.

The pseudo code for locating the sound source and determining quality rank
is given in Fig. 2, where, A is the estimation of the fixed time difference between
the time reference systems used by p and p. Because p uses the relative time which
takes actual sound event happening time as 0; while p can only use universal
time which takes the time synchronization initialization time as 0.

4 Communication Subsystem

Communication subsystem serves to forward the tracking report from cluster
head to the data sink. We use the default MAC and routing protocol (i.e., CSMA
and sink tree) of TinyOS [5] as a baseline. In order to achieve high robustness
in acoustic tracking report, availability, effective throughput and low delay, we
propose the idea of Quality-driven redundancy suppression and contention reso-
lution (QDR) and multi-parent routing .

4.1 Quality-driven Redundancy Suppression and Contention
Resolution

As mentioned before, in the acoustic target tracking subsystem, for the pur-
pose of providing better robustness and availability, we allow the overlapping of
clusters’ monitoring areas to generate redundant reports for each sound event.
Therefore, a mechanism is needed to quantify the quality of reports and select
the one with the best quality. Inferior redundant reports can be suppressed from



. LocateSoundSource(observed propagation delay vector p = (d1,...,d»)):
mark apparently invalid d; s in p
m + number of valid elements in p
for each point (Z,y) € Grid
calculate p = (di, - - -, dp) for (&,7) according to Equation (1)
for each valid d; € p
A average of J; s
vote < 0
10. for each valid d; € p
11. err; < 0; — A
12. if |err;| < e then vote < vote + 1
13. QualityRank; 5 + 22
14. (Z,9y) < the (Z,y) with the highest QualityRank
15. Q « (,9)’s corresponding QualityRank
16. return (&,7) as the sensed sound source location, with a quality rank of Q

OGN

Fig. 2. Sound Source Locating Algorithm

entering the communication subsystem, so as to conserve the scarce wireless
bandwidth for effective data. In case of contention resolution, it is desirable to
give higher priority to reports with better quality and speed-up their delivery.
Inferior reports are assigned lower priority or even dropped in presence of con-
gestion.

To determine the quality of reports during runtime, we use the quality rank
defined in acoustic target tracking according to Fig. 2’s algorithm. As demon-
strated in the experimental result in Sectiond, quality rank has a strong corre-
lation with the accuracy of the triangulation results.

We implement quality-driven contention resolution and redundancy suppres-
sion with the original CSMA MAC protocol in TinyOS. Specifically, we use the
quality rank to determine the backoff time for CSMA contention resolution. The
better the quality rank, the shorter the backoff. Every time a cluster head/router
wants to send out a tracking report packet with a quality rank of @, its backoff
time is computed as,

Thackoss = @ - interval 4+ random (3)

where interval is an implementation-specific constant, ) is the quality rank
(with 0 as the highest quality), and random is the random backoff generated by
the original CSMA protocol. If before the firing of its own back-off timer, a node
overhears a report belonging to the same sound event! with a higher quality, it
drops its pending report.

The pseudo code of the protocol is described in Fig. 3.
LIf the Euclidean distance of the two vectors of the acoustic reports

(sound source location,time) is smaller than an error bound, the two reports are
regarded as “same sound event”



/* Upon generation/reception of an report R(location, time, QualityRank) */
1. enque(R);

2. set_backoff_timer(QualityRank*interval4+random);

/* Upon overhearing of an report R(location,time) at node ¢ */

3. if PacketQueue(i) Z 0 {

4. if find_match(R) = true
5. drop_inferior_report(QualityRank);
6

/* Upon backoff timer expiration */
7. R = dequeue();
8. transmit(R);

Fig. 3. Operation of QDR

4.2 Sink-tree construction

We propose a multi-parent sink tree routing algorithm. Compared with the orig-
inal implementation of sink tree routing [5], the main difference is that instead
of maintaining a single upstream node (with respect to the data sink), a node
keeps a candidate parent list of multiple upstream nodes to reach the data sink.
The candidate parent list is ordered by certain preference (e.g., the number of
hops to the sink). All the parent candidates are maintained as soft states. The
data sink periodically sends out flooding packets to construct the sink tree. New
parent candidates are inserted into the router’s candidate parent list when a
flooding packet from the corresponding node is received.

To forward a data packet, a node always tries to forward it to the first parent
candidate. If a link failure is detected (e.g. exceeding the retransmission limit),
a node drops the corresponding parent candidate and uses the next one in the
list.

The main advantage of multi-parent sink tree protocol is that it improves
availability by fast recovery. The link failures can be repaired locally using
multi-parent information. Compared with the original sink tree routing algo-
rithm, where the links are not repaired until the next round of sink tree building
flooding, local recovery can increase the reliability and throughput for packet
delivery in the network.

5 Experiments

In this section, we conduct several experiments in our sensor network testbed.
Sensors and routers are made up by a number of mica motes. A few pc/104 single
board computers are deployed to serve as the cluster heads. Each pc/104 board is
connected via serial port to a mica mote for sensing and wireless communication.



5.1 Sound Source Locating within a Cluster

In this section, we study the performance of the acoustic tracking subsystem. Of
primary interests are, i) the accuracy of triangulation result and ii) the correla-
tion between triangulation accuracy and quality rank @ proposed in Section 3.

As mentioned earlier, clusters are the basic units for locating and tracking
acoustic target. In this set of experiment, sensors are placed uniformly in a
100 x 100inch? 2-D area to form a single cluster (see Fig. 4). Three settings are
tested, using 8, 10 and 12 sensors per cluster respectively. A pc/104 is placed
at the center of the 2-D area to serve as the cluster head. To understand the
sensitivity of triangulation result to the sound source location, we also vary
the location of sound source as shown in Fig. 4. In each test setting (8, 10 or
12 sensors/cluster), 10 trials are carried out for each of the 18 sound source
locations. Therefore, altogether there are 10 x 18 x 3 = 640 trials.

¥ location (inch)
°
o

of e * 0 * o

o 20 40 60
X location (inch)

Fig. 4. Locations of sensors and sound sources in a single cluster

Accuracy of triangulation The accuracy of triangulation result is defined as
the Euclidean distance between the actual location (z,,y,) and the computed
location (%, ym) as,

SensingError = \/(zq — Tm)2 + (Yo — Ym)> (4)

Fig. 5 gives an example of the tracking results for the 12 sensor case (due to space
limit, we only show 6 out of the total 18 locations). Each “#” represents the actual
location of the sound source, while each “” corresponds to the triangulation
result in one trial. As shown in Fig. 5, the majorities of the locating reports
fall within the vicinity of the sound source. However, the triangulation accuracy
degrades as the sound source moves to the corner of the sensing area. This can
mitigated by overlapping multiple sensing clusters.
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Fig. 5. An example of triangulation results for different sound source location

Mean Sensing Eror vs Sound Source Location and Number of Sensors
PDF of Error vs. Percentage of Trials, when Sound Source is at (54,54)
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(a) Average Error vs. sound source locations (b) CDF for sensing errors

Fig. 6. Distribution of sensing error

Fig. 6(a) shows the average sensing error with respect to different sound location
and the number of sensors used. Roughly speaking, with more sensors, the ac-
curacy of triangulation gets higher. The triangulation result is quite satisfying,
considering the fact that the sound source itself (a speaker) is approximately a
cubic with dimension 4 inches. There are some cases in Fig. 6(a), where using
eight sensor gives the best result. This is because "bad” data generated by mul-
tiple sensors can potentially “poison” the result. We will further investigate this
issue as one of our future work. A closer view of the stochastic property of the
triangulation reports is given in Fig. 6(b) for different number of sensors for a
fixed sound source location at (54, 54).

Quality of reports Fig. 7(a) demonstrate the correlation between quality rank
and the accuracy of the triangulation result. As expected, the smaller the quality
rank (or the higher the quality), the higher the accuracy of the triangulation
result. When the quality rank is inferior (with QualityRank > 4), both the
mean and deviation of the sensing errors are very large. On the other hand,



superior quality rank reports are statistically trustworthy. This speaks strongly
for using the quality rank defined in Section 3 as an indication of the quality of
the triangulation results. In addition, as shown in Fig. 7(b), using more sensors
can improve the trustworthiness in superior quality ranks (the percentage of
reports at rank 1 within 3-inch error range is close to 100%).

Relationship between Quality Rank and (Average) Sensing Error (12sensors/cluster)
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Relationship between Quality Rank and High Accuracy Result Ratio
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Fig. 7. Relationship between Quality Rank and accuracy of triangulation results



5.2 Study of QDR and Multi-parent Sink Tree Routing

In this section, we study the effectiveness of the quality-driven redundancy sup-
pression and contention resolution (QDR). As mentioned earlier, the benefits of
QDR scheme for communication subsystem are two-folded, i) it alleviates the
channel contention thus leads to higher throughout and ii) it increases the in-
formation throughput by giving higher priority for high-quality reports to be
transmitted. Therefore, the performance metrics of interests are,

— The average quality rank of received reports (()). As demonstrated
in previous section, the quality rank provide a quantitative measurement of
the report. The smaller the quality rank, the better the data quality.

— Deviation from the minimum rank. Ideally, only the report with the
most superior quality rank should be delivered. However, reports may get
lost or multiple reports can be delivered since they are generated at different
time. Deviation from the minimum rank defined as the difference from the
minimum rank, reflects the effectiveness of communication and suppression.

— Utility. In attempt to gauge the rate of effective information throughput
(rather than nominal throughput of raw bits), we define a utility function
Uk) = % for the kKt packet, where Qj and Sy, are the rank and size of the

kth packet.

In this set of experiments, there are 3 ajacent clusters, 7 router motes in-
cluding the ones attached to the sink and the pc/104 board. A sound source
can be heard by all of the clusters. However, depending on the location of the
sound source and the triangulation result, different clusters can generate reports
of different quality. The reports are routed via a 2-hop communication network
to the data sink. Transmission of the reports are subject to the quality-driven
backoff timer, which is computed as in Equation 3.

Impact of the backoff timer value: In this set of experiment, we vary the inter-
val from Oms (no backoff) to 400ms. The percentage of suppressed reports are
depicted in Fig. 8. Also shown in the graph are the levels of confidence for five
runs of experiments. Consistent with our expectation, as the backoff timer value
gets large, more redundant reports get suppressed. However, this comes at the
expense of longer interval to deliver the report. Therefore, in the next set of
experiment, we choose the interval to be 100ms.

Study of QDR In this set of experiment, we fix the interval to be 100ms and
compare the scheme with QDR and one without. From Table 1, we can see that
as expected, with the QDR, the average quality of delivered report is better
and thus the utility is better. However, the percentage of suppressed reports is
not very significant (ideally, it should be around 66.6%). This can be attributed
to the fact that the reports are not always generated around the same time.
Therefore, a report of inferior quality rank may still get delivered because its
backoff period doesn’t overlap with the sending of the other reports with superior
quality rank.
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Fig. 8. Effect of backoff timer on the percentage of suppressed reports

Table 1. Effect of QDR

rank |dev. rank|utility |% of dropped reports
without QDR|3.4900| 1.2517 [0.1160 0
with QDR [3.2920| 1.1348 |0.1312 9.5%

6 Conclusion and future work

In this paper, we investigate the design and implementation of acoustic tracking
using tiny wireless devices. To achieve high reliability, availability in a system of
networked sensors with only limited computation and communication capability,
we propose decomposition of the different roles and divide the system into two
components, i) the acoustic target tracking subsystem and ii) the communication
subsystem. Our main contributions can be summarized as follows,

— Designed and implemented an acoustic target tracking system using tiny
wireless devices.

— Proposed a ranking mechanism to decide the quality of tracking result.

— Proposed the idea of quality-driven redundancy suppression and contention
resolution, together with an implementation using quality rank.

Experimental results using our sensor network testbed demonstrate the effec-
tiveness of the proposed design and validate the idea of quality rank.

Through our first-hand experience with the system, we identify several agenda
for future work, First, protocol design and experimentation with moving targets
needs to be investigated. Of particular interest is the real-time issue to deliver
high-quality reports in a timely fashion. Secondly, we are interested in applying
energy conservation techniques to the acoustic tracking system. Our hierarchical
structure can naturally take advantage of the redundancy in highly dense sensor
networks for power saving. Lastly, further study of the quality-driven approach



and its applicability to other application domain for sensor networks should be
studied.
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