
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 1

From Offline toward Real-Time: A Hybrid
Systems Model Checking and CPS Co-Design

Approach for Medical Device Plug-and-Play
Collaborations

Tao Li, Student Member, IEEE, Feng Tan, Qixin Wang, Member, IEEE, Lei Bu, Member, IEEE, Jian-nong
Cao, Senior Member, IEEE, and Xue Liu, Member, IEEE,

Abstract—Hybrid systems model checking is a great success in guaranteeing the safety of computerized control cyber-physical

systems (CPS). However, when applying hybrid systems model checking to Medical Device Plug-and-Play (MDPnP) CPS, we

encounter two challenges due to the complexity of human body: i) there are no good offline differential equation based models for many

human body parameters; ii) the complexity of human body can result in many variables, complicating the system model. In an attempt to

address the challenges, we propose to alter the traditional approach of offline hybrid systems model checking of time-unbounded (i.e.,

infinite-horizon, a.k.a., long-run) future behavior to online hybrid systems model checking of time-bounded (i.e., finite-horizon, a.k.a.,

short-run) future behavior. According to this proposal, online model checking runs as a real-time task to prevent faults. To meet the

real-time requirements, certain design patterns must be followed, which brings up the co-design issue. We propose two sets of system

co-design patterns for hard real-time and soft real-time respectively. To evaluate our proposals, a case study on laser tracheotomy

MDPnP is carried out. The study shows the necessity of online model checking. Furthermore, test results based on real-world human

subject trace show the feasibility and effectiveness of our proposed co-design.

F

1 INTRODUCTION

T HANKS to the rapid development of embedded systems

technology, we now have thousands of kinds of embedded

medical devices. So far, these devices are mainly designed for

isolated use. However, people envision that by coordinating

these devices, we can significantly increase medical treatment

safety, capability, and efficiency. This vision led to the launch

of the Medical Device Plug-and-Play (MDPnP) [1] effort,

which aims to enable the safe composition and collabora-

tion of disparate embedded devices in medical contexts. An

MDPnP system is a typical Cyber-Physical System (CPS) [2].

On the one hand, it involves cyber-world discrete computer

logic of various embedded medical devices. On the other

hand, it involves physical-world patient-in-the-loop, which is

a continuous complex biochemical system.

The top concern of any MDPnP system is safety. In the

cyber-world, for a safety-critical system, people often carry

out model checking [3] before the system is put online. In

such case, model checking builds an offline model of the

system, and checks the system’s possible behaviors in the time-

unbounded future (i.e., infinite-horizon). Only after passing

model checking may the system be allowed to run.

• T. Li, F. Tan, Q. Wang, and J. Cao are with Dept. of Comput-

ing, The Hong Kong Polytechnic Univ., Hong Kong S. A. R. Email:

csqwang@comp.polyu.edu.hk

• L. Bu is with State Key Lab for Novel Software Technology, Dept. of

Computer Sci. and Tech., Nanjing Univ., Nanjing, 210093, P. R. China.

Email: bulei@nju.edu.cn

• X. Liu is with School of Computer Science, McGill Univ., Montreal,

Canada. Email: xue.liu@mcgill.ca

This practice is a great success. For CPS verification, the

state-of-the-art model checking tools are the hybrid systems

model checking tools [4][5], which integrate the discrete

automata models with the continuous differential equation (and

other control theory) models. Today, hybrid systems model

checking can already analyze many computerized control

systems, i.e., control CPS.

The success of hybrid model checking in control CPS

inspires the interest to apply it in MDPnP CPS. However,

this faces a major challenge: in most MDPnP CPS, there are

no good offline models to describe the complex biochemical

system of the patient [6]. Even if some vital signs can be

modeled offline, the models may not (with some exceptions

[7]) fit into existing hybrid systems model checking tools,

which mainly use linear differential equations to describe the

physical world.

To deal with the above challenges, we propose to alter

the traditional practice of offline model checking of hybrid

system’s behavior in the infinite-horizon. Instead, we carry

out periodical online model checking. In every period, we

only model check the hybrid system’s behavior in the next

(few) period(s); i.e., we only model check the hybrid system’s

behavior in time-bounded future (i.e., finite-horizon).

The merits of the proposed approach are as follows. First,

though many human body parameters are hard to model

offline, their online behaviors in finite-horizon are quite pre-

dictable. For example, after injecting 1ml of morphine, it is

hard to accurately predict the blood oxygen level curve in

the next 40 minutes, as it depends on too many factors, even

including the patient’s emotion [8][9]. However, it is easy to

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 2

predict the blood oxygen level curve in the next 4 seconds:

it cannot plunge from 100% to 10%, nor show a saw-toothed

wave form; instead, it has to be smooth, which can be effec-

tively described with existing tools, such as linear regression.

Also, within short finite-horizon, we can approximate many

variables as constants, and/or approximate nonlinear behaviors

as linear behaviors. This would further simplify our model and

computation.

The proposed approach can be formalized as follows. Given

an MDPnP system S , we periodically sample the observ-

able state parameters every T seconds. At time instance kT
(k = 0, 1, 2, . . .), we build a hybrid system model (i.e., the

“online model”) of S with the observed numerical values of

state parameters, and verify its safety in the time interval

[kT, (k + 1)T]. We hence call T the finite-horizon of our

online model checking. If the online model is proven safe, the

system can run for another T seconds. Otherwise, the system

immediately switches to an application dependant fall-back

plan.

Such model checking must finish within bounded and short

time, i.e. real-time, to allow decision making (on whether

to run the system for another T seconds or switch to fall-

back plan) before any fault happens. To support real-time, the

MDPnP CPS design must follow certain patterns, which brings

up the issue of hybrid systems model checking and CPS co-

design.

In the rest of the paper, we discuss our proposed co-design

approach through the context of laser tracheotomy, a repre-

sentative MDPnP application [7][10]. Section 2 introduces

the background on hybrid systems model checking; Section 3

proposes our online hybrid systems modeling approach; Sec-

tion 4 proposes the corresponding system design patterns;

Section 5 evaluates our approach; Section 6 further examines

our proposal under relaxed assumptions; Section 7 discusses

related work; and Section 8 concludes the paper.

This paper is based on our previous conference paper pub-

lished in [11], which is in turn based on our workshop paper

published in [12][13]. Compared to these previous versions,

this paper mainly added Section 4.1, Theorem 3, Section 6.2,

and the supplementary file.

2 BACKGROUND

Hybrid systems model checking is first proposed by Alur,

Henzinger, et al. [14][15][16] and has since evolved into a

family of state-of-the-art tools in CPS. The main idea is to

combine the discrete automata models of computer logic with

continuous differential equation models of control systems,

which leads to the modeling tool of hybrid automata.

2.1 Syntax

Following [15]’s conventions on symbols, a

hybrid automaton A is syntactically a tuple of

A = (~x, ~x0, V, v0, inv, dif, E, act, L, syn), where
~x is a vector of n data variables ~x = (x1, x2, . . . , xn). ~x

is regarded as a function of time, and we use ~̇x to denote the

first order derivative of ~x. We also use ~x′ = (x′
1, x

′
2, . . . , x

′
n) to

denote the new values of ~x after an event (see the definitions

for E and act). A specific evaluation of ~x, denoted as ~s =
(s1, s2, . . . , sn) ∈ Rn is called a data state of A. In addition,

Boolean values of true and false can be denoted with real

number 1 and 0 respectively; hence a data variable can also

serve as a Boolean variable.

~x0 is the initial data state.

V is a set of locations, a.k.a., control locations, where

different control laws apply. Each location corresponds to a

vertex in the graphical representation of hybrid automaton A.
A state of hybrid automaton A is denoted as (v,~s), where
v ∈ V and ~s ∈ Rn is a data state.

v0 is the initial location.

inv is the location invariants, a function that assigns each

location v ∈ V a set of inequalities over data variables ~x. That
is, when in location v, the value of ~x must satisfy inv(v).

dif is the continuous activities, a function that assigns

each location v ∈ V a set of inequalities over ~̇x and ~x. That
is, when in location v, the values of ~̇x and ~x must satisfy

dif(v).
E is the set of events, a.k.a. transitions: edges between

locations. Formally, E ⊆ V ×V . For an event e = (v, v′) ∈ E,

v is the source location and v′ is the target location.

act is the discrete actions, a function assigns to each

event e = (v, v′) ∈ E a set of inequalities over ~x and ~x′,

where ~x′ = (x′
1, x

′
2, . . . , x

′
n) refers to the new value of ~x

after event e. The event e = (v, v′) is enabled only when the

value of ~x in v satisfies act(e), and the new value of ~x′ after

the event is chosen nondeterministically such that act(e) is

satisfied. For example, suppose ~x = (x1), then for act(e) =
(x1 ≤ 3 ∧ x′

1 ≤ 5 ∧ x′
1 ≥ 5), event e is only enabled when

x1 ≤ 3; and after the event, x1 is assigned the new value of 5.
Like this example, if ~x and ~x′ do not mix in any inequalities

in act(e), and ~x′ has a deterministic value ~s′, then we can call

the subset of inequalities involving only ~x to be the guard of

event e, and event e updates ~x to ~s′, denoted as ~x := ~s′.
L is a set of synchronization labels.

syn is the synchronization function that assigns each

event e ∈ E an l ∈ L. L and syn are for composition

of multiple hybrid automata. Suppose we have two hybrid

automata A1 = (~x1, ~x
0
1, V1, v

0
1 , inv1, dif1, E1, act1, L1, syn1)

and A2 = (~x2, ~x
0
2, V2, v

0
2 , inv2, dif2, E2, act2, L2, syn2), if

e1 ∈ E1, e2 ∈ E2 and syn1(e1) = syn2(e2), then event

e1 and e2 must always take place together.

Furthermore, when inv, dif , and act only involve linear

inequalities, and dif does not involve ~x, hybrid automaton A
is called linear hybrid automaton (LHA)[14].

Reference [15] also describes how to combine several

hybrid automata into one hybrid automaton. Particularly, the

location set of the combined hybrid automaton Vcomb =
V1×V2× . . .×Vn, where Vi (i = 1, . . . , n) is the location set

of the ith component hybrid automaton; and “×” is Cartesian

product. For v ∈ Vcomb, we use v|i to denote the projection

of v on Vi.

2.2 Semantics

This paper adopts the semantic concepts and the corresponding

symbol definitions of [15]. Due to page limit, interested

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 3

readers shall refer to [15] for these definitions. Of particular

importance are the concepts of state predicate, trajectory,

number of hops (of a trajectory), non-blocking, non-zeno.

We, however, want to emphasize that to simplify narration,

in the following, unless explicitly denoted, “model checking”

refers to “model checking of finite-horizon reachability seman-

tics”, i.e., whether a state σ of hybrid automaton A satisfies

ϕ1∃U≤T
ϕ2, where ϕ1 and ϕ2 are state predicates of A, and T

is the finite-horizon. Also, unless explicitly denoted, we only

discuss non-blocking hybrid automata.

3 HYBRID SYSTEMS MODELING APPROACH

In this section, we shall use laser tracheotomy, a representative

MDPnP application [7][10], as the context to discuss the

proper hybrid systems modeling approach for MDPnP. We

shall see through this case study why offline model checking

must be replaced by online model checking.

Laser tracheotomy MDPnP interlocks various medical de-

vices to increase safety. It has the following entities (see

Fig. 1):

Patient: the patient that receives the surgery;

O2 Sensor: the patient’s trachea oxygen level sensor;

SpO2 Sensor: the patient’s blood oxygen level sensor;

Ventilator: the medical device that administrates the patient’s

respirations;

Surgeon: the doctor that conducts the surgery;

Laser Scalpel: the medical device for the surgeon to cut the

patient’s trachea;

Supervisor: the central computer that connects all medical

devices and makes decisions to guarantee safety.

Fig. 1. Layout of Laser Tracheotomy MDPnP

The application context is as follows. In the surgery, due

to general anesthesia, the patient is paralyzed, hence has to

depend on the ventilator to breathe. The ventilator has three

modes: pumping out (the patient inhales oxygen), pumping in

(the patient exhales), and hold (the patient exhales naturally

due to chest weight). However, when the laser scalpel is to cut

the patient’s trachea, the oxygen level inside the trachea must

be lower than a threshold. Otherwise, the laser may trigger fire.

Therefore, before the laser scalpel is allowed to emit laser,

the ventilator must have stopped pumping out (oxygen) for

a while. On the other hand, the ventilator can neither stop

pumping out for too long, or the patient will suffocate due to

too low blood oxygen level.

In summary, the laser tracheotomy MDPnP must avoid the

following safety hazards:

Safety Hazard 1: when the laser scalpel emits laser, the

patient’s trachea oxygen level exceeds a threshold ΘO2
;

Safety Hazard 2: the patient’s blood oxygen level reaches

below a threshold ΘSpO2
.

Note that the setting of constant thresholds ΘO2
and ΘSpO2

are

medical experts’ responsibility and are beyond the coverage of

this paper.

The formal expressions of safety hazards will become clear

by the end of Section 3.2, when the corresponding hybrid

automata are defined.

3.1 Traditional Approach: Offline Modeling

Because the laser tracheotomy MDPnP involves both discrete

medical device logic and physical world patient, it is a hybrid

system. Therefore we try to model laser tracheotomy MDPnP

with hybrid automata.

The traditional approach of model checking, including

hybrid systems model checking, is carried out offline. That

is, the model is built and its infinite-horizon behavior is

verified before the system runs. We choose to start with this

approach. As a common practice, our offline modeling of laser

tracheotomy MDPnP assumes a global time t: t is initialized
to 0 second, and ṫ ≡ 1.
Intuitively, we intend to start with modeling the patient, the

core entity of the laser tracheotomy MDPnP. However, the

patient’s behavior is directly administrated by the ventilator,

which has to be understood first.

Fig. 2. Offline hybrid automaton of Ventilator

The ventilator is basically a compressible air reservoir [17]:

a cylinder of height Hvent(t) (0 ≤ Hvent(t) ≤ 0.3(m)). The

movement of the ventilator cylinder (indicated by Ḣvent(t))
pumps out/in oxygen/air to/from patient, thus helping the pa-

tient to inhale/exhale. The ventilator behavior is defined by the

hybrid automaton in Fig. 2. The automaton has three locations:

PumpOut, PumpIn, and Hold. When the supervisor (will be

discussed later in Fig. 8) allows the ventilator to work (i.e.,

when data variable LaserApprove is set to false), the ventila-

tor switches between pumping out (where Ḣvent = −0.1m/s)

and pumping in (where Ḣvent = +0.1m/s). This causes the

patient to inhale oxygen and exhale respectively. When the

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 4

supervisor pauses the ventilator (i.e., when LaserApprove is

set to true), the ventilator cylinder will try to restore to its

maximum height (0.3m) and holds there until the ventilator is

allowed again (LaserApprove set to false).

Fig. 3. Offline hybrid automaton of Patient. Though good offline
models for Ȯ2 exists [7], the offline model for ˙SpO2 is still an open
problem. Also note that in location Hold (which corresponds to ventilator
Hold), the patient still exhale due to chest weight.

With the ventilator hybrid automaton at hand, we can now

start modeling the patient. The patient hybrid automaton (see

Fig. 3) is tightly coupled with the ventilator hybrid automaton

(see Fig. 2). It also has three locations: Inhale, Exhale, and

Hold, which respectively correspond to the ventilator hybrid

automaton’s locations of PumpOut, PumpIn, and Hold. The

events between the three locations are also triggered by

corresponding events from the ventilator hybrid automaton.

Inside of each location are the offline continuous time

models for trachea oxygen level O2(t) and blood oxygen

level SpO2(t). Unfortunately, though there are good offline

models for Ȯ2(t) [7], the offline model for ˙SpO2(t) is still

an open problem [8][9]. This is because blood oxygen level

are strongly affected by complex human body biochemical

reactions, even emotions.

Therefore, we fail to model SpO2(t) offline, and hence

fail to model the patient offline. What is worse, as the

patient model is an indispensable component of the holistic

offline model, the offline model checking of laser tracheotomy

MDPnP fails.

3.2 Proposed Approach: Online Modeling

The failure of offline approach forces us to consider the

proposed online approach (see Section 1) instead. Specifically,

we sample the patient’s trachea/blood oxygen level every T
seconds. Suppose at t0 = kT (k ∈ Z≥0), we get the most

up-to-date trachea/blood oxygen level sensor reading Ô2(t0)

and ŜpO2(t0), we can then build the hybrid systems model

for interval [t0, t0+T], where T is therefore the finite-horizon.

This model is built as follows.

First, same as the offline model checking, we use global

variable t to represent the global clock, except that now t is
initialized to t0 and stops at (t0 + T) as we only care about

the system’s finite-horizon safety until (t0 + T).
The patient hybrid automaton now looks like Fig. 4(a). The

biggest change is the continuous time model for the blood

oxygen level SpO2(t). In offline model checking, we have to

describe the infinite-horizon behavior of SpO2(t), which is an

(a) non-linear model

(b) linear hybrid automaton (LHA) model (see Section 2.1 for

definition of LHA), where Ô2inhale, Ô2exhale, and Ô2hold are
constants, which can be estimated from historical data.

Fig. 4. Online hybrid automaton of Patient.

open problem. However, in online model checking, we only

have to describe SpO2(t)’s behavior in interval [t0, t0 + T],
where the finite-horizon T is just a few seconds. If we only

look into such short-run future, blood oxygen level curve

SpO2(t) is very describable and predictable. For example,

it cannot plunge from 100% to 10% within just 4 seconds,

neither can it show a saw-toothed wave form. Instead, it must

be smooth; in fact smooth enough to be safely predicted with

standard tools (such as linear regression) based on its past

history.

In Fig. 4(a), we use a simple way to predict/describe

SpO2(t) in t ∈ [t0, t0 + T]:

˙SpO2(t) ≡
˜̇SpO2(t0), ∀t ∈ [t0, t0 + T],

where ˙SpO2(t) is the derivative of SpO2(t) at time t; and
˜̇SpO2(t0) is the estimation (e.g., via linear regression) of
˙SpO2(t0) based on SpO2(t)’s history recorded during (t0 −

Tpast, t0). Tpast is a configuration constant picked empirically

offline. In our case study, we pick Tpast = 6 seconds.

Also, depending on the patient’s state at time t0, the initial

location can be Inhale, Exhale, or Hold. Whichever location

it is, the initial value of trachea/blood oxygen value should be

Ô2(t0) and ŜpO2(t0) respectively.
The patient model of Fig. 4(a) can be further simplified.

Human subject respiration traces (see Fig. 5) show that the

values of ainhale, aexhale, and ahold in Fig. 4(a) are large:

so large that O2(t) almost behaves as rectangular waves when

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 5

the patient hybrid automaton changes locations. Therefore, we

can simplify Fig. 4(a) into Fig. 4(b), where O2(t) remains

constant within every location, and its value is only updated

on the corresponding transitions. This simplification turns the

patient hybrid automaton (in fact the whole system) into an

linear hybrid automaton (LHA) (see Section 2.1 for definition

of LHA), which is much easier to verify [18].

Fig. 5. A typical example excerpt of trachea CO2 level trace
(measured on human subjects with Nonin 9843 [19]); note O2(t) =
C1−C2 ·CO2(t), where C1 and C2 are two constants, whose derivation
can be found in classic physics textbooks [20].

We now check other laser tracheotomy MDPnP entities.

First, since the online model only looks into the finite-

horizon of [t0, t0 + T], where T is also the sensor sampling

period, there are no interactions with sensors throughout the

interval of (t0, t0 + T). Therefore, in online model checking,

the hybrid automata of O2 sensor and SpO2 sensor are

unnecessary.

Fig. 6. Online hybrid automaton of Ventilator.

Next, the ventilator hybrid automaton in online model (see

Fig. 6) is almost the same as its offline counterpart (see Fig. 2)

A main difference is that the online model’s initial location can

be any location depending on the ventilator’s state at t0.
The last entity that directly interacts with the patient is the

laser scalpel. We can actually model the laser scalpel and the

surgeon with one hybrid automaton: the laser scalpel hybrid

automaton (see Fig. 7).

The automaton’s key elements are the two Boolean vari-

ables: LaserApprove and LaserReq.
LaserApprove indicates whether the supervisor (see Fig. 1)

allows the laser scalpel to emit laser (true for yes and false

for no). Its value can only be set by the supervisor hybrid

automaton (see Fig. 8), which is to be explained later.

LaserReq indicates whether the laser scalpel wants to emit

laser (true for yes and false for no). Its value can only be

set by the laser scalpel hybrid automaton. The value setting is

Fig. 7. Online hybrid automaton of Laser Scalpel. This is the only
automaton that sets the value of state variable LaserReq.

triggered by following events: i) when in LaserIdle, the sur-

geon can request emitting laser through eventSurgeonRequest,

which sets LaserReq to true; ii) when in LaserRequesting

or LaserEmitting, the surgeon can request stopping laser

emission through eventSurgeonCancel and eventSurgeonStop

respectively, which both set LaserReq to false; iii) when in

LaserEmitting, the supervisor can stop the laser emission at

any time by setting LaserApprove to false, which triggers

eventSupervisorStop and sets LaserReq to false.

The four possible combinations of LaserApprove and

LaserReq’s values define the major locations in the

laser scalpel hybrid automaton: LaserIdle, LaserRequesting,

LaserEmitting, and LaserCanceling. Particularly, laser scalpel

emits laser in and only in LaserEmitting. There is an additional

location, LaserToEmit, which models the additional delay

Tmax
toemit between LaserRequesting and LaserEmitting. This

delay is to further ensure oxygen level in trachea falls below

threshold before the actual laser emission.

The laser scalpel hybrid automaton’s initial location can be

anywhere depending on the laser scalpel’s state at t0. One
thing to note is that all variables should be initialized to their

actual value at t0. For example, if initial location is LaserIdle,

and Laser Scalpel has been idling for 10 seconds by t0, then
tidle shall be initialized to 10 seconds instead of 0.
Finally, all medical device entities are interlocked by the

supervisor, the central decision making computer (see Fig. 1).

The supervisor maneuvers data variable LaserApprove. Set-
ting LaserApprove to true/false determines the off/on of

the ventilator and the permission/denial of emitting laser

respectively.

The value setting decisions are made dependent on the

most up-to-date information on the patient’s trachea oxygen

level O2(t) and blood oxygen level SpO2(t). Based on the

models given in the patient hybrid automaton (see Fig. 4),

we can predict O2(t) and SpO2(t) for any t ∈ [t0, t0 + T].
Therefore, we can construct the supervisor hybrid automaton

as Fig. 8, which directly uses O2(t) and SpO2(t) predicted

by the patient hybrid automaton for decision making.

The supervisor hybrid automaton has two locations:

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 6

Fig. 8. Online hybrid automaton of Supervisor. This is the only
automaton that sets the value of data variable LaserApprove. Note
tapprove can be totally removed from the model in soft real-time online
model checking.

LaserDisapproved and LaserApproved.

When in LaserDisapproved, the supervisor needs eventSu-

pervisorApprove to move to LaserApproved. This event is

triggered when the following prerequisites all hold:

Prerequisite 1: the laser scalpel is requesting emitting laser

(i.e., LaserReq = true);

Prerequisite 2: O2(t) is less than threshold ΘO2
;

Prerequisite 3: SpO2(t) is greater than threshold ΘSpO2
.

Prerequisite 4: tdisapprove ≥ Tmin
disapprove. This is a minimal

dwelling time requirement to guarantee the automaton’s non-

zeno property. The purpose will become clear in a latter

example (Example 1 of Appendix B in the supplementary

file). This requirement also models the time cost in switching

between LaserDisapproved and LaserApproved modes in the

supervisor.

Through eventSupervisorApprove, the supervisor approves

the emission of laser by setting LaserApprove to true. This

event also resets a clock tapprove, and moves the location to

LaserApproved.

Like tdisapprove, clock tapprove is for guaranteeing a mini-

mal dwelling time of Tmin
approve in LaserApproved. After that, if

Prerequisite 1 no longer holds (i.e., when LaserReq becomes

false), the eventNormalDisapprove is triggered. This event

moves the supervisor back to location LaserDisapproved and

resets LaserApprove to false, and tdisapprove to 0.
In contrast to eventNormalDisapprove,

eventAbnormalDisapprove is triggered when the supervisor

is in LaserApproved while Prerequisite 2 or 3 stops to

hold. This event also moves the supervisor back to location

LaserDisapproved and resets LaserApprove/tdisapprove to

false/0 respectively.

Finally, same as the other online hybrid automata, the initial

location for the online supervisor automaton can be either

LaserDisapproved or LaserApproved, depending on the state

of the supervisor at time t0; and the variables should be

initialized to the actual values at t0.
With the above hybrid automata model of the laser tra-

cheotomy MDPnP, we can formally express Safety Hazard 1

and 2 (see the beginning of Section 3) as follows.

Safety Hazard 1:For any given initial state σ0, σ0 |=
true∃U

≤T

⋃
v∈Vcomp∧v|ls=LaserEmitting(v,O2(t) ≥ ΘO2

);

Safety Hazard 2:For any given initial state σ0, σ0 |=
true∃U

≤T

⋃
v∈Vcomp

(v, SpO2(t) ≤ ΘSpO2
);

where Vcomp is the location set of the combined automaton of

the Ventilator, Patient, Laser Scalpel, and Supervisor; v|ls is

v’s projection on the Laser Scalpel automaton location set.

When model checking any one of the above safety hazards,

a “yes” answer means the system is unsafe; while a “no”

answer means this system is safe.

4 SYSTEM CO-DESIGN PATTERN

The evolution from offline model checking to online model

checking must also be matched with system design changes.

4.1 Hard Real-Time System Design

First, the overall system architecture shall integrate online

model checking as a runtime fault prediction and prevention

mechanism.

A straightforward thought is to run online model checking

periodically. So far, we have assumed the period to be the

same as the online model checking’s finite-horizon T . That
is, at the beginning of each period T , online model checking

predicts whether unsafe states are reachable within the coming

T seconds. If so, the system switches to a fall-back plan for

the current period. The fall-back plan is application dependent.

For laser tracheotomy MDPnP, a simple fall-back plan is that

the supervisor locks LaserApprove at false, hence forbidding
laser emission and keeping the ventilator active.

The above overall architecture works if online model check-

ing costs 0 time. In practice, this is an over simplification.

However, if the online model checking has a worst case

execution time bound D < T (where T is the online model

checking’s finite-horizon), then we can run the online model

checking as a hard real-time task and use pipelining to carry

out fault prediction and prevention. This is formally described

by the algorithm in Fig. 9, which, without loss of generality,

runs a pipeline with T = 2D; and D replaces T to be the new

sampling period.

//This code assumes online model checking (see line 4, 5) can always

//finish within hard real-time deadline D = T
2
.

1. main(){

2. wait till current time t satisfies (tmod T
2

= 0);
3. t0 := t;
4. read sensors and build online model A;
5. if (A may reach unsafe states in [t0, t0 + T]){
6. /*non-blocking call:*/ switch the hybrid system to fall-back plan;
7. }else

/*non-blocking call:*/ allow the hybrid system to run normally;
8. goto line 2;
9. }

Fig. 9. Overall system architecture for hard real-time online model
checking, with worst case execution time bound of D (for line 4, 5).
Without loss of generality, the code runs a pipeline with T = 2D (see
line 2, 5). To “run normally” means that the hybrid system runs according
to online model A’s (see line 4) descriptions.

To run the hard real-time algorithm of Fig. 9, the online

model checking problem must be decidable. That is, a time

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 7

cost upper bound must exist. In the following, we show a

large family of hybrid automata systems, strongly non-zeno

LHA systems (SNZ-LHA-Systems) [21] to be exact, satisfy

the decidability requirement.

Definition 1 (SNZ-LHA-System): Let S be a set of linear

hybrid automata (LHA). For each LHA A ∈ S , let

TA
def
= {τ |τ is a trajectory (see [15] for the definition of

“trajectory”) of A and τ passes a transition of A twice}.
If ∃ε > 0, such that ∀A ∈ S, inf∀τ∈TA

{δτ} ≥ ε (where δτ

is τ ’s duration; inf ∅
def
= ∞), then S is called a strongly

non-zeno LHA system (SNZ-LHA-System).

For an SNZ-LHA-System, we have the following:

Theorem 1 (Decidability): Finite-horizon reachability

model checking of an SNZ-LHA-System is decidable.

Proof: See Appendix A in the supplementary file. �

What is more, the proof of Theorem 1 also shows a time cost

upper bound for finite-horizon reachability model checking

of an SNZ-LHA-system exists. In fact, interested readers can

refer to [22] for a loose time cost upper bound, though a tight

time cost upper bound is still an open problem.

Therefore, if we ensure an online hybrid systems model to

be an SNZ-LHA-System, real-time worst case execution time

(i.e., deadline) exists.

Given a set S of LHAs, we claim in the following

that S is ensured to be an SNZ-LHA-System if it com-

plies with certain design patterns stated in Theorem 2.

Theorem 2 (Decidable Design Pattern): If every cycle of

transitions in S complies with one of the following design

patterns: ε-Minimal Dwelling Time, ε-Alternating Cyber-

Value, or ε-Alternating Physical-Value, then finite-horizon

reachability model checking on the LHA set S is decidable.

Proof: See Appendix B in the supplementary file for detailed

definitions and proof. �

If we review the laser tracheotomy MDPnP online LHA

model (see Fig. 4(b) ∼ 8), we find its design pattern complies

with Theorem 2. Hence online finite-horizon reachability

hybrid systems model checking (simplified as “online model

checking” in the following, unless explicitly denoted) on laser

tracheotomy MDPnP is decidable. That is, theoretically, a

worst case execution time bound for hard real-time exists.

4.2 Soft Real-Time System Design

Though online hard real-time model checking of SNZ-LHA-

Systems is theoretically possible due to Theorem 1, a tight

bound on worst case execution time is still an open problem.

A very loose bound is known (see [22]), but it is often too

large to be practical. In fact, we know the following:

Theorem 3: Finite-horizon reachability model checking of

an SNZ-LHA-System is NP-Hard.

Proof: See Appendix C in the supplementary file. �

Theorem 3 implies online hard real-time model checking

of SNZ-LHA-Systems is only practical for very small scale

cases; soft real-time online model checking instead has more

practical value.

In soft real-time online model checking, we directly specify

a desired deadline D, without requiring hard real-time guar-

antee. The selection method of D is empirical: as long as

D makes deadline misses satisfactorily rare and the online

modeling satisfactorily accurate. For example, we can use

standard benchmarks to find a desirable D (see Section 5.2).

Even though deadline D may be missed, soft real-time

online model checking can still serve the MDPnP hybrid

system in at least two ways: one conservative and the other

aggressive, as described by the pseudo code in Fig. 10.

//Online model checking deadline is D = T
2

(see line 4, 6, 7, 11, 12).

1. main(mode){

2. wait till current time t satisfies (tmod T
2

= 0);
3. t0 := t;
4. read sensors and build online model A;
5. if (mode =“conservative way”){
6. if ((A may reach unsafe states in [t0, t0 + T])

7. or (current time t ≥ t0 + T
2
)){

8. /*non-blocking call:*/ switch the hybrid system to fall-back plan;
9. }else

/*non-blocking call:*/ allow the hybrid system to run normally;
10. else {//mode =“aggressive way”

11. if ((not (A may reach unsafe states in [t0, t0 + T]))

12. or (current time t ≥ t0 + T
2
)){

13. /*non-blocking call:*/ allow the hybrid system to run normally;
14. }else

/*non-blocking call:*/ switch the hybrid system to fall-back plan;
15. }
16. goto line 2;
17. }

Fig. 10. Revised overall system architecture that allows soft real-
time online model checking. Without loss of generality, the code runs a
pipeline with T = 2D (see line 2, 6, 11), where D = T

2
is the real-time

online model checking deadline. To “run normally” means that the hybrid
system runs according to online model A’s (see line 4) descriptions.

In the conservative way, if online model checking misses

deadline D, the MDPnP hybrid system always switches to the

(application dependent) fall-back plan. Assuming the modeling

is accurate, the conservative way can prevent all accidents.

However, if deadline misses are too often, the system will

frequently switch to fall-back plan, annoying the users. In

other words, the conservative way can raise a lots of false

alarms, but can prevent all accidents.

Take our laser tracheotomy MDPnP for example. Every time

the online model checking misses the D seconds deadline on

safety check, the supervisor will disapprove any laser emission

request for the next D seconds (i.e., the “fall-back plan”).

Instead, only when the online model checking confirms safety

within the D seconds deadline will the supervisor follow

Fig. 8’s descriptions in the next D seconds.

In the aggressive way, if online model checking misses

deadline D, the MDPnP system does not switch to fall-back

plan. The aggressive way only invokes fall-back plan when it

is certain the system is facing risks. In other words, the aim

of aggressive way is not to prevent all accidents, but to reduce

accidents. In medical practice, a method that can significantly

reduce accidents is still a useful method; in fact, most medical

routines are of such nature [23].

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 8

Again take our laser tracheotomy MDPnP for example.

Every time the online model checking misses the D seconds

deadline on safety check, the supervisor will nevertheless

follow Fig. 8’s descriptions in the next D seconds. The fall-

back plan (that the supervisor disapproves any laser emission

requests) only kicks in when online model checking is certain

that unsafe state is reachable within the D seconds deadline.

Therefore, the online model checking is not to eliminate all

possible accidents that a human surgeon may make, but to

reduce such accidents as an additional protection.

To summarize, each deadline miss means the online model

checking is uncertain about the safety of the MDPnP hybrid

system in the next D seconds. In the conservative way, the

system always switches to the fall-back plan when the online

model checking ends up uncertain (of course it also switches to

the fall-back plan when the online model checking is certain of

pending risks). In the aggressive way, the system only switches

to fall-back plan when the online model checking is certain of

pending risks.

5 EVALUATIONS

To validate our proposed approach, especially the effective-

ness (usefulness) of soft real-time online model checking for

MDPnP (the “conservative way” and the “aggressive way”,

see Section 4.2), we carry out evaluations using real-world

trachea/blood oxygen level traces.

5.1 Effectiveness

We run soft real-time online model checking program P (see

Fig. 10) upon emulated trachea/blood oxygen level sensors for

1200 seconds. We choose soft real-time deadline to be D = 2
seconds (see Section 5.2 for why). According to the soft real-

time pseudo code of Fig. 10, this means every D = T
2

=
2 seconds, P queries the emulated sensors for trachea/blood

oxygen level readings, then builds and verifies an online model

with finite-horizon of T = 2D = 4 seconds.

We have two sets of 1200-second traces for the emulated

sensors. The first set of 1200-second traces comes from Phys-

ioNet [24], a comprehensive online public database (set up by

NIH, NIBIB, and NIGMS) of real-world medical traces logged

by hospitals. For simplicity, we call it “PhysioNet Traces”.

The other set of 1200-second traces comes from our own

experiments on two human subjects. Human Subject 1 (HS1)

mimics the combined behavior of the supervisor, laser scalpel,

and surgeon in laser tracheotomy MDPnP. As shown by

Fig. 11(a), HS1 randomly swaps between holding the flag of

“Laser Disapproved” and “Laser Approved”. Human Subject 2

(HS2) mimics the combined behavior of the ventilator and the

patient in the laser tracheotomy MDPnP. When HS1 holds the

“Laser Disapproved” flag, HS2 breathes smoothly at the rate

of 6 seconds per respiration-cycle. When HS1 holds the “Laser

Approved” flag, HS2 first tries to exhale (to his very best) and

then holds his breath until HS1 raises the “Laser Disapproved”

flag again (in case HS1 holds the “Laser Approved” flag for

too long, HS2 is free to abort the experiment by resuming

normal breath). Meanwhile, HS2’s trachea and blood oxygen

(a)

(b)

Fig. 11. Human subjects roles and behaviors. (a) HS1; (b) HS2.

level are recorded by Nonin 9843 [19]. We call the derived

traces the “HKPolyU Traces”.

The two emulated sensors read corresponding real-world

traces (PhysioNet or HKPolyU) respectively. Based on the

readings, P builds online hybrid systems models as described

in Section 3.2, and verifies it. The specific modeling and ver-

ification software used is PHAVer [18], a well-known hybrid

systems model checking tool. Our computation platform is a

Lenovo Thinkpad X201 with Intel Core i5 and 2.9G memory;

the OS is 32-bit Ubuntu 10.10.

For each trace, throughout its 1200-second emulation pe-

riod, program P carries out 1200/D = 1200/2 = 600 trials of

online modeling and verifications. The statistics of execution

time cost is depicted by Table 1.

The statistics show that more than 97.8% of the online

model checking trials finished within theD = 2 (sec) deadline.
In other words, only no more than 2.2% of the online model

checking trials missed deadline.

Assume the modeling is accurate (which is going to be

validated soon), in case P runs the “conservative way” (see

Fig. 10), the above result means not only all accidents are

prevented, the false alarm probability is no more than 2.2%.

In case P runs the “aggressive way”, the above result means

more than 97.8% of accidents can be reduced (every time the

system can reach unsafe states in the next D seconds, there is

a ≥ 97.8% chance that online model checking finishes within

deadline, hence triggering the fall-back plan). Such reduction

of accidents is significant according to the standards of medical

practice [23]. In either case, the results provide strong evidence

that (soft) real-time online model checking is effective (i.e.,

feasible and useful).

TABLE 1
Statistics of execution time cost of online model checking (unit: second;

deadline D = 2 seconds)

% of trials Execution time of those
missed caught deadline (secs)
deadline Min Max Mean Std

PhysioNet Trace 2.2% 0.817 1.720 0.932 0.126
HKPolyU Trace 1.7% 0.818 1.940 0.965 0.146

To validate the assumption that the online modeling is

accurate, we carry out statistics on the prediction error of blood

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 9

oxygen level curve.

During the online model checking, at every time instance

t0 = kD (k ∈ {0, 1, . . . , 599}, and D = 2 seconds), we

sample the blood oxygen level and predict (see Fig. 4) the

blood oxygen level curve in [t0, t0+T] (T = 2D = 4 seconds).
Let the predicted blood oxygen level at time (t0 + T) be

S̃pO2(t0 + T). Let the PhysioNet/HKPolyU trace reading of

blood oxygen level at time (t0 + T) be ŜpO2(t0 + T). We

define the relative prediction error at time (t0 + T) to be

ERRSpO2
(t0 + T) =

|ŜpO2(t0 + T)− S̃pO2(t0 + T)|

ŜpO2(t0 + T)
.

The statistics of the relative prediction errors throughout

the 600 trials for each trace are depicted by Table 2. The

statistics show that our online model checking’s predictions

on the finite-horizon behavior of blood oxygen level curve

match the real-world traces quite accurately (with maximum

relative error of 3.92%).

TABLE 2
Statistics of blood oxygen level online modeling relative errors (%)

Min Max Mean Std

PhysioNet Trace 0.03 2.53 0.51 0.52
HKPolyU Trace < 0.01 3.92 0.61 0.60

5.2 Selection of Soft Real-Time Online Model Check-

ing Deadline

Now we show why D = 2 seconds is an empirically desirable

soft real-time online model checking deadline for the pseudo

code of Fig. 10.

We use both the 1200-second PhysioNet Trace and the

1200-second HKPolyU Trace as benchmark, and try out

different values of D.

Table 3 shows the statistics on online modeling relative

errors under different Ds. The statistics show that D = 2
seconds incurs least maximum relative error compared to other

candidates. Note D = 2 seconds might not be the optimal

choice, but based on the evaluations on the 2400-second
medical traces, it turns out to be an empirically effective

choice. A lot of parameters used in medicine are derived from

such empirical studies.

TABLE 3
Online Model Checking Relative Error Statistics under Different Ds

Trace D(sec) Relative Error (%)
Min Max Mean Std

2 0.03 2.53 0.51 0.52
PhysioNet 3 0.04 4.52 0.76 0.74

4 < 0.01 5.98 0.96 0.94

2 < 0.01 3.92 0.61 0.60
HKPolyU 3 < 0.01 4.81 0.90 0.90

4 < 0.01 6.29 1.18 1.12

6 DISCUSSIONS

6.1 False Negatives and False Positives

If the online model is absolutely accurate, the online model

checking either misses deadline, or produces true-positive/true-

negative conclusions.

Interestingly, even if the online model is inaccurate, i.e.,

if the online model checking can produce false-positive/false-

negative conclusions, our proposed method can still be useful

for medical practices. Please see Appendix D in the supple-

mentary file for details.

6.2 Wireless Communications Links

So far, we have assumed reliable communications links be-

tween entities. Though this assumption is empirically valid

for wired communications links, it is not for wireless.

How to adopt unreliable wireless communications links in

life/safety critical medical settings is a nontrivial and active

research area [25][26][27][28]. A comprehensive solution is

beyond the scope of this paper. However, we can still provide

a simple hybrid solution to allow wireless links between the

sensors and the supervisor. Our solution is as follows.

According to the pseudo code of Fig. 10, every D seconds,

the sensors are supposed to update the supervisor with the new

readings of the patient’s vital sign(s). Suppose at time instance

iD (i ∈ Z≥0), the corresponding reading is Xi. Suppose

at time instance iD, the supervisor needs to look at Xi−k,

Xi−k+1, . . ., Xi to build the online model. If any reading(s)

of Xi−k ∼ Xi is(are) lost due to wireless communications

failures, then for the period of [iD, (i + 1)D], the supervisor

shall refuse to carry out online model checking, to cause a

deliberate “deadline miss”. This deliberately created deadline

miss shall then be treated as a usual deadline miss.

In this way, any wireless communications failures will only

result in more deadline misses. The designs and analysis de-

scribed in the previous sections (and subsections) still sustain.

For further evaluations of this wireless approach, please

refer to Appendix E of the supplementary file.

7 RELATED WORK

Our approach is different from the well-known runtime ver-

ification [29]. Runtime verification aims to discover latent

bugs of programs by logging and analyzing the programs’

execution traces under varied inputs/configurations. It is not

for predicting/preventing faults before they ever happen;

whilst our approach is. For many medical CPS systems, the

cost/consequence of possible faults in test runs is high or even

unbearable. This necessitates our approach of predicting and

preventing faults before they ever happen.

Sen et al. [30] propose an online safety analysis method for

multithreaded programs. However, this work only focuses on

how to infer other potential executions that can take place in

the past. Our work tries to predict the future state of patient

based on recent observations

Easwaran et al. [31], Qi et al. [32], and Harel et al. [33]

also propose bringing model checking online. But they are still

focusing on discrete (automata) model checking, rather than

hybrid systems model checking that this paper is about.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 10

Sauter et al. [34] propose a lightweight hybrid-system model

checking method, which uses ordinary differential equations

(ODE) to predict temporal logic properties However, in the

MDPnP systems it is not uncommon to be lack of differential

equations governing patients dynamics, i.e., patients model.

Li et al. [35] propose one online model checking approach

aiming at automatically estimating parameters in simulation

models, which are often used for biological purpose to under-

stand complex regulatory mechanisms in cell.

Larsen et al. [36] propose an online model-based testing

tool for real-time systems, UPPAAL TRON. The tool is based

on UPPAAL engine and models real-time systems as timed

automata, whereas our online model checking of MDPnP

systems focuses on more general hybrid systems.

Also, our approach is not model-checker specific, though

our evaluation in this paper uses PHAVer. In fact, we are

considering integrating our approach with other well-known

model checkers, such as Bogor [37], CellExcite [38] etc..

8 CONCLUSIONS AND FUTURE WORK

Through our case study on laser tracheotomy MDPnP, we

show that online model checking of short-run future behavior

can effectively address the two challenges in MDPnP CPS

hybrid systems model checking. By focusing on online and

short-run future, many originally hard to describe/predict

human body parameters become describable and predictable;

and many variable parameters become fixed numerical val-

ues, which greatly simplifies verification. The online model

checking can go real-time if the proposed hard/soft real-

time system co-design patterns are followed. Our empirical

evaluations based on real-world human subject traces show

that our online model checking and co-design approach is

feasible and effective. As future work, we will carry out

more evaluations and integrate/extend our approach to more

comprehensive MDPnP/CPS frameworks [39][40][41][42].

REFERENCES

[1] Medical Device Plug-and-Play (MDPnP). http://www.mdpnp.org.

[2] L. Sha et al., “Cyber-physical systems: A new frontier,” Machine

Learning in Cyber Trust: Security, Privacy, and Reliability, 2009.

[3] C. Baier et al., Principles of Model Checking. MIT Press, 2008.

[4] P. Tabuada, Verification and Control of Hybrid Systems: A Symbolic

Approach. Springer, 2009.

[5] P. J. Antsaklis and X. D. Koutsoukos, “Hybrid systems: Review and
recent progress,” Software-Enabled Control: Information Technology for

Dynamical Systems, pp. 273–298, 2003.

[6] I. Lee and O. Sokolsky, “Medical cyber physical systems,” DAC, 2010.

[7] C. Kim et al., “A framework for the safe interoperability of medical
devices in the presence of network failures,” ICCPS’10, Apr. 2010.

[8] J. A. Grass, “Patient-controlled analgesia,” Anesthesia & Analgesia, vol.
101, no. 5S, pp. S44–S61, Nov. 2005.

[9] J. X. Mazoit, K. Butscher, and K. Samii, “Morphine in postopera-
tive patients: Pharmacokinetics and pharmacodynamics of metabolites,”
Anesthesia and Analgesia, vol. 105, no. 1, pp. 70–78, 2007.

[10] “Medical devices and medical systems - essential safety requirements for
equipment comprising the patient-centric integrated clinical environment
(ice), part 1: General requirements and conceptual model,” no. STAM
F2761-2009, 2009.

[11] T. Li et al., “From offline toward real-time: A hybrid systems model
checking and cps co-design approach for medical device plug-and-play
(mdpnp),” Proc. of IEEE/ACM 3rd Intl. Conf. on Cyber-Physical Systems

(ICCPS), pp. 13–22, Apr. 2012.

[12] ——, “From offline long-run to online short-run: Exploring a new
approach of hybrid systems model checking for mdpnp,” Joint Workshop
on HCMDSS/MDPnP, Apr. 2011.

[13] L. Bu et al., “Toward online hybrid systems model checking of cyber-
physical systems time-bounded short-run behavior,” ICCPS’11 Work-in-

Progress Session, Apr. 2011.
[14] R. Alur et al., “Hybrid automata: An algorithmic approach to the

specification and verification of hybrid systems,” Hybrid Systems, vol.
736, pp. 209–229, 1992.

[15] ——, “Automatic symbolic verification of embedded systems,” IEEE

Trans. on Software Engineering, vol. 22, no. 3, pp. 181–201, Mar. 1996.
[16] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi, “Hytech: a model checker

for hybrid systems,” STTT, vol. 1, no. 1-2, pp. 110–122, 1997.
[17] J. A. Dorsch and S. E. Dorsch, Understanding Anesthesia Equipment,

5th ed. Lippincott Williams and Wilkins, 2007.
[18] G. Frehse, “PHAVer: Algorithmic Verification of Hybrid Systems past

HyTech,” Proc. of HSCC’05, vol. LNCS 2289, pp. 258–273, 2005.
[19] Nonin 9843 oximeter/Co2 detector. http://www.nonin.com.
[20] M. J. Moran et al., Fundamentals of Engineering Thermodynamics.

Wiley, 2003.
[21] O. Roux and V. Rusu, “Uniformity for the decidability of hybrid

automata,” Static Analysis, vol. 1145, pp. 301–316, 1996.
[22] T. Li et al., From Offline toward Real-Time: A Hybrid Systems Model

Checking and CPS Co-Design Approach for Medical Device Plug-and-

Play (Technical Report Appendices).
http://www.comp.polyu.edu.hk/%7Ecsqwang/research/appendix.html.

[23] F. Brunicardi et al., Principles of Surgery. McGraw-Hill, Sep. 2009.
[24] PhysioNet: the Research Resource for Complex Physiologic Signals.

http://www.physionet.org.
[25] Y. Wang et al., “WiCop: Engineering WiFi temporal white-spaces for

safe operations of wireless body area networks in medical applications,”
Proc. of RTSS’11, pp. 170–179, 2011.

[26] J. Huang et al., “Beyond co-existence: Exploiting WiFi white space for
ZigBee performance assurance,” Proc. of ICNP, pp. 305–314, Oct. 2010.

[27] Q. Wang et al., “Building robust wireless LAN for industrial control
with the DSSS-CDMA cell phone network paradigm,” IEEE Trans. on

Mobile Computing, vol. 6, no. 6, pp. 706–719, Jun. 2007.
[28] S. Baker et al., “Medical-grade, mission-critical wireless networks,”

IEEE EMB Magazine, vol. 27, no. 2, pp. 86–95, 2008.
[29] B. Finkbeiner et al., “Collecting statistics over runtime executions,”

ENTCS, vol. 70:4, 2002.
[30] K. Sen, G. Rosu, and G. Agha, “Online efficient predictive safety anal-

ysis of multithreaded programs,” in Proceedings of 10th International

Conference on Tools and Algorithms for the Construction and Analysis

of Systems (TACAS’04), Barcelona, Spain, 2004, pp. 123–138.
[31] A. Easwaran et al., “Steering of discrete event systems: Control theory

approach,” Workshop on Runtime Verif., 2006.
[32] Z. Qi et al., “A hybrid model checking and runtime monitoring method

for c++ web services,” Intnl’ Joint Conf. on INC, IMS and IDC, 2009.
[33] D. Harel, H. Kugler, R. Marelly, and A. Pnueli, “Smart play-out

of behavioral requirements,” in Proceedings of the 4th International

Conference on Formal Methods in Computer-Aided Design (FMCAD

’02), London, UK, 2002, pp. 378–398.
[34] G. Sauterand et al., “Lightweight hybrid model checking facilitating

online prediction of temporal properties,” in Proceedings of the 21st

Nordic Workshop on Programming Theory, NWPT 09, Kgs. Lyngby,
Denmark, 2009, pp. 20–22.

[35] C. Li, M. Nagasaki, C. H. Koh, and S. Miyano, “Online model checking
approach based parameter estimation to a neuronal fate decision simu-
lation model in caenorhabditis elegans with hybrid functional petri net
with extension,” Mol. BioSyst, pp. 1576–1592, 2011.

[36] K. G. Larsen, M. Mikucionis, and B. Nielsen, “Uppaal tron user
manual,” 2007.

[37] Robby et al., “Bogor: An extensible and highly-modular software model
checking framework,” Proc. of the 9th European Software Engineering

Conference (ESEC/FSE-11), 2003.
[38] E. Bartocci et al., “Cellexcite: An efficient simulation environment for

excitable cells,” BMC Bioinformatics, vol. 9, no. 2, pp. 1–13, Mar. 2008.
[39] J. Ko et al., “Wireless sensor networks for healthcare,” Proc. of IEEE,

vol. 98, no. 1, pp. 1947–1960, Nov. 2010.
[40] A. King et al., “An open test bed for medical device integration and

coordination,” Proc. of ICSE’09 (Software Engineering in Practice

Track), May 2009.
[41] R. Alur and G. Weiss, “Rtcomposer: a framework for real-time compo-

nents with scheduling interfaces,” EMSOFT’08, pp. 159–168, 2008.
[42] Y. Krishnamurthy, C. Gill et al., “The design and implementation of

real-time corba 2.0: Dynamic scheduling in tao,” RTAS, 2004.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 11

Tao Li Tao Li received the BE degree in software
engineering from Southeast University, Nanjing,
China, in 2007, the MSc degree in computer
science and technology from Nanjing Univer-
sity, Nanjing, China, in 2010. He is currently
pursuing the PhD degree in the Department
of Computing at the Hong Kong Polytechnic
University, Hong Kong. His research interests
include cyber-physical systems (CPS), perva-
sive/ubiquitous computing, and their applica-
tions in medical treatment and healthcare. He is

a student member of the IEEE.

Feng Tan Feng Tan received his B.E and M.E
degree in Industrial Engineering from Univ. of
Electronic Science and Technology of China,
Chengdu, China in 2009 and 2012 respectively.
He is currently pursuing the Ph.D degree in
the department of Computing and the Hong
Kong Polytechnic University, Hong Kong. His
research interests include Cyber-Physical Sys-
tems (CPS), particularly on dependable system
architecture design in CPS applications.

Qixin Wang (M’08) received the B.E. and M.E.
degrees from the Department of Computer Sci-
ence and Technology, Tsinghua University, Bei-
jing, China, in 1999 and 2001, respectively, and
the Ph.D. degree from the Department of Com-
puter Science, University of Illinois at Urbana-
Champaign (UIUC) in 2008. He was a Research
Assistant/Associate in UIUC from 2001 to 2008.
Since 2009, he is an Assistant Professor in the
Department of Computing at the Hong Kong
Polytechnic University. His research interests in-

clude cyber-physical systems, real-time/embedded systems and net-
working, wireless technology, and their applications in industrial control,
medicine, and assisted living. He has published about 30 research
papers on various venues. He has received a best paper award from
the IEEE Transactions on Industrial on Informatics (2008). Dr. Wang is
also a member of the ACM.

Lei Bu (M’12) is an assistant professor in the
Department of Computer Science and Technol-
ogy, State Key Laboratory for Novel Software
Technology at Nanjing University, P.R.China. He
received his B.S. and PH.D. degree in Com-
puter Science from Nanjing University in 2004
and 2010 respectively. He has been visiting
scholar in Carnegie Mellon University, Fon-
dazione Bruno Kessler, and University of Texas
at Dallas. His main research interests include
formal method, model checking, especially veri-

fication of hybrid system and cyber-physical system. He has published
more than 30 research papers in major peer-reviewed international
journals and conference proceedings. Dr. Bu is also a member of the
ACM.

Jian-nong Cao Dr. Cao is currently a chair
professor and head of the Department of Com-
puting at Hong Kong Polytechnic University.
His research interests include parallel and dis-
tributed computing, computer networks, mobile
and pervasive computing, fault tolerance, and
middleware. He has co-authored 4 books, co-
edited 9 books, and published over 300 papers
in major international journals and conference
proceedings. He has directed and participated
in numerous research and development projects

and, as a principal investigator, obtained over HK$25 million grants.
Dr. Cao is a senior member of China Computer Federation, a senior
member of IEEE, and a member of ACM. He is the Chair of the Technical
Committee on Distributed Computing of IEEE Computer Society. Dr.
Cao has served as an associate editor and a member of the editorial
boards of many international journals, and a chair and member of
organizing / program committees for many international conferences.
Dr. Cao received the BSc degree in computer science from Nanjing
University, Nanjing, China, and the MSc and the Ph.D degrees in
computer science from Washington State University, Pullman, WA, USA.

Xue Liu is an associate professor in the School
of Computer Science at McGill University. He
received his Ph.D. in Computer Science from
the University of Illinois at Urbana-Champaign in
2006. He received his B.S. degree in Mathemat-
ics and M.S. degree in Automatic Control both
from Tsinghua University, Beijing, China. He has
also worked as the Samuel R. Thompson As-
sociate Professor in the University of Nebraska-
Lincoln and HP Labs in Palo Alto, California. His
research interests are in computer networks and

communications, smart grid, real-time and embedded systems, cyber-
physical systems, data centers, and software reliability. Dr. Liu has
published more than 150 research papers in major peer-reviewed inter-
national journals and conference proceedings, including the Year 2008
Best Paper Award from IEEE Transactions on Industrial Informatics, and
the First Place Best Paper Award of the ACM Conference on Wireless
Network Security (WiSec 2011).

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 1

From Offline toward Real-Time: A Hybrid
Systems Model Checking and CPS Co-Design

Approach for Medical Device Plug-and-Play
Collaborations [Supplementary File]

Tao Li, Student Member, IEEE, Feng Tan, Qixin Wang, Member, IEEE, Lei Bu, Jian-nong Cao, Senior

Member, IEEE, and Xue Liu, Member, IEEE,

F

APPENDIX A

DECIDABILITY

This section gives a proof for the decidability of SNZ-LHA

system. Though [1] gives a guideline for proof, to our best

knowledge, a formal proof is still missing in the literature.

We therefore give a formal proof in the following.

The proof involves heavy usage of symbols. Due to space

limit, we are not going to explicitly re-define each symbol,

instead, readers shall refer to [2] for the definitions of the

corresponding symbols.

We first define the following concepts:

Definition 1: We say trajectory τ is from hybrid automaton

state (v, σ) to a state space χ, denoted as (v, σ) τ χ, iff
τ(0, 0) = (v, σ) and τ(h, δh) ∈ χ, where h = ‖τ‖ is the

number of hops of τ .

For a finite-horizon model checking problem on whether

σ |= ϕ1∃U≤T
ϕ2, we can use the well-known SMC-procedure

proposed in [2]. To prove the decidability of SNZ-LHA

system, we only need to prove SMC-procedure has limited

iterations for our case.

Let us first prove the following lemmas.

Lemma 1: In SMC-procedure reachability model check-

ing, if automaton state (v, σ) ∈ χ
i
\χ

i−1
(see Section 5.1

of [2] for the definition of χ
i
), then ∀τ , if (v, σ) τ χ

0
,

then ‖τ‖ ≥ ⌊ i
2⌋.

Proof: Suppose there is a trajectory τ , s.t. (v, σ) τ χ
0
and

h = ‖τ‖ < ⌊ i
2⌋.

• This is the supplementary file.

• T. Li, F. Tan, Q. Wang, and J. Cao are with Dept. of Comput-

ing, The Hong Kong Polytechnic Univ., Hong Kong S. A. R. Email:

csqwang@comp.polyu.edu.hk

• L. Bu is with State Key Lab for Novel Software Technology, Dept. of

Computer Sci. and Tech., Nanjing Univ., Nanjing, 210093, P. R. China.

Email: bulei@nju.edu.cn

• X. Liu is with School of Computer Science, McGill Univ., Montreal,

Canada. Email: xue.liu@mcgill.ca

Note τ can be denoted as τ = (v0, δ0, ρ0) → (v1, δ1, ρ1) →
. . . → (vh, δh, ρh), which consists of h transitions be-

tween (h + 1) v-trajectories, and (v0, ρ0(0)) = (v, σ) and

(vh, ρh
(δh)) ∈ χ

0
.

Since in each iteration of SMC-procedure, all predecessor

regions within one v-trajectory or within one transition is

included, it hence takes no more than (2h + 1) iterations

for SMC-procedure to include state (v, σ). Meanwhile, h <
⌊ i
2⌋ ⇒ h ≤ ⌊ i

2⌋ − 1 ⇒ 2h + 1 ≤ 2(⌊ i
2⌋ − 1) + 1 ≤

2(i
2 − 1) + 1 = i − 1. This means (v, σ) ∈ χ

i−1
, which

contradicts (v, σ) ∈ χ
i
\χ

i−1
. �

Lemma 2: Let A be an SNZ-LHA system. Then for any

trajectory τ in A, the trajectory duration δτ ≥
⌊

‖τ‖
‖E‖+1

⌋
ε,

where ‖τ‖ is the hop length of τ , ‖E‖ is the number of

transitions of A, and ε is defined in the definition of SNZ-

LHA system.

Proof: Due to the well-known pigeonhole principle, for every

sub-trajectory τ ′ of τ , if ‖τ ′‖ ≥ ‖E‖ + 1, then τ ′ must

have passed at least one cycle of transitions in A. Therefore,

trajectory τ must have passed at least
⌊

‖τ‖
‖E‖+1

⌋
cycles of

transitions in A without temporal overlapping. According to

the theorem of SNZ-LHA system decidability, every cycle of

transitions takes at least ε seconds to pass, the lemma hence

holds. �

Lemma 3: Suppose the LHA system only consists of one

LHA A. Let I = 2(⌈T
ε
⌉+1)(‖E‖+1)+1, where T is the

finite-horizon for finite-horizon reachability model check-

ing, ε is defined in the definition of SNZ-LHA system,

and ‖E‖ is the number of transitions in A, then the SMC-

procedure on model checking finite-horizon reachability

terminates at the (I + 1)th iteration.

Proof: Suppose there is automaton state (v, σ) ∈ χ
I+1

\χ
I
,

then ∀τ.(v, σ) τ χ
0
, we have

‖τ‖ ≥ ⌊
I + 1

2
⌋ (due to Lemma 1),

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 2

then trajectory duration

δτ ≥

⌊
‖τ‖

‖E‖+ 1

⌋
ε (due to Lemma 2)

≥

⌊
⌊ I+1

2 ⌋

‖E‖+ 1

⌋
ε =

⌊
⌊
2(⌈T

ε
⌉+1)(‖E‖+1)+2

2 ⌋

‖E‖+ 1

⌋
ε

=

⌊
⌊(⌈T

ε
⌉+ 1)(‖E‖+ 1) + 1⌋

‖E‖+ 1

⌋
ε

≥

⌊
(⌈T

ε
⌉+ 1)(‖E‖+ 1)

‖E‖+ 1

⌋
ε =

⌊
⌈
T

ε
⌉+ 1

⌋
ε

≥

⌊
T

ε
+ 1

⌋
ε >

T

ε
ε = T.

This violates the assumption that ϕ1 and ϕ2 already include

the requirement that global time t ∈ [0, T] for the case of

finite-horizon reachability model checking. Hence χ
I+1

\χ
I
=

∅, which means SMC-procedure terminates at the (I + 1)th
iteration. �

With the above definitions and lemmas, we can now prove

the decidability of SNZ-LHA system:

Because the LHAs in the system can be combined into a

single LHA within polynomial time [2], and the resulted LHA

A still satisfies the preconditions of SNZ-LHA system, hence

the theorem holds due to Lemma 3. �

APPENDIX B

DECIDABLE DESIGN PATTERN

To describe these patterns, however, we need the following

two concepts.

Definition 2 (Cycle of Transitions): Given a hybrid au-

tomaton A = (~x, ~x0, V, v0, inv, dif, E, act, L, syn), a cy-

cle of transitions is a sequence of e0v0e1v1 . . . ek−1vk−1e0,
where ei ∈ E, vi ∈ V , and ei = (v((i−1) mod k), vi)
(i = 0, 1, . . . , k − 1).

Definition 3 (Minimal Dwelling Time): Given a hybrid au-

tomaton A = (~x, ~x0, V, v0, inv, dif, E, act, L, syn), a lo-

cation v ∈ V has minimal dwelling time of ε iff for any

trajectory τ that enters v via a transition, τ must stay in

v for at least ε time before being able to leave v via a

transition.

With the above concepts, we can describe the following

design patterns, assuming S denotes a set of LHAs.

Definition 4 (ε-Minimal Dwelling Time Pattern): Given a

cycle of transitions C, if there is at least one location v in

C, s.t. v has a minimal dwelling time of ε, then C complies

with ε-Minimal Dwelling Time pattern.

Example 1: The supervisor hybrid automaton (see Fig. 8 of

the main file) has a cycle of transitions C1 = “eventSuperviso-

rApprove LaserApproved eventNormalDisapprove LaserDis-

approved eventSupervisorApprove”. Since all transitions enter-

ing location LaserDisapproved sets tdisapprove to 0; while all

transitions that leaves LaserDisapproved requires tdisapprove ≥
Tmin
disapprove. We assume Tmin

disapprove is a positive constant,

then LaserDisapproved has minimal dwelling time of ε =
Tmin
disapprove > 0. As LaserDisapproved is in C1, C1 hence

complies with ε-Minimal Dwelling Time pattern. �

Definition 5 (ε-Alternating Cyber-Value Pattern): Given a

set S of LHAs, and suppose LHA A ∈ S has a cycle of

transitions C = e0v0e1v1 . . . ek−1vk−1e0. If there are two

transitions ei, ej (i, j ∈ {0, 1, . . . , k − 1}) in C, s.t.

1) (i < j) ∨ ((i 6= 0) ∧ (j = 0));
2) to trigger ei, a state variable xl ∈ ~x must first

perform a discrete value switch from s to s′ (possibly
by another automaton in S);

3) to trigger ej , the same xl must equal s;
4) xl does not change value within any locations (i.e.,

it only changes during transitions).

5) s 6= s′, and all transitions in S that can switch xl

from s to s′ enter target locations with a minimal

dwelling time of ε.

then C complies with ε-Alternating Cyber-Value pattern.

Example 2: In the ventilator hybrid automaton (see Fig. 6 of

the main file), there is a cycle of transitions C2 = “eventVen-

tResume PumpOut eventVentToHold PumpIn eventVentHold

Hold eventVentResume”. Note that to trigger eventVentRe-

sume, LaserApprove must be first switched from true to

false; and to trigger eventVentHold, LaserApprove must

equal true. LaserApprove is a computer logic (i.e., cyber-

) variable that does not change in any locations. Plus, all

transitions that set LaserApprove from true to false enter

the LaserDisapproved location (see Fig. 8 of the main file),

which has a minimal dwelling time of ε = Tmin
disapprove, where

Tmin
disapprove is a positive constant. This implies C2 complies

with ε-Alternating Cyber-Value pattern. �

Definition 6 (ε-Alternating Physical-Value Pattern):

Given a cycle of transitions C, if there are two transitions

ei, ej in C, s.t.

1) to trigger ei, a state variable xl ∈ ~x must equal s;
2) to trigger ej , the same xl must equal s′;
3) s 6= s′, and xl represent a physical world parameter,

whose value can only change continuously, and there

is an upper bound R > 0 on |ẋl|, s.t.,
2|s−s′|

R
≥ ε.

then C complies with ε-Alternating Cyber-Value pattern.

Example 3: In the ventilator hybrid automaton (see Fig. 6 of

the main file), there is a cycle of transitions C3 = “eventVent-

PumpOut PumpOut eventVentPumpIn PumpIn eventVent-

PumpOut”. To trigger eventVentPumpOut, state variableHvent

must equal 0.3(m); while to trigger eventVentPumpIn, Hvent

must equal 0(m). Meanwhile, as Hvent represents a physical

world parameter: the current height of ventilator cynlinder.

Its value can only change continuously, and the change rate

is bounded by |Ḣvent| = 0.1(m/sec). Therefore, to change

from 0.3(m) to 0(m) and back to 0.3(m), it takes at least

2|0.3(m)− 0(m)|/0.1(m/sec) = 6(sec). Therefore C3 complies

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 3

with ε-Alternating Physical-Value pattern, where we can pick

ε = 6(sec). �

Proof of Theorem 2 of the Main File: If trajectory τ passes

through a transition twice, then it passes through a cycle of

transitions C. Given C must comply with one of the following

patterns:

Case 1: ε-Minimal Dwelling Time pattern, then τ must

stayed in one location on C for more than ε.

Case 2: ε-Alternating Cyber-Value pattern, then τ must have

changed a state variable xl’s value from s to s′ and back to s,
where xl, s, and s′ are described in Definition 5. According

to Definition 5, this costs at least ε amount of time.

Case 3: ε-Alternating Physical-Value pattern, then τ must

have changed a state variable xl’s value from s to s′ and

back to s, where xl, s, and s′ are described in Definition 6.

According to Definition 6, since xl is continuous and |ẋl| ≤ R,

altering xl from s to s′ and back to s takes at least 2|s−s′|
R

≥ ε
amount of time.

In summary, there must be δτ ≥ ε. Therefore, S is

SNZ-LHA-System, and hence is decidable for finite-horizon

reachability model checking. �

APPENDIX C

NP-HARDNESS OF SNZ-LHA SYSTEM

We can reduce the well-known NP-Hard problem of Directed

Hamiltonian Cycle to the problem of finite-horizon reachabil-

ity model checking of an SNZ-LHA-System.

The Directed Hamiltonian Cycle problem is as follows:

Given a directed graph G = (VG, EG), where VG and EG

are its vertex set and directed edge set respectively, does

G contain a directed Hamiltonian cycle?

Given an instance of Directed Hamiltonian Cycle problem

PG on directed graph G = (VG, EG), we can construct an

SNZ-LHA-System A = (~x, ~x0, V, v0, inv, dif, E, act, L, syn)
in polynomial time, where

V = VG, i.e., each vertex inG is regarded as a location in A.
Denote n = |V | = |VG|, and hence denote V = VG = {vi},
where i = 1, 2, . . . , n.

E = EG, i.e., each edge in G is regarded as an edge in A.

~x = (x1, x2, . . . , xn, t), i.e., we assign a variable xi for

each vi ∈ V = VG (where i = 1, 2, . . . , n); and t is a timer

for fixed dwelling time guarantee, which will be explained

later.

~x0 = (0, 0, . . . , 0), i.e., xi (where i = 1, 2, . . . , n) and t are
all initialized to 0.

v0 can be any location. Without loss of generality, let us

pick v0 = v1.

For each vi ∈ V (where i = 1, 2, . . . , n), inv(vi) corre-

sponds to the inequality proposition of

0 ≤ t < 1. (1)

For each vi ∈ V (where i = 1, 2, . . . , n), dif(vi) corre-

sponds to the following continuous activities:

ẋi = 1,

ẋk = 0, for each k 6= i and k ∈ {1, 2, . . . , n}

ṫ = 1. (2)

For each edge e = (vi, vj) ∈ E (where i, j ∈ {1, 2, . . . , n}),
act(e) corresponds to the following discrete actions:

t = 1, (3)

t′ = 0. (4)

Formulae (3), (4), (1), and (2) together imply every location

v ∈ V has a fixed dwelling time of 1: once entered, one

has to stay exactly 1 unit of time, and then move to another

location. This further implies LHA A complies with the ǫ-
Minimal Dwelling Time Pattern, where ǫ = 1. According to

Theorem of decidable design pattern, LHA A henceforth is a

SNZ-LHA-System.

Finally, we choose L = ∅ and syn = ∅ as they are

irrelevant to our proof.

With SNZ-LHA-System A at hand, our finite-horizon SNZ-

LHA-System reachability model checking problem PA checks

whether the following state space S is reachable within finite-

horizon T = n+ 1:

S = {(v1, ~x)|where 1.5 < x1 < 2,

and 0.5 < xi ≤ 1 for each i = 2, 3, . . . , n}.

A “yes” answer to PA implies there is a cyclic trajectory

on A that traverse each vertex v ∈ V exactly once and

returns to the initial location of v1. This trajectory hence

corresponds to a Hamiltonian Cycle in G, hence a “yes”

answer to PG. Conversely, a “yes” answer to PG implies there

is a Hamiltonian Cycle in G, along this cycle, we can traverse

A to reach S, hence a “yes” answer to PA.

From above, we prove Directed Hamiltonian Cycle problem

can be reduced to finite-horizon reachability model checking

of an SNZ-LHA-System problem in polynomial time. As Di-

rected Hamiltonian Cycle problem is NP-Hard, finite-horizon

reachability model checking of an SNZ-LHA-System problem

is hence NP-Hard. �

APPENDIX D

FALSE NEGATIVES AND FALSE POSITIVES DE-

TAILED DISCUSSIONS

For ease of narration, we call our proposed online model

checking based MDPnP practice as “MDPnP-practice”; call

the corresponding online modeling and online model check-

ing as “MDPnP-online-modeling” and “MDPnP-online-model-

checking” respectively.

Still take the laser tracheotomy for example, Table 1 lists all

possible cases for “MDPnP-practice”. We see that the upper

bounds of accident probability are

P cons
m = p(+)pm(−|+) (5)

and P aggr
m = p(+) [pm(−|+) + pm(?|+)] (6)

respectively for “conservative mode” and “aggressive mode”,

where p(+) is the probability to reach unsafe states under the

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 4

absolutely accurate patient model (i.e. the patient model in

“God’s view”, rather than the model described by Fig. 4 of

the main file); pm(−|+), pm(?|+) are respectively the con-

ditional probability that MDPnP-online-model-checking gives

“negative” answer (i.e., a false-negative answer), or misses

deadline (i.e., cannot give a deterministic answer). Note false-

positive is not a big concern as it will trigger fall-back plan,

leaving no chances for accidents (though may be a nuisance

to the surgeon).

TABLE 1

All Possible Cases for MDPnP Practice

Reality Online-Model-
Checking Result

What Happens Accident
Possible?

positive scenario 1 No
positive negative scenario 2 Yes

deadline scenario 1 (cons) No
miss scenario 2 (aggr) Yes

negative no need to care no need to care No
positive: unsafe states are reachable.
negative: unsafe states are not reachable.
scenario 1: fall-back plan kicks in, which forbids use of laser and keeps
ventilator on; the worst case is that the surgeon may be annoyed.
scenario 2: the system run as what Fig. 4, 6, 7, 8 of the main file describe.

In comparison to MDPnP-practice, now let us study the

current-practice (i.e., the actual practice in nowadays hospi-

tals) of laser tracheotomy.

First, the role of supervisor (i.e. the procedure described in

Fig. 8 of the main file) is taken over by a human-supervisor.

Usually, the human-supervisor is the surgeon himself/herself;

but for clarity, let us differentiate the two persons.

Second, as for line 4 of the algorithm described in Fig. 10 of

the main file, instead of MDPnP-online-modeling, the human-

supervisor uses his/her subjective judgement to model the

patient in the near future (e.g., replace
˜̇SpO2(t0) in Fig. 4

of the main file with his/her subjective prediction). We call

this “subjective-online-modeling”.

Third, as for line 6 and 11 of the algorithm described

in Fig. 10 of the main file, instead of MPnP-online-model-

checking, the human-supervisor uses his subjective judgement

to decide whether unsafe states are reachable. We call this

“subjective-online-model-checking”.

Therefore, reusing the same analysis on the MDPnP-

practice, we can derive the upper bounds of accident prob-

ability for the current-practice:

P cons
c = p(+)ps(−|+) (7)

and P aggr
c = p(+) [ps(−|+) + ps(?|+)] (8)

respectively for “conservative mode” and “aggressive mode”,

where ps(−|+), ps(?|+) are respectively the conditional prob-

ability that subjective-online-model-checking gives “negative”

answer (i.e., a false-negative answer), or misses deadline (i.e.,

cannot give a deterministic answer).

Suppose we adopt the “conservative mode”. By comparing

Equation (5) and (7), we see the MDPnP-practice is safer than

the current-practice when

pm(−|+) ≤ ps(−|+). (9)

How to mathematically verify Inequality (9) is beyond the

scope of this paper. However, we can still verify empirically.

For example, if some well-established math model for pre-

dicting patient near-future behavior exists [3], then we’d better

use MDPnP-online-modeling rather than relying on subjective-

online-modeling. Or, we can carry out comparison using well-

known benchmark patient traces, to see which online-modeling

is more trustworthy.

The same thing is for “aggressive mode”, except that

Inequality (9) now becomes

pm(−|+) + pm(?|+) ≤ ps(−|+) + ps(?|+). (10)

APPENDIX E

WIRELESS COMMUNICATIONS LINKS DETAILED

DISCUSSIONS

To evaluate the method proposed in Section 6.2 of the main

file, we redo the evaluations of Section 5.1 of the main file to

redraw its Table 1 and 2. All other settings are the same except

that we consider the link between the oximeter and supervisor

to be a wireless link.

The wireless link is unreliable, therefore packets carrying

blood oxygen level readings may be lost. The packet losses

are treated with the method proposed in Section 6.2 of the

main file. The results are summarized in Table 2 and 3 of

this supplementary file. These two tables respectively replace

Table 1 and 2 of Section 5.1 of the main file.

The results show that with packet loss rate of ≤ 3%, both

the deadline miss rates and the relative errors are moderately

low. Hence even with the unreliable wireless link, we can still

carry out online hybrid model checking.

Note with the new advancements in medical grade wireless

communications technology, it is possible to control wireless

link packet loss rate to below 1%, or even 0.1% [4][5].

TABLE 2

Statistics of execution time cost of online model checking (unit: second;

deadline D = 2 seconds)

Packet % of trials Execution time of those
loss missed caught deadline (secs)
rate deadline Min Max Mean Std

PhysioNet 1% 5.034% 0.817 1.720 0.932 0.124
Trace 2% 6.387% 0.817 1.720 0.932 0.125

3% 11.429% 0.817 1.720 0.929 0.124

HKPolyU 1% 4.690% 0.818 1.940 0.964 0.147
Trace 2% 6.030% 0.818 1.940 0.964 0.146

3% 11.725% 0.818 1.940 0.966 0.149

TABLE 3

Statistics of blood oxygen level online modeling relative errors (%)

Packet Min Max Mean Std
loss rate

PhysioNet 1% < 0.01 2.529 0.512 0.526
Trace 2% < 0.01 2.529 0.510 0.523

3% < 0.01 2.529 0.503 0.526

HKPolyU 1% < 0.01 3.918 0.602 0.602
Trace 2% < 0.01 3.918 0.600 0.606

3% < 0.01 3.918 0.591 0.608

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 5

REFERENCES

[1] O. Roux and V. Rusu, “Uniformity for the decidability of hybrid au-
tomata,” Static Analysis, vol. 1145, pp. 301–316, 1996.

[2] R. Alur et al., “Automatic symbolic verification of embedded systems,”
IEEE Trans. on Software Engineering, vol. 22, no. 3, pp. 181–201, Mar.
1996.

[3] J. X. Mazoit, K. Butscher, and K. Samii, “Morphine in postoperative
patients: Pharmacokinetics and pharmacodynamics of metabolites,” Anes-
thesia and Analgesia, vol. 105, no. 1, pp. 70–78, 2007.

[4] J. Huang et al., “Beyond co-existence: Exploiting WiFi white space for
ZigBee performance assurance,” Proc. of ICNP, pp. 305–314, Oct. 2010.

[5] Q. Wang et al., “Building robust wireless LAN for industrial control with
the DSSS-CDMA cell phone network paradigm,” IEEE Trans. on Mobile

Computing, vol. 6, no. 6, pp. 706–719, Jun. 2007.

