
Adapting a Main-Stream Internet Switch Architecture for Multi-Hop

Real-Time Industrial Networks

Qixin Wang∗, Sathish Gopalakrishnan†

∗ Department of Computing, The Hong Kong Polytechnic University
† Department of Electrical and Computer Engineering, University of British Columbia

Email: csqwang@comp.polyu.edu.hk, sathish@ece.ubc.ca

Abstract—As real-time industrial control systems scale up,
single real-time local area network (LAN) is no longer sufficient;
instead, we need real-time switches to merge many real-time
LANs into real-time wide area networks (WANs). However,
nowadays commercially-off-the-shelf WAN switches are designed
for best-effort Internet traffic rather than real-time traffic. To
address this problem, we propose a real-time crossbar switch
design that minimally modifies, and even simplifies the de facto
industrial standard switch design of iSLIP. Specifically, we
change the iSLIP request-grant-accept negotiation to determin-
istic grant. The switch runs periodically with an M cell-time
clock-period. Every input port runs per-flow queueing, and every
output port deterministically grants input port per-flow queues
according to its own M cell-time clock-period schedule. The
schedules are created offline. We prove that the global scheduling
can be reduced to a preemptive open shop scheduling problem;
as long as every input/output needs to send/fetch no more than
M cells per M cell-time clock-period, all outputs schedules do
not conflict; and the scheduling algorithm takes O(N4) time (N
is the number of input/output ports). Such design serves real-
time periodic/aperiodic traffic in a TDMA fashion. This simplifies
analysis, provides isolation, and results in a close-form end-to-
end delay bound. We implemented the proposed real-time switch
using Xilinx FPGAs, and built a distributed control test bed
upon the switched networks. Using the test bed, we carried out
experiments to compare the implemented real-time switches and
iSLIP switches. The results prove the necessity of using real-time
switches for real-time industrial control.

Index Terms—real-time, switch, industrial control, Cyber-
Physical Systems

I. INTRODUCTION

It is widely believed that Cyber-Physical Systems (CPS),

the effort to converge computers with the physical world, is

a theme for future computer science [1], [2], [3]. A repre-

sentative application of CPS is distributed real-time indus-

trial control, where distributed sensing, actuating, and control

nodes are interconnected via an underlying real-time network.

The traffic in such networks mainly includes periodic sens-

ing/actuating flows and periodic video flows with constant end-

to-end (E2E) delay bound requirements. For example, a typical

sensing/actuating flow may generate a message of 1kbit every
10ms, and each message must be delivered to the receiver end

within 50ms. In the following, we call such periodic flows

with constant E2E delay bound requirements real-time flows;

and focus on how to design switches to support such flows

(i.e., the so called real-time switches). The following further

explains our motivation.

Many works [3], [4], [5] have pointed out that as distributed

real-time industrial control systems scale up, single real-

time local area network (LAN) is no longer sufficient to

integrate their distributed subsystems; instead, we need real-

time switches to merge the many real-time LANs into real-time

wide area networks (WAN). For example, nowadays airplane

control involves hundreds of processors and peripherals, which

already exceeds the capacity of a single LAN. This forces

the avionics industry to push forward the avionics full-duplex

switched Ethernet (AFDX) [6] and the Infiniband switched

system area network architecture [7]. Same thing is happening

to advanced manufacturing [8], factory fieldbus [9], [10], [11],

advanced medical equipment systems [12], [13], smart power

grid [14], vehicular electronics [15] etc. Even for wireless

industrial control, real-time switches are needed to build the

multi-hop wired backbones to connect wireless base stations:

as Alves et al. [16], Willig et al. [17], Pellegrini et al. [18],

and Wang et al. [4] pointed out, wired backbone converging

multiple (centralized) wireless LANs might be the (most)

promising architecture for wireless industrial control.

However, the majority of nowadays commercially available

switches are tailored for best-effort Internet traffic rather than

real-time systems. Specifically, there are two main approaches

to building a switch: output queueing and input queueing.

In output queueing, queueing only takes place at the output

ports (simplified as “outputs” in the following). When a

packet arrives at an input port (simplified as “inputs” in the

following), it is immediately routed to the queue at its destined

output. Due to its simplicity, most QoS scheduling algorithms,

such as WFQ [19], WF2Q [20], Deficit Round-Robin [21] etc.,

assume output queueing [22].

Output queueing, however, creates a data bus bottleneck.

Since there is no queue at the inputs, the data bus must deliver

every arriving packet to output queue immediately. In the worst

case, every input may reach its maximum capacity, and all

incoming packets may go to a same output. Therefore, the

data bus connected to each output must provide a capacity

no less than the total capacity of all inputs. Suppose a switch

has N inputs, each with a capacity of C, then the data bus

connected to each output must provide a capacity of N × C.

We call this N speed-up problem. The N speed-up problem

makes output queueing undesirable for high-speed switches or

switches with large number of ports (N).

In contrast to output queueing, input queueing buffers

packets in queues at the inputs. This avoids the N speed-

up problem, but suffers from head of line (HOL) blocking:

if packets going to other outputs are blocked at the head

of the input queue, a packet to output j must wait for the

depletion of this backlog before it is transferred to output j,
even though output j is idle. It is well known that if each input

queue is first-in-first-out (FIFO), HOL blocking can limit the

throughput to just 58.6% [23].

The widely adopted solution to the HOL problem is vir-

tual output queueing (VOQ), where each input maintains N
queues, one exclusively for each output (hence called the

“virtual output queue” for that output). VOQs eliminate HOL

blocking, but packets from different inputs’ VOQs still contend

for the same output. Various schemes are proposed to reduce

this contention, so as to improve the hardware utilization.

According to our survey on switches in the market, of all

these schemes, iSLIP [24], [25], [26] has become the de

facto standard among switch manufacturers. However, though

iSLIP efficiently utilizes the switch hardware and is simple to

implement, it does not guarantee real-time. In fact, real-time

high-performance switch design is still an open problem [27].

To address this problem, we propose a real-time switch

design that minimally modifies, or even simplifies iSLIP. This
design benefits switch manufacturers because iSLIP is already

widely implemented in commercial products, and our proposed

minor modifications/simplifications can be easily incorporated

into the current manufacturing process. Our approach allows a

switch to serve each link l for Cl units of time everyM units of

time. It can easily support flow isolation, and hence facilitates

future extension to hierarchical scheduling [28], [29], [30],

[31], [32], [33], [34], [35], [22], [36], [37].

In the following, Section II describes the iSLIP scheme;

Section III proposes our switch design for industrial real-time

communications; Section IV evaluates our design; Section V

discusses related work; and Section VI concludes the paper.

II. CROSSBAR SWITCHES AND iSLIP

To support input queueing or VOQ, most high-performance

switches use a crossbar fabric to connect inputs and outputs

[38] (Fig. 1). The data bus from each input (the horizontal

line segments in the figure) intersects with the data bus of

each output (the vertical line segments). The intersections can

be connected or disconnected during runtime by the switch

scheduling logic. To facilitate the scheduling logic, crossbar

switches transfer packets in fixed-size fragments called cells;

and the time to transfer one cell across the crossbar fabric

is called a cell-time. Therefore, the scheduling logic works

periodically: it determines a matching between inputs and

outputs at the beginning of each cell-time; then all scheduled

cells are transferred synchronously across the crossbar fabric,

taking one cell-time; and then the next period starts, so on and

so forth.

iSLIP [24], [25] is a widely implemented scheduling mech-

anism for VOQ crossbar switches. Without loss of generality,

suppose a switch consists of N inputs I1 ∼ IN and N outputs

O1 ∼ ON (or an “N×N switch” in the following discussion).

Under iSLIP, every input Ii maintains a circular list of outputs

O1 ∼ ON , with pointer ai pointing to O1 initially. This

circular list is called the input’s round-robin schedule. The

output pointed to by ai has the highest priority, the next

output (modulo N) has the next highest priority, and so on. In

Fig. 1. Crossbar fabric that connects inputs with outputs.

the same way, every output Oj also maintains a round-robin

schedule of inputs, with pointer gj pointing to the highest

priority input, the next input (modulo N) has the next highest

priority, and so on.

With the above data structures, the basic iSLIP runs the

following steps [24]:

Step 1 Request. Each unmatched input sends a request to

every output for which it has a queued cell.

Step 2Grant. If an unmatched output receives any requests,

it grants the requesting input with the highest priority

in the output’s round-robin schedule. The output

notifies each input whether or not its request was

granted. The pointer gi to the round-robin schedule

is incremented (modulo N) to one location beyond

the granted input if, and only if, the grant is accepted

in Step 3.

Step 3 Accept. If an input receives any grants, it accepts

the granting output with the highest priority in the

input’s round-robin schedule. The pointer ai to the

round-robin schedule is incremented (modulo N) to

one location beyond the accepted output.

Since some grants may not be accepted, iSLIP may carry

out up to N iterations of Request-Grant-Accept at the begin-

ning of each cell-time to increase the size of the matching.

The original iSLIP mechanism [24], [25] also accommo-

dates several variations such as weighted iSLIP and pri-

oritized iSLIP. Different commercial iSLIP switches may

implement certain subsets of these variations. According to

McKeown [25], iSLIP can achieve 100% throughput (i.e.,

every output reaches maximum capacity; in other words, the

bipartite graph between inputs and outputs defined by the

crossbar fabric reaches full match for every cell-time) for

uniform traffic, and quickly adapts to a fair scheduling policy

that never starve any input queue for non-uniform traffic.

However, obtaining accurate delay bounds for iSLIP is still

an open problem. The best known iSLIP delay bound is still

“very pessimistic” [27]. For example, if in an N × N iSLIP
switch, every input has periodic real-time traffic going to every

output, the known single hop delay bound for packets from

input Ii to output Oj is

d = N2
∑

k

Cijk, (1)

where Cijk is the per packet transmission time of the kth real-

time flow going from Ii to Oj . Suppose N = 32, Cijk is the

same for all links and flows, and if there are 100 real-time

flows going from Ii to Oj , then the single hop delay bound

is at least 102400 times that of a packet transmission time.

III. A REAL-TIME SWITCH DESIGN

To support real-time communication, we propose a real-

time switch design by making minimum modifications to

iSLIP. Interestingly, our design simplifies iSLIP rather than

complicates it.

Firstly, we observe a large body of research on serving a

real-time task or task-set with a real-time virtual machine task

(VM-task) [28], [39], [33], [34], [22], [36], [37]. One simple

and widely implemented form is clock-driven scheduling [22],

where a VM-task (M,C) indicates that a real-time task or

task-set is served C time units during each clock-period of M
time units.

Using clock-driven scheduling, we may serve the kth real-

time flow fijk from input Ii to output Oj in a crossbar switch

with a VM-task (M,Cijk) (unless explicitly noted, the default
time unit is “cell-time”), where k = 1, 2, . . . ,Kij , and Kij is

the total number of real-time flows going from Ii to Oj . That

is, as long as the switch forwards Cijk cells from Ii to Oj for

fijk in each M cell-time clock-period, packets of fijk shall

meet their local deadlines.

Secondly, iSLIP’s request-grant-accept negotiation between

inputs and outputs is for non-deterministic Internet traffic,

which changes frequently. If the traffic rarely changes and

is periodic, as that of flows in real-time industrial control

networks, there is no need for a request-grant-accept nego-

tiation. Instead, deterministic grants (or accepts) alone suffice.

We only need to work out a conflict-free grant (or accept)

schedule during configuration-time.

In summary, our real-time switch shall serve each real-time

flow with a real-time VM-task, and the VM-task is served

with deterministic grant (or accept). We elaborate such design

in the following.

A. Per-flow VOQ

Our proposed real-time switch is an N ×N crossbar VOQ

switch. However, to control jitter for simple end-to-end (E2E)

delay guarantee, we deploy per-flow virtual output queueing

(per-flow VOQ), instead of combining all cells at input Ii
destined for output Oj in one virtual output queue. In other

words, if there are Kij flows going from Ii to Oj , then for

Oj , we maintain Kij queues at Ii for each flow respectively.

The overall buffer requirements at the switch do not change

(much) because of the per-flow VOQs; the same packets that

would have been buffered at one VOQ are held in different

buffers depending on their flow id. Flow differentiation can

be performed in conjunction with IP lookup and output port

identification, therefore the hardware complexity and the per-

cell processing time overhead increase only marginally. It is

also worth mentioning that per-flow VOQs are simple FIFO

queues. We do not need to maintain per-flow state information,

or perform sorting (as most timestamp based QoS schemes,

such as WFQ [19] and WF2Q [20], do), which may affect

performance.

B. Traffic demand

All traffic demand in our real-time switch is abstracted by

the clock-driven scheduling of VM-tasks (see Section III-E

Equation (4)). According to clock-driven scheduling, the kth
real-time flow fijk from Ii to Oj can be served by VM-task

τijk = (M,Cijk). That is, during each clock-period of M
cell-time, Cijk cells are forwarded from Ii to Oj for flow

fijk.

Denote Cij
def
=

∑Kij

k=1
Cijk. That is, Ii needs to forward Cij

cells to Oj during each clock-period. Then the entire VM-task

set {(M,Cijk)} (i = 1 ∼ N, j = 1 ∼ N, k = 1 ∼ Kij) must

meet the following constraints to be feasible:

Constraint 1: Feasible input utilization

N
∑

j=1

Cij ≤ M, i = 1, 2, . . . , N. (2)

Constraint 2: Feasible output utilization

N
∑

i=1

Cij ≤ M, j = 1, 2, . . . , N. (3)

Infeasible VM-task sets are unschedulable, and we do not

consider them.

C. Runtime scheduling

Corresponding to the M cell-time clock-period, each output

Oj maintains a round-robin schedule Sout
j ofM elements. The

gth (1 ≤ g ≤ M) element dictates the input from which Oj

fetches a cell at the gth cell-time of a M cell-time clock-

period. Sout
1

∼ Sout
N are conflict-free, meaning at any cell-

time of the M cell-time clock-period, no two outputs fetch

cells from the same input; and Sout
j (j = 1 ∼ N) has exactly

Cij (i = 1 ∼ N) elements for input Ii, meaning Oj fetches

Cij cells from Ii in each M cell-time clock-period. We will

describe how to derive Sout
1

∼ Sout
N in a later subsection

(Section III-D).

Correspondingly, each input Ii maintains a round-robin

schedule Sin
ij of Cij elements for each output Oj . The ath

(a = 1, 2, . . . , Cij) element of Sin
ij indicates the per-flow VOQ

to send a cell from, when Ii is to connect Oj for the ath
time during the M cell-time clock-period. That is, Sin

ij has

Cijk elements for fijk (k = 1 ∼ Kij) respectively; and these

elements are arbitrarily ordered.

Input Ii also maintains a pointer ρij to S
in
ij , initially pointing

to the first element of Sin
ij .

With the above settings, our proposed real-time switch

only executes two steps at the beginning of the gth (g =
1, 2, . . . ,M) cell-time of each M cell-time clock-period:

Step 1Grant. Output Oj grants the input indicated by the

gth element of Sout
j .

Step 2 Accept. On receiving a grant from Oj , input Ii sends
Oj the head cell (or null if the queue is empty) of per-

flow VOQ indicated by pointer ρij . ρij is increased

by 1 (modulo Cij).

The “Request” step in the original iSLIP disappears; and

because Sout
1

∼ Sout
N are conflict-free, a “Grant” is always ac-

cepted , which eliminates the need of N iterations. Therefore,

our real-time switch incurs O(1) computation during runtime,

and is simpler than iSLIP.

D. Configuration-time scheduling

During configuration-time, we need to work out conflict-

free round-robin schedules Sout
1

∼ Sout
N . In this section, we

show that any feasible VM-task set has a conflict-free schedule

that can be computed in polynomial time.

Theorem 1: A VM-task set {(M,Cijk)} has conflict-free

schedules Sout
1

∼ Sout
N if and only if the VM-task set is fea-

sible (see Constraint 1 and 2 for the definition of “feasible”);

and any feasible VM-task set can be scheduled within O(N4)
time, where N is the number of input (also output) ports.

Proof: 1) Sufficiency: The scheduling of feasible VM-task

set {(M,Cijk)} can be reduced to a preemptive open shop

scheduling (POSS) problem [40].

The preemptive open shop scheduling problem involves n
tasks, denoted by the set {τi}, and η machines (n ≥ 1, η ≥ 1).
τi has η subtasks, represented by the set {τij}, such that τij
has to be executed on machine j. Tasks can be preempted, and

no restrictions are placed on the order in which the subtasks

are executed. No machine can operate on more than one task

at a time, and no task can execute on more than one machine

at the same time. If tij is the time required by subtask τij on

machine j, we can obtain the following quantities:

Tj =

n
∑

i=1

tij = total time on machine j, ∀1 ≤ j ≤ η,

Li =

η
∑

j=1

tij = total time for task i, ∀1 ≤ i ≤ n.

The optimal finish time for all operations is α =
maxi,j{Tj , Li}, which can always be achieved according

to the scheduling algorithm suggested by Gonzalez and

Sahni [40]. The scheduling algorithm has a time complexity

of O(β2), where β is the number of non-zero subtasks.

Regard all VM-tasks forwarding cells from Ii to Oj as

one VM-task (M,Cij), where Cij
def
=

∑Kij

k=1
Cijk; and

regard each output Oj (j = 1, 2, . . . , N) as a POSS

machine. For each given I (I = 1, 2, . . . , N), regard

VM-task subset {(M,Cij)|i == I} as a POSS task

that runs CI1, CI2, . . . , CIN time units on POSS machine

O1, O2, . . . , ON respectively. According to the POSS algo-

rithm proposed by Gonzalez and Sahni [40], any feasible VM-

task set {(M,Cij)} can always finish within α = M time

units, i.e., any feasible VM-task set {(M,Cij)} is schedulable;
and the scheduling complexity is O(N4) since β ≤ N2.

2) Necessity: According to the definition given in Con-

straint 1 and 2, any infeasible VM-task set either exceeds the

capacity of an input, or an output, hence is not schedulable.

�

Although Gonzalez and Sahni’s POSS algorithm is polyno-

mial and optimal (in the sense it schedules any feasible VM-

task set), its implementation is non-trivial. In the following,

we propose a sub-optimal but simpler scheduling algorithm,

which has straight-forward graphical meaning.

As in the proof of Theorem 1, we first regard all VM-tasks

forwarding cells from Ii to Oj as one VM-task (M,Cij),

where Cij
def
=

∑Kij

k=1
Cijk. We can graphically represent the

VM-task set {(M,Cij)} (i, j = 1, 2, . . . , N) as a demand

matrix (see Fig. 2):

Definition 1 (Demand matrix): A demand matrix D =
{djg} is a N × M matrix, with each element djg ∈
{0, 1, 2, . . . , N}. In the jth (j = 1, 2, . . . , N) row, Cij

elements are colored i (i = 1, 2, . . . , N) respectively; the

remaining elements are colored 0, meaning empty slots; and

the elements in the row are arbitrarily ordered.

In a demand matrix, each non-zero element in the jth row

indicates the input from which output Oj shall fetch a cell

during a M cell-time clock-period.

Naturally, each demand matrix has the following property:

Property 1 (Feasible demand matrix): Suppose the

demand matrix {djg}N×M represents a VM-task set

{(M,Cij)}. Then {(M,Cij)} is feasible if and only if for

each non-zero color i ∈ {1, 2, . . . , N}, the demand matrix

has no more than M elements colored in i. Such a demand

matrix is called a feasible demand matrix.

In addition, a demand matrix can represent a schedule.

Definition 2 (Schedule (matrix)): We regard a demand ma-

trix D = {djg}N×M as a schedule if each element djg
(djg 6= 0) implies that output Oj grants input Idjg

at the

gth cell-time of each M cell-time clock-period, and no two

elements in each column of D have the same non-zero color.

We shall also call such demand matrix a schedule matrix.

The jth (j = 1 ∼ N) row of a schedule matrix represents

schedule Sout
j . Since a schedule matrix one-to-one mapps to

a valid schedule, “schedule matrix” and “schedule” become

interchangeable terms.

With the help of the schedule matrix, configuration-time

scheduling now has graphical meaning: given a feasible de-

mand matrix D, configuration-time scheduling permutates the

elements in each row of D to produce a schedule (a matrix

where no two elements in each column have the same non-

zero color). Fig. 2 illustrates the relationship between demand

matrix, scheduling algorithm, and schedule matrix.

Fig. 2. An example illustrates the relationship between Demand Matrix,
Configuration-Time Scheduling Algorithm, and Schedule Matrix, where num-
ber of ports N = 4, and a clock-period is M = 5 cell-time.

With the help of the above graphical tools, we can devise

many simpler sub-optimal scheduling algorithms. In Fig. 3,

we propose the least slack (LS) algorithm. The term “slack”

means the following: if a row of a demand matrix has κ
elements colored c, then color c has a slack of (M − κ) in

this row.

1. LeastSlack(D/* the N ×M demand matrix, passed by copy */):
2. Initiate schedule matrix S as an N ×M empty matrix.
3. while D has non-zero colored element begin
4. Of all rows of D, pick the non-zero color c that has least slack

(break ties arbitrarily).Denote the corresponding row index as j.
5. Move the elements of color c in the jth row of D to the earliest

(i.e., empty slots with the smallest column indices) and
conflict-free empty slots in the jth row of S.
break the while loop if cannot find any conflict-free empty slot.

6. end.
7. if all non-zero colored elements of D are removed, return S;
8. else return cannot find schedule.

Fig. 3. Least Slack (LS) Scheduling. The term “conflict-free” means no two
non-zero colored elements in each column of a matrix have the same color.

For the LS-scheduling algorithm, let tuple (r, c) correspond
to the slack of color c in the rth row of demand matrix. During

initialization, we shall create and sort these N2 tuples into a

list L with ascending slack, which takes O(N2 logN +NM)
time. Then Step 3 only takes O(1) time: just to check whether

L is empty; and Step 4 only takes O(1) time: just remove the

head of L. Step 5 takes O(M) time, if we maintain an N×M
boolean array F for S with Fcg indicating whether the gth
column of S already has an element colored c. Thewhile loop

from Step 3 to Step 6 loops at the most N2 times. Therefore,

the time complexity of LS-scheduling is O(N2 logN+NM+
N2M) = O(N2M).

E. E2E Delay Guarantee

In this section, we analyze the E2E delay guarantee provided

by our proposed real-time switch for industrial real-time

applications. In these applications, the dominating traffic is

periodic, such as sensing, actuating, and video monitoring.

Aperiodic traffic can be served by periodic VM-tasks [22].

As a result, we shall assume that all traffic is periodic in the

following analysis.

We assume that all the switches in the industrial network

comply with the proposed real-time switch scheme. We also

assume that all switches adopt the same clock-period of P ≡ 1
(ms) and have the same per port capacity. Assume a uniform

cell size of 500 bits1. If the per port capacity is 1Gbps, 10Gbps,
or 100Gbps, then a clock-period of 1ms corresponds to an M
of 2000, 20000, and 200000 cell-time respectively.

Suppose that a real-time flow f needs to send, at the least, a

message of E cells every T cell-time, denoted as f = (T,E).
Note that E and T may be real numbers instead of integers.

Then we over provision f with VM-task τf = (M,C), where

C =

⌈

E

⌊T/M⌋

⌉

. (4)

1Real-world switches usually use cell size of 512 bits. We use cell size of
500 bits for narrative simplicity.

That is, each message of f is forwarded as R
def
= ⌊T/M⌋

packets, and each packet consists of C cells. Note, Equa-

tion (4) assumes T > M , since when M cell-time equals

1ms, for most industrial real-time applications, T > M .

Suppose f traverses H hops of our proposed real-time

switches, each schedules a VM-task of (M,C) to forward the

packets of f .
To derive the E2E delay, we start from the first hop.

Since the first hop forwards exactly C cells for flow f in

any consecutive M cell-time, whenever a new message of

f arrives, the first packet of the message takes at the most

M+1 cell-time to be forwarded, the additional 1 is because the
packet may arrive during the middle of a cell-time. After that,

the switch forwards a next packet every additional M cell-

time, until all R packets are forwarded. Same thing happens

in the following switches. Therefore, the worst case E2E delay

D (ms) for the message is

D =

H
∑

h=1

(M + 1)δ + (R− 1)Mδ

= (H +R− 1)P +Hδ, (5)

where δ (ms) is one cell-time in the unit of millisecond.

The first item of Equation (5) is the worst case E2E delay

for the first packet. After the first packet arrives at the receiver

end, every additional M cell-time, a subsequent packet arrives,

until all R packets arrive.

Note that the above analysis can be easily extended to cases

where the proposed real-time switches have different per port

capacities, which are not discussed in this paper due to page

limits.

IV. EVALUATION

A. Efficiency of M Cell-Time Clock-Period

A natural question on the proposed real-time switch is:

how efficient is it to enforce a unanimous M cell-time clock-

period? We evaluate this in the context of real-time industrial

control traffic.

There are two types of real-time traffic in real-time indus-

trial control: real-time sensing/actuating traffic and real-time

video traffic. Real-time sensing/actuating traffic involves low

data-throughput. A typical sensing/actuating flow generates

a 1 ∼ 5kbit message every 10(ms). The maximal allowed

E2E delay is usually 50ms [41], [42]. Real-time video traffic

involves high data-throughput. A typical video flow generates

one message (a.k.a. “frame”) every 30ms, and the message

size is in the worst case 120 ∼ 240kbits. And usually the

E2E delay for each video frame is also 50ms [41], [42]. As

in Section III-E, we assume a fixed cell size of 500bits/cell,
and we always pick M so that M cell-time equals 1ms.

In the following, we run 1000 trials for each type of

switch settings: with per port capacity of 1Gbps, 10Gbps, and
100Gbps; and number of input ports (which is also the number

of output ports) of 8, 16, and 32.
In each trial, we randomly add sensing/actuating or video

flows to a switch (without exceeding port capacities); and the

messages of each flow f are over-provisioned with VM-task

(a)

(b)

(c)

Fig. 4. Schedulability ratio for given switch utilization demand using the
proposed real-time switch and M cell-time clock-period.

(M,C) as described in Equation (4) of Section III-E. For

each flow set, we calculate its switch utilization demand, and

check whether the flow set is schedulable using the M cell-

time clock-period. Note that the switch utilization demand

is calculated using each flow’s original message period and

message size, not the over-provisioned VM-task (M,C); and
switch utilization equals the average utilization of all inputs

of the switch (assume all inputs has the same capacity). Fig. 4

plots the schedulability ratio (i.e. probability) for given switch

utilization demand.

We find that our real-time switch achieves good schedulabil-

ity and switch utilization. When the switch utilization demand

is below 70%, a flow set is empirically always schedulable in

all settings. Particularly, for high-speed switches with per port

capacity of 10Gbps and 100Gbps, the switch utilization can

reach nearly 85% and 90% for all settings to provide a 100%
schedulable ratio (empirically).

We also find that the M cell-time clock-period schedu-

lability ratio improves as per-port capacity increases. Take

Fig. 4 (a) for example: a switch utilization demand of 86%
corresponds to a schedulability ratio of 0, 96%, and 100%
when the per port capacity is 1Gbps, 10Gbps, and 100Gbps
respectively.

On the other hand, the schedulability ratio deteriorates as the

number of ports increases. For example, the 1Gbps curves of
Fig. 4 (a), (b), and (c) shows that when the switch utilization

demand is 80%, the schedulability is 43%, 22%, and 0 for

8 port, 16 port, and 32 port switches respectively. This is

intuitive because more ports means more contention.

B. E2E Delay

Besides utilization, real-time application users are more

concerned with the switched network’s E2E delay bound. The

majority of industrial real-time applications are mission or

safety critical. For such applications, users would not and

should not choose a switched network whose E2E delay bound

is unknown. This implicitly disqualifies the use of iSLIP
switched networks, whose E2E delay bound is still an open

problem.

Now the remaining question is, are the E2E delay bound

provided by our real-time switch good enough? The following

gives the answer.

We run the same simulation described in Section IV-A to

evaluate the E2E delay upper bound statistics. We assume that

the maximal hop count is 15. The E2E delay upper bound of

our proposed real-time switch is given in Equation (5). The

simulation result statistics are summarized in Fig. 5.

We see that using our proposed real-time switch, all E2E

delays are within 50ms, which meets the demand of most

industrial real-time traffic2.

C. Efficiency of LS Algorithm

We also evaluate the efficiency of LS algorithm described

in Fig. 3.

We know that Gonzalez and Sahni’s POSS algorithm is

optimal in the sense that it can schedule any feasible demand

matrix. LS is a simpler, but sub-optimal algorithm. For any

feasible demand matrix, POSS provides a schedulability ratio

of 100%. We compare this with LS’s schedulability ratio. We

still try three different numbers of ports: 8, 16, and 32. For
each number of ports, we try three different per port capacity:

1Gbps, 10Gbps, and 100Gbps. For each setting, we use the

same traffic generator (uniform traffic random distribution,

2To provide more information, Fig. 5 also plots the corresponding single

hop delay bound statistics if we use iSLIP switches instead (see Equation (1)).
According to [27]’s analysis, the single hop delay bound is tight when all
queues in the iSLIP switch are backlogged. Meanwhile, according to [25]’s
analysis, when traffic is uniformly distributed and the iSLIP switch is heavily
loaded (e.g., over 50%), the scenario that all queues are backlogged happens
very often. Therefore, under our simulation set up (uniform traffic distribution,
and heavily loaded), the case that all queues are backlogged happens. When
such a case happens, the iSLIP single hop delay bound given in Equation (1)
becomes tight, and hence becomes a lower bound for iSLIP E2E delay.

(a)

(b)

(c)

Fig. 5. E2E Delay Comparison. The iSLIP single hop delay bound statistics
are also provided, please see footnote 2 for their meanings.

same sensing/actuating and video traffic pattern) used in

Section IV-A to create 1000 feasible demand matrices, and

check whether they are schedulable using the LS algorithm.

The results are plotted in Fig. 6.

We find that LS schedulability is sensitive to the number

of ports. As shown in Fig. 6 (a), (b), and (c), as the number

of ports increases from 8, to 16, and to 32, the LS-algorithm

can schedule more than half, about half, and less than half

of the randomly generated feasible matrices. This is intuitive

because more number of ports means a demand matrix has

more colors to conflict with each other in each column.

We also see that LS schedulability is not sensitive to per

(a)

(b)

(c)

Fig. 6. LS Schedulability Ratio for Given Demand Matrix Utilization.

port capacity: in all of Fig. 6 (a), (b), and (c), different per

port capacity of 1Gbps, 10Gbps, and 100Gbps result in similar

curves. This is probably because the number of colors that can

conflict is fixed, given the number of ports is fixed.

D. Experiment

We implemented the iSLIP switch and our real-time switch

on Xilinx ML401 FPGAs [43] and built a test bed as shown

in Fig. 7. The testbed uses a switched network to connect

a Control Node with a Quanser 3DOF Helicopter [44] (see

Fig. 8). The helicopter periodically (every 10msec) sends the

control node its angular positions along the three movement

axes (see Fig. 3-2): travel (λ), elevation (ε), and pitch (p) .

The control node periodically (every 10msec) feeds back the

control command.

Fig. 7. Test Bed Layout (helicopter picture from [44]).

Fig. 8. Quanser 3 DOF Helicopter (picture from [44]). By applying voltages,
the two propellers (the two blue circles in the right side of the figure) can
turn/position the helicopter along three rotation axes: travel (λ), elevation (ε),
and pitch (p).

According to Fig. 7, two additional jamming nodes are

connected to Switch 1 and Switch 2 respectively. The jamming

nodes inject jamming traffic to interfere the real-time flows be-

tween the control node and the helicopter. In our experiments,

jamming traffic consists of continuous cells sent toward the

helicopter.

1) Demo: We carried out four trials (corresponding demo

videos are also available on YouTube [45]) to demo the

effectiveness of real-time switch. Each trial tries to fly the

helicopter around its travel axis for one full circle, stopping

at λ = 0◦, 45◦, 90◦, 135◦, 180◦,−135◦,−90◦,−45◦, 0◦, while
maintaining elevation angle ε around 0◦.

The first and second trial have no jamming traffic. Fig. 9 (a)

and (b) show the traces of the helicopter during these two trials

respectively. According to the figures, both real-time switch

and iSLIP switch work fine.

The third and fourth trial have jamming traffic. Fig. 9

(c) and (d) show the traces of the helicopter during these

two trials respectively. In both trials, both jamming nodes

in the test bed are turned on. We see the jamming traffic

barely affects the real-time switch network; but for the iSLIP
switch network, the helicopter cannot takeoff (elevation angle

ε remains negative) and later loses control (an abrupt shoot up

of pitch angle p), and we have to stop the system to prevent

damaging the helicopter hardware.

2) Quantitative Comparison: We run more trials to carry

out quantitative comparisons. In each trial, we first fly the

helicopter to a reference position in the air; when helicopter

stabilizes3, we turn on jamming traffic and observe the heli-

copter for at least 10 more seconds; and then we stop.

3Empirically, 10 seconds after taking off is way enough for the helicopter
to stabilize around our reference position.

(a) Using iSLIP Switch, without Jamming

(b) Using Real-Time Switch, without Jamming

(c) Using iSLIP Switch, with Jamming

(d) Using Real-Time Switch, with Jamming

Fig. 9. Trace of Helicopter.

Ten trials are carried out using the iSLIP switch network

and the real-time switch network respectively; and then the

statistics of the twenty traces are compared.

Fig. 10 (a) and (b) show the helicopter traces of two example

trials for iSLIP switch networks and real-time switch networks

respectively. In the trial of Fig. 10 (a), the jamming traffic is

turned on at the time instance of 38.0sec, when the helicopter

has been stabilized for at least 10sec in the air. But since iSLIP
cannot maintain real-time flow under jamming, the helicopter

falls immediately once the jamming traffic is turned on. The

same thing happens to all other nine trials using iSLIP switch

networks. In the trial of Fig. 10 (b), the jamming traffic is

turned on at the time instance of 36.5sec. Since real-time

switch can isolate real-time flow from jamming traffic, the

helicopter is not affected. The same thing happens to all other

nine trials using real-time switch networks.

(a) A trial using the iSLIP switch network, jamming starts at 38.0sec.

(b) A trial using the real-time switch network, jamming starts at 36.5sec.

Fig. 10. Example Trials/Traces.

TABLE I
STATISTICS OF Tfall(SEC): TIME TO FALL AFTER JAMMING STARTS

min mean max std

iSLIP Switch 1.2 3.1 4.0 0.8
Real-Time Switch ∞ ∞ ∞ ∞

The above fact is quantitatively described by Fig. 11 and

Table I.

Fig. 11 (a) and (b) compare the statistics of helicopter traces

10sec before and 10sec after the jamming starts in the iSLIP
switch network; while Fig. 11 (c) and (d) compare those

of real-time switch network. The metric we compare is the

absolute deviation dε of elevation angle ε, defined as

dε
def
= |ε− εref |,

where ε is the sampled elevation angle and εref is the elevation

angle for the reference position. The sampling rate is 100Hz.

We choose dε because the elevation angle indicates whether

the helicopter remains in the air (it is negative when the

helicopter stays/hits the ground); and staying in the air instead

of falling is the most basic and safety critical requirement for

helicopter control.

In all ten trials using iSLIP switch, the helicopter falls;

while in all ten trials using real-time switch, the helicopter

does not fall. Let Tfall(sec) indicate the time length between

the start of jamming and the helicopter falls to the ground,

Table I shows the statistics of Tfall.

(a) iSLIP switch network: statistics of dε sampled during the 10sec period
right before jamming starts.

(b) iSLIP switch network: statistics of dε sampled during the 10sec period
right after jamming starts.

(c) Real-time switch network: statistics of dε sampled during the 10sec period
right before jamming starts.

(d) Real-time switch network: statistics of dε sampled during the 10sec period
right after jamming starts.

Fig. 11. Comparison of dε
def
= |ε − εref | statistics in the iSLIP switch

network and the real-time switch network.

V. RELATED WORK

The main purpose of the paper is to pave way for the main-

stream Internet switch vendors, who build iSLIP switches,

to smoothly evolve/expand toward real-time industrial control

and CPS. We believe such a smooth evolution path can attract

more support for real-time industrial control and CPS from

the Internet industry.

Besides iSLIP, the following gives more related work in the

Internet switch industry.

Internet support for real-time communication has typi-

cally been restricted to prioritization in switches (also called

“routers” if routing function is emphasized, or if parallel

packet forwarding is not supported). The number of priority

levels, however, is about 4 to 8 in conventional Internet

switches, and this is insufficient for hard real-time guarantees.

On the other hand, many switch designs for real-time sys-

tems require significant changes compared to commercially-

available switches for Internet. But for most switch manufac-

turers, the desire to use existing solutions, or solutions with

minimal changes, plays a key role in decision making due to

cost and risk management considerations.

Prioritized bus and ring networks have been used in small

real-time systems [46], [47], [48] but they are not designed

for high-speed network backbones, such as those of WANs.

Rexford, Hall and Shin [49] propose a switch for real-time

communication but it was designed to support deadline-based

scheduling, which imposes significant hardware changes. Ad-

ditionally, their switch is not designed for high-speed network

backbones either. Similarly, Venkatramani and Chiueh pro-

posed a real-time switch for Ethernets [50], which is neither

designed for high-speed network backbones.

While there has been some effort, such as by Rexford, Hall

and Shin, to design new switches for real-time systems, con-

siderable effort has been devoted to analyzing the performance

of high-speed switches and obtaining delay bounds [51], [52].

The scheduling of crossbar switches reduces to a matching

on a graph, and fast algorithms for obtaining a matching

have also been studied [53]. These results use stochastic

traffic patterns and provide asymptotic performance bounds

that are not sufficient for industrial systems that require greater

predictability.

Some related work concerns the use of COTS switches for

real-time systems using approximate bounds and designing

networks of switches to meet end-to-end deadlines [27]. The

work presented in this article complements such work; better

switch architectures result in reduced message delays, which

in turn reduces the cost of networks that can guarantee end-

to-end requirements.

There are also efforts on emulating output queueing us-

ing input queueing or combined input-output queueing [54],

[55], [56], [57], [58]. However, how to achieve the same

hardware utilization efficiency as that of conventional input-

queueing/VOQ crossbar switches is still an open problem.

A variation of combined input-output queueing is combined

input-crosspoint-output queueing [59], [60], [61], [62], where

buffers are allocated in inputs, outputs, and the crossbar. How-

ever, such architecture has not yet been widely implemented

by switch manufacturers.

Unlike the Internet switch industry, the industrial fieldbus

industry [63] has been working on hard real-time support

for a long time. Architectures like Profibus [10], Foundation

Fieldbus [9], CAN bus [64], TTEthernet [65] etc. are already

widely used. However, their support for hard real-time mainly

focuses on local area networks; the support for hard real-time

over multi-hop switched networks is not universal.

TTEthernet [65] is one fieldbus standard that supports

hard real-time over multiple hops of switches. The core of

TTEthernet is a global clock synchronization service installed

on every participating node. With that service at hand, global

time division multiple access control can be carried out to

support hard real-time. However, TTEthernet is based on the

assumption that the underlying multi-hop switched network

has deterministic end-to-end delay bound. TTEthernet does

not specify the detailed design of the switches. Therefore, our

real-time switch can complement TTEthernet by providing a

detailed switch design that matches its core assumption.

Profibus [10] is another fieldbus standard that supports

hard real-time over multiple hops of switches; however, in

that case, Profibus assumes that all nodes on the network

exclusively use Profibus’ specialized network stacks. Unlike

our design, isolation of misbehaving jamming traffic, e.g. due

to the use of non-Profinet network stacks, is not the focus of

Profibus. Profibus neither concerns about how to plan a smooth

evolution path for Internet switches to support multi-hop real-

time.

Including Profibus, many fieldbuses’ detailed designs for

multi-hop real-time networking are quite proprietary. To break

this limit, Dopatka and Wismuller [66] proposed a brand

new open fieldbus architecture to support multi-hop real-

time networking. Unlike Dopatka and Wismuller’s work, our

focus is to find a smooth evolution path for Internet switch

vendors, particularly the large population of iSLIP switch

vendors, to support multi-hop real-time networking. Hopefully,

such a evolution roadmap can foster the convergence of real-

time fieldbus networking and Internet, enabling more real-time

applications (such as tele-presence [67]), and expanding their

scale from factory-wide to global.

One of the most recent works on real-time industrial fieldbus

is Santos et al.’s design of a synthesizable Ethernet switch

with enhanced real-time features [68]. This design is based on

shared bus switch architecture. However, again the focus is not

for finding a smooth evolution path for the many iSLIP switch

vendors toward multi-hop real-time networking, as iSLIP is a

crossbar switch architecture intead of shared bus.

It is also brought to our attention recently that Leung

and Yum proposed a TDM-based multibus packet switch

[69] similar to our design. Compared to [69]’s design, our

design extends fixed capacity allocation to arbitary capacity

allocation, gives corresponding scheduling algorithms and

schedulability test formulae, derives end-to-end delay bounds,

and points out a smooth evolution path for iSLIP architecture.

The conference version of this paper is published in [70].

VI. CONCLUSION

The convergence of computer and physical world is the

theme for next generation networking research. This trend calls

for real-time industrial network infrastructure, which needs

high-speed real-time WAN to serve as its backbone. However,

nowadays commercially available high-speed WAN switches

(routers) are designed for best-effort Internet traffic. A real-

time switch design for the aforementioned networks is missing.

In this article, we propose a real-time switch design based

on the most widely adopted crossbar switch architecture. The

proposed switch can be implemented by making minimal mod-

ifications, or even simplifications, to the well-known iSLIP
crossbar switch scheme. This benefits switch manufacturers

since iSLIP is already widely implemented in commercial

products, and the minor modifications can be easily incorpor-

tated into the manufacturing process.

Our real-time switch serves periodic and aperiodic traffic

with real-time virtual machine tasks, which simplifies analysis,

and provides isolation. Taking advantage of the fact that most

industrial real-time network flows rarely change, the switch

only needs to be configured to a real-time schedule at startup-

time (aperiodic flows, which may change more frequently,

are encapsulated by their real-time virtual machine tasks),

and a polynomial time algorithm is found to schedule any

feasible flow set. During runtime, our real-time switch incurs

only O(1) computation, which fits the need of high-speed

networking.

Simulation results show that, for typical industrial real-time

network traffic, our switch can achieve high utilization and

guarantee small end-to-end delays.

We also implemented the proposed real-time switch using

Xilinx FPGAs, and built a distributed control test bed upon

the switched networks. Using the test bed, we carried out

experiments to compare the implemented real-time switches

and iSLIP switches. The results prove the necessity of using

real-time switches for real-time industrial control.

We believe that it is essential to capture the true workload

characteristics of applications, such as the predictability of

network traffic in industrial control applications, to design

efficient infrastructure for these applications. Further, changes

in workload, which are infrequent and involve planned out-

ages, can be accommodated via simple reconfiguration. As

future work, we will extend our switch design to support run-

time adaptation, hierarchical scheduling, and flow aggregation.

We are also interested in better analyses for end-to-end delay

bounds, and in resource optimization issues.

VII. ACKNOWLEDGEMENT

This work is supported in part by NSF CCR 03-25716,

NSF CNS 06-49885 SGER, by ONR N00014-05-0739, and

by a grant from Lockheed Martin and a grant from Rockwell

Collins. Qixin Wang is supported by Dept. of Computing,

The Hong Kong Polytechnic Univ. start up fund. Sathish

Gopalakrishnan is supported by NSERC Discovery Grants.

Any opinions, findings, and conclusions or recommendations

expressed in this publication are those of the authors and do

not necessarily reflect the views of sponsors. The authors thank

anonymous reviewers for their advice on improving this paper.

We thank Prof. Lui Sha of UIUC and Prof. Xue Liu of Univ.

of Nebraska Lincoln for their advice for our research. We also

thank Olugbemiga Adekunle, Emiliano Betti, Bach Duy Bui,

Patrick Drinkwine, Joseph F. Girotti, Jason Kemper, Rodolfo

Pellizzoni for their contributions in implementing the test bed.

We thank Mr. Yufei Wang and anonymous reviewers for their

valueable comments.

REFERENCES

[1] W. Wolf, “Cyber-physical systems,” IEEE Computer, vol. 42, no. 3, Mar.
2009.

[2] E. Lee, “Cyber-physical systems design challenges,” UC Berkeley Tech.

Report UCB/EECS-2008-8, 2008.

[3] L. Sha, S. Gopalakrishnan, X. Liu, and Q. Wang, “Cyber-physical
systems: A new frontier,” Proc. of IEEE Intl’ Conf. on Sensor Networks,

Ubiquitous, and Trustworthy Computing, 2008.

[4] Q. Wang, X. Liu, W. Chen, L. Sha, and M. Caccamo, “Building robust
wireless LAN for industrial control with the DSSS-CDMA cell phone
network paradigm,” IEEE Transactions on Mobile Computing, vol. 6,
no. 6, pp. 706–719, Jun. 2007.

[5] L. Sha and A. Agrawala, “Real time and embedded (RTE) GENI,” ACM
SIGBED Review, vol. 3, no. 3, Jul. 2006.

[6] 664P7-1 Aircraft Data Network, Part 7, Avionics Full-Duplex Switched

Ethernet Network. ARINC Standard, http://www.arinc.com.

[7] InfiniBand Trade Association. http://www.infinibandta.org.

[8] Factory Automation Systems Integrator ATS. http://www.atsautomation.
com.

[9] Fieldbus Foundation. http://www.fieldbus.org.

[10] Profibus & Profinet International. http://www.profibus.com.

[11] 1588-2008 IEEE Standard for a Precision Clock Synchronization Pro-

tocol for Networked Measurement and Control Systems, 2008.

[12] MD PnP Program. http://mdpnp.org.

[13] N. C. O. for Networking, I. T. Research, and Development, High-

Confidence Medical Devices: Cyber-Physical Systems for 21st Century

Health Care – A Research and Development Needs Report, Feb. 2009.

[14] G. N. S. Prasanna, A. Lakshmi, S. Sumanth, V. Simha, J. Bapat, and
G. Koomullil, “Data communication over the smart grid,” IEEE Int’l

Symp. on Power Line Communications and Its Applications, pp. 273–
279, 2009.

[15] FlexRay - The communication system for advanced automotive control

applications. http://www.flexray.com.

[16] M. Alves, E. Tovar, F. Vasques, G. Hammer, and K. Rother, “Real-
time communications over hybrid wired/wireless PROFIBUS-based net-
works,” Proc. of the 14th Euromicro Conference on Real-Time Systems

(ECRTS’02), 2002.

[17] A. Willig, K. Matheus, and A. Wolisz, “Wireless technology in industrial
networks,” Proceedings of the IEEE (Invited Paper), vol. 93, no. 6, pp.
1130–1151, Jun. 2005.

[18] F. D. Pellegrini, D. Miorandi, S. Vitturi, and A. Zanella, “On the use
of wireless networks at low level of factory automation systems,” IEEE

Transactions on Industrial Informatics, vol. 2, no. 2, pp. 129–143, May
2006.

[19] A. K. Parekh, “A generalized processor sharing approach to flow control
in integrated services network,” Ph.D. dissertation, EECS Dept., M.I.T.,
Feb. 1992.

[20] J. C. R. Bennett et al., “WF2Q: Worst-case fair weighted fair queueing,”
Proc. of INFOCOM’96, pp. 120–128, 1996.

[21] M. Shreedhar and G. Varghese, “Efficient fair queuing using deficit
round robin,” in Proc. of SIGCOMM, 1995, pp. 231–242.

[22] J. W. S. Liu, Real-Time Systems. Prentice Hall, 2000.

[23] M. Karol, M. Hluchyj, and S. Morgan, “Input versus output queueing
on a space-division swtich,” IEEE Transactions on Communications,
vol. 35, pp. 1347–1356, Dec. 1987.

[24] N. W. McKeown, “Scheduling algorithms for input-queued cell
switches,” Ph.D. dissertation, EECS Dept., University of California at
Berkeley, 1995.

[25] N. McKeown, “The iSLIP scheduling algorithm for input-queued
switches,” IEEE/ACM Transactions on Networking, vol. 7, no. 2, Apr.
1999.

[26] I. Elhanany, M. Kahane, and D. Sadot, “Packet scheduling in next-
generation multiterabit networks,” IEEE Computer, vol. 34, no. 4, pp.
104–106, Apr. 2001.

[27] S. Gopalakrishnan, M. Caccamo, and L. Sha, “Switch scheduling and
network design for real-time systems,” in Proc. of IEEE Real-Time and

Embedded Technology and Applications (RTAS), Apr. 2006.

[28] I. Shin, M. Behnam, T. Nolte, and M. Nolin, “Synthesis of optimal
interfaces for hierarchical scheduling with resources,” RTSS, Dec. 2008.

[29] M. Bertogna, N. Fisher, and S. Baruah, “Static-priority scheduling and
resource hold times,” WPDRTS, 2007.

[30] R. Davis and A. Burns, “Resource sharing in hierarchical fixed priority
pre-emptive systems,” Proc. of IEEE RTSS’06, 2006.

[31] A. Easwaran, I. Shin, O. Sokolsky, and I. Lee, “Incremental schedula-
bility analysis of hierarchical real-time components,” EMSOFT, 2006.

[32] L. Almeida and P. Pedreiras, “Scheduling within temporal partitions:
response-time analysis and server design,” EMSOFT, 2004.

[33] I. Shin and I. Lee, “Periodic resource model for compositional real-time
guarantees,” in Proc. of the 24th IEEE International Real-Time Systems

Symposium (RTSS 2003), Dec. 2003.

[34] G. Lipari and E. Bini, “Resource partitioning among real-time applica-
tions,” Proc. of ECRTS, 2003.

[35] A. Mock, X. Feng, and D. Chen, “Resrouce partition for real-time
systems,” RTAS, 2001.

[36] T.-W. Kuo and C.-H. Li, “A fixed-priority-driven open environment for
real-time applications,” Proc. of IEEE RTSS’99, 1999.

[37] Z. Deng and J. W.-S. Liu, “Scheduling real-time applications in an open
environment,” Proc. of IEEE RTSS’97, 1997.

[38] L. L. Peterson and B. S. Davie, Computer Networks: A System Approach,
2nd ed. Margan Kaufmann, 2000.

[39] R. Davis and A. Burns, “Hierarchical fixed priority preemptive schedul-
ing,” Proc. of IEEE RTSS’05, 2005.

[40] T. Gonzalez and S. Sahni, “Open shop scheduling to minimize finish
time,” Journal of the Association for Computing Machinery, vol. 23,
no. 4, pp. 665–679, Oct. 1976.

[41] B. Fisher et al., “Seeing, hearing, and touching: Putting it all together,”
SIGGRAPH’04 Course, 2004.

[42] M. Glencross et al., “Exploiting perception in high-fidelity virtual
environments,” SIGGRAPH’06 Course, 2006.

[43] FPGA and CPLD Solutions from Xilinx, Inc. http://www.xilinx.com.

[44] Quanser Inc. http://www.quanser.com.

[45] Q. Wang et al., E2E Real-Time Solution for Avionics and Control

Demo2: Real-Time Switch vs. iSLIP Switch. http://www.youtube.com/
watch?v=hzKLutGgPXo.

[46] R. S. Raji, “Smart networks for control,” IEEE Spectrum, vol. 31, pp.
49–55, Jun. 1994.

[47] L. Sha, R. Rajkumar, and J. P. Lehoczky, “Real-time scheduling support
in Futurebus+,” in Proceedings of the IEEE Real-Time Systems Sympo-

sium, Dec. 1990, pp. 331–340.

[48] S. Gopalakrishnan, L. Sha, and M. Caccamo, “Hard real-time commu-
nication in bus-based networks,” in Proceedings of the IEEE Real-Time

Systems Symposium, Dec. 2004.

[49] J. Rexford, J. Hall, and K. G. Shin, “A router architecture for real-
time communication in multicomputer networks,” IEEE Transactions

on Computers, vol. 47, no. 10, pp. 1088–1101, Oct. 1998.

[50] C. Venkatramani and T. Chiueh, “Design and implementation of a real-
time switch for segmented Ethernets,” in Proceedings of the Interna-

tional Conference on Network Protocols, October 1997.

[51] D. Shah, P. Giaccone, E. Leonardi, and B. Prabhakar, “Delay bounds for
combined input and output switches with low speedups,” Performance

Evaluation, vol. 55, no. 1-2, 2004.

[52] D. Shah, P. Giaccone, and E. Leonardi, “Throughput region of finite-
buffered networks,” IEEE Transactions on Parallel and Distributed

Systems, vol. 18, no. 2, Feb. 2007.

[53] S. Deb, D. Shah, and S. Shakkottai, “Fast matching algorithms for repet-
itive optimization: an application to switch scheduling,” in Proceedings

of the Conference on Information, Sciences and Systems, 2006.

[54] H.-I. Lee and S.-W. Seo, “Matching output queueing with a multiple
input/output-queued switch,” IEEE/ACM Trans. on Networking, vol. 14,
no. 1, pp. 121–132, February 2006.

[55] D. Pan and Y. Yang, “Pipelined two step iterative matching algorithms
for CIOQ crossbar switches,” Proc. ACM/IEEE Symp. Architectures for

Networking and Comm. Systems (ANCS’05), Oct. 2005.

[56] J. G. Dai and B. Prabhakar, “The throughput of data switches with and
without speedup,” Proc. of IEEE INFOCOM’00, vol. 2, pp. 556–564,
Mar. 2000.

[57] S.-T. Chuang, A. Goel, N. McKeown, and B. Prabhakar, “Matching
ouput queueing with a combined input/output-queued switch,” IEEE

Journal on Selected Areas in Communications, vol. 17, no. 6, pp. 1030–
1039, Jun. 1999.

[58] I. Stoica and H. Zhang, “Exact emulation of an output queueing switch
by a combined input output queueing switch,” Proc. 6th IEEE/IFIP Int’l

Workshop Quality of Service (IWQoS’98), pp. 218–224, 1998.

[59] D. Pan and Y. Yang, “Localized independent packet scheduling for
buffered crossbar switches,” IEEE Transactions on Computers, vol. 58,
no. 2, pp. 260–274, Feb. 2009.

[60] M. Katevenis, G. Passas, D. Simos, I. Papaefstathiou, and N. Chrysos,
“Variable packet size buffered crossbar (CICQ) switches,” Proc. IEEE

Int’l Conf. Comm. (ICC’04), vol. 2, pp. 1090–1096, Jun. 2004.
[61] R. Rojas-Cessa, E. Oki, Z. Jing, and H. J. Chao, “CIXB-1: combined

input-once-cell-crosspoint buffered switch,” Proc. IEEE Workshop High

Performance Switching and Routing (HPSR’01), Jul. 2001.
[62] D. Stephens and H. Zhang, “Implementing distributed packet fair

queueing in a scalable switch architecture,” Proc. IEEE INFOCOM’98,
pp. 282–290, Mar. 1998.

[63] T. Sauter, J. Jasperneite, and L. L. Bello, “Towards new hybrid networks
for industrial automation,” Proc. of ETFA’09, 2009.

[64] CAN Specification (version 2.0). Robert Bosch GmbH, 1991.
[65] TTEthernet Specification. TTTech Computertechnik AG, 2008.
[66] F. Dopatka and R. Wismuller, “Design of a realtime industrial -

ethernet network including hot-pluggable asynchronous devices,” IEEE

International Symposium on Industrial Electronics (ISIE 2007), 2007.
[67] G. M. Mair, “Towards transparent telepresence,” Proc. of ICVR’07, 2007.
[68] R. Santos, R. Marau, A. Vieira, P. Pedreiras, A. Oliveira, and L. Almeida,

“A synthesizable ethernet switch with enhanced real-time features,”
IEEE IECON’09, 2009.

[69] Y.-W. Leung and T.-S. Yum, “A TDM-based multibus packet switch,”
IEEE Trans. on Communications, vol. 45, no. 7, pp. 859–866, Jul. 1997.

[70] Q. Wang, S. Gopalakrishnan, X. Liu, and L. Sha, “A switch design for
real-time industrial networks,” Proc. of IEEE RTAS’08, pp. 367–376,
Apr. 2008.

Qixin Wang (M’08) received the B.E. and M.E.
degrees from the Department of Computer Sci-
ence and Technology, Tsinghua University, Beijing,
China, in 1999 and 2001, respectively, and the Ph.D.
degree from the Department of Computer Science,
University of Illinois at Urbana-Champaign in 2008.
He is currently an Assistant Professor in the De-
partment of Computing at the Hong Kong Polytech-
nic University. His research interests include real-
time/embedded systems and networking, wireless
technology, and their applications in industrial con-

trol, medicine, and assisted living. He has received a best paper award from
the IEEE Transactions on Industrial on Informatics (2008). Dr. Wang is a
member of the ACM.

Sathish Gopalakrishnan is an Assistant Professor
of Electrical and Computer Engineering at The Uni-
versity of British Columbia. He works on problems
related to scheduling, resource management and
reliability in computer systems, with an emphasis
on real-time systems and wireless networks. He
completed his graduate work at the University of
Illinois at Urbana-Champaign (PhD in Computer
Science and MS in Applied Mathematics) and his
undergraduate work at the University of Madras.
He has received a best paper award from the IEEE

Transactions on Industrial Informatics (2008) and a best student paper award
at the IEEE Real-Time Systems Symposium (2004).

