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& Eiw Cyber-Physical Systems (CPS) is expected to
®%*™ be a theme topic in CS after the Internet

Synonym to Pervasive Computing

converge computers
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- B CPS covers a large variety of applications with
%™ crucial social and economic impacts

o MDPnNP integrates tens of thousands of
®*™ medical devices for hospitals & assisted living

Cables for connecting various monitors to anesthesia EMR

Reduce the risk of tripping over
wires
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More embedded systems

More interaction/complexity
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& Bow Assisted Living helps saving our economy and
B*™  society from the aging crisis
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® 2% Many Other CPS Applications

o B Need many building block components to lay
B%  the infrastructure for CPS applications

o B3 One important category is the building blocks
®*™  for real-time infrastructure

Real-Time (RT)




- Bos Robotic Surgery: each task is a continuous
B*™ loop of sensing (or actuating) jobs

Each job:
1. Must catch deadline

2. Does not have to
be fast
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& Eiw A typical real-time task is a continuous loop of

- B A typical real-time task is a continuous loop of

®*"  periodic jobs. ®*™  periodic jobs.
A Job Job: (Period, Exe. Time, Deadline) A Job Job: (Period, Exe. Time, Deadline)
Real-time = each job catches deadline
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infrastructures

% Real-Time
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Switch

Real-Time Switch is the key component for many
infrastructures

Real-Time WAN, Real-Time
Internet Subnet

Real-Time Fieldbus

RT High Performance Computing
Architecture, e.g., InfiniBand
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% Designing real-time switch is not easy
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% Today’s Internet is still NOT real-time.
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% Today’s Internet is still NOT real-time.

Why?




% Industry acceptance has the final say. Two things
rules: simplicity and switch hardware features

Crossbar
+

Bl vOoQ
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iSLIP

Combined input-output queueing, or
‘more complicated switch hardware,
u

to emulate output queueing

QoS (e.g. WFQ)

Past lessons tell us to design the real-time switch
compatible to “crossbar + VOQ + iSLIP”
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Crossbar

Combined input-output queueing, or
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% What is “Crossbar + VOQ + iSLIP"?

A widely implemented switch architecture

Simple
Advantages High switch utilization

Fast adaptation to random traffic
(Internet traffic)

% What is “Crossbar + VOQ + iSLIP"?
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% What is “Crossbar + VOQ + iSLIP"?

Virtual Output
Queue (VOQ)




% What is “Crossbar + VOQ + iSLIP"?
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% What is “Crossbar + VOQ + iSLIP"?

Synchronous periodic cell forwarding

% What is “Crossbar + VOQ + iSLIP"?

Matching
Cell-Time
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Qixin Wang, UIUC, 6/24/2009
% What is “Crossbar + VOQ + iSLIP"? % What is “Crossbar + VOQ + iSLIP"?
Why Matching? An input/output can only send/receive one
cell per cell-time
I
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% What is “Crossbar + VOQ + iSLIP"?
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iSLIP is like faculty job hunting ©
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But we cannot directly adopt “crossbar + VOQ +
iSLIP”

Huge per hop delay bound because of poor isolation;

E2E delay bound is an open problem [Gopalakrishnan06].
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What to do?

But we cannot directly adopt “crossbar + VOQ +
iSLIP”

Huge per hop delay bound because of poor isolation;
E2E delay bound is an open problem [Gopalakrishnan06].

What to do?

Look at changed assumptions and new features.

% Changed assumption: traffic predictability

iSLIP is for non-real-time traffic: Unpredictable

% Changed assumption: traffic predictability

iSLIP is for non-real-time traffic: Unpredictable
Flows change rapidly
Unpredictable message size and arrival

Unpredictable traffic forces iSLIP to negotiate for
each cell-time

=5 [f~—p1
= |12
£ [13~—p3

Accept
(take offer)

He—p I

Grant
(offer job)

Request
(apply job)

Just like faculty job application, iSLIP’s negotiate
is dynamic, hard to give tight delay upper bound.
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% Changed assumption: traffic predictability

iSLIP is for non-real-time traffic: Unpredictable
Flows change rapidly
Unpredictable message size and arrival

RT-Switch for real-time traffic: Deterministic
Flows rarely change
Regular message size and arrival
Non-real-time traffic > real-time traffic

Deterministic traffic allows RT-Switch to forward
cells like clockwork, no need to negotiate!
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Deterministic Grant is enough

No need for Request and Accept

Simplifies instead of extends iSLIP

New feature: Large message arrival period allows
clock-driven time slicing
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Reminds us of clock-driven time slicing OS

RT-Switch runs fine time grain clock period (1ms), serving time
slices (cell-time) to coarse time grain periodic RT flows

Solution: crossbar RT-Switch runs deterministic
clock-driven time slicing
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Solution: crossbar RT-Switch runs deterministic
clock-driven time slicing

Clock period of M cell-time, e.g., M =5

Fit original real-time flow-forwarding tasks into clock period,
eg., (11,3) > (5, 2),i.e, (10, 4)

Celltime: 1 | 2 3 4 5




Solution: crossbar RT-Switch runs deterministic
clock-driven time slicing

Clock period of M cell-time, e.g., M =5

Fit original real-time tasks into clock period,
eg. (11,3)> (5, 2),i.e., (10, 4)

Demand

Cell time: 1
D a cell to send to O1

D a cell to send to 02
D a cell to send to O3

. a cell to send to 04

[]
BOICE -~
Nl 1Nk

Solution: crossbar RT-Switch runs deterministic

clock-driven time slicing
Schedule
Clock period of M cell-time Cell time: 1

Fit original RT tasks into clk period

Config. time scheduling (O(N%)) 13:
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Solution: crossbar RT-Switch runs deterministic

clock-driven time slicing
Schedule

Cell time: 1
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Solution: crossbar RT-Switch runs deterministic

clock-driven time slicing
Schedule

Satisfies demands: Cell time: 1

* Real-Time Guarantee
» Backward Compatibility

Simplicity 13:
Performance
Isolation
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% Evaluation: Schedulabililty

Randomized traffic demand based on typical real-time
industrial/medical application models

Total demanded switch utilization is U

Given U, what is the schedulable ratio?

Qﬁi) Evaluation: Schedulability
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% Evaluation: E2E Delay Bound

Randomized traffic demand based on typical real-time
industrial/medical application models

Max hop count is 15

Compare E2E Delay Bound provided by Real-Time Switch
and iSLIP

% Evaluation: E2E Delay Bound
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% Evaluation: E2E Delay Bound
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% Conclusion

Short E2E delay guarantee
Good schedulability

Compatible to, and simpler than the widely implemented
iSLIP crossbar switch.

O(1) runtime computation

Polynomial configuration time computation
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é Real-Time
Wireless LAN

() . . L
The demand for real-time wireless communication
is increasing.

Mechanical Freedom / Mobility

Ease of Deployment / Flexibility
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The demand for real-time wireless communication
is increasing.

Cables for connecting various monitors to anesthesia EMR

(9 . . .
The demand for real-time wireless communication
is increasing.

Reduce the risk of tripping over
wires
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real-time wireless communication.

Cannot back off under adverse wireless channel conditions
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Cannot back off under adverse wireless channel conditions

(@)
bg Reliability and Robustness is the top concern for
real-time wireless communication.

Adverse wireless medium
Large scale path-loss
Multipath

Persistent electric-
magnetic interference

Same-band / adjacent-
band RF devices

()
é Nowadays wireless LANs are NOT real-time.

IEEE 802.11b

MACA /
MACAW ( IEEE 802.11a

1994 1999 2002 2003 2005

IEEE 802.11g
IEEE 802.11e

IEEE 802.15.4
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é Nowadays wireless LANs are NOT real-time.
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é Nowadays wireless LANs are NOT real-time.

Why?

‘P Design philosophy mismatch: pursuing large data
throughput & short delay
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(g Design philosophy mismatch: pursuing large data

throughput & short delay

Send packet fast

Do not spend much time accumulate strength

Signal
Energy

Time
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‘@ Observation: Real-time communications are
usually persistent connections with low data rate

Typical inter-node traffic:
100~200 bit/pkt, 10~1 pkt/sec per connection.

Information Theory:
Lower data rate =» higher robustness.

Direct Sequence Spread Spectrum (DSSS) Technology:
Lower data rate €=» Higher robustness
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Observation
Bit Error Processing
Rate Gain
gPu

’Pbm‘ <exp| — =
J+ Erzl.f#ll ‘P + Eh—l Ah + R:

» DSSS Technology:

Larger Processing Gain g < Lower data rate < Lower Bit Error Rate
(Higher robustness)
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‘P Observation: DSSS can exploit low data rate to
achieve higher robustness

Bit Error
Rate

K
PBER < exp(— gK) =exp _I’_
b

DSSS BER Upper Bound
Lower data rate r, €=> Larger Processing Gain g

achieve higher robustness

==

BER < eXp

((5) Observation: DSSS can exploit low data rate to

K
=exp| ——
r-b

DSSS BER Upper Bound
Lower data rate r, €=> Larger Processing Gain J €=>
Lower Bit Error Rate Pggg (higher robustness)
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‘P Key ldea: How to configure for max robustness for
adverse wireless medium?

Answer: Use DSSS, deploy as slow data rate ry, (i.e., as large
processing gain g) as the application allows.

K
PBER < exp(— gK): eXp _r_
b

(©)
A Solution Heuristics

3 DSSS with low data rate for

high robustness
3 PHY:DSSS

‘P Observation: Centralized, last-hop wireless
scheme is preferred

u; Centralized: Economical & Simple
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‘@ Observation: Centralized, last-hop wireless
scheme is preferred

; Centralized: Economical & Simple
£~

...v. 5 Last-Hop: reuse legacy wired

5 backbone

v«é PHY:DSSS
...... . £
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é Solution Heuristics

3 DSSS with low data rate for

.~; 5 high robustness
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‘P Observation: CDMA is better than TDMA (e.g.,
IEEE 802.11 PCF). .

Smaller overhead under ' ' Smaller overhead under ' ' '
adverse channel conditions ] I | adverse channel conditions | ] I |
i ] | | i ] |
Easier to schedule _
{ CDMA | Time
(® , . (®
Observation: CDMA is better than TDMA (e.g., Solution Heuristics
IEEE 802.11 PCF). . :
\i
Smaller overhead under ' v . /'5\ 3 Centralized WLAN paradigm
adverse channel conditions | ] I o
| i ! | MAC:CDMA DSSS with low data rate for
Easier to schedule i i ; PHY:DSSS high robustness
: CDMA | Time E """" N — '
Better overrun isolation i o é S > CDMA instead of TDMA
XIXP ] XX
: Time
TDMA

‘@ Solution Heuristics = Choose DSSS-CDMA cell
phone network paradigm!

; DSSS with low data rate for

~ - high robustness
MAC:CDMA

5 PHY:DSSS Centralized WLAN paradigm

O () I
Mo (é); _____ > 3 CDMA instead of TDMA

()
é Simulation and Comparisons

Wireless medium model complies with typical settings for
industrial environments [Rappaport02]:

Table 1. Wireless Medium Model

Large-scale  path  loss [ Log-normal shadowing model with
model F=4~6,0=68IB"
Small-scale fading model Rayleigh

Multipath max excess de- | 90.909nsec

lay

Additive White Gaussian | Spectral density = —174dBm/Hz
Noisef

# (3 is the path loss exponent, o is the log-normal standard deviation.
T Typically refers to thermal noise.
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Typical industrial environment wireless medium model
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‘P A simulated demo showing DSSS-CDMA tolerates
RF jamming, while IEEE 802.11b cannot

Comparison:
DSSS-CDMA: lowest data rate
IEEE 802.11b: keep retransmitting
interference

TJ"" IP2 at (-3, 2)
IPlat  coupce a1 (7, 0)

Basestation @, ﬂu
at {0, 0)

external RF

RF jamming, while IEEE 802.11b cannot
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‘P A Monte-Carlo simulation showing DSSS-CDMA is

more robust than IEEE 802.11a/b

Monte-Carlo simulation setup
20m x 20m room, base station at the center
n(n=1, ..., 100) remote stations, random layout
200 trails for each n
Typical industrial environment wireless medium model

Robustness Method:
DSSS-CDMA: lowest data rate
IEEE 802.11a/b: keep retransmitting

‘P A Monte-Carlo simulation showing DSSS-CDMA is

more robust than IEEE 802.11a/b

802.11: DSSS-CDMA
Use the most robust mode: « Deploy as slow data rate as (i.e.,
— 802.11b (DSSS): 1, 2, 5.5, as large processing gain g as) the
11Mbps application allows (proposition 1).
- 802.11a (OFDM): 6,9, 12, 18,24, | | « Keep transmitting even under
36, 48, 54Mbps adverse channel conditions.

Under adverse channel
conditions, 802.11 keeps
retransmitting (PCF).

()
Simulation and Comparisons

Table 2. Physical Layer Settings for Compar-

isons
Max trans power™ RF band’
DSSS-CDMA vs.  IEEE | lwatt 2.425 ~
802.11b comparison 2.449GHz
DSSS-CDMA vs.  IEEE | 800mw 5.735 ~
802.11a comparison 5.795GHz

# According to FCC regulation.
1 According to IEEE 802.11 specification. Note RF bandwidth also de-
cides baseband bandwidth (i.e. chip rate for DSSS and bit rate for OFDM).

‘P A Monte-Carlo simulation showing DSSS-CDMA is

more robust than IEEE 802.11a/b
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Monte Carlo comparison with IEEE 802.15.4
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Monte Carlo comparison with IEEE 802.15.4

Mean of 10log, (J™"/0.001) (dBm),
i.e., average min jamming power in dBm
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Feasibility of Convolutional Coding

80, 1
— DSSS . i
@ processing gain 0} k=2 mT oz, BB ] |
Convolutional coding ain upper bound ] 2" modiomfnfo
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s0 k=1L m log,(kB__ B 3] 600
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B__ (Kbps), i.e., information bit rate

info

I?m“ld(hpd. i.e., information bit rate

K input bits, m shift registers
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“DSSS-CDMA Cell Phone Paradigm + Slowest Data Rate”

Conclusion

is more robust than “IEEE 802.11 + Retransmission”.

()

Conclusion

“DSSS-CDMA Cell Phone Paradigm + Slowest Data Rate”
is more robust than “IEEE 802.11 + Retransmission”.

For real-time wireless LAN, change philosophy from
pursuing throughput/delay to pursuing reliability/robustness.

. Future Work and Vision




CPS covers a large variety of applications with
crucial social and economic impacts

Real-Time and Embedded Systems
Infrastructure is one of the CPS challenges

Real-Time & Embedded Sys.: %
Networking i,
System Architecture
System Integration

But Real-Time is far from all; CPS’ challenges
involve nearly every aspects of CS.

Real-Time & Multimedia, Vision,
E . i
mbedded Sys Graphfzs, HCJ

~~

Networking Security

CPS <

Knowledge Eng./ 4
Data Mining

Software Eng.

System Eng.

CPS and Pervasive Computing will bring
Computer Science a promising future.

Real-Time &  Multimedia, Vision,
E . i
mbedded Sys Graphf:s, HCJ

~~

Networking Security ).

- S
Knowledge Eng./
Data Mining

CPS
Software Eng.

System Eng.

Thank You!
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