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Abstract—Recently there is a growing interest of incorporating
cellular architecture (with wired base stations and last-hop
wireless connections) into fieldbuses to support mobile real-time
applications. A promising trend is that such cellular fieldbuses
will go multichannel multiradio, due to the wide availability
of cheap multichannel commercial-off-the-shelf (COTS) wireless
nodes, and the rise of 4G and future cellular technologies. For
multichannel multiradio cellular fieldbuses, per-flow real-time
schedulability guarantee in the inter-cell level has not yet been
well studied. Particularly, unlike 3G cellular networks, which use
static FDMA/CDMA to isolate cells, the multichannel multiradio
feature allows neighboring cells to use the same radio frequency
channel at different time-slots; or the same time-slot at different
radio frequency channels. How to carry out channel time-slot
scheduling is therefore the focus of this paper. To address this
issue, we propose a greedy scheduling algorithm, together with
a polynomial time closed-form schedulability test. The relation-
ship between the schedulability test result, greedy scheduling
schedulability, and schedulability is explored. We prove the
equivalence of the three for chained cellular fieldbus topology, a
typical topology with broad applications. This also implies the
optimality of greedy scheduling, and the sufficiency and necessity
of the schedulability test in the context of chained topology. To
demonstrate and validate these schedulability theories, we carry
out a case study on a classic admission planning problem. The
schedulability test not only serves as a planning constraint, but
also guides us to propose an approximation algorithm to solve the
NP-hard admission planning problem. Comparisons to exhaustive
search corroborate the validity of our schedulability theories.

I. INTRODUCTION

Recently, there is an increasing interest of incorporating

cellular architecture into fieldbuses (i.e. real-time networks for

industrial applications) to support mobile real-time applica-

tions. Kang et al. [1] and Wang et al. [2] point out that a

cellular network architecture very well suits mobile fieldbuses.

The cellular network only deploys wireless in the last hop.

This achieves mobility, meanwhile reduces complexity and

reliability concerns compared to multi-hop wireless solutions.

The cell base stations can be connected by existing wire line

fieldbus infrastructures, which is cheaper, simpler, and more

reliable. Wei et al. [3] and Leng et al. [4] propose RT-WiFi [3],

[4], a wireless fieldbus solution based on WiFi standard [5],

to provide high bandwidth as well as high reliability. RT-WiFi

can also be regarded as a cellular fieldbus solution. Each RT-

WiFi access point serves the role of a cell base station, which

provides last hop wireless accesses to its member mobile

stations. The access point and its affiliated mobile stations

thus form a cell.
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On the other hand, due to the rapid cost reduction of

commercial-off-the-shelf (COTS) multichannel wireless nodes

(such as WiFi, ZigBee, Bluetooth nodes), people are willing

to deploy multiple radio interfaces in a base station, to allow

simultaneous access to multiple radio-frequency (RF) channels

in the cell. For example, any 802.11g/n [5], [6] wireless node

can work on three non-overlapping RF channels. An RT-

WiFi base station equipped with three of such nodes can thus

work on the three RF channels simultaneously. This expands

the total RF spectrum available to the cell, hence enhances

performance.

This multichannel multiradio abstraction also applies to

OFDM [7] and MIMO [8] technologies, two hot topics in 4G

and future cellular standards. In OFDM (MIMO), subcarriers

(antennas) can be grouped, and each group can be regarded

as one radio covering a unique RF channel. We can there-

fore reasonably expect that in the future, if 4G (or above)

technologies are to be incorporated into cellular fieldbuses,

multichannel multiradio will still be an inevitable feature.

As multichannel multiradio cellular fieldbus architecture

becomes a promising architecture for mobile fieldbuses, a

fundamental question is how to carry out real-time scheduling.

The simplest answer is TDMA: two spatially overlapping

wireless links do not interfere each other if they are scheduled

at different time-slots. However, in the case of multichan-

nel multiradio, we have another dimension of freedom: the

scheduling of RF channels. Two spatially overlapping wire-

less links can communicate simultaneously if they are using

different channels. Therefore, an important and more specific

question arises: how to carry out channel and time-slot (real-

time) scheduling in a cellular fieldbus.

Channel time-slot scheduling for traditional cellular net-

works has been well studied in the intra-cell context; but not

in the inter-cell context [9]. This is partly because in 3G and

earlier cellular standards, FDMA/CDMA is deployed between

cells, hence no temporal inter-cell scheduling is needed. How-

ever, with the rise of 4G cellular standards, neighboring cells

may work in the same RF bands at different time-slots . This

has triggered an increasing interest in inter-cell scheduling

recently [10]–[13]. Yet, how to carry out inter-cell channel

time-slot scheduling in the cellular fieldbus context, which

features per flow real-time schedulability guarantee, is still

an open problem. This problem is therefore the focus of this

paper.

Through this paper, we make the following contributions.

1) We propose a greedy scheduling algorithm for inter-cell

channel time-slot scheduling of multichannel multiradio

cellular fieldbuses.

2) We introduce a polynomial time closed-form sufficient

schedulability test for the greedy scheduling; and dis-



cover the relationship between the test, greedy schedul-

ing schedulability (simplified as “G-schedulability” in

the following), and schedulability for general network

topologies.

3) For chained topology, a typical cellular fieldbus topology

with broad applications, we prove the optimality of

greedy scheduling, and find a polynomial time closed-

form sufficient and necessary schedulability test.

4) We demonstrate and validate the above schedulability

theories with a case study on a classic admission plan-

ning problem. The schedulability test not only serves as

the planning constraint, but also guides us to devise an

approximation algorithm to solve the NP-hard admission

planning problem. Comparisons to exhaustive search

corroborate the validity of our schedulability theories.

The rest of the paper is organized as follows. Section II dis-

cusses related work. Section III formulates the channel time-

slot scheduling problem for multichannel multiradio cellular

fieldbuses. Section IV presents the greedy scheduling algo-

rithm, the closed-form schedulability test, and discusses the

relationship between the test, G-schedulability, and schedula-

bility in the general sense. Section V discusses the equivalence

between the closed-form schedulability test, G-schedulability,

and schedulability for chained topology cellular fieldbuses,

hence proves the optimality of greedy scheduling, and the

sufficiency and necessity of the schedulability test. Section VI

demonstrates and validates the developed schedulability the-

ories with an admission/resource planning case study. Sec-

tion VII concludes the paper.

II. RELATED WORK

As a main form of 4G cellular networks [14] [15]1, mul-

tichannel multiradio cellular networks’ scheduling problems

are extensively studied [9]. However, majority of these studies

focus on optimizing statistical metrics, such as total capac-

ity/throughput, average delay, and average queue length [11]–

[13], [16]. For fieldbus, however, we concern more about per

flow real-time schedulability guarantee, which is fundamen-

tally different from the aforementioned performance metrics.

For example, maximizing the total throughput of a cell does

not guarantee every real-time flow is schedulable.

That said, the most relevant subset of multichannel multi-

radio cellular network scheduling literature is on fairness, i.e.

given the total throughput of a cell, each flow is guaranteed

a quota of service [9], [10], [17]–[20]. With the service

guarantee, we can judge real-time schedulability. However,

existing efforts on multichannel multiradio cellular network

fairness focus either on intra-cell, or downlink only (which

is relevant, as 4G’s feature demand/bottleneck is downlink

streaming of Internet data, such as video). Furthermore, the

fairness considerations are mainly on proportional fairness

scheduling [21], which is still an opportunistic, rather than

1The multichannel multiradio characteristics of 4G cellular networks are
typically embodied via OFDM [7] and MIMO [8] technologies.

guaranteed service2 for each flow. In contrast, this paper

focuses on inter-cell scheduling, uplink and downlink traffic,

and per flow real-time schedulability guarantee.

There are other multichannel multiradio cellular related

technologies, such as CDMA [22] and beamforming [23].

However, these technologies are not yet widely available in

cheap COTS wireless sensors/atuators; neither are they going

to be implemented in cellular fieldbuses soon. Therefore, we

do not discuss them in this paper.

Besides scheduling multichannel multiradio cellular

networks, there are studies on scheduling wireless

sensor/mesh/mobile-ad-hoc networks [24]–[44]. However,

wireless sensor/mesh/mobile-ad-hoc network research

typically focuses on a peer-to-peer multi-hop wireless

network topology, or a multi-hop wireless network plus a

single sink topology. Such topologies are quite different from

this paper’s wired base stations cellular network topology,

where wireless is only deployed in the last hop. Due to

the above difference, for most multichannel multiradio

wireless sensor/mesh/mobile-ad-hoc networks, even under

given workloads, the channel scheduling problem alone

(i.e., given the workload of each flow, how to assign RF

channels to each wireless link) is NP-hard. For more general

cases, the corresponding optimal scheduling algorithms and

schedulability tests are generally open problems [33], [34]. In

contrast, this paper studies channel and time-slot scheduling

together, proposes an optimal scheduling algorithm, and a

closed-form schedulability test for a typical cellular fieldbus

topology.

There are works on intra-cell scheduling of wireless cellular

fieldbuses [3], [4], [32], [45], while this paper’s focus is inter-

cell scheduling. In this sense, this paper complements the intra-

cell scheduling papers.

III. PROBLEM FORMULATION

We assume each base station in the cellular fieldbus is

equipped with F radio interfaces, therefore can simultaneously

work on F RF channels. Besides, all base stations are well

synchronized by the wire line backbone, hence can carry out

TDMA scheduling synchronously. The TDMA schedule spans

T time-slots, i.e. every T time-slots the TDMA schedule

repeats itself. We call the T -time-slot TDMA schedule the

TDMA scheduling superframe. For narrative simplicity, unless

explicitly denoted, we focus on uplink communications in the

rest of the paper. Downlink communications analysis can be

derived following the same approaches.

Suppose there are totally I cells, which are arbitrarily

identified as cell 1, 2, . . ., i, . . ., I . A mobile station can

move to anywhere inside its cell3. We assume there is no

real-time monitoring of the interference relations between each

2Unless explicitly denoted, in this paper, when we talk about “service
guarantee”, we are talking about service guarantee when the wireless medium
condition is benign: e.g. when the bit error rate remains below a preset
threshold, say 0.1%, so that bit errors are acceptable, or fixable via correction
coding.

3But not outside of its cell. Otherwise, the per cell workload is changed,
and a new scheduling process should be carried out.



pair of wireless links, which is true for most low-cost COTS

wireless devices. However, worst case interference range of

every RF transmitter can be known offline. Based on this

knowledge, we can define offline nbr(i)
def
= {j|j 6= i; and the

ith cell’s wireless communications can interfere the jth cell’s

wireless communications, or vice vesa } (i = 1, . . ., I). Note,

here we do not assume interference relation to be symmetric:

ith cell interferes jth cell does not necessarily mean jth cell

interferes ith cell. But as per the definition, nbr is a symmetric

relation: j ∈ nbr(i) ⇔ i ∈ nbr(j). Such definition makes

sense, because regardless of whether ith cell interferes jthe

cell, or vice versa, ith and jth cell should not be transmitting

in the same time-slot via the same RF channel. We denote

H
def
= maxi=1,...,I{|nbr(i)|}; apparently H 6 I .

On the other hand, TDMA scheduling implies all data

packets are divided into same size data fragments, simplified

as “fragments” in the following. Each fragment takes one

TDMA time-slot to transmit over one RF channel. Let L(i)
denote the workload of the ith cell. That is, in each T -time-slot

TDMA superframe, the ith cell needs to serve L(i) fragments.

Our channel time-slot scheduling addresses the following

problem: given I , nbr, L, T , and F , how to schedule L over F
RF channels within the T -time-slot superframe, so that every

cell finishes its workload, and no two interfering cells (i.e. i ∈
nbr(j)) ever transmit at the same RF channel in a same time-

slot. For narrative simplicity, we denote the above channel

time-slot scheduling problem as S(I,nbr, L, T, F ); and call

the aforementioned schedule a valid schedule.

Let an I×T ×F dimension integer array s[i][t][f ] (1 6 i 6
I , 1 6 t 6 T , 1 6 f 6 F ) represent a schedule. s[i][t][f ] = 1
means the ith cell shall transmit during the tth time-slot in the

f th RF channel; any other value means the ith cell shall not

transmit during the tth time-slot in the f th RF channel (more

specifically, in the following, we use 0 to mean “idle”; and

negative value to mean “forbidden”). Then the notion of valid

schedule can be formalized as

Definition 1 (Valid Schedule): Schedule s is valid iff the

following two conditions both hold:

Condition 1: ∀i, t, f ∈ N
+ (where 1 6 i 6 I , 1 6 t 6 T ,

and 1 6 f 6 F ), such that s[i][t][f ] = 1, we have

∀j ∈ nbr(i), s[j][t][f ] 6= 1. (1)

Condition 2: ∀i ∈ {1, . . ., I},

T∑

t=1

F∑

f=1

cnt(s[i][t][f ]) = L(i), (2)

where cnt(x) =

{

1 (when x = 1)

0 (otherwise)
.

If a valid schedule exists, we say S is schedulable; and

otherwise unschedulable.

IV. GREEDY SCHEDULING

In this section, we first analyze the complexity of channel

time-slot scheduling problem; and then introduce a greedy

scheduling algorithm to solve this problem.

A. Complexity Analysis

In the following, we show that channel time-slot scheduling

problem S(I,nbr, L, T, F ) is NP-hard by proving a special

case of S is NP-complete.

Lemma 1 (NP-Completeness of S(I,nbr, L, 3, 1)): Deter-

mining whether S(I,nbr, L, 3, 1) (i.e. a special case of

channel time-slot scheduling problem, where T ≡ 3 and

F ≡ 1) is schedulable is NP-complete.

Proof: The problem is NP, and we can reduce the well-known

NP-hard problem of graph 3-coloring [46] to this problem.

See Appendix A for the proof details. �

Lemma 1 implies Theorem 1.

Theorem 1 (NP-Hardness of S(I,nbr, L, T, F )): Determin-

ing whether S(I,nbr, L, T, F ) is schedulable is NP-hard.

Proof: As per Lemma 1, the special case of S(I,nbr, L, T, F )
problem, S(I,nbr, L, 3, 1), is already NP-hard. Thus the more

general problem S(I,nbr, L, T, F ) is also NP-hard. �

B. A Greedy Scheduling Algorithm

As channel time-slot scheduling problem S(I,nbr, L, T, F )
is NP-hard, we do not aim to find a polynomial time algorithm.

Instead, we propose a pseudo polynomial time greedy algo-

rithm, G-schedule (see Fig. 1) to solve S(I,nbr, L, T, F ). The

high level idea of G-schedule is to fill the schedule for one

cell at a time, using any channel time-slots still available (i.e.

not yet interfered by previous cells), and ignoring impacts to

the remaining cells.

By counting the level of nested loops in Fig. 1, we see that

G-schedule has a pseudo polynomial time-cost of O(ITFH)
(hence O(I2TF ), as H 6 I). Note if T and F are given con-

stants, then G-schedule’s time complexity becomes polynomial

O(IH) (hence O(I2), as H 6 I). The validity of G-schedule

is proven by Theorem 2.

Theorem 2 (G-schedule Validity): Upon claiming success

(see line 22 of Fig. 1), s returned by G-schedule is a valid

schedule.

Proof: s[i][t][f ] = 1, 0, −1 respectively mean the correspond-

ing slot is reserved, idle, and forbidden. We can then prove the

resulted schedule satisfies Condition 1 and 2 of Definition 1.

See Appendix B for details. �

As per Theorem 2, if G-schedule algorithm creates a sched-

ule (i.e. claims success), the schedule must be a valid schedule.

Thus, in the following, we do not differentiate “G-schedule

creates a schedule” and “G-schedule creates a valid schedule”.



1. G-schedule(I , nbr, L, T , F ) {
2. int s[I][T ][F ]; // a I × T × F schedule table

3. Initialize all elements in s to 0; //0 for “idle”

4. for (int i← 1 to I){ // start of I-loop

5. int l← L(i);
6. loop:

7. for (int t← 1 to T ){ // start of T -loop

8. for (int f ← 1 to F ){ // start of F -loop

9. if (l 6 0) break loop;

//nothing to schedule

10. if (s[i][t][f ] = 0) {
11. s[i][t][f ]← 1; //1 for “reserved”

12. l← l − 1;

13. foreach (j ∈ nbr(i) and j > i)
14. s[j][t][f ]← −1; //-1 for “forbidden”

15. } // else do nothing

16. } // end of F -loop

17. } // end of T -loop

18. if (l > 0) {
19. Claim failure; return null;

20. }
21. } // end of I-loop

22. Claim success; return s as the schedule;

23. }

Fig. 1. Pseudo Code of G-schedule Algorithm

Furthermore, for a given channel time-slot scheduling prob-

lem S(I,nbr, L, T, F ), if G-schedule can create a schedule

(i.e. claims success), then we say S is G-schedulable. Other-

wise, we say S is G-unschedulable.

We are interested in studying the relationship between the

following three claims:

C1: ∀i ∈ {1, . . ., I},

L(i) +
∑

j∈nbr(i)∧j<i

L(j) 6 FT,

where we define special case
∑

j∈nbr(1)∧j<1 L(j) to

be of value 0; “∧” means logical “and”.

C2: S(I,nbr, L, T, F ) is G-schedulable.

C3: S(I,nbr, L, T, F ) is schedulable.

First, we have

Theorem 3 (G-schedulability Test): Claim C1 ⇒ C2.

Proof: We prove C1 ⇒ C2 with induction.

Apparently when I = 1, C1 ⇒ C2.

Suppose when I = k (k ∈ N
+), C1 ⇒ C2. (∗)

When I = k + 1, suppose C1 holds. Let us denote the

(k+1) cells channel time-slot scheduling problem as S . Then

∀i ∈ {1, . . . , k + 1}, L(i) +
∑

j∈nbr(i)∧j<i

L(j) 6 FT

⇒ ∀i ∈ {1, . . . , k},

L(i) +
∑

j∈nbr(i)\{k+1}∧j<i

L(j) 6 FT

⇒ Disregarding the (k + 1)th cell, consider the channel

time-slot scheduling problem S ′ that only involves

the first k cells. As per (∗), S ′ is G-schedulable.

⇒ For the original (k + 1) cells problem S , the first

k iterations of G-schedule I-loop (see Fig. 1 line 4)

can finish successfully.

For S , in its jth (1 6 j 6 k) iteration of G-schedule

I-loop, if j ∈ nbr(k + 1), then L(j) elements of s[k +
1][. . .][. . .] is set to −1 as per line 14. Therefore, right before

the start of the (k + 1)th iteration of I-loop, at the most
∑

j∈nbr(k+1)∧j<k+1 L(j) elements of s[k + 1][. . .][. . .] have

been set to −1.

Meanwhile, for S , the first k iterations of G-schedule I-loop

never assign any element of s[k+ 1][. . .][. . .] to 1. Therefore,

for S , right before the (k+1)th iteration of G-schedule I-loop,

there are at least FT −
∑

j∈nbr(k+1)∧j<k+1 L(j) > L(k + 1)
(as per C1) elements of s[k+1][. . .][. . .] with value 0. Hence

the (k + 1)th iteration of I-loop will succeed. Therefore, the

G-schedule will claim success. That is, C1 ⇒ C2 for the case

of I = k + 1.

Induction holds. �

Note, the converse of Theorem 3 in general does not

hold, i.e. C2 6⇒ C1. For example, cell ı and  may not

interfere each other, but both interfere cell I . When exe-

cuting the ıth and th I-loop iteration, they may set the

same elements of s[I][. . .][. . .] to −1. This results in less

than
∑

j∈nbr(I)∧j<I L(j) elements of s[I][. . .][. . .] set to

−1. Consequently, a workload L(I) of more than FT −
∑

j∈nbr(I)∧j<I L(j) for the Ith cell can be G-scheduled,

causing L(I) +
∑

j∈nbr(I)∧j<I L(j) > FT .

As for C2 and C3, Theorem 2 indeed implies C2 ⇒ C3.

For whether C3 ⇒ C2, we have the following.

Theorem 4 (General G-schedule Optimality): If P 6= NP,

then C3 6⇒ C2. Or equivalently, if C3⇒ C2, then P = NP.

Proof: We prove if C3 ⇒ C2, NP-complete problem of

whether S(I,nbr, L, 3, 1) is schedulable can be decided in

polynomial time, see Appendix C for details. �

Finally, because C1 ⇒ C2 and C2 ⇒ C3, we have C1 ⇒
C3. But C3 6⇒ C1, because otherwise, C2 ⇒ C3 and C3 ⇒
C1 would imply C2 ⇒ C1.

The above relations are summarized by Fig. 2(a).

Fig. 2(a) inspires us to question under what conditions C1,

C2, and C3 are equivalent (see Fig. 2(b)). We find that for a

category of very useful cellular fieldbus topology, C2 ⇒ C1



Fig. 2. Relationship between C1, C2, C3: (a) General Case; (b) Special Case.

and C3 ⇒ C2. That is C1, C2, and C3 are equivalent. We

shall discuss this in the next section.

V. CHAINED TOPOLOGY SCHEDULABILITY

A typical cellular fieldbus topology is what we call a

chained topology. Mathematically, it means the following.

Definition 2 (Chained Topology): I cells of a cellular

fieldbus form a chained topology, iff ∀i ∈ {1, . . ., I},
∀ı < i such that i ∈ nbr(ı), then ∀ such that ı <  < i,
there is  ∈ nbr(ı).

Intuitively, a simple and typical chained topology cellular

fieldbus is exemplified by Fig. 3(a), where cells are geograph-

ically lined up one by one as per ascending order of their

IDs. Suppose for each cell, interference range is always its

Θ-hop neighbors (for the case of Fig. 3(a), Θ ≡ 2), then for

all i ∈ {1, . . ., I}, for all ı < i such that i− ı 6 Θ, we have

i ∈ nbr(ı). Furthermore, for all  such that ı <  < i, we also

have  ∈ nbr(ı). Therefore, the cellular fieldbus of Fig. 3(a)

conforms to a chained topology.

In practice, many cellular fieldbuses can have a chained

topology: e.g. when a cellular fieldbus runs along a under-

ground mining tunnel (see Fig. 3(b)), along an assembly line,

along a transportation track, or along a chemical plant pipe.

Basically the chained topology is the wireless equivalent of

the well-known “daisy chain” topology, which is defined in the

widely adopted FOUNDATION wired fieldbus standard [47].

We have the following lemmas:

Lemma 2 (Number of Forbidden Elements in G-schedule):

Given a channel time-slot scheduling problem S for a

chained topology cellular fieldbus, if the G-schedule ex-

ecution reaches right before the ith iteration (i ∈ {1, . . .,
I}) of I-loop (see Fig. 1), then at that moment, exactly
∑

j∈nbr(i)∧j<i L(j) elements of subarray s[i][. . .][. . .] are

−1; and the other elements of s[i][. . .][. . .] are 0.

Proof: The lemma trivially holds for i = 1. The following

thus considers cases where i > 1.

If G-schedule execution reaches right before the ith I-loop

iteration, then ∀ı ∈ {1, . . ., i− 1}, we have two cases:

Case 1: If i /∈ nbr(ı), then the ıth I-loop iteration has set

no element of subarray s[i][. . .][. . .] to −1.

(a) an abstract chained topology example

(b) cellular fieldbus laid along an underground mining tunnel

Fig. 3. Chained topology cellular fieldbus examples

Case 2: If i ∈ nbr(ı), then the ıth I-loop iteration has set

L(ı) different elements of subarray s[i][. . .][. . .] to −1.

Furthermore, if both ıth and th (ı 6= ) I-loop iteration

belong to Case 2 (without loss of generality, assume 1 6 ı <
 < i), then they must have set non-overlapping elements of

s[i][. . .][. . .] to −1. (⋆)

Otherwise, ∃t0, f0 (1 6 t0 6 T and 1 6 f0 6 F ), such

that s[ı][t0][f0] = s[][t0][f0] = 1. (⋆⋆)

Assumption (⋆⋆) implies that in the ıth I-loop iteration, line

11 sets s[ı][t0][f0] to 1. Therefore, in line 14 of the ıth I-loop

iteration, s[][t0][f0] is set to −1. This is because the cellular

fieldbus conforms to chained topology. As per Definition 2,

i ∈ nbr(ı) and ı <  < i ⇒  ∈ nbr(ı).

Assumption (⋆⋆) also implies in the th I-loop iteration, line

11 sets s[][t0][f0] to 1, this contradicts the fact that s[][t0][f0]
is already set to −1 (hence the evaluation in line 10 is false)

in the ıth I-loop iteration.

The above contradiction proves assumption (⋆⋆) cannot

hold. Therefore (⋆) holds.

To summarize, right before the execution of the ith I-loop

iteration, exactly
∑

j∈nbr(i)∧j<i L(j) elements of s[i][. . .][. . .]
are set to −1. Because the only other element value as-

signment statement is line 11, which has not affected sub-

array s[i][. . .][. . .] yet, so all the other elements of subarray

s[i][. . .][. . .] maintain initial value of 0. �

Based on the property given in Lemma 2, we can show that

channel time-slot scheduling problem S for chained topology

is G-schedulable iff C1 holds, as implied by Lemma 3.

Lemma 3 (G-schedulability Test Tightness): For a chained

topology cellular fieldbus, C2 ⇒ C1.



Proof: We prove by induction. All line numbers in the follow-

ing refer to those of Fig. 1.

Apparently, when I = 1, C2 ⇒ C1.

Suppose when I = k (k ∈ N
+), C2 ⇒ C1. (†)

When I = k + 1, suppose C2 holds. Let us denote the

(k+1) cells channel time-slot scheduling problem as S . Then

S is G-schedulable

⇒ For S , the first k iterations of G-schedule I-loop can

all finish successfully.

⇒ Ignoring the (k + 1)th cell, consider the channel

time-slot scheduling problem S ′ that only involves

the first k cells, then S ′ is G-schedulable.

⇒ as per (†), ∀i ∈ {1, . . . , k},

L(i) +
∑

j∈nbr(i)∧j<i

L(j) 6 FT. (††)

Due to Lemma 2, for G-schedule to succeed in the (k +
1)th I-loop iteration (as S is G-schedulable), we must have

sufficient elements of s[k + 1][. . .][. . .] with value 0. That is,

L(k + 1) +
∑

j∈nbr(k+1)∧j<k+1 L(j) 6 FT .

This, together with (††), imply C1 holds for the case of

I = k + 1. �

Next, we prove C3 ⇒ C2 for chained topology cellular

fieldbuses. The proof would need the help of algorithm Par-

tialValidateSchedule (see Fig. 4), which cell by cell checks a

given channel time-slot schedule’s compliance to Condition

1 and 2 of Definition 1.

Note that PartialValidateSchedule algorithm is similar to G-

schedule algorithm, but fundamentally different. G-schedule

creates a schedule; while PartialValidateSchedule partially

checks the validity of a given schedule. That is, passing

PartialValidateSchedule is a necessary condition for any valid

schedule, as described by Lemma 4.

Lemma 4 (Necessity of Passing PartialValidateSchedule):

If s is a valid schedule for a channel time-

slot scheduling problem S(I,nbr, L, T, F ), then

PartialValidateSchedule(s, I , nbr, L, T , F ) shall claim

success.

Proof: Keep in mind s[i][t][f ] (or s′[i][t][f ]) = 0, 1, −1
respectively mean the slot is idle, reserved, and forbidden;

and Condition 1 and 2 of Definition 1 must be preserved if

the schedule is valid. Details of the proof is in Appendix D.

�

The source code resemblance between G-schedule and

PartialValidateSchedule does imply similar properties. Partic-

ularly, similar to Lemma 2, we have Lemma 5.

1. PartialValidateSchedule(s, I , nbr, L, T , F ) {
2. // s is the given I × T × F schedule to validate.

3. int s′[I][T ][F ]; // a temporary schedule

4. Initialize all elements in s′ to 0;

5. for (int i← 1 to I){ // start of I-loop

6. int l← L(i);
7. loop:

8. for (int t← 1 to T ){ // start of T -loop

9. for (int f ← 1 to F ){ // start of F -loop

10. if (l 6 0) break loop;

// nothing to schedule

11. if (s[i][t][f ] = 1) { // told to transmit

12. if (s′[i][t][f ] = −1) { // jammed

13. Claim failure; return;

14. }
15. s′[i][t][f ]← 1;

16. l← l − 1;

17. foreach (j ∈ nbr(i) and j > i)
18. s′[j][t][f ]← −1;

19. } // else do nothing

20. } // end of F -loop

21. } // end of T -loop

22. if (l > 0) {
23. Claim failure; return;

24. }
25. } // end of I-loop

26. Claim success; return;

27. }

Fig. 4. Pseudo Code of PartialValidateSchedule Algorithm

Lemma 5 (Number of Forbidden Elements in Partial-

ValidateSchedule): Given a channel time-slot scheduling

problem S(I,nbr, L, T, F ) for a chained topology cel-

lular fieldbus, if s is a valid schedule for S , if the

PartialValidateSchedule(s, I , nbr, L, T , F ) execution

reaches right before the ith iteration (i ∈ {1, . . ., I})
of I-loop (see Fig. 4), then at that moment, exactly
∑

j∈nbr(i)∧j<i L(j) elements of subarray s′[i][. . .][. . .] are

−1; and the other elements of s′[i][. . .][. . .] are 0.

Proof: The proof is similar to that for Lemma 2. The details

are given in Appendix E for reader’s convenience. �

Based on Lemma 4 and 5, we can prove Lemma 6.

Lemma 6 (G-schedule Optimality): For a chained topology

cellular fieldbus, C3 ⇒ C2.

Proof: Let us prove the equivalent contrapositive statement:

¬C2 ⇒ ¬C3.

If the chained topology cellular fieldbus channel time-slot

scheduling problem S is G-unschedulable, then Theorem 3⇒
∃i ∈ {1, . . ., I}, such that L(i) +

∑

j∈nbr(i)∧j<i L(j) > FT .

(♦)

Assume S is schedulable, i.e. a valid schedule s exists.

(♦♦)



Let us execute PartialValidateSchedule (see Fig. 4) upon s.

Lemma 5 implies that right before the execution of the

ith I-loop iteration, there are exactly
∑

j∈nbr(i)∧j<i L(j)
elements of subarray s′[i][. . .][. . .] set to −1, and the rest

FT −
∑

j∈nbr(i)∧j<i L(j) < L(i) (due to (♦)) elements set to

value other than −1. (♦♦♦)

Lemma 4 implies that during the ith I-loop iteration, line

16 is executed at least L(i) times. Each such execution

corresponds to a distinct element of s′[i][. . .][. . .] with value

other than −1. So right before the execution of the ith I-

loop iteration, there are at least L(i) elements of s′[i][. . .][. . .]
with value other than −1. This contradicts (♦♦♦). Therefore,

assumption (♦♦) does not hold. That is, S is unschedulable.

Therefore, we have ¬C2 ⇒ ¬C3. �

Theorem 5 (Equivalence): For a chained topology cellular

fieldbus, Claim C1, C2, C3 are equivalent.

Proof: This is a direct outcome of Theorem 2 (i.e. C2⇒ C3),

Theorem 3 (i.e. C1 ⇒ C2), Lemma 3 (i.e. C2 ⇒ C1), and

Lemma 6 (i.e. C3 ⇒ C2). �

Theorem 5 has several exciting implications. (i) G-schedule

is an optimal scheduling algorithm, i.e. any schedulable S
is G-schedulable, because C3 ⇒ C2. (ii) G-schedule has a

polynomial time (O(IH), hence also O(I2), as H 6 I)

closed-form and tight schedulability test: C1 ⇔ C2. (iii)

the original scheduling problem S has a polynomial time

(O(IH), hence also O(I2), as H 6 I) closed-form and tight

schedulability test: C1 ⇔ C3.

Note that G-schedule’s optimality does not mean the sched-

ule produced by G-schedule is the only valid schedule for S .

If S is schedulable, it may have other valid schedule(s) than

the one produced by G-schedule. Furthermore, this optimal

scheduling algorithm has a pseudo polynomial time complex-

ity: O(ITFH) (also O(I2TF ), as H 6 I). In case T and F
are fixed constants, the time complexity becomes polynomial:

O(IH) (also O(I2), as H 6 I).

VI. CASE STUDY: ADMISSION PLANNING

G-schedule algorithm and the associated schedulability test

provide powerful tools for admission/resource planning of

multichannel multiradio cellular fieldbuses. In this section,

we demonstrate and validate these tools with a typical ad-

mission planning problem. We still assume chained topology

cellular fieldbuses, due to the popularity of chained topol-

ogy, the optimality of the corresponding G-schedule, and the

polynomial-time tight schedulability test. We show that our

typical admission planning problem is NP-hard, and give an

approximation algorithm solution based on the aforementioned

tools (Theorem 5 in particular).

A. A Typical Admission Planning Problem

For narrative simplicity, in the following, all time units are

“time-slots” and all data size units are “fragments”.

Given a chained topology cellular fieldbus, suppose there

are a set of J demanded uplink (downlink) flows:

Φ = {ϕ1, ϕ2, . . . , ϕJ}. (3)

Φ is further divided into I subsets: φ(i) (i = 1, . . . , I)

represents the set of demanded flows in the ith cell. Every

demanded flow ϕj (j = 1, . . ., J) is shaped by a token

bucket [48] at its source end. The token bucket is of size

c(ϕj) (fragment), and has a token refilling rate of c(ϕj)/p(ϕj)
(fragment/time-slot). We denote this as ϕj ∼ tb(p(ϕj), c(ϕj)).
To simplify our model, we require ∀j, c(ϕj) ∈ N

+, p(ϕj) ∈
N

+.

The token bucket traffic model is very generic. For example,

if a periodic flow ϕj generates c(ϕj) fragments of traffic at

the beginning of each p(ϕj) time-slot period, then it can be re-

garded as a token bucket shaped flow: ϕj ∼ tb(p(ϕj), c(ϕj)).

If ϕj ∼ tb(p(ϕj), c(ϕj)), and it is served ℓ(ϕj) fragments

every T -time-slot TDMA superframe, then according to net-

work calculus [48], a necessary and sufficient condition to

upper bound the flow’s queueing delay and queue length is

ℓ(ϕj) >
c(ϕj)

p(ϕj)
T. (4)

As long as Ineq. (4) holds, we have queueing delay upper

bound d̄j = T +
c(ϕj)
ℓ(ϕj)

T 6 T +p(ϕj), and queue length upper

bound q̄j = c(ϕj) +
c(ϕj)
p(ϕj)

T .

Note in our TDMA cellular fieldbus, ℓ(ϕj) ∈ N
0. Therefore,

the necessary and sufficient condition of Ineq. (4) becomes

ℓ(ϕj) >
⌈c(ϕj)T

p(ϕj)

⌉

. (5)

Meanwhile, every demanded flow ϕj corresponds to a

reward value v(ϕj) ∈ N
+.

Our admission planning problem asks, given I , nbr, T , F ,

φ, p, c, and v, which demanded flows in Φ should be admit-

ted, so that the total reward is maximized, meanwhile every

admitted flow has upper bounded queueing delay and queue

length, and the cellular fieldbus is schedulable. We denote this

admission planning problem as P(I,nbr, T, F, φ, p, c, v).

Based on the necessary and sufficient condition of Ineq. (5),

every admitted flow ϕj must be served ℓ(ϕj) >

⌈
c(ϕj)T
p(ϕj)

⌉

fragments per T -time-slot superframe to have upper bounded

queueing delay and queue length. Let φadt(i) denote the set

of admitted flows in the ith cell. Then

L(i) =
∑

ϕj∈φadt(i)

ℓ(ϕj). (6)

In case the cellular fieldbus conforms to chained topology,

as per Theorem 5, C3 ⇔ C1. Therefore, admission planning

problem P(I,nbr, T, F, φ, p, c, v) can be formulated as a



(0, 1)-integer planning problem.

max
xj∈{0,1}

∑

ϕj∈Φ xjv(ϕj) (7)

s.t. ℓ(ϕj) >
⌈
c(ϕj)T
p(ϕj)

⌉

(∀ϕj ∈ Φ), (8)

ℓ(ϕj) ∈ N
0, (9)

∑

j∈Ψ(i)

xjℓ(ϕj) 6 FT (∀i ∈ {1, . . . , I}). (10)

Here Ψ(i)
def
= φ(i) ∪

(

⋃

ı∈nbr(i)∧ı<i φ(ı)

)

; and xj (j = 1,

. . ., J) is the (0, 1) planning variable: xj = 1 meaning flow

ϕj is admitted and xj = 0 meaning flow ϕj is rejected.

Formulation (7) ∼ (10) can be rewritten as follows4

max
xj∈{0,1}

∑

ϕj∈Φ xjv(ϕj) (11)

s.t.
∑

ϕj∈Ψ(i)

xj

⌈
c(ϕj)T
p(ϕj)

⌉

6 FT (∀i ∈ {1, . . . , I}). (12)

Now the challenge is how to solve the (0, 1)-integer plan-

ning problem defined by (11) and (12).

B. Solution to P

To solve P , we first show that the admission planning

problem defined by (11) and (12) is NP-hard, as summarized

in the proposition below.

Proposition 1 (NP-Hardness of P): Admission planning

problem P(I,nbr, T, F, φ, p, c, v) is NP-hard.

Proof: We prove that the well-known NP-hard knapsack

problem [46] can be reduced to P(I,nbr, T, F, φ, p, c, v). See

Appendix F for the details. �

Because of NP-hardness, it is impractical to devise polyno-

mial solution for P . Instead, we propose an approximation al-

gorithm solution. The idea is as follows. For chained topology,

Theorem 5 let us exploit the closed-form schedulability test C1

(rewritten as Constraint (12)) to propose a new size metric for

flows and flow-sets. With this new metric, we can generalize

a well-known knapsack problem approximation algorithm to

solve P .

We first propose the following size metric for a flow ϕj ∈ Φ.

size(ϕj)
def
= (size1(ϕj), . . . , sizeI(ϕj))

T, (13)

where for i = 1, . . ., I ,

sizei(ϕj)
def
=

{⌈
c(ϕj)T
p(ϕj)

⌉

if ϕj ∈ Ψ(i),

0 otherwise.
(14)

Note the above implies size(ϕj) is an N
0
I×1 vector.

4It is easy to prove that Constraint (8) ∼ (10) is equivalent to Con-
straint (12): existence of ℓ(ϕj) satisfying Constraint (8) ∼ (10) implies
Ineq (12); and vice versa.

For a set of flows S ⊆ Φ, we define

size(S)
def
=







∑

ϕj∈S size(ϕj) if S 6= ∅,

(+∞, . . . ,+∞)T

︸ ︷︷ ︸

I components, each is +∞

if S = ∅.
(15)

Note size(S) is also an N
0
I×1 vector; and for the S 6= ∅ case,

the right hand side is a vector sum.

Given x = (x1, x2, . . . , xI)
T ∈ {0, 1}I×1, let S(x)

def
=

{ϕj |ϕj ∈ Φ and xj = 1}, we can rewrite Constraint (12)

as5

∣
∣size(S(x))

∣
∣
∞

6 FT, (16)

where |ξ|∞ is the L∞ norm of vector ξ ∈ RI×1: for ξ =

(ξ1, ξ2, . . . , ξI)
T ∈ RI×1, |ξ|∞

def
= maxi{|ξi|}.

We also define the reward metric for an S ⊆ Φ as

reward(S)
def
=
∑

ϕj∈S

v(ϕj). (17)

With the above proposed definitions, problem P as defined

by (11) and (12) becomes finding a set S, such that reward(S)
is maximized under the constraint of Ineq. (16). With such

transformation, we can generalize a classic knapsack approx-

imation algorithm [49] to solve problem P , as follows.

Let R = maxϕ∈Φ{v(ϕ)}. Then JR is the upper bound for

objective function (11). For each j ∈ {1, . . ., J} and r ∈ {1,

. . ., JR}, let

Sj,r
def
= argmin

S⊆{ϕ1,ϕ2,...,ϕj}∧ reward(S)=r

{
∣
∣size(S)

∣
∣
∞
}. (18)

That is, Sj,r is the subset of {ϕ1, ϕ2, . . . , ϕj}, whose reward

is exactly r, and whose size-norm (in terms of L∞-norm) is

the minimal.

We have the following dynamic programming algorithm to

construct all Sj,rs (j = 1, . . ., J ; and r = 0, . . ., JR).

First, for each r = 0, . . ., JR, we have

S1,r
def
=

{

{ϕ1} if v(ϕ1) = r,

∅ otherwise.
(19)

Next, the dynamic programming runs as follows:

Sj+1,r =







minL∞

{
Sj,r, Sj,r−v(ϕj+1) ∪ {ϕj+1}

}

(if (v(ϕj+1) < r ∧ Sj,r−v(ϕj+1) 6= ∅)

or (v(ϕj+1) = r)),

Sj,r (otherwise).

(20)

Here minL∞{σ1, σ2} returns the σi (i ∈ {1, 2}), whose

|size(σi)|∞ value is the smallest.

We have the following proposition.

5Note assuming I ∈ N
+, and each demanded flow is schedulable alone

(when there are no other demanded flows in the entire cellular fieldbus), the
solution to P can never be x = (0, 0, . . . , 0)T, i.e. S(x) = ∅. This complies
with Ineq. (16), as

∣

∣size(∅)
∣

∣

∞
= +∞ > FT .



Proposition 2 (Solution to P): The solution to objective

function (11) is

r∗ = max
{

r
∣
∣
∣

∣
∣size(SJ,r)

∣
∣
∞

6 FT
}

. (21)

The corresponding admitted flow set is SJ,r∗ .

Proof: First, as per Eq. (21), SJ,r∗ is feasible under Con-

straint (16). Suppose there is another feasible solution SJ,r∗∗

(i.e.
∣
∣size(SJ,r∗∗)

∣
∣
∞

6 FT ), where r∗∗ > r∗; then it

contradicts the fact of Eq. (21). �

The above dynamic programming algorithm’s time cost

is O(J3IR). The involvement of R implies the time cost

is pseudo polynomial instead of polynomial. To make it

polynomial, the following classic approximation [49] is carried

out.

1) Given ε > 0, let K = εR
J

.

2) For each demanded flow ϕj , revise reward value func-

tion as v′(ϕj) =
⌊ v(ϕj)

K

⌋
, and revise the set reward

definition Eq. (17) accordingly: now reward
′(S)

def
=

∑

ϕj∈S v′(ϕj).
3) Solve the updated admission planning problem

P ′(I,nbr, T, F, φ, p, c, v′) with the dynamic

programming algorithm of (19) (20), denote the

admitted flow set to be S′.

Based on the the conclusion in [49],

Proposition 3 (Approximation Optimality):

reward(S′) > (1− ε)r∗. (22)

Proof: The original idea of the proof can be found in [49].

We rewrite the proof in Appendix G as per our context for

reader’s convenience. �

The time complexity of the approximation algorithm is

O(J3I
⌊R

K

⌋
) = O(J3I

⌊J

ε

⌋
) = O(J4I

1

ε
).

This implies that the approximation algorithm is a fully poly-

nomial time approximation scheme (i.e. polynomial in terms

of the bit size of the problem and the given constant 1
ε

) [49].

C. Numerical Example

Below we give a numerical example to demonstrate the

aforementioned admission planning methodology, and to val-

idate the schedulability test C1 implied by Theorem 5.

Consider a chained topology cellular fieldbus consists of

three sequentially laid out cells: cell 1, 2, and 3. This implies

I = 3. The demanded flow set Φ consists of J = 9 flows:

Φ = {ϕ1, ϕ2, . . ., ϕ9} as shown in Table I.

Suppose cells only interfere one hop neighbor(s); the

TDMA superframe consists of T = 3 time-slots; each base

station is equipped with F = 2 RF channels.

Then using exhaustive search (Exhst), pseudo polynomial

time optimal algorithm (Opt) of (19) and (20), and approxi-

mation algorithm (Aprx) with ε = 10% respectively, we get

the admission plans and schedules as shown in Table II.

TABLE I
NUMERICAL EXAMPLE DEMANDED FLOWS Φ = {ϕ1 , ϕ2 , . . ., ϕ9}

ϕ ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6 ϕ7 ϕ8 ϕ9

host cell 1 1 1 2 2 2 3 3 3
p(ϕ) 10 4 7 10 6 7 5 11 9
c(ϕ) 1 3 3 1 5 6 3 4 6
v(ϕ) 8 39 38 50 29 41 3 20 30

TABLE II
COMPARISONS OF ADMISSION PLANNINGS AND SCHEDULES

Admitted Flows Total Reward

Exhst {ϕ2, ϕ3, ϕ4, ϕ8, ϕ9} 177
Opt {ϕ2, ϕ3, ϕ4, ϕ8, ϕ9} 177

Aprx ε = 0.1 {ϕ2, ϕ3, ϕ4, ϕ7, ϕ9} 160

(a) Admitted Flows and Total Values

Exhst

cell 1 cell 2 cell 3
t1 t2 t3 t1 t2 t3 t1 t2 t3

f1 ϕ2 ϕ2 ϕ3 × × × ϕ9 ϕ8 ×
f2 ϕ2 ϕ3 × × × ϕ4 ϕ9 ϕ8 ×

Opt

cell 1 cell 2 cell 3
t1 t2 t3 t1 t2 t3 t1 t2 t3

f1 ϕ2 ϕ2 ϕ3 × × × ϕ9 ϕ8 ×
f2 ϕ2 ϕ3 × × × ϕ4 ϕ9 ϕ8 ×

Aprx ε = 0.1
cell 1 cell 2 cell 3

t1 t2 t3 t1 t2 t3 t1 t2 t3
f1 ϕ2 ϕ2 ϕ3 × × × ϕ9 ϕ7 ×
f2 ϕ2 ϕ3 × × × ϕ4 ϕ9 ϕ7 ×

×: the slot is idle or forbidden.

(b) Schedules (t1 ∼ t3: TDMA time slots; f1 ∼ f2: RF channels)

Note the exhaustive search (Exhst) method exhaustively

tries all possible combinations of admitted flow sets; and

for each admitted flow set, it exhaustively tries all possible

combinations of schedules. The schedulability determined by

Exhst is henceforth trustworthy, the schedule produced by

Exhst is henceforth guaranteed to be optimal, and Exhst does

not rely on the schedulability test C1 at all.

In contrast, Opt method relies on the schedulability test

C1. As Opt reaches the same schedulability decisions as

Exhst, and produces the same optimal schedule, the validity

of schedulability test C1 is corroborated.

VII. CONCLUSION

In this paper, we study the inter-cell channel time-slot

scheduling of multichannel multiradio cellular fieldbus. A

greedy scheduling algorithm is proposed, together with a

polynomial time closed-form schedulability test. We reveal the

relationship between the schedulability test, greedy schedula-

bility, and schedulability in the general sense. Furthermore, we

prove the equivalence of the three in the context of chained

topology, a typical cellular fieldbus topology with broad appli-

cations. This also implies the optimality of greedy scheduling,

and the sufficiency and necessity of the schedulability test. We

demonstrate and validate these schedulability theories with a

classic admission planning problem, where the schedulability



test not only serves as the planning constraint, but also guides

us to propose an approximation algorithm for the NP-hard

admission planning problem. Comparisons with exhaustive

search corroborate the validity of the theories.
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APPENDIX A

PROOF OF LEMMA 1

First, it is trivial to see when S(I,nbr, L, 3, 1) is schedula-

ble, a valid schedule can be verified within polynomial time:

O(I × I). Therefore, S(I,nbr, L, 3, 1) is NP.

Next, we prove that the well-known NP-hard problem of

graph 3-coloring G(V,E) [46] can be reduced (in polynomial

time) to a S(I,nbr, L, 3, 1) schedulability determination prob-

lem.

The graph 3-coloring problem G(V,E) is as follows: given

a graph G = (V,E), where V and E are respectively G’s

vertex and edge set, can we color the vertices with 3 colors,

such that the endpoints of every edge are colored differently?

A 3-coloring is a function f : V 7→ {1, 2, 3} such that for

every edge (u, v) ∈ E, we have f(u) 6= f(v). If there exists

such a function, we say the graph is 3-colorable.

Given a graph 3-coloring problem G(V,E), where V = {v1,

v2, . . .} is the set of vertices and E is the set of edges, we

can construct a S(I,nbr, L, 3, 1) problem in polynomial time

as follows:

1) There are I = |V | cells.

2) For each cell i, we have j ∈ nbr(i) iff there is an edge

in E connecting vi and vj in G.

3) For each cell i, set L(i) = 1.

Denote the above constructed problem as SG .

In the following, we show that SG is schedulable iff graph

G(V,E) is 3-colorable.

We first prove the “if” direction. If G is 3-colorable, then

there exists a function f that maps each vertex to a color in

{1, 2, 3}. Then we can construct a schedule s for SG according

to the coloring: if vertex vi is colored k ∈ {1, 2, 3}, then we

let cell i transmit in the kth time-slot. Since the colors of a

pair of connected vertices in G have different colors, so any

pair of cells i and j with i ∈ nbr(j) (and hence j ∈ nbr(i))
do not transmit in the same time-slot. This implies Condition

1 in Definition 1 holds. Since each vertex in G is assigned

a color, so each cell is assigned a time-slot, which implies

Condition 2 in Definition 1 holds. In summary, s is a valid

schedule for SG , i.e. SG is schedulable.

To prove the “only if” direction, we suppose SG is schedula-

ble. Suppose a valid schedule is s. Then we can color vertex vi
in G with the kth (k ∈ {1, 2, 3}) color iff cell i is transmitting

in the kth time-slot of s. Because s is a valid schedule for SG ,

according to Definition 1, every vertex is colored, and only

colored by one of the 3 colors; and no two connected vertices

are assigned the same color. �

APPENDIX B

PROOF OF THEOREM 2

In the following, all line numbers refer to those of Fig. 1.

First, due to line 12 and 19, if G-schedule is to claim

success, in the ith (i ∈ {1, . . ., I}) iteration of I-loop (see

line 4), line 11 is guaranteed to be executed L(i) times. The

assignment of value 1 by line 11, once happened, can never

be changed, as future execution of line 14 only affects cells

of bigger IDs. Therefore, when line 22 is executed, subarray

s[i][. . .][. . .] has L(i) elements with value 1. Therefore, the

returned s satisfies Condition 2 of Definition 1.

Second, assume when G-schedule claims success, ∃i, t, f ,

j ∈ nbr(i) (i.e. i ∈ nbr(j), as nbr is a symmetric relationship),

such that s[i][t][f ] = s[j][t][f ] = 1.

As nbr is a symmetric relationship, without loss of gener-

ality, suppose i < j. Then in the ith iteration of I-loop that

sets s[i][t][f ] to 1, line 14 should have set s[j][t][f ] to −1;

and after that, s[j][t][f ] can never be assigned any other value

(0 or 1 to be specific). This contradicts the assumption that in

the end s[j][t][f ] = 1. Therefore, the original assumption is

wrong. This means s satisfies Condition 1 of Definition 1. �

APPENDIX C

PROOF OF THEOREM 4

As Theorem 2 already proves C2 ⇒ C3, if in addition C3

⇒ C2, then we have C3 ⇔ C2.

Due to Lemma 1, the problem on determining whether

S(I,nbr, L, 3, 1) is schedulable is NP-complete. However, if

C3 ⇔ C2, then whether S(I,nbr, L, 3, 1) is schedulable can

be determined in polynomial time O(I2), by simply check-

ing whether S(I,nbr, L, 3, 1) is G-schedulable (note here as

T ≡ 3 and F ≡ 1, G-schedule time complexity reduces from

pseudo polynomial O(I2TF ) to polynomial O(I2)). That is,

an NP-complete problem can be determined in polynomial

time. Therefore P = NP. �

APPENDIX D

PROOF OF LEMMA 4

The line numbers in this proof all refer to those of Fig. 4.

It is trivial to prove that if s is a valid schedule, then the

1st I-loop iteration never executes line 13, nor line 23. (‡)
For the ith (i ∈ {2, . . ., I}) I-loop iteration, as s is a valid

schedule, due to Condition 2 of Definition 1, there must be

L(i) times that line 11 evaluates to true, respectively for L(i)
different s[i][. . .][. . .] elements.

Suppose for t0, f0 (1 6 t0 6 T , 1 6 f0 6 F ) line 11

evaluates to true, i.e. s[i][t0][f0] = 1. Then the following line

12 must evaluate to false, i.e. s′[i][t0][f0] 6= −1. This can be

proven by contradiction. (‡‡)
Suppose s′[i][t0][f0] = −1, then ∃ı (1 6 ı < i), such that

in the ıth I-loop iteration, s′[i][t0][f0] is set to −1 by line 18.

That is, i ∈ nbr(ı). Also, for line 18 to execute, the corre-

sponding line 11 must evaluate to true, i.e. s[ı][t0][f0] = 1.

So we have s[i][t0][f0] = s[ı][t0][f0] = 1 and i ∈ nbr(ı). This

contradicts the given fact that s is a valid schedule, which

must comply with Condition 1 of Definition 1. Proposition

(‡‡) holds. Therefore, in the ith I-loop iteration, line 13 can

never be executed.

Meanwhile, as in the ith I-loop iteration, line 11 is evaluated

to true for L(i) times, and the following line 12 always

evaluate to false, therefore line 16 is executed L(i) times. This

means line 22 cannot evaluate to true. Hence line 23 is never

executed.



Therefore, in the ith (i ∈ {2, . . ., I}) I-loop iteration,

neither line 13, nor line 23 can ever be executed. This,

combined with proposition (‡), implies algorithm PartialVali-

dateSchedule must return via line 26, i.e. claim success. �

APPENDIX E

PROOF OF LEMMA 5

All line numbers refer to those of Fig. 4.

The lemma trivially sustains for i = 1. The following thus

considers cases where i > 1.

If PartialValidateSchedule execution reaches right before the

ith I-loop iteration, then ∀ı ∈ {1, . . ., i − 1}, we have two

cases:

Case 1: If i /∈ nbr(ı), then the ıth I-loop iteration has set

no element of subarray s′[i][. . .][. . .] to −1.

Case 2: If i ∈ nbr(ı), then the ıth I-loop iteration has set

L(ı) different elements of subarray s′[i][. . .][. . .] to −1, as s is

a valid schedule, hence satisfies Condition 2 of Definition 1.

Furthermore, if both ıth and th (ı 6= ) I-loop iteration

belong to Case 2 (without loss of generality, assume 1 6 ı <
 < i), then they must have set non-overlapping elements of

s′[i][. . .][. . .] to −1. (♣)

Otherwise, ∃t0, f0 (1 6 t0 6 T and 1 6 f0 6 F ) such that

s′[ı][t0][f0] = s′[][t0][f0] = 1. (♣♣).

Assumption (♣♣) implies in the ıth I-loop iteration, line

15 sets s′[ı][t0][f0] to 1. Therefore, in line 18 of the ıth I-loop

iteration, s′[][t0][f0] is set to −1. This is because the cellular

fieldbus conforms to chained topology. As per Definition 2,

i ∈ nbr(ı) and ı <  < i ⇒  ∈ nbr(ı).
Assumption (♣♣) also implies in the th I-loop iteration,

line 15 sets s′[][t0][f0] to 1, this contradicts the fact that

s′[][t0][f0] is already set to −1 (hence the evaluation in line 12

is true, and line 15 cannot happen) in the ıth I-loop iteration.

The above contradiction proves assumption (♣♣) cannot

hold. Therefore (♣) holds.

To summarize, right before the execution of the ith I-loop

iteration, exactly
∑

j∈nbr(i)∧j<i L(j) elements of s′[i][. . .][. . .]
are set to −1. Because the only other element value as-

signment statement is line 15, which has not affected sub-

array s′[i][. . .][. . .] yet, so all the other elements of subarray

s′[i][. . .][. . .] maintain initial value of 0. �

APPENDIX F

PROOF OF PROPOSITION 1

We prove the well-known NP-hard knapsack problem [46]

can be reduced to P(I,nbr, T, F, φ, p, c, v) in polynomial

time.

Given a knapsack problem, we can construct an admission

planning problem, with I = 1, nbr(1) = ∅, T equals the size

of the knapsack B, F = 1. For each knapsack candidate item

uj , we construct a demanded flow ϕj , where

1) v(ϕj) equals the value of item uj ;

2) c(ϕj) equals the size of item uj ; and p(ϕj) ≡ B.

All the above constructed flows together form set φ(1).

In this way, admission planning problem

P(I,nbr, T, F, φ, p, c, v) in the form of (11) and (12) is

equivalent to the original knapsack problem. �

APPENDIX G

PROOF OF PROPOSITION 3

The original idea of the proof can be found in [49]. We

rewrite the proof here according to our context for reader’s

convenience.

Based on the definition of K, v′, and reward
′
, for any σ ⊆

Φ, we have

K · reward
′(σ) 6 reward(σ) 6 K · reward

′(σ) + JK.

Let S∗ denote the optimal admitted flow set using the

original reward values v. Then

reward(S′) > K · reward
′(S′) > K · reward

′(S∗)

> reward(S∗)− JK = r∗ − εR > r∗ − εr∗ = (1− ε)r∗.

�


