
GD-Aggregate: A WAN Virtual Topology Building Tool for Hard Real-Time and
Embedded Applications

Qixin Wang∗, Xue Liu†, Jennifer Hou∗, and Lui Sha∗
∗ Department of Computer Science, University of Illinois at Urbana-Champaign

Email: {qwang4, jhou, lrs}@uiuc.edu
† School of Computer Science, McGill University

Email: xueliu@cs.mcgill.ca

Abstract

The convergence of computer and physical world calls
for next generation Wide Area Network (WAN) infras-
tructures for hard real-time and embedded applications.
Such networks need virtual topologies to achieve scalabil-
ity, configurability, and flexibility. Virtual topologies are
made of virtual links, for which, the state-of-the-art build-
ing tool is Guaranteed Rate server based aggregates (GR-
aggregates). However, common-practice weight assign-
ment scheme couples GR-aggregate End-to-End (E2E) de-
lay bound with aggregate’s data throughput inverse propor-
tionally. This is undesirable for many hard real-time embed-
ded sensing/actuating applications, whose traffic has small
data throughput but requires short E2E delay. We propose
Guaranteed Delay server based aggregates (GD-aggregates),
which allow assigning weights according to priorities instead
of data throughput. This decouples E2E delay guarantee
from data throughput, hence meets the needs of hard real-
time embedded applications. In addition, GD-aggregates
can be analyzed with simple closed form formulae, and can
be easily planned with optimization tools.

1 Introduction

The trend of next generation networks is to converge com-
puters and the physical world. This demands next genera-
tion Wide Area Network (WAN) for hard real-time and em-
bedded applications (simplified as Real-Time and Embedded
WAN, or RTE-WAN in the following). Efforts like the Real-
Time and Embedded GENI [15] and the Cyber-Physical Sys-
tems [9] are calling for design proposals of such RTE-WANs,
which must provide scalability, configurability, flexibility,
and hard real-time.

To achieve scalability, configurability, and flexibility, the
RTE-WAN needs virtual topologies: reconfigurable virtual
links shall overlay on top of physical links, and hide physical
links from higher level networking activities, such as routing,
QoS provisioning, and applications; a virtual link may span
one or several sequentially connected physical links, occupy

part or all of the physical links’ bandwidth, and may be re-
configured.

In addition to scalability, configurability, and flexibility,
an RTE-WAN virtual link must also guarantee hard real-
time E2E delay. Considering all these goals, Section 4 dis-
cusses different technological alternatives on how to build
RTE-WAN virtual links, and shows Guaranteed Rate server
based aggregates (GR-aggregates) proposed by Sun and Shin
[19][18] is the best technology to start with.

Specifically, a virtual link is embodied by the GR-
aggregates passing through it. A GR-aggregate (see Sec-
tion 2.1) is basically an aggregation of flows that start from
the virtual link’s sender-end node, traverse the virtual link’s
intermediate nodes, and arrive at the virtual link’s receiver-
end node. A GR-aggregate aggregates flows of similar char-
acteristics, and provides hard real-time E2E delay guaran-
tee. Fig. 1 illustrates the relationship between GR-aggregates
and their corresponding virtual link, where a virtual link
over two physical links (AC and CB) consists of three GR-
aggregates: F1, F2, and F3.

Figure 1. A virtual link is embodied by the ag-
gregates passing through it

Originally, the GR-aggregate design is for Internet traffic
[19][18]. Though this design fits the Internet context well,
when applied to RTE-WAN, GR-aggregates face a new chal-
lenge: using common-practice configuration method, a GR-
aggregate’s E2E delay bound is inverse-proportionally cou-
pled with the aggregate’s data throughput. This makes ag-
gregates with small data throughput to have large E2E delay



bounds, and vice versa. Such tight coupling is undesirable
to many RTE-WAN traffics, especially the sensing/actuating
traffic, which usually has small data throughput, but demands
short E2E delay guarantee (see Section 2.2).

To solve this problem, we propose Guaranteed Delay
server based aggregates (GD-aggregates). GD-aggregate de-
sign decouples (or partially decouples) E2E delay guarantee
from data throughput. It also supports priorities, which fa-
cilitates real-time system design. GD-aggregates can be an-
alyzed with simple closed form formulae, and can be easily
planned with optimization tools.

We evaluate the performance of GD-aggregates in the
context of underground mining, a representative RTE-WAN
application with typical RTE-WAN traffic. The results show
that GD-aggregates support RTE-WAN traffic better than
GR-aggregates. However, due to page limits, the perfor-
mance evaluation is moved to Appendix J of [20].

The rest of the paper is organized as follows: Section 2
describes the state-of-the-art GR-aggregate design and its
coupling problem when using common-practice configura-
tion methods; Section 3 presents our GD-aggregate solution;
Section 4 discusses related work; Section 5 concludes the
paper.

2 GR-aggregate and the Coupling Problem

In the following, Section 2.1 describes the GR-aggregate
design [19][18] and its E2E delay bounds; and Section 2.2
explains GR-aggregate’s coupling problem between E2E de-
lay bound and data throughput.

Unless explicitly noted, we assume output queueing [14],
and pick symbols consistent with [19][18] whenever possi-
ble.

2.1 GR-aggregate

The GR-aggregate is based on the concept of Guaranteed
Rate (GR) server proposed by Goyal et al. [7]:

Figure 2. A Queueing Server

Definition 1 (Guaranteed Rate Server) As shown in
Fig. 2, suppose the jth (j = 1, 2, . . .) packet pj

f of flow f

arrives at queue QS at time AS(pj
f ), and leaves server S

at time LS(pj
f ). Suppose the length of pj

f is �jf . We define

Guaranteed Rate Clock (GRC) of packet pj
f at server S as

GRC(pj
f )

def
= max{AS(pj

f ),GRC(pj−1
f )} +

�j
f

r
f
,

∀j = 1, 2, . . . ,

where constant r
f

is called the Guaranteed Rate, and

GRC(p0
f )

def
= 0. If server S can provide a guaranteed rate

r
f

for flow f , such that for each packet pj
f (j = 1, 2, . . .) of

f , there is
LS(pj

f ) ≤ GRC(pj
f ) + α, (1)

where α is a constant independent of pj
f , then S is a Guaran-

teed Rate (GR) server. In addition, we call α the scheduling
constant of GR server S for f . �

Many existing scheduling servers, such as the Weighted
Fair Queueing (WFQ) server [13] and the Worst-Case Fair
Weighted Fair Queueing (WF2Q) server [2], are GR servers
[7]. Without loss of generality, we assume all scheduling
servers are WFQ servers. A WFQ server S has a schedul-
ing constant of α = �max/C, where �max is the maximum
size of packets entering S, and C is the output capacity of S.
If a flow f is assigned a WFQ scheduling weight of φ

f
, its

guaranteed rate r
f

= φ
f
C.

Based on the above notions, the GR-aggregate design runs
as follows [19][18]: A GR-aggregate starts by creating an
aggregate of flows at a GR server (called “low-end server”),
and letting the aggregate traverse several GR servers (called
“high-end servers”) as shown in Fig. 3. In the figure, flow f

joins other flows at low-end server S(1)
L at Node 1. The out-

put of S(1)
L is an aggregate, denoted as F . High-end server

S
(1)
H forwards F to Node 2, and S(2)

H forwards F to Node 3,
so on and so forth, until F reaches Node K . As the receiver-
end of aggregate F , the routing circuit of Node K forwards
individual packets of aggregate F according to their original
flow headers. Therefore packets of flow f are forwarded to
their corresponding output port, where it may join another
set of flows at low-end server S(K)

L to create another GR-

aggregate F ′. We denote A(i)
SL(p) and L(i)

SL(p) as the time

when packet p reaches Q(i)
SL and leaves server S(i)

L at Node

i respectively; and denote A(i)
SH(p) and L(i)

SH(p) as the time

packet p reaches Q(i)
SH and leaves server S(i)

H at Node i re-
spectively. The End-to-End (E2E) delay guarantee of pack-
ets traveling through GR-aggregates is restated in Theorem 1
(originally from [19][18]).

Theorem 1 (GR-aggregate E2E Delay) Suppose a flow f

joins an GR-aggregate F at S(1)
L as shown in Fig. 3, then the

E2E delay dj
f for any packet pj

f (j = 1, 2, . . .) of f satisfies

dj
f

def
= A

(K)
SL (pj

f ) −A
(1)
SL(pj

f )

= L
(K−1)
SH (pj

f ) −A
(1)
SL(pj

f ) (2)

≤ [GRC(1)
SL(pj

f ) −A
(1)
SL(pj

f )] + (K − 2)
�max
F

RF

+α(1)
L

+
K−1∑
i=1

α(i)
H
, (3)



Figure 3. A GR server based aggregate. Labels in the figure explain the symbols denoting arrival and
departure (leaving) time of packets. Routing circuits in Node 1 ∼ (K − 1) are omitted in the figure.

where �max
F and �max

f are the maximum packet length for
aggregate F and flow f respectively; RF is the guaranteed
rate for aggregate F at S(1)

H ∼ S
(K−1)
H ; rf is the guaranteed

rate for flow f at S(1)
L and S(K)

L ; the output capacity of S(1)
L

is RF ; the output capacity of S(i)
H (i = 1, 2, . . . , (K − 1)) is

C(i); α(1)
L

is the scheduling constant of GR server S(1)
L ; and

α(i)
H

is the scheduling constant of GR server S(i)
H . Particu-

larly, if f is constrained by a token bucket (σ
f
, ρ

f
) before

arriving at Q(1)
SL at Node 1, where ρ

f
≤ r

f
, then

dj
f ≤ σ

f

r
f

+ (K − 2)
�max
F

RF
+ α(1)

L
+

K−1∑
i=1

α(i)
H
. (4)

Proof: See [19][18], particularly Appendix III of [18]. �
With minor modification to the proof of the above theo-

rem, we can improve the delay bound if packets enteringS(1)
L

are Conflict-Free, which is defined in the following:

Theorem 2 (E2E Delay for Conflict-Free Packet Arrival)
In Fig. 3, if packets entering S(1)

L follow Conflict-Free pat-

tern, i.e., for any two packets p1 and p2 arriving at S(1)
L

consecutively, the arrival timeA(1)
SL(p1) andA(1)

SL(p2) satisfy

A
(1)
SL(p2) ≥ A

(1)
SL(p1) + �1

C
(1)
L

, where �1 is the length of p1,

C
(1)
L is the output capacity of S(1)

L , then

dj
f ≤ (K − 1)

�max
F

RF
+

K−1∑
i=1

α(i)
H
. (5)

Proof: See Appendix A of [20]. �
Conflict-Free packet arrival pattern is common to RTE-

WAN sensing/actuating end nodes. For example, if an end
node polls N local sensors in round robin, then the sensor

reading packets can arrive at this node one after another with-
out temporal overlap. Such packet arrival pattern is Conflict-
Free.

2.2 The Coupling Problem under Data
Throughput Proportional Weight As-
signment (DTPWA)

With the above E2E delay bounds, GR-aggregates effec-
tively meet the needs of Internet, the GR-aggregates’ original
application context [19][18]. However, when applying GR-
aggregates to RTE-WAN, a new challenge emerges:

The GR-aggregate E2E delay bound is inverse-
proportionally coupled with the aggregate F and flow
f ’s guaranteed rates RF and rf (see Inequality (3) ∼ (5)).
Though the original GR-aggregate design [19][18] does not
specify how to set RF and rf , as a common-practice, people
assign WFQ scheduling weights φ

F
and φ

f
proportional

to data throughput to avoid queue overflow. For simplicity,
we refer to such common-practice as Data Throughput
Proportional Weight Assignment (DTPWA).

Since guaranteed rate RF = φ
F
C and r

f
= φ

f
C, where

C is the server output capacity, DTPWA makes guaranteed
rate proportional to aggregate/flow data throughput. There-
fore, a GR-aggregate’s E2E delay bound becomes inverse-
proportionally coupled with the aggregate/flow data through-
put. As a consequence, if aggregateF and flow f are of small
data throughput, then guaranteed rates RF and r

f
are small,

and E2E delay bound dj
f becomes large; if F and f are of

large data throughput, then RF and r
f

are large, and dj
f be-

comes small.
This is undesirable for RTE-WAN traffic, which typically

includes
1) hard real-time sensing/actuating traffic, which usually

has small data throughput but demands short E2E delay
bounds;



2) hard real-time video streams, which have large data
throughput and demand short E2E delay bounds;

3) soft real-time traffic, such as FTP, which may have
large data throughput, but only demands bounded E2E de-
lays (does not have to be short).

Because of the inverse-proportional coupling of E2E de-
lay bound and data throughput under DTPWA, hard real-time
sensing/actuating traffic gets very large E2E delay bounds.
This problem motivates us to decouple E2E delay bounds
from data throughput.

3 GD-aggregate

We propose Guaranteed Delay server based aggregates
(GD-aggregates), to allow non-DTPWA weight assignments,
particularly priority based weight assignment, so as to de-
couple E2E delay bounds from data throughput.

In the following, Section 3.1 introduces basic build-
ing components for GD-aggregates; Section 3.2 describes
the GD-aggregate design and gives its E2E delay bounds;
Section 3.3 elaborates on how to assign weights accord-
ing GD-aggregates’ priorities, so as to decouple E2E delay
bounds from data throughput, and shows how to analyze GD-
aggregates with simple closed form formulae, and to plan
GD-aggregates with optimization tools.

3.1 Guaranteed Delay Server

To guarantee a bounded E2E delay, it is enough to guar-
antee a packet transmission time bound at each intermediate
node. If this time bound is decoupled from data throughput,
the E2E delay is decoupled from data throughput. This ob-
servation motivates our proposal of Guaranteed Delay (GD)
server as a basic building component:

Definition 2 (Guaranteed Delay Server) Same as shown
in Fig. 2, suppose the jth (j = 1, 2, . . .) packet pj

f of flow

f arrives at queue QS at AS(pj
f ), and leaves server S at

LS(pj
f ). Suppose the length of pj

f is �jf . We define Guaran-

teed Delay Clock (GDC) of packet pj
f at server S as

GDC(pj
f )

def
= max{AS(pj

f ),GDC(pj−1
f )} + ∆(�jf ),

∀j = 1, 2, . . . ,

where the nonnegative monotonically nondecreasing func-
tion ∆(�) is called the Guaranteed Delay Function, and

GDC(�0f )
def
= 0. If server S can provide a nonnega-

tive monotonically nondecreasing guaranteed delay function
∆(�) for flow f , such that for each packet pj

f (j = 1, 2, . . .)
of f , there is

LS(pj
f ) ≤ GDC(pj

f ) + α, (6)

where α is a constant independent of pj
f , then S is a Guaran-

teed Delay (GD) server. In addition, we call α the scheduling
constant of GD server S for f . �

We prove that any Token Bucket Constrained WFQ (TBC-
WFQ) server is a GD server, and give its guaranteed delay
function. The analysis uses the concept of greedy starting,
and the liquid flow model based Generalized Processor Shar-
ing (GPS) server [12].

A server S is called Token Bucket Constrained (TBC) if
each of its input flows is constrained by a token bucket, as
shown in Fig. 4. A flow f is called greedy starting from time
τ , if ∀t ≥ τ , the number of bits pass through f ’s token bucket
TBf during [τ, t] equals σ(τ) + (t− τ)ρ, where σ(τ) is the
number of tokens in TBf at τ , and ρ is TBf ’s token filling
rate, which is also f ’s data throughput.

Figure 4. A Token-Bucket-Constrained GPS
(TBC-GPS) or Token-Bucket-Constrained
WFQ (TBC-WFQ) Server (depends on whether
S is GPS or WFQ)

Theorem 3 (Critical Instance for Transmission Time)
Suppose under TBC-GPS a chunk p of � continuous bits of
flow f starts transmission (i.e. p reaches the head of the
queue) at τ , and the transmission completes at τ + ∆̃, Then
∆̃ ≤ ∆̂(�), where ∆̂(�) is the transmission time cost if p is
the first � bits of flow f to send at time 0, with all flows of
the system greedy starting from time 0. Note, without loss
of generality, this paper always assume the whole system
is initiated at time 0, and all token buckets are full when
initiated.

Proof: The proof is based on Lemma 10 of [12]. See
Appendix B of [20] for details. �

According to the above theorem, function ∆̂(�) gives the
transmission time bound for a packet of f with length �.
Hence, we call ∆̂(�) the Packet Transmission Time Bound
Function. ∆̂(�) has the following property:

Property 1 ∆̂(�) is nonnegative monotonically nondecreas-
ing. Particularly, ∀0 ≤ �1 ≤ �2, 0 ≤ ∆̂(�1) ≤ ∆̂(�2),
and ∀0 ≤ � ≤ �max, ∆̂(�) ≤ ∆̂(�max), where �max is the
maximum packet size possible. �

Theorem 3 not only specifies how to calculate the packet
transmission time bound function ∆̂(�), but also implies



(a) Using common-practice Data Throughput Proportional Weight
Assignment (DTPWA), packet transmission time bound is coupled
(inverse proportional) with data throughput ρ.

(b) Using unconventional weight assignment (in fact, PAWA de-
scribed in Section 3.3), packet transmission time bound still exists
due to Theorem 3, and is decoupled from data throughput ρ.

Figure 5. Theorem 3’s implications on decoupling packet transmission time bound from flow data
throughput. Thick vertical solid line segments indicate the time when the first packets are transmit-
ted.

this packet transmission time bound can be decoupled from
flow’s data throughput. The key to the decoupling is to assign
proper scheduling weights. This is shown in the following
example:

Example 1 Consider a TBC-GPS server S with three input
flows F1 ∼ F3 as shown in Fig. 4. Suppose S’s output ca-
pacity is 1, and each flow’s data throughput (equivalent to
the token bucket’s token filling rate) is ρ1 = 0.1, ρ2 = 0.4,
and ρ3 = 0.5 respectively. For simplicity, suppose all flows’
packet sizes are � = 1, and all flows’ token bucket capacity
equals �.

According to DTPWA, F1 ∼ F3 are assigned weight
φ1 = 0.1, φ2 = 0.4, and φ3 = 0.5 respectively, result-
ing in guaranteed rates R1 = ρ1 = 0.1, R2 = ρ2 = 0.4,
and R3 = ρ3 = 0.5. With such guaranteed rates, a packet
of F1 ∼ F3 has a transmission time cost of ∆̃1(�) = 10,
∆̃2(�) = 2.5, and ∆̃3(�) = 2 respectively, as shown in
Fig. 5(a). The per packet transmission time is inverse-
proportional to flow’s data throughput.

In contrast, suppose we assign weight φ1 = 0.999, φ2 =
0.000999, and φ3 = 0.000001. Then the greedy starting sce-
nario is shown in Fig. 5(b), with ∆̂1(�) = 1, ∆̂2(�) = 20/9,
and ∆̂3(�) = 6, which are decoupled from data throughput.
According to Theorem 3, ∆̂1(�) ∼ ∆̂3(�) bounds the packet
transmission time for flow F1 ∼ F3 respectively. Therefore,
the packet transmission time is decoupled from data through-
put. �

Based on Theorem 3, we prove TBC-WFQ servers are GD
servers:

Theorem 4 (TBC-WFQ Servers Are GD Servers) If S is
a TBC-GPS or TBC-WFQ server, define

GDC(pj
f )

def
= max{AS(pj

f ),GDC(pj−1
f )} + ∆̂(�jf ), (7)

where GDC(p0
f ) = 0 and ∆̂(�) is the packet transmission

time bound function derived from Theorem 3. Then

LGPS
S (pj

f ) ≤ GDC(pj
f ), (8)

and LWFQ
S (pj

f ) ≤ LGPS
S (pj

f ) +
�max

C

≤ GDC(pj
f ) +

�max

C
, (9)

where LGPS
S (p) and LWFQ

S (p) are the time when packet p
leaves S when S is a GPS and WFQ respectively. That is,
a TBC-WFQ server S is a GD server; its guaranteed delay
function is its packet transmission time bound function ∆̂(�);
and its scheduling constant α = �max

C , where �max is the
maximum size of packets entering S, and C is S’s output
capacity.

Proof: See Appendix C of [20]. �
3.2 The GD-aggregate Design and E2E

Delay Bound

Using TBC-WFQ servers, we build GD server based ag-
gregates (denoted as GD-aggregates) as shown in Fig. 6.
In Fig. 6, a GD-aggregate is created by aggregating several
flows with one GR (not necessarily GD) server at the sender-
end node, forwarded by several GD servers along interme-
diate nodes, and de-aggregated at receiver-end node by for-
warding each packet according to its original flow header.
We call the GR server that creates a GD-aggregate the “low-
end server”; while the GD servers that forward the GD-
aggregate the “high-end servers”.

Specifically, a flow f joins other flows at GR server S(1)
L

at Node 1 to output GD-aggregate F . S(1)
L guarantees f a

rate of rf , which is no less than f ’s data throughput. Par-
ticularly, if f complies with token bucket (σ

f
, ρ

f
) (denoted



Figure 6. A Release-Guarded Token-Bucket-Constrained WFQ (TBC-WFQ) based aggregate. Labels
in the figure explain the symbols denoting arrival and departure (leaving) time of packets. Routing
circuits in Node 1 ∼ (K − 1) are omitted in the figure.

as f ∼ (σ
f
, ρ

f
)) before arriving at Q(1)

SL, then rf ≥ ρ
f
.

We call RF
def
=

∑
f∈F rf and ρ

F

def
=

∑
f∈F ρf

the ca-
pacity and the data throughput of GD-aggregate F respec-
tively (naturally RF ≥ ρF since rf ≥ ρ

f
). Note we use

RF as GD-aggregate capacity to maintain symbolic consis-
tancy with [19][18]. We set the output capacity C(1)

L of S(1)
L

to RF . We also exploit the fact that S(1)
L is implemented in

software to play a trick called Time-Of-Scheduling-Equals-
Time-Of-Leaving (TOSETOL) [18]: once S(1)

L schedules a

packet p, p is immediately output to Q(1)
TH ; meanwhile, S(1)

L

waits another �/C(1)
L = �/RF seconds before scheduling

next packet, where � is the length of p.

Once a packet p leaves S(1)
L , it is regarded as a packet

of GD-aggregate F , and is queued at Q(1)
TH to enter TBC-

WFQ server S(1)
H . The corresponding token bucket TB(1)

H

has a bucket capacity of �max
F and a token filling rate of RF ,

where �max
F

def
= maxf∈F {�max

f }, and �max
f is the maximum

packet size of flow f . For simplicity, we denote TB(1)
H =

(�max
F , RF ).

Later, TBC-WFQ server S(1)
H will forward p via the phys-

ical output link to Node 2. At Node 2, p is first queued at
release guard Q

(2)
RG [11][17]. A release guard is a special

kind of token bucket that only allows backlogged packets
consuming tokens when the bucket is full, one packet at a
time. For Q(2)

RG, its bucket capacity and token filling rate
are also �max

F and RF respectively. For simplicity, we de-

note Q(2)
RG = (�max

F , RF )
RG

. Once p leaves release guard

Q
(2)
RG, it is queued at token bucket TB(2)

H = (�max
F , RF ) to

enter TBC-WFQ server S(2)
H . Later, S(2)

H will forward p to

Node 3, which also has Q(3)
RG = (�max

F , RF )
RG

, TB(3)
H =

(�max
F , RF ), and so on and so forth, until p reaches Node

K . At Node K , GD-aggregate F is de-aggregated, i.e., p is
routed according to its original flow header to its correspond-
ing output interface, where it may again join another set of
flows at GR server S(K)

L to create another aggregate F ′.

The above GD-aggregate architecture in Fig. 6 can be fur-
ther simplified due to the following lemma:

Lemma 1 (All TBHs Can Be Ignored) The queueing de-
lay at Q(i)

TH (i = 1, 2, . . . , (K − 1)) are all 0.

Proof: See proof of Lemma 3 in Appendix D of [20]. �

This means all Q(i)
TH and TB(i)

H (i = 1, 2, . . . , (K − 1))
in Fig. 6 can be removed.

Based on Lemma 1, we derive the following theorem for
GD-aggregate E2E delay bound:

Theorem 5 (E2E Delay′ with Prerequisites) Suppose, as
shown in Fig. 6, flow f joins GD-aggregate F from GR
server S(1)

L at Node 1, traverses release guarded GD server

S
(1)
H ∼ S

(K−1)
H , and finally reaches Node K to be de-

aggregated. Suppose the guaranteed delay function for ag-
gregate F at S(i)

H is ∆(i)
F (�) (i = 1, 2, . . . , (K − 1)); and

for any valid packet length � ∈ [�min
F , �max

F ], ∆(i)
F (�) ≤ �

RF
,

where RF is F ’s capacity. Then for jth (j = 1, 2, . . .) packet

of f , pj
f , the E2E delay dj

f

′
(we use dj

f

′
instead of dj

f to make



symbols consistent with [19][18]) satisfies:

dj
f

′ def
= L

(K−1)
SH (pj

f ) −A
(1)
SL(pj

f ) (10)

≤ [GRC(1)
SL(pj

f ) −A
(1)
SL(pj

f )] +
K−1∑
i=1

∆(i)
F (�max

F )

+α(1)
L

+
K−1∑
i=1

α(i)
H
, (11)

where A(1)
SL(p) is when packet p arrives at Q(1)

SL, L(K−1)
SH (p)

is when packet p leaves S(K−1)
H , α(1)

L
is the scheduling con-

stant of GR server S(1)
L for flow f , and α(i)

H
is the schedul-

ing constant of GD server S(i)
H for GD-aggregate F (i =

1, 2, . . . , (K − 1)). In addition, if packets arrive at S(1)
L in

Conflict-Free pattern (defined in Theorem 2), then

dj
f

′ ≤
K−1∑
i=1

∆(i)
F (�max

F ) +
K−1∑
i=1

α(i)
H
. (12)

Proof: See Appendix D in [20]. �

Corollary 1 If flow f conforms to token bucket TB(1)
L =

(σ
f
, ρ

f
) as shown in Fig. 6, and S(1)

L guarantees rate rf ≥
ρ

f
, then Inequality (11) becomes:

dj
f

′ ≤ σ
f

rf
+

K−1∑
i=1

∆(i)
F (�max

F ) + α(1)
L

+
K−1∑
i=1

α(i)
H
. (13)

Proof: Similar to the derivation of Inequality (43) of [7],
we have GRC(1)

SL(pj
f ) ≤ σ

f

rf
+A

(1)
SL(pj

f ). �

Corollary 2 If, as shown in Fig. 6, flow f joins another GD-
aggregate F ′ at Node K at GR server S(K)

L , token bucket

TB
(1)
L = TB

(K)
L = (σ

f
, ρ

f
), and all other conditions are

the same as those of Corollary 1, then E2E delay

dj
f

def
= A

(K)
SL (pj

f ) −A
(1)
SL(pj

f ) (14)

≤ σ
f

rf
+

K−1∑
i=1

∆(i)
F (�max

F ) + α(1)
L

+
K−1∑
i=1

α(i)
H
. (15)

Proof: See Appendix E of [20]. �
We have two observations on the E2E delay bounds in the

above theorems and corollaries:
1) GD-aggregate E2E delay bound is decoupled (or par-

tially decoupled) from data throughput: Due to Theorem 3,
and as shown in Example 1, by assigning proper schedul-
ing weight, ∆(i)

F (�max
F ) in Inequality (11) ∼ (15) can be de-

coupled from data throughput ρ
F

. Therefore GD-aggregate
E2E delay bound is decoupled from data throughput. Note if

the GD-aggregate transports RTE-WAN hard real-time sens-
ing/actuating traffic, packets can easily arrive in Conflict-
Free pattern, therefore E2E delay bound is calculated with
Inequality (12), which is completely decoupled from data
throughput. If the GD-aggregate transports RTE-WAN hard
real-time video traffic or soft real-time traffic, the E2E delay
bound is partially decoupled from data throughput. But the
improvement is still significant, with all (K − 2) �max

F

RF
terms

removed. What is more, the coupling problem is not a promi-
nent defect for RTE-WAN hard real-time video traffic or soft
real-time traffic anyway.

2) GD-aggregate is a generalization of GR-aggregate
(with a bounded error): In Fig. 6, if we stick to DT-
PWA, that is, assigning WFQ weight proportional to in-
put flow/aggregate’s data throughput (ρ

f
and ρ

F
), then

∆(i)
F (�max

F ) = ∆̂(i)
F (�max

F ) ≤ �max
F /RF , and Inequality (11)

implies Inequality (3), with only a maximal possible error of
�max
F /RF .

However, there are still three unsettled problems in order
to use Inequality (11) ∼ (15):

1) How to assign proper scheduling weight so that the
guaranteed delay function ∆(i)

F (�) is decoupled from data
throughput?

2) Given the proper scheduling weight, how to calculate
the guaranteed delay function ∆(i)

F (�)?
3) A GD-aggregate must satisfy precondition ∀� ∈

[�min
F , �max

F ], ∆(i)
F (�) ≤ �/RF (i = 1 ∼ (K − 1)) to use

Inequality (11) ∼ (15). How to remove this precondition?
The next sub-section addresses these problems.

3.3 Priority Approximating Weight As-
signment (PAWA) Scheme

To address the three problems proposed in the end of last
sub-section, we propose the Priority Approximating Weight
Assignment (PAWA) scheme, with following features:

1) Introduces priorities into GD-aggregates. A GD-
aggregate F ’s priority decides F ’s scheduling weight, and
hence decides the guaranteed delay function ∆(i)

F (�). Par-

ticularly, ∆(i)
F (�) is decoupled from data throughput, and a

higher priority corresponds to shorter ∆(i)
F (�max

F ).
2) Guaranteed delay function ∆(i)

F (�) can be calculated
with a closed-form linear formula.

3) The precondition of Inequality (11) ∼ (15) can be re-
moved (at the cost of a larger E2E delay bound).

In addition, PAWA scheme allows planning with classic
optimization tools, and enables simple admission tests.

The details are as follows:
The Scheme

Under PAWA scheme, a high-end1 TBC-WFQ server

1As mentioned in Section 3.2, we call the GR server that creates a GD-
aggregate the “low-end server”; while the GD servers that forward the GD-
aggregate the “high-end servers”.



S supports a set of priorities: 1, 2, . . . ,Π, where smaller
number means higher priority. Each priority π (π < Π)
corresponds to three parameters: packet transmission time
bound ∆�

π, total aggregates’ capacity R�
π, and total maxi-

mum packet size ��π. During configuration time, system ad-
ministrator can set these three parameters to any real num-
bers as long as they satisfy the following constraints:

∆�
0

def
= 0, 0 < ∆�

1 < ∆�
2 < . . . < ∆�

Π−1; (16)

R�
π ≥ R�min

π > 0, π = 1 ∼ (Π − 1); (17)

��π ≥ ��min
π > 0, π = 1 ∼ (Π − 1); (18)∑Π−1

π=1 R
�
π < C,R�

Π

def
= C − ∑Π−1

π=1 R
�
π; (19)

C�
0

def
= 0, C�

1
def
= C; (20)

C�
π

def
= C�

π−1 −R�
π−1 = C − ∑π−1

i=1 R
�
i ,

π = 2 ∼ Π; (21)

��1 = ∆�
1C

�
1 ; (22)

��π = ∆�
πC

�
π − ∆�

π−1C
�
π−1, π = 2 ∼ (Π − 1); (23)

where C is the output capacity of S; R�min
π and ��min

π are
minimum limits for R�

π and ��π set by administrator.
Each GD-aggregate entering S must pick one priority.

DenoteFπ as the set of GD-aggregates enteringS with prior-
ity π. To simplify our analysis, the system will add a dummy
GD-aggregate F̄π to each Fπ, where F̄π is constrained by
a token bucket of (�max

F̄π
, RF̄π

). For any π < Π, F̄π’s
token bucket capacity �max

F̄π
= ��π − ∑

F∈Fπ,F �=F̄π
�max
F ;

for π = Π, �max
F̄π

is set to an arbitrary constant that can
be used as packet length. The token filling rate R

F̄π
=

R�
π − ∑

F∈Fπ,F �=F̄π
R

F
. To insure the feasibility of setting

�max
F̄π

and R
F̄π

, we require

∑
F∈Fπ,F �=F̄π

�max
F ≤ ��π (∀π < Π); (24)

and
∑

F∈Fπ,F �=F̄π
R

F
≤ R�

π (∀π = 1 ∼ Π). (25)

A new aggregateF is not admitted to Fπ if its admission will
violate Formulae (24) or (25).

The weight assignment rules run as follows:
Each Fπ is assigned a total weight of ψπ, such that

ψπ/ψπ+1 = Ψ >> 1, π = 1 ∼ Π − 1 (26)

and
∑Π

π=1 ψπ = 1,

where Ψ is a sufficiently large constant. For each GD-
aggregate F ∈ Fπ (including F̄π), its weight φ

F
is

φ
F

=

{
ψπ�

max
F /��π, when π < Π;

ψπRF /R
�
π, when π = Π.

(27)

Based on above rules, PAWA provides many desirable
properties. First, it results in closed-form linear guaranteed
delay functions:

Theorem 6 (PAWA Guaranteed Delay Function) If TBC-
WFQ server S complies with PAWA scheme, then ∀F ∈ Fπ

and ∀�min
F ≤ � ≤ �max

F , the PAWA GD server S provides F
a guaranteed delay function

∆(S)
F (�) = ∆̂(S)

F (�)

=




∆�
π−1

C�
π−1
C�

π
+ �

�max
F

(∆�
π − ∆�

π−1
C�

π−1
C�

π
),

when π < Π;

∆�
Π−1

C�
Π−1
C�

Π
+ �

RF
, when π = Π;

(28)

where ∆̂(S)
F (�) is the packet transmission time bound func-

tion mentioned in Theorem 3. Particularly, Equation (28)
implies when π < Π, ∀F ∈ Fπ,

∆(S)
F (�max

F ) = ∆̂(S)
F (�max

F ) = ∆�
π, (29)

which is why we call ∆�
π the “packet transmission time

bound” parameter2.

Proof: See Appendix F of [20]. �
Second, PAWA guarantees E2E delay without the

∆(i)
F (�) ≤ �

RF
prerequisite in Theorem 5. This is described

in the following by Theorem 7 and 8:

Theorem 7 (PAWA TBC-WFQ Server is also GR)
Without loss of generality, suppose in Node i (e.g. i = 1)
of Fig. 6, Q(i)

TH , TB(i)
H , Q(i)

SH , and S
(i)
H make up a PAWA

TBC-WFQ server. Then for each F ∈ Fπ (π = 1 ∼ Π), S(i)
H

is also a GR server with guaranteed rate R
F

and scheduling
constant

α
′(i)
H

=


∆�

πC
�
π/C

�
π+1 + �

(i)max
SH

C , if π < Π,

∆�
Π−1C

�
Π−1/C

�
Π + �

(i)max
SH

C , if π = Π,
(30)

where �
(i)max
SH is the maximum packet length of all

aggregates/flows entering S
(i)
H . That is, if define

GRC(i)
SH(pj

F )
def
= max{A(i)

SH(pj
F ),GRC(i)

SH(pj−1
F )} +

�jF /RF
, then L

(i)
SH(pj

F ) ≤ GRC(i)
SH(pj

F ) + α
′(i)
H

, where

L
(i)
SH(p) is the time when p leaves WFQ server S(i)

H . Note

GRC(i)
SH(p0

F )
def
= 0.

Proof: See Appendix G of [20]. �

Theorem 8 (E2E Delay′ without Prerequisites) Suppose
flow f joins GD-aggregate F at S(1)

L and traverses S(1)
H ,

S
(2)
H , . . ., S(K−1)

H , and S(K)
L as shown in Fig. 6. Suppose

each TBC-WFQ server S(i)
H (i = 1, 2, . . . ,K − 1) enforces

PAWA scheme. According to Theorem 7, S(i)
H is also a

2According to Theorem 3, every packet’s transmission time under GPS

is no more than ∆̂
(S)
F (�max

F ).



GR server for F with a GR scheduling constant α
′(i)
H

(see

Formula (30)). Then for packet pj
f , the E2E delay dj

f

′

satisfies:

dj
f

′ def
= L

(K−1)
SH (pj

f ) −A
(1)
SL(pj

f )

≤ [GRC(1)
SL(pj

f ) −A
(1)
SL(pj

f )] + (K − 1)
�max
F

R
F

+α(1)
L

+
K−1∑
i=1

α
′(i)
H
, (31)

where A(1)
SL(p) is when packet p arrives at Q(1)

SL; L(K−1)
SH (p)

is when packet p leaves S(K−1)
H ; α(1)

L
is the GR scheduling

constant at server S(1)
L , and α

′(i)
H

is the GR scheduling con-

stant at server S(i)
H . In addition, if packets arrive at S(1)

L in
Conflict-Free pattern (defined in Theorem 2), then

dj
f

′ ≤ (K − 1)
�max
F

R
F

+
K−1∑
i=1

α
′(i)
H
. (32)

Proof: See Appendix H of [20]. �

Corollary 3 If flow f conforms to token bucket TB(1)
L =

(σ
f
, ρ

f
) as shown in Fig. 6, and rf ≥ ρ

f
, then Inequal-

ity (31) becomes:

dj
f

′ ≤ σ
f

rf
+ (K − 1)

�max
F

R
F

+ α(1)
L

+
K−1∑
i=1

α
′(i)
H
. (33)

Proof: Similar to the derivation of Inequality (43) in
Goyal et al. [7], we have GRC(1)

SL(pj
f ) ≤ σ

f

rf
+ A

(1)
SL(pj

f ).
�

Corollary 4 If, as shown in Fig. 6, flow f joins another GD-
aggregate F ′ at Node K at GR server S(K)

L , token bucket

TB
(1)
L = TB

(K)
L = (σ

f
, ρ

f
), rf ≥ ρ

f
, and all other condi-

tions are the same as those of Corollary 3, then E2E delay

dj
f

def
= A

(K)
SL (pj

f ) −A
(1)
SL(pj

f )

≤ σ
f

rf
+ (K − 1)

�max
F

R
F

+ α(1)
L

+
K−1∑
i=1

α
′(i)
H
. (34)

Proof: See Appendix I of [20]. �
PAWA Parameter Planning

During configuration time, a PAWA TBC-WFQ server ad-
ministrator can plan the {∆�

π}, {R�
π}, and {��π} parameters

with classic optimization tools. Just to give an example:
Given C, {∆�

π}, desired total aggregates’ capacity {R̃�
π},

desired total max packet size {�̃�π}, weight (importance) wπ

of gettingR�
π close to R̃�

π, and weight	π of getting ��π close
to �̃�π, derive optimal settings of {R�

π} and {��π}.

The problem corresponds to the following convex opti-
mization problem:

min
∑Π−1

π=1

(
wπ(R�

π − R̃�
π)2 +	π(��π − �̃�π)2

)
,

with convex linear constraint set (16) ∼ (23).
GD-aggregate Admission Test

To add a GD-aggregate F with priority π at PAWA TBC-
WFQ server S, F only needs to pass the following three tests:

Test 1:

�max
F +

∑
f∈Fπ,f �=F̄π

�max
f ≤ ��π, if π < Π; (35)

Test 2:
RF +

∑
f∈Fπ,f �=F̄π

R
f
≤ R�

π; (36)

Test 3 (Theorem 5 Prerequisite): If ∀� ∈ [�min
F , �max

F ],
∆(S)

F (�) ≤ �/R
F

(∆(S)
F (�) is derived from Equation (28)),

then use Theorem 5, Corollary 1, or Corollary 2 to calcu-
late E2E delay. Otherwise, use Theorem 8, Corollary 3, or
Corollary 4 to calculate E2E delay.

Usually, we should assign RTE-WAN hard real-time sens-
ing/actuating GD-aggregates with the highest priority. Be-
cause such GD-aggregates’ maximum packet lengthes are
small, such priority assignment will empirically always sat-
isfy the Theorem 5 prerequisite. RTE-WAN hard real-time
video GD-aggregates shall take lower priorities, which may
or may not satisfy the Theorem 5 prerequisite. But the E2E
delay bounds will still be satisfactory, because RTE-WAN
hard real-time video traffic has large data throughput. RTE-
WAN soft real-time GD-aggregates shall take lowest priori-
ties, and will still get bounded E2E delay. All of these are
illustrated by the underground mining case study described
in Appendix J of [20].

4 Related Work

There are other candidate technologies for WAN virtual
topologies (virtual links): Overlay network [3] also dis-
cusses virtual links. However, they are not hard real-time
virtual links. DiffServ [1][21] is similar to aggregates: flows
with similar QoS requirements are transmitted as one group.
However, DiffServ uses FIFO scheduling, which is hard to
guarantee hard real-time E2E delay when traffic is bursty. As
pointed out by Wang et al. [21], even when token bucket ratio
σ
ρ is as low as 1.28, the maximal schedulable link utilization
drops below 5%. Real-time virtual machines [5][10][16][4]
can be a good candidate to support hard real-time virtual
links. However, to our best knowledge, mutual exclusion is
still an open problem: efficient system architecture and sim-
ple closed-form schedulability formulae are yet to be devel-
oped, especially for hierarchies with more than two levels.



In comparison, the GR-aggregate [19][18] scheme guaran-
tees hard real-time E2E delay, assumes packetized (mutually
exclusive) traffic model, supports hierarchical aggregation
of arbitrary number of levels, provides closed-form analyt-
ical formulae, and can easily achieve 100% link utilization.
Therefore, it is good to start RTE-WAN virtual link design
on top of GR-aggregates.

There are other efforts on decoupling E2E delay bound
from data throughput. Geogiadis et al. [6] also discover that
the combination of per node traffic shapers (token buckets)
and fair queueing weights can decouple E2E delay bound
from flow data throughput. But Geogiadis et al. assume fluid
model, and do not talk about aggregation. Goyal et al. [8]
generalize the GR server notion to cases where guaranteed
rates may differ between packets of the same flow. However,
they do not talk about aggregation, and they assume the per
packet guaranteed rates are either given a priori, or referring
to the smallest instantaneous rates during the packets’ trans-
mission.

5 Conclusion

The convergence of computer and physical world calls
for next generation WAN infrastructures for hard real-time
and embedded applications. Such networks need virtual
topologies to achieve scalability, configurability, and flex-
ibility. Virtual topologies are made of virtual links, for
which, the state-of-the-art building tool is Guaranteed Rate
server based aggregates (GR-aggregates) [19][18]. How-
ever, common-practice weight assignment scheme couples
GR-aggregate End-to-End (E2E) delay bound with aggre-
gate’s data throughput inverse proportionally. This is unde-
sirable for many hard real-time embedded sensing/actuating
applications, whose traffic has small data throughput but
requires short E2E delay. We propose Guaranteed Delay
server based aggregates (GD-aggregates) design, which al-
lows assigning weight according to priority instead of data
throughput. This decouples E2E delay guarantee from data
throughput, hence meets the needs of hard real-time embed-
ded applications. In addition, GD-aggregates can be ana-
lyzed with simple closed form formulae, and can be easily
planned with optimization tools.

Acknowledgement

This work is supported in part by NSF CCR 03-25716,
NSF CNS 06-49885 SGER, by ONR N00014-05-0739, and
by a grant from Lockheed Martin and a grant from Rock-
well Collins. Any opinions, findings, and conclusions or rec-
ommendations expressed in this publication are those of the
authors and do not necessarily reflect the views of sponsors.
The authors thank anonymous reviewers for their advice on
improving this paper.

References
[1] An Architecture for Differentiated Services. RFC 2475, 1998.
[2] J. C. R. Bennett et al. WF2Q: Worst-case fair weighted fair

queueing. Proc. of INFOCOM’96, pages 120–128, 1996.
[3] Y. Chu et al. A case for end system multicast. Proc. of ACM

SIGMETRICS, 2000.
[4] R. Davis et al. Resource sharing in hierarchical fixed priority

pre-emptive systems. Proc. of IEEE RTSS’06, 2006.
[5] Z. Deng and J. W.-S. Liu. Scheduling real-time applications

in an open environment. Proc. of IEEE RTSS’97, 1997.
[6] L. Georgiadis et al. Efficient network qos provisioning based

on per node traffic shaping. IEEE/ACM Trans. on Network-
ing, 4(4), August 1996.

[7] P. Goyal et al. Determining end-to-end delay bounds in
heterogeneous networks. Multimedia Systems, (5):157–163,
1997.

[8] P. Goyal et al. Generalized guaranteed rate scheduling al-
gorithms: A framework. IEEE/ACM Trans. on Networking,
5(4):561–571, August 1997.

[9] R. Gupta and K. G. Shin. Working group summary: Infras-
tructure and building blocks. NSF Cyber-Physical Systems
Workshop, October 2006.

[10] T. Kuo and C. Li. A fixed-priority-driven open environment
for real-time applications. Proc. of IEEE RTSS’99, 1999.

[11] J. W. Liu. Real-Time Systems. Prentice-Hall, Inc., 2000.
[12] A. Parekh et al. A generalized processor sharing approach to

flow control in integrated services networks: The single-node
case. IEEE/ACM Trans. on Networking, 1(3):344–357, June
1993.

[13] A. K. Parekh. A generalized processor-sharing approach to
flow control in integrated servcies networks. PhD Thesis,
EECS Dept., MIT, 1992.

[14] L. L. Peterson et al. Computer Networks: A Systems Ap-
proach (2nd Ed.). Morgan Kaufmann, 2000.

[15] L. Sha, A. Agrawala (Eds), T. Abdelzaher, C. D. Gill, R. Ra-
jkumar, and J. A. Stankovic (Authors). Report of NSF work-
shop on distributed real-time and embedded systems research
in the context of GENI. GENI Design Document 06-32
(GDD-06-32), September 2006.

[16] I. Shin and I. Lee. Periodic resource model for compositional
real-time guarantees. Proc. of IEEE RTSS’03, 2003.

[17] J. Sun. Fixed Priority Scheduling of End-to-End Periodic
Tasks. Ph.D. Thesis, CS Dept., UIUC, 1997.

[18] W. Sun and K. G. Shin. End-to-end delay bounds for traf-
fic aggregates under guaranteed-rate scheduling algorithms.
EECS Dept., Univ. of Michigan, Ann Arbor, Tech. Rep., (CSE-
RT-484-03), 2003.

[19] W. Sun and K. G. Shin. End-to-end delay bounds for traf-
fic aggregates under guaranteed-rate scheduling algorithms.
IEEE/ACM Trans. on Networking, 13(5):1188–1201, October
2005.

[20] Q. Wang et al. Gd-aggregate: A WAN virtual topol-
ogy building tool for hard real-time and embed-
ded applications (appendices). [Online] available
at https://agora.cs.uiuc.edu/display/
realTimeSystems/Recent+Publications.

[21] S. Wang, D. Xuan, R. Bettati, and W. Zhao. Providing abso-
lute differentiated services for real-tiem applications in static-
priority scheduling networks. IEEE/ACM Trans. on Network-
ing, 12(2):326–339, April 2004.


