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Abstract

The convergence of computational activities and phys-
ical work is the theme for next generation networking re-
search. This trend calls for real-time network infrastruc-
ture, which requires a high-speed real-time WAN to serve as
its backbone. However, commercially available high-speed
WAN switches (routers) are designed for best-effort Inter-
net traffic. A real-time switch design for the aforementioned
networks is missing. We propose a real-time switch design
using a crossbar switching fabric. The proposed switch can
be implemented by making minimal modification, or even
simplification, to the widely implementediSLIP crossbar
switch scheduler. Our real-time switch serves periodic and
aperiodic traffic with real-time virtual machine tasks, which
simplifies analysis, provides isolation, and facilitates future
hierarchical scheduling and flow aggregation. Taking ad-
vantage of the fact that most industrial real-time network
flows rarely change, our switch is better adapted to provid-
ing high bandwidths and low latencies.

1 Introduction

A theme for next generation networking research, such
as the Real-Time and Embedded GENI [27] initiative and
the Cyber-Physical Systems [1, 15, 2, 33] initiative, is to en-
able the convergence of computers with the physical world.
A target application of this convergence is industrial real-
time control and automation.

As pointed out in Wang et al. [35], industrial real-time
control/automation needs wired real-timewide area net-
works (WAN) as the communication backbone. To build
such WANs, we need real-time switches (routers), whereas
commercially available switches are tailored towards best-
effort Internet traffic rather than real-time systems.

There are three approaches to building a switch: out-
put queueing, input queueing, andvirtual output queueing
(VOQ).

In output queueing, queueing only takes place at the out-
put ports (simplified asoutputsin the following). When a
packet arrives at an input port (simplified asinputs in the
following), it immediately goes to the queue at its destined
output. Due to its simplicity, most QoS scheduling algo-
rithms, such as WFQ [23], WF2Q [3], Deficit Round-Robin
[32] etc., assumes output queueing [20].

Output queueing, however, creates a data bus bottleneck.
Since there is no queue at the inputs, the data bus must
deliver every arriving packet to output queue immediately.
In the worst case, every input may reach its maximum ca-
pacity, and all incoming packets may go to a same output.
Therefore, the data bus connected to each output must pro-
vide a capacity no less than total capacity of all inputs. Sup-
pose a switch hasN inputs, each with a data line rate of
C, then the data bus connected to each output must pro-
vide a capacity ofN × C. We call thisN speed-up. Such a
speed-up makes output queueing undesirable for high-speed
switches or switches with large number of ports (N ) be-
cause of the challenges of developing high-speed memory
banks.

In contrast to output queueing, input queueing buffers
packets in queues at the inputs. This avoids the need for
speedup in the switch, but suffers fromhead of line(HOL)
blocking: if packets going to other outputs are blocked at
the head of the input queue, a packet to outputj must wait
for the depletion of this backlog before it is transferred to
outputj, even though outputj is idle. It is well known that
if each input queue is first-in-first-out (FIFO), HOL block-
ing can limit the throughput to just58.6% [16].

The solution to the HOL problem is to deployvirtual
output queueing, where each input maintains a virtual out-
put queue for each output. VOQs eliminate HOL blocking,
but packets from different inputs’ VOQs still contend for
the same output. Various schemes are proposed to reduce
this contention, so as to improve the hardware utilization.
To our best knowledge, the most popular scheme isiSLIP
[22, 21, 9], which is elaborated upon in Section 2. Although
iSLIP efficiently utilizes the switch hardware and is sim-



ple to implement, it does not provide real-time guarantees.
In fact, real-time high-performance switch design is stillan
open problem [13].

In this article we describe a design of a real-time switch
by making minimal modifications toiSLIP, or even by sim-
plifying iSLIP. This design benefits switch manufacturers
sinceiSLIP is already widely implemented in commercial
products, and the minor modifications can be easily incor-
porated into the manufacturing process. Our approach is to
define operations that allow a switch to serve each linkl for
Cl units of time everyM units of time. This enables hierar-
chical scheduling, which can then be analyzed using one of
several known techniques [8, 31, 19].

In the following, Section 2 describes theiSLIP scheme;
Section 3 proposes our switch design for industrial real-time
communications; Section 4 evaluates our design; Section 5
discusses related work; and Section 6 concludes the paper.

2 Crossbar Switches andiSLIP

To support input queueing or VOQ, most high-
performance switches use a crossbar hardware fabric [24]
(Fig. 1). The data bus from each input (the horizontal line
segments in the figure) intersects with the data bus of each
output (the vertical line segments). The intersections can
be turned on or off during runtime by the switch scheduling
logic. To facilitate the scheduling logic, crossbar switches
transfer packets in fixed-size fragments calledcells; and the
time to transfer one cell across the crossbar fabric is called
a cell-time. Therefore, the scheduling logic works period-
ically: it determines a matching between inputs and out-
puts at the beginning of each cell-time; then all scheduled
cells are transferred synchronously across the crossbar fab-
ric, taking one cell-time; and then the next period starts, so
on and so forth.

Figure 1. Crossbar Switch Hardware Fabric

iSLIP [22, 21] is a popular scheduling mechanism for
VOQ crossbar switches. Without loss of generality, sup-
pose a switch consists ofN inputsI1 ∼ IN andN outputs

O1 ∼ ON (denoted as an “N × N switch” in the follow-
ing). UnderiSLIP, every inputIi maintains a circular list of
outputsO1 ∼ ON , with pointerai pointing toO1 initially.
This circular list is called the input’sround-robin schedule.
The output pointed to byai has the highest priority, the
next output (moduloN ) has the next highest priority, and
so on. In the same way, every outputOj also maintains a
round-robin schedule of inputs, with pointergj pointing to
the highest priority input, the next input (moduloN ) has the
next highest priority, and so on.

With the above data structures, the basiciSLIP runs fol-
lowing steps [22]:

Step 1 Request. Each unmatched input sends a request to
every output for which it has a queued cell.

Step 2 Grant. If an unmatched output receives any re-
quests, it grants the requesting input with the highest
priority in the output’s round-robin schedule. The out-
put notifies each input whether or not its request was
granted. The pointergi to the round-robin schedule is
incremented (moduloN ) to one location beyond the
granted inputif, and only if, the grant is accepted in
Step 3.

Step 3 Accept. If an input receives any grants, it accepts the
granting output with the highest priority in the input’s
round-robin schedule. The pointerai to the round-
robin schedule is incremented (moduloN ) to one lo-
cation beyond the accepted output.

Since some granting outputs may not be accepted,iSLIP
may carry out up toN iterations of Request-Grant-Accept
at the beginning of each cell-time to increase the number of
matching.

The originaliSLIP mechanism [22, 21] also accommo-
dates several variations such as weightediSLIP and priori-
tizediSLIP. Different commercialiSLIP switches may im-
plement certain subsets of these variations. According to
McKeown [21], iSLIP can achieve100% throughput (i.e.,
every output reaches maximum capacity; in other words,
the bipartite graph between inputs and outputs defined by
the crossbar fabric reaches full match for every cell-time)
for uniform traffic, and quickly adapts to a fair scheduling
policy that never starve any input queue for non-uniform
traffic.

However, obtaining accurate delay bounds foriSLIP is
still an open problem. The best knowniSLIP delay bound
is still “very pessimistic” [13]. For example, if in anN ×
N iSLIP switch, every input has periodic real-time traffic
going to every output, the known single hop delay bound
for packets from inputIi to outputOj is

d = N2
∑

k

Cijk, (1)



whereCijk is the per packet transmission time of thekth
real-time flow going fromIi to Oj . SupposeN = 32, Cijk

is the same for all links and flows, and if there are100 real-
time flows going fromIi to Oi, then the single hop delay
bound is at least102400 times that of a packet transmission
time.

3 A Real-Time Switch Design

To support real-time, we propose a real-time switch de-
sign by making minimum modifications toiSLIP. Interest-
ingly, our design simplifiesiSLIP rather than complicates
it.

Firstly, we observe a large body of research on serving
a real-time task or task-set with a real-timevirtual machine
task (VM-task) [20, 8, 17, 31, 19, 5, 6]. One simple and
widely implemented form is clock-driven scheduling [20],
where a VM-task(M, C) indicates that a real-time task or
task-set is servedC time units during each clock-period of
M time units.

Using clock-driven scheduling, we may serve thekth
real-time flowfijk from input Ii to outputOj in a cross-
bar switch with a VM-task(M, Cijk) (unless explicitly
noted, the default time unit is “cell-time”), wherek =
1, 2, . . . , Kij , andKij is the total number of real-time flows
going fromIi to Oj . That is, as long as the switch forwards
Cijk cells fromIi to Oj for fijk in eachM cell-time clock-
period, packets offijk shall meet their local deadlines.

Secondly, we observe that theiSLIP request-grant-
accept negotiation between inputs and outputs is for Inter-
net random traffic, which changes frequently.If the traffic
rarely changes and is periodic, as that of real-time flows in
industrial networks, there is no need for a request-grant-
accept negotiation. Instead, deterministic grants (or ac-
cepts) alone suffice. We only need to work out a conflict-
free grant (or accept) schedule during configuration-time.

In summary, our real-time switch shall serve each real-
time flow with a real-time VM-task, and the VM-task is
served with deterministic grant (or accept). We elaborate
such design in the following.

3.1 Per-flow VOQ

Our proposed real-time switch is anN × N crossbar
VOQ switch. However, to control jitter for simpleend-
to-end(E2E) delay guarantee, we deployper-flow virtual
output queueing(per-flow VOQ), instead of combining all
cells at inputIi destined for outputOj in one virtual output
queue. In other words, if there areKij flows going fromIi

to Oj , then forOj , we maintainKij queues atIi for each
flow respectively.

The overall buffer requirements at the switch do not
change (much) because of the per-flow VOQs; the same

packets that would have been buffered at one VOQ are held
in different buffers depending on their flow id. Flow differ-
entiation can be performed in conjunction with IP lookup
and output port identification, therefore the hardware com-
plexity and the per-cell processing time overhead increase
only marginally. It is also worth mentioning that per-flow
VOQs are simple FIFO queues. We do not need to main-
tain per-flow state information, or perform sorting (as most
timestamp based QoS schemes, such as WFQ [23] and
WF2Q [3], do), which may affect performance.

3.2 Traffic demand

All traffic demand in our real-time switch is abstracted
by the clock-driven scheduling of VM-tasks (see Sec-
tion 3.5 Equation (4)). According to clock-driven schedul-
ing, thekth real-time flowfijk from Ii to Oj can be served
by VM-taskτijk = (M, Cijk). That is, during each clock-
period ofM cell-time,Cijk cells are forwarded fromIi to
Oj for flow fijk.

DenoteCij
def
=

∑Kij

k=1
Cijk . That is,Ii needs to forward

Cij cells toOj during each clock-period. Then the entire
VM-task set{(M, Cijk)} (i = 1 ∼ N, j = 1 ∼ N, k =
1 ∼ Kij) must meet the following constraints to befeasible:

Constraint 1 Feasible input utilization:

N
∑

j=1

Cij ≤ M, i = 1, 2, . . . , N. (2)

Constraint 2 Feasible output utilization:

N
∑

i=1

Cij ≤ M, j = 1, 2, . . . , N. (3)

Infeasible VM-task sets are unschedulable, and we do
not consider them.

3.3 Runtime scheduling

Corresponding to theM cell-time clock-period, each
outputOj maintains a round-robin scheduleSout

j of M el-
ements. Thegth (1 ≤ g ≤ M ) element dictates the input
from whichOj fetches a cell at thegth cell-time of aM cell-
time clock-period.Sout

1
∼ Sout

N areconflict-free, meaning
at any cell-time of theM cell-time clock-period, no two out-
puts fetch cells from the same input; andSout

j (j = 1 ∼ N )
has exactlyCij (i = 1 ∼ N ) elements for inputIi, mean-
ing Oj fetchesCij cells fromIi in eachM cell-time clock-
period. We will describe how to deriveSout

1
∼ Sout

N in a
later subsection (Section 3.4).

Correspondingly, each inputIi maintains a round-robin
scheduleSin

ij of Cij elements for each outputOj . Theath



(a = 1, 2, . . . , Cij ) element ofSin
ij indicates the per-flow

VOQ to send a cell from, whenIi is to connectOj for the
ath time during theM cell-time clock-period. That is,Sin

ij

hasCijk elements forfijk (k = 1 ∼ Kij) respectively; and
these elements are arbitrarily ordered.

Input Ii also maintains a pointerρij to Sin
ij , initially

pointing to the first element ofSin
ij .

With the above settings, our proposed real-time switch
only executes two steps at the beginning of thegth (g =
1, 2, . . . , M ) cell-time of eachM cell-time clock-period:

Step 1 Grant. OutputOj grants the input indicated by the
gth element ofSout

j .

Step 2 Accept. On receiving a grant fromOj , input Ij

sendsOj the head cell (or null if the queue is empty)
of per-flow VOQ indicated by pointerρij . ρij is in-
creased by1 (moduloCij ).

The “Request” step in the originaliSLIP disappears; and
becauseSout

1
∼ Sout

N are conflict-free, a “Grant” is always
accepted , which eliminates the need ofN iterations. There-
fore, our real-time switch incursO(1) computation during
runtime, and is simpler thaniSLIP.

3.4 Configuration-time scheduling

During configuration-time, we need to work out conflict-
free round-robin schedulesSout

1
∼ Sout

N . In this section,
we show that any feasible VM-task set has a conflict-free
schedule that can be computed in polynomial time.

Theorem 1 A VM-task set{(M, Cijk)} has conflict-free
schedulesSout

1
∼ Sout

N if and only if the VM-task set is
feasible (see Constraint 1 and 2 for the definition of “feasi-
ble”); and any feasible VM-task set can be scheduled within
O(N4) time, whereN is the number of input (also output)
ports.

Proof: 1) Sufficiency: The scheduling of feasible VM-
task set{(M, Cijk)} can be reduced to apreemptive open
shop scheduling(POSS) problem [12].

The preemptive open shop scheduling problem involves
n tasks, denoted by the set{τi}, and η machines (n ≥
1, η ≥ 1). τi hasη subtasks, represented by the set{τij},
such thatτij has to be executed on machinej. Tasks can
be preempted, and no restrictions are placed on the order in
which the subtasks are executed. No machine can operate
on more than one task at a time, and no task can execute
on more than one machine at the same time. Iftij is the
time required by subtaskτij on machinej, we can obtain

the following quantities:

Tj =

n
∑

i=1

tij = total time on machinej, ∀1 ≤ j ≤ η,

Li =

η
∑

j=1

tij = total time for taski, ∀1 ≤ i ≤ n.

The optimal finish time for all operations isα =
maxi,j{Tj, Li}, which can always be achieved according
to the scheduling algorithm suggested by Gonozalez and
Sahni [12]. The scheduling algorithm has a time complex-
ity of O(β2), whereβ is the number of non-zero subtasks.

Regard all VM-tasks forwarding cells fromIi to Oj

as one VM-task(M, Cij), where Cij
def
=

∑Kij

k=1
Cijk ;

and regard each outputOj (j = 1, 2, . . . , N ) as a POSS
machine. For each givenI (I = 1, 2, . . . , N ), regard
VM-task subset{(M, Cij)|i == I} as a POSS task
that runsCI1, CI2, . . . , CIN time units on POSS machine
O1, O2, . . . , ON respectively. According to the POSS al-
gorithm proposed by Gonzalez and Sahni [12], any feasible
VM-task set{(M, Cij)} can always finish withinα = M
time units, i.e., any feasible VM-task set{(M, Cij)} is
schedulable; and the scheduling complexity isO(N4) since
β ≤ N2.

2) Necessity: According to the definition given in Con-
straint 1 and 2, any infeasible VM-task set either exceeds
the capacity of an input, or an output, hence is not schedu-
lable.

�

Although Gonzalez and Sahni’s POSS algorithm is poly-
nomial and optimal (in the sense it schedules any feasible
VM-task set), its implementation is non-trivial. In the fol-
lowing, we propose a sub-optimal but simpler scheduling
algorithm, which has straight-forward graphical meaning.

As in the proof of Theorem 1, we first regard all VM-
tasks forwarding cells fromIi to Oj as one VM-task

(M, Cij), whereCij
def
=

∑Kij

k=1
Cijk . We can graphically

represent the VM-task set{(M, Cij)} (i, j = 1, 2, . . . , N )
as ademand matrix(see Fig. 2):

Definition 1 (Demand matrix) A demand matrixD =
{djg} is a N × M matrix, with each elementdjg ∈
{0, 1, 2, . . . , N}. In thejth (j = 1, 2, . . . , N ) row, Cij el-
ements are coloredi (i = 1, 2, . . . , N ) respectively; the re-
maining elements are colored0, meaningempty slots; and
the elements in the row are arbitrarily ordered.

In a demand matrix, each non-zero element in thejth
row indicates the input from which outputOj shall fetch a
cell during aM cell-time clock-period.

Naturally, each demand matrix has the following prop-
erty:



Property 1 (Feasible demand matrix) Suppose the de-
mand matrix {djg}N×M represents a VM-task set
{(M, Cij)}. Then{(M, Cij)} is feasible if and only if for
each non-zero colori ∈ {1, 2, . . . , N}, the demand matrix
has no more thanM elements colored ini. Such a demand
matrix is called afeasible demand matrix.

In addition, a demand matrix can represent a schedule.

Definition 2 (Schedule (matrix)) We can regard a demand
matrix D = {djg}N×M as a schedule if each elementdjg

(djg 6= 0) implies that outputOj grants inputIdjg
at the

gth cell-time of eachM cell-time clock-period, and no two
elements in each column ofD have the same non-zero color.
We shall also call such demand matrix aschedule matrix.

The jth (j = 1 ∼ N ) row of a schedule matrix rep-
resents scheduleSout

j . Since a schedule matrix one-to-one
mapps to a valid schedule, “schedule matrix” and “sched-
ule” become interchangeable terms.

With the help of the schedule matrix, configuration-time
scheduling now has graphical meaning: given a feasible de-
mand matrixD, configuration-time scheduling permutates
the elements in each row ofD to produce a schedule (a ma-
trix where no two elements in each column have the same
non-zero color). Fig. 2 illustrates the relationship between
demand matrix, scheduling algorithm, and schedule matrix.

Figure 2. An example illustrates the relation-
ship between Demand Matrix, Configuration-
Time Scheduling Algorithm, and Schedule
Matrix, where number of ports N = 4, and a
clock-period is M = 5 cell-time.

With the help of the above graphical tools, we can devise
many simpler sub-optimal scheduling algorithms. In Fig. 3,
we propose theleast slack(LS) algorithm. The term “slack”
means the following: if a row of a demand matrix hasκ
elements coloredc, then colorc has a slack of(M − κ) in
this row.

1. LeastSlack(D/* the N × M demand matrix, passed by copy */):
2. Initiate schedule matrixS as anN × M empty matrix.
3. while D has non-zero colored elementbegin
4. Of all rows ofD, pick the non-zero colorc that has least slack

(break ties arbitrarily).Denote the corresponding row index asj.
5. Move the elements of colorc in thejth row ofD to the earliest

(i.e., empty slots with the smallest column indices) and
conflict-free empty slots in thejth row ofS.
break thewhile loop if cannot find any conflict-free empty slot.

6. end.
7. if all non-zero colored elements ofD are removed,return S;
8. else return cannot find schedule.

Figure 3. Least Slack (LS) Scheduling. The
term “conflict-free” means no two non-zero
colored elements in each column of a matrix
have the same color.

For LS-scheduling algorithm, let tuple(r, c) correspond
to the slack of colorc in the rth row of demand ma-
trix. During initialization, we shall create and sort these
N2 tuples into a listL with ascending slack, which takes
O(N2 log N + NM) time. Then Step 3 only takesO(1)
time: just to check whetherL is empty; and Step 4 only
takesO(1) time: just remove the head ofL. Step 5 takes
O(M) time, if we maintain anN × M boolean arrayF for
S with Fcg indicating whether thegth column ofS already
has an element coloredc. Thewhile loop from Step 3 to
Step 6 loops at the mostN2 times. Therefore, the time com-
plexity of LS-scheduling isO(N2 log N +NM+N2M) =
O(N2M).

3.5 E2E Delay Guarantee

In this section, we analyze the E2E delay guarantee pro-
vided by our proposed real-time switch for industrial real-
time applications. In these applications, the dominate traf-
fics are periodic traffics such as sensing, actuating, and
video monitoring. Aperiodic traffics can be served by peri-
odic VM-tasks [20]. As a result, we shall assume all traffics
are periodic in the following analysis.

We assume that all the switches in the industrial network
comply with the proposed real-time switch scheme. We
also assume that all switches adopt the same clock-period
of P ≡ 1 (ms) and have the same per port capacity. Assume
a unanimous cell size of500 bits1. If the per port capacity
is 1Gbps,10Gbps, or100Gbps, then a clock-period of1ms
corresponds to anM of 2000, 20000, and200000 cell-time
respectively.

Suppose a real-time flowf at least needs to send a mes-
sage ofE cells everyT cell-time, denoted asf = (T, E).
NoteE, T may be real numbers instead of integers. Then

1Real-world switches usually use cell size of512 bits. We use cell size
of 500 bits for narrative simplicity.



we over provisionf with VM-taskτf = (M, C), where

C =

⌈

E

⌊T/M⌋

⌉

. (4)

That is, each message off is forwarded asR
def
= ⌊T/M⌋

packets, and each packet consists ofC cells. Note, sinceM
cell-time equals1ms, for most industrial real-time applica-
tions,T > M .

Supposef traversesH hops of our proposed real-time
switches, each schedules a VM-task of(M, C) to forward
the packets off .

To derive the E2E delay, we start from the first hop.
Since the first hop forwards exactlyC cells for flow f in
any consecutiveM cell-time, whenever a new message of
f arrives, the first packet of the message takes at the most
M + 1 cell-time to be forwarded, the additional1 is be-
cause the packet may arrive during the middle of a cell-
time. After that, the switch forwards a next packet every
additionalM cell-time, until allR packets are forwarded.
Same thing happens in the following switches. Therefore,
the worst case E2E delayD (ms) for the message is

D =

H
∑

h=1

(M + 1)δ + (R − 1)Mδ

= (H + R − 1)P + Hδ, (5)

whereδ (ms) is one cell-time in the unit of millisecond.
The first item of Equation (5) is the worst case E2E de-

lay for the first packet. After the first packet arrives at the
receiver end, every additionalM cell-time, a subsequent
packet arrives, until allR packets arrive.

Note the above analysis can be easily extended to cases
where the proposed real-time switches have different per
port capacities, which are not discussed in this paper due to
page limits.

4 Evaluation

4.1 Efficiency of M Cell-Time Clock-
Period

A natural question on the proposed real-time switch is:
how efficient is it to enforce a unanimousM cell-time
clock-period?

We evaluate this in the context of industrial real-time
control/automation traffic.

There are two types of real-time traffic in industrial real-
time control/automation: real-time sensing/actuating traffic
and real-time video traffic.

Real-time sensing/actuating traffic involves low data-
throughput. A typical sensing/actuating flow generates a

1 ∼ 5kbit message every10(ms). The maximal allowed
E2E delay is usually50ms [10, 11].

Real-time video traffic involves high data-throughput. A
typical video flow generates one message (a.k.a. “frame”)
every30ms, and the message size is in the worst case120 ∼
240kbits. And usually the E2E delay for each video frame
is also50ms [10, 11].

As in Section 3.5, we assume a fixed cell size of
500bits/cell, and we always pickM so thatM cell-time
equals1ms.

In the following, we run1000 trials for each type of
switch settings: with per port capacity of1Gbps,10Gbps,
and100Gbps; and number of input ports (which is also the
number of output ports) of8, 16, and32.

In each trial, we randomly add sensing/actuating or video
flows to a switch (without exceeding port capacities); and
the messages of each flowf are over-provisioned with VM-
task(M, C) as described in Equation (4) of Section 3.5. For
each flow set, we calculate its switch utilization demand,
and check whether the flow set is schedulable using theM
cell-time clock-period. Note that the switch utilization de-
mand is calculated using each flow’s original message pe-
riod and message size, not the over-provisioned VM-task
(M, C); and switch utilization equals the average utiliza-
tion of all inputs of the switch (assume all inputs has the
same capacity). Fig. 4 plots the schedulability ratio (i.e.
probability) for given switch utilization demand.

We find that our real-time switch achieves good schedu-
lability and switch utilization. When the switch utiliza-
tion demand is below70%, a flow set is empirically al-
ways schedulable in all settings. Particularly, for high-speed
switches with per port capacity of10Gbps and100Gbps, the
switch utilization can reach nearly85% and90% for all set-
tings to provide a100% schedulable ratio (empirically).

We also find that theM cell-time clock-period schedu-
lability ratio improves as per-port capacity increases. Take
Fig. 4 (a) for example: a switch utilization demand of86%
corresponds to a schedulability ratio of0, 96%, and100%
when the per port capacity is1Gbps,10Gbps, and100Gbps
respectively.

On the other hand, the schedulability ratio deteriorates
as the number of ports increases. For example, the1Gbps
curves of Fig. 4 (a), (b), and (c) shows that when the switch
utilization demand is80%, the schedulability is43%, 22%,
and0 for 8 port,16 port, and32 port switches respectively.
This is intuitive because more ports means more contention.

4.2 E2E Delay

The same simulation study described in Section 4.1 also
provides E2E delay upper bound statistics. We compare
them with those ofiSLIP.

We assume the maximal hop count is15. The E2E delay
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Figure 4. Schedulability Ratio for Given
Switch Utilization Demand using the Pro-
posed Real-Time Switch and M Cell-Time
Clock-Period

upper bound of our proposed real-time switch is given in
Equation (5). A tightiSLIP E2E delay bound, however, is
still an open problem. To make the comparison optimistic
on theiSLIP side, we use theiSLIPsingle hopdelay bound
given in Equation (1) as its E2E delay bound.

The result statistics are shown in Fig. 5.
We see that using our proposed real-time switch, all E2E

delays are within50ms, which meets the demand of most
industrial real-time traffic. UsingiSLIP switches, however,
most of the time even the single hop delay bound may ex-
ceed100ms, 150ms, or even200ms. Therefore, our pro-
posed real-time switch provides better E2E delay guaran-
tees.

4.3 Efficiency of LS Algorithm

Lastly, we evaluate the efficiency of LS algorithm de-
scribed in Fig. 3.

We know that Gonzalez and Sahni’s POSS algorithm is
optimal in the sense that it can schedule any feasible de-
mand matrix. LS is a simpler, but sub-optimal algorithm.
For any feasible demand matrix, POSS provides a schedu-
lability ratio of 100%. We compare this with LS’s schedu-
lability ratio. We still try three different numbers of ports:
8, 16, and32. For each number of ports, we try three dif-
ferent per port capacity:1Gbps,10Gbps, and100Gbps. For
each setting, we randomly generate1000 feasible demand
matrices, and check whether they are schedulable using LS
algorithm. The results are plotted in Fig. 6.

We find that LS schedulability is sensitive to number of
ports. As shown in Fig. 6 (a), (b), and (c), as number of
ports increases from8, to 16, and to32, the LS-algorithm
can schedule more than half, about half, and less than half of
the randomly generated feasible matrices. This is intuitive
because more number of ports means a demand matrix has
more colors to conflict with each other in each column.

We also see that LS schedulability is not sensitive to per
port capacity: in all of Fig. 6 (a), (b), and (c), different per
port capacity of1Gbps,10Gbps, and100Gbps result in sim-
ilar curves. This is probably because the number of colors
that can conflict is fixed, given the number of ports is fixed.

5 Related Work

Network infrastructure for hard real-time communica-
tion has typically been restricted to prioritization in routers.
The number of priority levels, however, is about4 to 8
in conventional Internet routers, and this is insufficient
for hard real-time guarantees. Additionally, many router
designs for real-time systems have required significant
changes when compared to commercially-available routers
for Internet traffic. The desire to use existing solutions, or
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solutions with minimal hardware changes, has been a dom-
inant interest for industrial networks from the viewpoint of
purchasing and maintenance costs.

Prioritized bus and ring networks have been used in
small real-time systems [25, 28, 14] but they are not de-
signed for high-speed network backbones, such as those
of WANs. Rexford, Hall and Shin [26] propose a router
for real-time communication but it was designed to sup-
port deadline-based scheduling, which imposes significant
hardware changes. Additionally, their router is not designed
for high-speed network backbones either. Similarly, Venka-
tramani and Chiueh proposed a real-time switch for Ether-
nets [34], which is neither designed for high-speed network
backbones.

While there has been some effort, such as by Rexford,
Hall and Shin, to design new routers for real-time systems,
considerable effort has been devoted to analyzing the per-
formance of high-speed switches and routers and obtaining
delay bounds [30, 29]. The scheduling of crossbar switches
reduces to a matching on a graph, and fast algorithms for
obtaining a matching have also been studied [7]. These re-
sults use stochastic traffic patterns and provide asymptotic
performance bounds that are not sufficient for industrial sys-
tems that require greater predictability.

Some related work concerns the use of COTS routers for
real-time systems using approximate bounds and design-
ing networks of switches to meet end-to-end deadlines [13].
The work presented in this article complements such work;
better router architectures result in reduced message delays,
which in turn reduces the cost of networks that can guaran-
tee end-to-end requirements.

There are also efforts on emulating output queueing
using input queueing or combined input-output queueing
[4, 18]. However, to achieve the same hardware utiliza-
tion efficiency as that of conventional input-queueing/VOQ
crossbar switches is still an open problem.

The work presented in this article provides a mechanism
for guaranteeing a task a certain amount of communication
slots in a fixed time interval. The router design we have ar-
ticulated is a building block for obtaining end-to-end delay
bounds, and for enabling hierarchical scheduling policies
and associated analysis [31, 19, 17, 8].

6 Conclusion

The convergence of computer and physical world is
the theme for next generation networking research. This
trend calls for real-time industrial network infrastructure,
which needs high-speed real-time WAN to serve as its back-
bone. However, nowadays commercially available high-
speed WAN switches (routers) are designed for best-effort
Internet traffic. A real-time switch design for the aforemen-
tioned networks is missing.

In this article, we propose a real-time switch design
on the most widely adopted crossbar switch architecture.
The proposed switch can be implemented by making mini-
mal modification, or even simplification, to the well-known
iSLIP crossbar switch scheme. This benefits switch man-
ufacturers sinceiSLIP is already widely implemented in
commercial products, and the minor modifications can be
easily incorportated into the manufacturing process.

Our real-time switch serves periodic and aperiodic traf-
fic with real-time virtual machine tasks, which simplifies
analysis, provides isolation, and facilitates future hierarchi-
cal scheduling and flow aggregation. Taking advantage that
most industrial real-time network flows rarely change, the
switch only needs to be configured to a real-time schedule
at startup-time (aperiodic flows, which may change more
frequently, are encapsulated by their real-time virtual ma-
chine tasks), and a polynomial time algorithm is found to
schedule any feasible flow set. During runtime, our real-
time switch incurs onlyO(1) computation, which fits the
need of high-speed networking.

Simulation results show that, for typical industrial real-
time network traffic, our switch can achieve high utilization
and guarantee small end-to-end delays.

We believe that it is essential to capture the true work-
load characteristics of applications, such as the predictabil-
ity of network traffic in industrial control applications, to
design efficient infrastructure for these applications. Fur-
ther, changes in workload, which are infrequent and involve
planned outages, can be accommodated via simple reconfig-
uration. As future work, we will extend our switch design
to support run-time adaptation, hierarchical scheduling,and
flow aggregation. We are also interested in better analyses
for end-to-end delay bounds, and resource optimization is-
sues.
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