A Switch Design for Real-Time Industrial Networks

Qixin Wang', Sathish GopalakrishnanXue Liu*, and Lui Sha
* Department of Computer Science, University of lllinois abana-Champaign
 Department of Electrical and Computer Engineering, Ursitgrof British Columbia
 Department of Computer Science, McGill University

Abstract In output queueing, queueing only takes place at the out-
put ports (simplified asutputsin the following). When a
The convergence of computational activities and phys- packet arrives at an input port (simplified eputsin the

ical work is the theme for next generation networking re- following), it immediately goes to the queue at its destined
search. This trend calls for real-time network infrastruc- output. Due to its simplicity, most QoS scheduling algo-
ture, which requires a high-speed real-time WAN to serve asrithms, such as WFQ [23], WiR) [3], Deficit Round-Robin
its backbone. However, commercially available high-speed[32] etc., assumes output queueing [20].
WAN switches (routers) are designed for best-effort Inter- Output queueing, however, creates a data bus bottleneck.
net traffic. A real-time switch design for the aforementne Since there is no queue at the inputs, the data bus must
networks is missing. We propose a real-time switch designdeliver every arriving packet to output queue immediately.
using a crossbar switching fabric. The proposed switch can |n the worst case, every input may reach its maximum ca-
be implemented by making minimal modification, or even pacity, and all incoming packets may go to a same output.
simplification, to the widely implementé8LIP crossbar Therefore, the data bus connected to each output must pro-
switch scheduler. Our real-time switch serves periodic and vide a capacity no less than total capacity of all inputs.-Sup
aperiodic traffic with real-time virtual machine tasks, whi pose a switch ha®’ inputs, each with a data line rate of
simplifies analysis, provides isolation, and facilitatetife C, then the data bus connected to each output must pro-
hierarchical scheduling and flow aggregation. Taking ad- vide a capacity ofV x C. We call thisN speed-upSuch a
vantage of the fact that most industrial real-time network speed-up makes output queueing undesirable for high-speed
flows rarely change, our switch is better adapted to provid- switches or switches with large number of porfs)(be-

ing high bandwidths and low latencies. cause of the challenges of developing high-speed memory
banks.
In contrast to output queueing, input queueing buffers
1 Introduction packets in queues at the inputs. This avoids the need for

speedup in the switch, but suffers frdread of ling(HOL)

A theme for next generation networking research, such blocking: if packets going to other outputs are blocked at
as the Real-Time and Embedded GENI [27] initiative and the head of the input queue, a packet to outpuitust wait
the Cyber-Physical Systems [1, 15, 2, 33] initiative, iste e for the depletion of this backlog before it is transferred to
able the convergence of computers with the physical world. outputj, even though outputis idle. It is well known that
A target application of this convergence is industrial real if each input queue is first-in-first-out (FIFO), HOL block-
time control and automation. ing can limit the throughput to jus8.6% [16].

As pointed out in Wang et al. [35], industrial real-time The solution to the HOL problem is to deplayrtual
control/automation needs wired real-timéde area net- output queueingwhere each input maintains a virtual out-
works (WAN) as the communication backbone. To build put queue for each output. VOQs eliminate HOL blocking,
such WANSs, we need real-time switches (routers), whereasbut packets from different inputs’ VOQs still contend for
commercially available switches are tailored towards-best the same output. Various schemes are proposed to reduce
effort Internet traffic rather than real-time systems. this contention, so as to improve the hardware utilization.

There are three approaches to building a switch: out- To our best knowledge, the most popular schemiSIdP
put queueing, input queueing, amittual output queueing [22, 21, 9], which is elaborated upon in Section 2. Although
(VOQ). 1SLIP efficiently utilizes the switch hardware and is sim-

ple to implement, it does not provide real-time guarantees.O; ~ Oy (denoted as anV x N switch” in the follow-

In fact, real-time high-performance switch design is stil
open problem [13].

ing). UnderiSLIP, every inputl; maintains a circular list of

outputsO;, ~ Oy, with pointera; pointing toO initially.

In this article we describe a design of a real-time switch This circular list is called the input®und-robin schedule

by making minimal modifications téSLIP, or even by sim-
plifying «SLIP. This design benefits switch manufacturers

The output pointed to by; has the highest priority, the

next output (modulaV) has the next highest priority, and

sincesSLIP is already widely implemented in commercial so on. In the same way, every outgj also maintains a

products, and the minor modifications can be easily incor-

round-robin schedule of inputs, with pointgr pointing to

porated into the manufacturing process. Our approach is tothe highest priority input, the nextinput (modul has the

define operations that allow a switch to serve eachllifuk

C; units of time evenyM units of time. This enables hierar-
chical scheduling, which can then be analyzed using one ofl
several known techniques [8, 31, 19].

In the following, Section 2 describes th8LIP scheme;
Section 3 proposes our switch design for industrial reakti
communications; Section 4 evaluates our design; Section
discusses related work; and Section 6 concludes the paper.

2 Crossbar Switches andSLIP

To support input queueing or VOQ, most high-
performance switches use a crossbar hardware fabric [24]
(Fig. 1). The data bus from each input (the horizontal line

5

next highest priority, and so on.
With the above data structures, the baSitIP runs fol-
lowing steps [22]:

Step 1 Request Each unmatched input sends a request to
every output for which it has a queued cell.

Step 2 Grant If an unmatched output receives any re-
guests, it grants the requesting input with the highest
priority in the output’s round-robin schedule. The out-
put notifies each input whether or not its request was
granted. The pointey; to the round-robin schedule is
incremented (moduldV) to one location beyond the
granted inpuif, and only if, the grant is accepted in
Step 3

segments in the figure) intersects with the data bus of each

output (the vertical line segments). The intersections can
be turned on or off during runtime by the switch scheduling
logic. To facilitate the scheduling logic, crossbar switsh
transfer packets in fixed-size fragments caltetls and the
time to transfer one cell across the crossbar fabric is dalle
acell-time Therefore, the scheduling logic works period-
ically: it determines a matching between inputs and out-
puts at the beginning of each cell-time; then all scheduled
cells are transferred synchronously across the crossbar fa
ric, taking one cell-time; and then the next period staxs, s
on and so forth.

ollo]lo]]o,
0 D W
]2 © © © o0—
]3 © © © o—
I S A

Figure 1. Crossbar Switch Hardware Fabric

iSLIP [22, 21] is a popular scheduling mechanism for
VOQ crossbhar switches. Without loss of generality, sup-
pose a switch consists &f inputs/; ~ Iy and N outputs

Step 3 Accept If an inputreceives any grants, it accepts the
granting output with the highest priority in the input's
round-robin schedule. The pointef to the round-
robin schedule is incremented (moduld to one lo-
cation beyond the accepted output.

Since some granting outputs may not be accep&dP
may carry out up taV iterations of Request-Grant-Accept
at the beginning of each cell-time to increase the number of
matching.

The originaliSLIP mechanism [22, 21] also accommo-
dates several variations such as weigh®dIP and priori-
tizediSLIP. Different commercialSLIP switches may im-
plement certain subsets of these variations. According to
McKeown [21],iSLIP can achieva00% throughput (i.e.,
every output reaches maximum capacity; in other words,
the bipartite graph between inputs and outputs defined by
the crossbar fabric reaches full match for every cell-time)
for uniform traffic, and quickly adapts to a fair scheduling
policy that never starve any input queue for non-uniform
traffic.

However, obtaining accurate delay bounds#8LIP is
still an open problem. The best know8LIP delay bound
is still “very pessimistic” [13]. For example, if in afV x
N iSLIP switch, every input has periodic real-time traffic
going to every output, the known single hop delay bound
for packets from inpuf; to outputO; is

d:NQZCijka)
k

whereC;;, is the per packet transmission time of thi
real-time flow going from/; to O;. SupposeV = 32, C;;

is the same for all links and flows, and if there a6® real-
time flows going from/; to O;, then the single hop delay
bound is at least02400 times that of a packet transmission
time.

3 A Real-Time Switch Design

To support real-time, we propose a real-time switch de-

sign by making minimum modifications t&LIP. Interest-
ingly, our design simplifiegSLIP rather than complicates
it.

Firstly, we observe a large body of research on serving

a real-time task or task-set with a real-timietual machine
task (VM-task) [20, 8, 17, 31, 19, 5, 6]. One simple and
widely implemented form is clock-driven scheduling [20],
where a VM-task M, C') indicates that a real-time task or
task-set is served' time units during each clock-period of
M time units.

Using clock-driven scheduling, we may serve thih
real-time flow f;;; from input /; to outputO; in a cross-
bar switch with a VM-task(M, C;;,) (unless explicitly
noted, the default time unit is “cell-timg; where k
1,2,..., K;;, andKj; is the total number of real-time flows
going fromI; to O;. Thatis, as long as the switch forwards
Cijx, cells fromI; to O; for f;;1, in eachM cell-time clock-
period, packets of; ;. shall meet their local deadlines.

Secondly, we observe that theSLIP request-grant-

accept negotiation between inputs and outputs is for Inter-

net random traffic, which changes frequentliythe traffic
rarely changes and is periodic, as that of real-time flows in
industrial networks, there is no need for a request-grant-
accept negotiation. Instead, deterministic grants (or ac-
cepts) alone suffice. We only need to work out a conflict-
free grant (or accept) schedule during configuration-time.

In summary, our real-time switch shall serve each real-

time flow with a real-time VM-task, and the VM-task is

packets that would have been buffered at one VOQ are held
in different buffers depending on their flow id. Flow differ-
entiation can be performed in conjunction with IP lookup
and output port identification, therefore the hardware com-
plexity and the per-cell processing time overhead increase
only marginally. It is also worth mentioning that per-flow

VOQs are simple FIFO queues. We do not need to main-

tain per-flow state information, or perform sorting (as most
timestamp based QoS schemes, such as WFQ [23] and

WF2Q [3], do), which may affect performance.

3.2 Traffic demand

All traffic demand in our real-time switch is abstracted
by the clock-driven scheduling of VM-tasks (see Sec-
tion 3.5 Equation (4)). According to clock-driven schedul-
ing, thekth real-time flowf;;, from I; to O; can be served
by VM-taskr;;, = (M, C;;). Thatis, during each clock-
period of M cell-time, C;;;, cells are forwarded frond; to
Oj for flow fijk-

DenoteC;; def ZkKjl 5ik- Thatis,I; needs to forward
C;; cells toO; during each clock-period. Then the entire
VM-task set{(M,C;jx)} (=1~ N,j =1~ N,k =
1 ~ K;;) must meet the following constraints to feasible

Constraint 1 Feasible input utilization:

N
Y Cy<Mi=12,... N 2)
j=1

Constraint 2 Feasible output utilization:
N
> Ciy<M,j=12,..,N. (3)
1=1

Infeasible VM-task sets are unschedulable, and we do
not consider them.

served with deterministic grant (or accept). We elaborate 3.3 Runtime scheduling

such design in the following.
3.1 Per-flow VOQ

Our proposed real-time switch is ai x N crossbar
VOQ switch. However, to control jitter for simplend-
to-end(E2E) delay guarantee, we deplpgr-flow virtual
output queueingper-flow VOQ), instead of combining all
cells at input/; destined for outpu®; in one virtual output
queue. In other words, if there afe;; flows going from/;
to O;, then forQ;, we maintaink;; queues af; for each
flow respectively.

The overall buffer requirements at the switch do not

Corresponding to thel/ cell-time clock-period, each
outputO; maintains a round-robin schedu$§"* of M el-
ements. Theth (1 < g < M) element dictates the input
fromwhichO; fetches a cell at thgth cell-time of aM cell-
time clock-period.S¢“! ~ S¢“* areconflict-free meaning
at any cell-time of thé/ cell-time clock-period, no two out-
puts fetch cells from the same input; aﬂjﬁ“ (j=1~N)
has exactlyC;; (i = 1 ~ N) elements for inpuf;, mean-
ing O, fetchesC};; cells fromI; in each) cell-time clock-
period. We will describe how to derive{** ~ S in a
later subsection (Section 3.4).

Correspondingly, each inpdt maintains a round-robin

change (much) because of the per-flow VOQs; the sam&cchedulesjy of C;; elements for each outpal,;. Theath

(@ = 1,2,...,Cy;) element ofS;? indicates the per-flow
VOQ to send a cell from, whef is to connecO); for the
ath time during theM cell-time clock-period. That iss*;']’?
hasCj;, elements forf;;, (k = 1 ~ K;;) respectively; and
these elements are arbitrarily ordered

Input I; also maintains a pointey;;
pointing to the first element oS’ZJ”

With the above settings, our proposed real-time switch
only executes two steps at the beginning of itile (¢ =
1,2,..., M) cell-time of each\/ cell-time clock-period:

to Sin

75!

initially

Step 1 Grant OutputO; grants the input indicated by the
gth element of59"*.

Step 2 Accept On receiving a grant fron®;, input I;
sendsO; the head cell (or null if the queue is empty)
of per- row VOQ indicated by pointep;;. p;; is in-
creased by (moduloC;;).

The “Request” step in the origingbBLIP disappears; and
becauses{“t ~ S¢“t are conflict-free, a “Grant” is always
accepted, which eliminates the need\biterations. There-
fore, our real-time switch incur®(1) computation during
runtime, and is simpler thaisLIP.

3.4 Configuration-time scheduling

During configuration-time, we need to work out conflict-
free round-robin schedules?“! ~ S¥¢. In this section,

we show that any feasible VM-task set has a conflict-free

schedule that can be computed in polynomial time.

Theorem 1 A VM-task set{(M, C;;x)} has conflict-free
schedulesSy** ~ S¢# if and only if the VM-task set is
feasible (see Constralnt 1 and 2 for the definition of “feasi-
ble”); and any feasible VM-task set can be scheduled within
O(N*) time, whereN is the number of input (also output)
ports.

Proof: 1) Sufficiency: The scheduling of feasible VM-
task set{(M, C;;x)} can be reduced to preemptive open
shop schedulingPOSS) problem [12].

The preemptive open shop scheduling problem involves ements are colored(; = 1,2, ..

n tasks, denoted by the sét;}, andn machines«{ >
1,n > 1). 7, hasn subtasks, represented by the §gt },
such thatr;; has to be executed on machije Tasks can

be preempted, and no restrictions are placed on the order in

the following quantities:

T; total time on maching, V1 < j <,

L; total time for taski, V1 < i < n.

The optimal finish time for all operations is
max; ;{7};, L;}, which can always be achieved according

to the scheduling algorithm suggested by Gonozalez and
Sahni [12]. The scheduling algorithm has a time complex-
ity of O(%), whereg is the number of non-zero subtasks.

Regard all VM-tasks forwarding cells from; to O;
def

as one VM-task(}M, C;;), where C;; Zk ks
and regard each outp@; (j = 1,2,...,N) as a POSS
machine. For each giveh (I = 1,2,...,]\7), regard

VM-task subset{(M,C;;)|li == I} as a POSS task
that runsCipq, Cyo, ..., Crn time units on POSS machine
01,05, ...,0xN respectively. According to the POSS al-
gorithm proposed by Gonzalez and Sahni [12], any feasible
VM-task set{ (M, C;;)} can always finish withimv = M
time units, i.e., any feasible VM-task sé{M,C;;)} is
schedulable; and the scheduling complexit®isV*) since
B < N2

2) Necessity: According to the definition given in Con-
straint 1 and 2, any infeasible VM-task set either exceeds
the capacity of an input, or an output, hence is not schedu-
lable.

[|

Although Gonzalez and Sahni’'s POSS algorithm is poly-
nomial and optimal (in the sense it schedules any feasible
VM-task set), its implementation is non-trivial. In the fol
lowing, we propose a sub-optimal but simpler scheduling
algorithm, which has straight-forward graphical meaning.

As in the proof of Theorem 1, we first regard all VM-
tasks forwarding cells from/; to O; as one VM-task

(M, Cs5), whereC;; def Zk 1 Cijr. We can graphlcally
represent the VM-task s¢(M, C;;)} (4,5 = 1,2,...,N)
as ademand matriXsee Fig. 2):

Definition 1 (Demand matrix) A demand matrixD
{djq} iIs a N x M matrix, with each element;, €
{0,1,2,...,N}. Inthejth (j = 1,2,...,N) row, C;; el-
., N) respectively; the re-
maining elements are coloréd meaningempty slotsand
the elements in the row are arbitrarily ordered.

In a demand matrix, each non-zero element in ttie

which the subtasks are executed. No machine can operateow indicates the input from which outpat; shall fetch a
on more than one task at a time, and no task can executeell during aM cell-time clock-period.

on more than one machine at the same timet;,lfis the
time required by subtask;; on machinej, we can obtain

Naturally, each demand matrix has the following prop-
erty:

Property 1 (Feasible demand matrix) Suppose the de-
mand matrix {d;;}nxm represents a VM-task set
{(M,C;;)}. Then{(M, C;;)} is feasible if and only if for

each non-zero coloi € {1,2,..., N}, the demand matrix
has no more thad/ elements colored in Such a demand
matrix is called afeasible demand matrix

In addition, a demand matrix can represent a schedule.

Definition 2 (Schedule (matrix)) We can regard a demand
matrix D = {d,,} nxm as a schedule if each elemetyt,
(djg # 0) implies that outpuD; grants input/,,, at the
gth cell-time of each\/ cell-time clock-period, and no two
elements in each columnDbfhave the same non-zero color.
We shall also call such demand matrisehedule matrix

The jth (j = 1 ~ N) row of a schedule matrix rep-
resents schedul&;’“t. Since a schedule matrix one-to-one
mapps to a valid schedule, “schedule matrix” and “sched-
ule” become interchangeable terms.

With the help of the schedule matrix, configuration-time
scheduling now has graphical meaning: given a feasible de
mand matrixD, configuration-time scheduling permutates
the elements in each row &3 to produce a schedule (a ma-

trix where no two elements in each column have the same

non-zero color). Fig. 2 illustrates the relationship bedgwe
demand matrix, scheduling algorithm, and schedule matrix.

Schedule Matrix

Celltime: 1 |2 |3 4| 5
Outputl: |I| m Outputl: |I|
Qutput2: |I|

Output2: |I|
Output3: III Output3: m [t}
QOutputd: |I|

Configuration-

Time
Scheduling
Algorithm

Outputd:

III A cell to fetch from Inputl A cell to fetch from Input2

A cell to fetch from Input3 A cell to fetch from Inputd

o An empty slot (don’t need to fetch cell from any input)

Figure 2. An example illustrates the relation-
ship between Demand Matrix, Configuration-
Time Scheduling Algorithm, and Schedule
Matrix, where number of ports N = 4, and a
clock-period is M =5 cell-time.

With the help of the above graphical tools, we can devise
many simpler sub-optimal scheduling algorithms. In Fig. 3,
we propose théeast slackLS) algorithm. The termslack
means the following: if a row of a demand matrix has
elements colored, then colore has a slack of M — &) in
this row.

1. LeastSlacKkD/* the N x M demand matrix, passed by copy */):

2. Initiate schedule matri$ as anN x M empty matrix.

3. while D has non-zero colored elemdsggin

4. Of all rows ofD, pick the non-zero colof that has least slack
(break ties arbitrarily).Denote the corresponding rowneinas;.

5. Move the elements of colerin the jth row of D to the earliest
(i.e., empty slots with the smallest column indices) and
conflict-free empty slots in thgth row of S.
break thewhile loop if cannot find any conflict-free empty slot.

6. end

7. if all non-zero colored elements Bf are removedreturn S;

8. else returncannot find schedule.

Figure 3. Least Slack (LS) Scheduling. The
term “conflict-free” means no two non-zero

colored elements in each column of a matrix
have the same color.

For LS-scheduling algorithm, let tuple, ¢) correspond
to the slack of colorc in the rth row of demand ma-
trix. During initialization, we shall create and sort these
N?2 tuples into a listZ with ascending slack, which takes
O(N?log N + NM) time. Then Step 3 only take3(1)
time: just to check whethef is empty; and Step 4 only
takesO(1) time: just remove the head df. Step 5 takes
O(M) time, if we maintain anV x M boolean array for
S with £, indicating whether thgth column ofS already
has an element colored The while loop from Step 3 to
Step 6 loops at the moat? times. Therefore, the time com-
plexity of LS-scheduling i©)(N?log N+ NM+N?M) =
O(N2M).

3.5 E2E Delay Guarantee

In this section, we analyze the E2E delay guarantee pro-
vided by our proposed real-time switch for industrial real-
time applications. In these applications, the dominate tra
fics are periodic traffics such as sensing, actuating, and
video monitoring. Aperiodic traffics can be served by peri-
odic VM-tasks [20]. As a result, we shall assume all traffics
are periodic in the following analysis.

We assume that all the switches in the industrial network
comply with the proposed real-time switch scheme. We
also assume that all switches adopt the same clock-period
of P = 1 (ms) and have the same per port capacity. Assume
a unanimous cell size @00 bits'. If the per port capacity
is 1Gbps,10Gbps, or100Gbps, then a clock-period dins
corresponds to an/ of 2000, 20000, and200000 cell-time
respectively.

Suppose a real-time flow at least needs to send a mes-
sage ofE cells everyTl" cell-time, denoted ag = (T, E).
Note FE, T' may be real numbers instead of integers. Then

1Real-world switches usually use cell sizesaf2 bits. We use cell size
of 500 bits for narrative simplicity.

1 ~ 5kbit message every0(ms). The maximal allowed
E2E delay is usuall$Oms [10, 11].

Real-time video traffic involves high data-throughput. A
typical video flow generates one message (a.k.a. “frame”)
every30ms, and the message size is in the worst ¢ase-
240kbits. And usually the E2E delay for each video frame
is also50ms [10, 11].

As in Section 3.5, we assume a fixed cell size of
500bits/cell, and we always picR/ so thatM cell-time
equalsims.

In the following, we run1000 trials for each type of
switch settings: with per port capacity ®Gbps,10Gbps,
and100Gbps; and number of input ports (which is also the

we over provisionf with VM-taskr; = (M, C), where

¢

Thatis, each message pfs forwarded as? =4 |T/M |
packets, and each packet consist€'afells. Note, sincé/
cell-time equald ms, for most industrial real-time applica-
tions, T > M.

Supposef traversesd hops of our proposed real-time
switches, each schedules a VM-task(8f, C) to forward
the packets of.

To derive the E2E delay, we start from the first hop.
Since the first hop forwards exactty cells for flow f in number of output ports) &, 16, and32.
any consecutivé/ cell-time, whenever a new message of In each trial, we randomly add sensing/actuating or video
f arrives, the first packet of the message takes at the mosflows to a switch (without exceeding port capacities); and
M + 1 cell-time to be forwarded, the additionalis be- the messages of each flgirare over-provisioned with VM-
cause the packet may arrive during the middle of a cell- task(2/, C) as described in Equation (4) of Section 3.5. For
time. After that, the switch forwards a next packet every each flow set, we calculate its switch utilization demand,

E

7/ *)

additional M cell-time, until all R packets are forwarded.
Same thing happens in the following switches. Therefore,
the worst case E2E deldy (ms) for the message is

H

> (M +1)6 + (R - 1)M?
h=1

(H+ R—1)P + HJ,

D

=)
whereé (ms) is one cell-time in the unit of millisecond.

The first item of Equation (5) is the worst case E2E de-
lay for the first packet. After the first packet arrives at the
receiver end, every additiondll cell-time, a subsequent
packet arrives, until alR packets arrive.

Note the above analysis can be easily extended to case
where the proposed real-time switches have different per

port capacities, which are not discussed in this paper due tQabiIity ratio improves as per-

page limits.
4 Evaluation

4.1 Efficiency of M Cell-Time Clock-
Period

A natural question on the proposed real-time switch is:
how efficient is it to enforce a unanimou¥ cell-time
clock-period?

We evaluate this in the context of industrial real-time
control/automation traffic.

There are two types of real-time traffic in industrial real-
time control/automation: real-time sensing/actuatiradfic
and real-time video traffic.

Real-time sensing/actuating traffic involves low data-
throughput. A typical sensing/actuating flow generates a

and check whether the flow set is schedulable using\the
cell-time clock-period. Note that the switch utilizatioe-d
mand is calculated using each flow’'s original message pe-
riod and message size, not the over-provisioned VM-task
(M, C); and switch utilization equals the average utiliza-
tion of all inputs of the switch (assume all inputs has the
same capacity). Fig. 4 plots the schedulability ratio (i.e.
probability) for given switch utilization demand.

We find that our real-time switch achieves good schedu-
lability and switch utilization. When the switch utiliza-
tion demand is belovi0%, a flow set is empirically al-
ways schedulable in all settings. Particularly, for higiead
switches with per port capacity @0Gbps and 00Gbps, the
switch utilization can reach neardg% and90% for all set-
fings to provide a00% schedulable ratio (empirically).

We also find that theé// cell-time clock-period schedu-
port capacity increaseskelTa
Fig. 4 (a) for example: a switch utilization demandi6f%
corresponds to a schedulability ratio@f96%, and100%
when the per port capacity i$5bps,10Gbps, and 00Gbps
respectively.

On the other hand, the schedulability ratio deteriorates
as the number of ports increases. For examplelGleps
curves of Fig. 4 (a), (b), and (c) shows that when the switch
utilization demand i80%, the schedulability i€3%, 22%,
ando for 8 port, 16 port, and32 port switches respectively.
This is intuitive because more ports means more contention.

4.2 E2E Delay

The same simulation study described in Section 4.1 also
provides E2E delay upper bound statistics. We compare
them with those ofSLIP.

We assume the maximal hop count s The E2E delay

1 @@@@@@@®®§§®®®®&
a A
0.8
el
g
o 0.6
o A
<
> A
3 0.4
<
®
0.2+ —— 100G x 8 port
- *-10G x 8 port A
4 1G x 8 port
0 L I L
0.5 0.6 0.7 0.8
Demand Utilization
@
G Gl o
\
0.8 “
el
IS A
21
0 06
Qo
<
3 0.4}
o IN
®
0.2F| ——100G x 16 port A
- *-10G x 16 port
4 1G x 16 port A
0 L I L
0.5 0.6 0.7 0.8
Demand Utilization
(b)
1222220006808 00000R
A
0.8
el
g
% 0.6 .
©
>
3 0.4 2
<
®
0.2F| —°—100G x 32 port
-+-10Gx32port | ©
411G x 32 port

0 : A
0.5 0.6 0.7 0.8
Demand Utilization

©

Figure 4. Schedulability Ratio for Given
Switch Utilization Demand using the Pro-
M Cell-Time

posed Real-Time Switch and
Clock-Period

upper bound of our proposed real-time switch is given in
Equation (5). A tightSLIP E2E delay bound, however, is
still an open problem. To make the comparison optimistic
on theiSLIP side, we use th&SLIP single hopdelay bound
given in Equation (1) as its E2E delay bound.

The result statistics are shown in Fig. 5.

We see that using our proposed real-time switch, all E2E
delays are withirbOms, which meets the demand of most
industrial real-time traffic. UsingSLIP switches, however,
most of the time even the single hop delay bound may ex-
ceed100ms, 150ms, or ever200ms. Therefore, our pro-
posed real-time switch provides better E2E delay guaran-
tees.

4.3 Efficiency of LS Algorithm

Lastly, we evaluate the efficiency of LS algorithm de-
scribed in Fig. 3.

We know that Gonzalez and Sahni’'s POSS algorithm is
optimal in the sense that it can schedule any feasible de-
mand matrix. LS is a simpler, but sub-optimal algorithm.
For any feasible demand matrix, POSS provides a schedu-
lability ratio of 100%. We compare this with LS'’s schedu-
lability ratio. We still try three different numbers of pert
8, 16, and32. For each number of ports, we try three dif-
ferent per port capacitytGbps,10Gbps, and 00Gbps. For
each setting, we randomly generat#0 feasible demand
matrices, and check whether they are schedulable using LS
algorithm. The results are plotted in Fig. 6.

We find that LS schedulability is sensitive to number of
ports. As shown in Fig. 6 (a), (b), and (c), as humber of
ports increases frorg, to 16, and to32, the LS-algorithm
can schedule more than half, about half, and less than half of
the randomly generated feasible matrices. This is in@iitiv
because more number of ports means a demand matrix has
more colors to conflict with each other in each column.

We also see that LS schedulability is not sensitive to per
port capacity: in all of Fig. 6 (a), (b), and (c), differentrpe
port capacity ofiGbps,10Gbps, and 00Gbps result in sim-
ilar curves. This is probably because the number of colors
that can conflict is fixed, given the number of ports is fixed.

5 Related Work

Network infrastructure for hard real-time communica-
tion has typically been restricted to prioritization in tets.
The number of priority levels, however, is aboutto 8
in conventional Internet routers, and this is insufficient
for hard real-time guarantees. Additionally, many router
designs for real-time systems have required significant
changes when compared to commercially-available routers
for Internet traffic. The desire to use existing solutions, o

100

90

80

70

60

50

Percentage (%)

40

30

20

10

100

90

80

Percentage (%)
.
3

100

90

80

Percentage (%)
o
&

T T T
I 1G x 8 port, E2E, Proposed RT Switch

I 10G x 8 port, E2E, Proposed RT Switch | |

[100G x 8 port, E2E, Proposed RT Switch
[E01G x 8 port, Single Hop, iSLIP
[C110G x 8 port, Single Hop, iSLIP

[_1100G x 8 port, Single Hop, iSLIP

i

0~50 50 ~100 100~150 150~200 >=200
Delay Bound (ms)

(@

[l :G x 16 port, E2E, Proposed RT Switch =
[l 206 x 16 port, E2E, Proposed RT Switch
-100(3 X 16 port, E2E, Proposed RT Switcl
l:llG x 16 port, Single Hop, iSLIP
["]106 x 16 port, Single Hop, iSLIP

l:llOOG X 16 port, Single Hop, iSLIP

- m I

0~50 50~100 100~150 150~200 >=200
Delay Bound (ms)

(b)

[l :G x 32 port, E2E, Proposed RT Switch
- 10G x 32 port, E2E, Proposed RT Switch
[100G x 32 port, E2E, Proposed RT Switch
16 x 32 port, Single Hop, iSLIP

l:l 10G x 32 port, Single Hop, iSLIP
l:llOOG x 32 port, Single Hop, iSLIP

. |
0~50 50~100 100~150 150~200 >=200
Delay Bound (ms)

©
Figure 5. E2E Delay Comparison

—o—100G x 8 port
- *-10G x 8 port
o 0.8/ 241G x 8 port
&
9 06’ 7
Qo
©
>
S 0.4¢ 1
e
O
N
0.27 1
0 . . . &
0 0.2 0.4 0.6 0.8 1
Demand Utilization
(@
18 ‘ ‘ ‘
—o— 100G x 16 port
- *-10G x 16 port
o 0.8 24--1G x 16 port ||
g
o 0.6} 1
Qo
<
3
3 0.4 1
<
(8]
n
0.2t |
0 : ; *Re s 88 o
0 0.2 0.4 0.6 0.8 1
Demand Utilization
(b)
184 S T T T
—o— 100G x 32 port
- *-10G x 32 port
o 0.8 241G x 32 port
T *
24
o 0.6} 1
Qo
<
S
3 0.4 1
<
(8]
n
0.2t |
0 : 40 & & 0 &

0 0.2 0.4 06 08 1
Demand Utilization

(©)

Figure 6. LS Schedulability Ratio for Given
Demand Matrix Utilization

solutions with minimal hardware changes, has been a dom- In this article, we propose a real-time switch design
inant interest for industrial networks from the viewpoitit o on the most widely adopted crossbar switch architecture.
purchasing and maintenance costs. The proposed switch can be implemented by making mini-
Prioritized bus and ring networks have been used in mal modification, or even simplification, to the well-known
small real-time systems [25, 28, 14] but they are not de- iSLIP crossbar switch scheme. This benefits switch man-
signed for high-speed network backbones, such as thoseifacturers sinceéSLIP is already widely implemented in
of WANs. Rexford, Hall and Shin [26] propose a router commercial products, and the minor modifications can be
for real-time communication but it was designed to sup- easily incorportated into the manufacturing process.
port deadline-based scheduling, which imposes significant Our real-time switch serves periodic and aperiodic traf-
hardware changes. Additionally, their router is notdes@n fic with real-time virtual machine tasks, which simplifies
for high-speed network backbones either. Similarly, Venka analysis, provides isolation, and facilitates future &iehi-
tramani and Chiueh proposed a real-time switch for Ether- cal scheduling and flow aggregation. Taking advantage that
nets [34], which is neither designed for high-speed network most industrial real-time network flows rarely change, the
backbones. switch only needs to be configured to a real-time schedule
While there has been some effort, such as by Rexford,at startup-time (aperiodic flows, which may change more
Hall and Shin, to design new routers for real-time systems, frequently, are encapsulated by their real-time virtual ma
considerable effort has been devoted to analyzing the perchine tasks), and a polynomial time algorithm is found to
formance of high-speed switches and routers and obtainingschedule any feasible flow set. During runtime, our real-
delay bounds [30, 29]. The scheduling of crossbar switchestime switch incurs onlyO(1) computation, which fits the
reduces to a matching on a graph, and fast algorithms forneed of high-speed networking.
obtaining a matching have also been studied [7]. These re- Simulation results show that, for typical industrial real-
sults use stochastic traffic patterns and provide asynptoti time network traffic, our switch can achieve high utilizatio
performance bounds that are not sufficient forindustriatsy and guarantee small end-to-end delays.
tems that require greater predictability. We believe that it is essential to capture the true work-
Some related work concerns the use of COTS routers forjoad characteristics of applications, such as the preuileta
real-time systems using approximate bounds and designity of network traffic in industrial control applicationsp t
ing networks of switches to meet end-to-end deadlines [13]. design efficient infrastructure for these applications.r-Fu
The work presented in this article complements such work; ther, changes in workload, which are infrequent and involve
better router architectures result in reduced messaggsiela planned outages, can be accommodated via simple reconfig-
which in turn reduces the cost of networks that can guaran-uration. As future work, we will extend our switch design
tee end-to-end requirements. to support run-time adaptation, hierarchical schedubmgi
There are also efforts on emulating output queueing flow aggregation. We are also interested in better analyses

using input queueing or combined input-output queueing for end-to-end delay bounds, and resource optimization is-
[4, 18]. However, to achieve the same hardware utiliza- syes.

tion efficiency as that of conventional input-queueing/vVOQ
crossbar switches is still an open problem.

The work presented in this article provides a mechanism
for guaranteeing a task a certain amount of communication
slots in a fixed time interval. The router design we have ar- This work is supported in part by NSF CCR 03-25716,
ticulated is a building block for obtaining end-to-end dela NSF CNS 06-49885 SGER, by ONR N00014-05-0739, and
bounds, and for enabling hierarchical scheduling policies by a grant from Lockheed Martin and a grant from Rock-

7 Acknowledgement

and associated analysis [31, 19, 17, 8]. well Collins. Sathish Gopalakrishnan and Xue Liu are sup-
ported by NSERC Discovery Grants. Any opinions, find-
6 Conclusion ings, and conclusions or recommendations expressed in this

publication are those of the authors and do not necessarily

. . reflect the views of sponsors.
The convergence of computer and physical world is P

the theme for next generation networking research. This

trend calls for real-time industrial network infrastrurgy References

which needs high-speed real-time WAN to serve as its back-

bone. However, nowadays commercially available high- 1] working group summary: Critical physical infrastrucéu
speed WAN switches (routers) are designed for best-effort NSF Cyber-Physical Systems Worksh©ptober 2006.
Internet traffic. A real-time switch design for the aforemen [2] Working group summary: Scientific foundations and educa
tioned networks is missing. tion. NSF Cyber-Physical Systems Works@ptober 2006.

(3]
(4]

(5]

(6]

(7]

(8]

(9]

(10]
(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

J. C. R. Bennett et al. WAR: Worst-case fair weighted fair
gueueing.Proc. of INFOCOM'96 pages 120-128, 1996.
S.-T. Chuang, A. Goel, N. McKeown, and B. Prabhakar.
Matching ouput queueing with a combined input/output-
queued switch.IEEE Journal on Selected Areas in Com-
munications 17(6):1030-1039, June 1999.

R. Davis and A. Burns. Hierarchical fixed priority preemp
tive scheduling.Proc. of IEEE RTSS'Q%005.

R. Davis and A. Burns. Resource sharing in hierarchical
fixed priority pre-emptive system®roc. of IEEE RTSS’Q6
2006.

S. Deb, D. Shah, and S. Shakkottai. Fast matching algo-
rithms for repetitive optimization: an application to sa¥it
scheduling. InProceedings of the Conference on Informa-
tion, Sciences and Syster2906.

Z.Deng and J. W.-S. Liu. Scheduling real-time appliocas

in an open environmenProc. of IEEE RTSS'97.997.

I. Elhanany, M. Kahane, and D. Sadot. Packet scheduling
in next-generation multiterabit networksEEE Computer
34(4):104-106, Apr. 2001.

B. Fisher et al. Seeing, hearing, and touching: Pulftirad
together.SIGGRAPH'04 Course2004.

M. Glencross et al. Exploiting perception in high-fiidgl
virtual environmentsSIGGRAPH’06 Course2006.

T. Gonzalez and S. Sahni. Open shop scheduling to mini-
mize finish time.Journal of the Association for Computing
Machinery 23(4):665-679, Oct. 1976.

S. Gopalakrishnan, M. Caccamo, and L. Sha. Switch
scheduling and network design for real-time systems. In
Proc. of IEEE Real-Time and Embedded Technology and Ap-
plications (RTAS)Apr. 2006.

S. Gopalakrishnan, L. Sha, and M. Caccamo. Hard real-
time communication in bus-based networksPhoceedings

of the IEEE Real-Time Systems SymposiDet. 2004.

R. Gupta and K. G. Shin. Working group summary: Infras-
tructure and building blocksNSF Cyber-Physical Systems
Workshop October 2006.

M. Karol, M. Hluchyj, and S. Morgan. Input versus output
gueueing on a space-division swtidEEE Transactions on
Communications35:1347-1356, Dec. 1987.

T.-W. Kuo and C.-H. Li. A fixed-priority-driven open env
ronment for real-time application®roc. of IEEE RTSS’99
1999.

H.-l. Lee and S.-W. Seo. Matching output queueing with a
multiple input/output-queued switchEEE/ACM Trans. on
Networking 14(1):121-132, February 2006.

G. Lipari and E. Bini. Resource partitioning among real
time applicationsProc. of ECRTS2003.

J. W. S. Liu.Real-Time System®rentice Hall, 2000.

N. McKeown. TheiSLIP scheduling algorithm for input-
queued switcheslEEE/ACM Transactions on Networking
7(2), Apr. 1999.

N. W. McKeown. Scheduling Algorithms for Input-Queued
Cell Switches PhD thesis, EECS Dept., University of Cali-
fornia at Berkeley, 1995.

A. K. Parekh. A Generalized Processor Sharing Approach
to Flow Control in Integrated Services NetwoRhD thesis,
EECS Dept., M.I.T., Feb. 1992.

L. L. Peterson and B. S. Davi€omputer Networks: A Sys-
tem ApproachMargan Kaufmann, second edition, 2000.

[25] R. S. Raji. Smart networks for controllEEE Spectrum

31:49-55, June 1994.

J. Rexford, J. Hall, and K. G. Shin. A router architeetfor
real-time communication in multicomputer networkEEE
Transactions on Computer$7(10):1088-1101, Oct. 1998.
L. Sha and A. Agrawala. Real time and embedded (RTE)
GENI. ACM SIGBED Revieys(3), July 2006.

L. Sha, R. Rajkumar, and J. P. Lehoczky. Real-time sahed
ing support in Futurebus+. IAroceedings of the IEEE Real-
Time Systems Symposiymages 331-340, Dec. 1990.

D. Shah, P. Giaccone, and E. Leonardi. Throughput regio
of finite-buffered networksIEEE Transactions on Parallel
and Distributed System&8(2), Feb. 2007.

D. Shah, P. Giaccone, E. Leonardi, and B. PrabhakaayDel
bounds for combined input and output switches with low
speedupsPerformance Evaluatiqrb5(1-2), 2004.

I. Shin and I. Lee. Periodic resource model for composi-
tional real-time guarantees. Rroc. of the 24th IEEE Inter-
national Real-Time Systems Symposium (RTSS 2D@38)
2003.

M. Shreedhar and G. Varghese. Efficient fair queuinggsi
deficit round robin. IrProc. of SIGCOMMpages 231-242,
1995.

] M. Spong and K. Nahrstedt. Working group summary break-

out session on tele-interactioNSF Cyber-Physical Systems
Workshop October 2006.

C. Venkatramani and T. Chiueh. Design and implemeorati
of a real-time switch for segmented Ethernets.Phoceed-
ings of the International Conference on Network Protogcols
October 1997.

Q. Wang, X. Liu, W. Chen, L. Sha, and M. Caccamo.
Building robust wireless LAN for industrial control with¢h
DSSS-CDMA cell phone network paradignlEEE Trans-
actions on Mobile Computing(6):706—719, June 2007.

