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Abstract—Cyber-Physical Systems (CPS) integrate discrete-time computing and continuous-time physical-world entities, which are often

wirelessly interlinked. The use of wireless safety-critical CPS requires safety guarantees despite communication faults. This paper focuses

on one important set of such safety rules: Proper-Temporal-Embedding (PTE), where distributed CPS entities must enter/leave risky

states according to properly nested temporal pattern and certain duration spacing. Our solution introduces hybrid automata to formally

describe and analyze CPS design patterns. We propose a novel leasing based design pattern, along with closed-form configuration

constraints, to guarantee PTE safety rules under arbitrary wireless communication faults. We propose a formal procedure to transform

the design pattern hybrid automata into specific wireless CPS designs. This procedure can effectively isolate physical world parameters

from affecting the PTE safety of the resultant specific designs. We conduct two wireless CPS case studies, one on medicine and the other

on control, to show that the resulted system is safe against communication failures. We also compare our approach with a polling based

approach. Both approaches support PTE under arbitrary communication failures. The polling approach performs better under severely

adverse wireless medium conditions; while ours performs better under benign or moderately adverse wireless medium conditions.
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1 INTRODUCTION

TO introduce the CPS context [1], we consider a
classical system approach and annotate it with CPS

specifics.
Consider a distributed CPS system where each entity

has an abstract “safe” state and an abstract “risky” state.
During idle time, all entities dwell in their safe states.
However, to accomplish a collective task, a distributed
procedure must be carried out: relevant entities must
enter respective risky states in a fixed order and with
certain required temporal spacing; and then (after the
intended task is done) exit to the respective safe states
in exactly the reverse order, and with certain required
temporal spacing. Furthermore, each entity’s continuous
dwelling time (i.e. the duration that it continuously stays
in the state) in its “risky” state must be upper bounded
by a constant. The safety rules encompassing these dis-
crete ordering and continuous-time temporal conditions
define a temporal interlocking pattern, and is termed as
Proper-Temporal-Embedding (PTE) safety rules.

As an example of PTE safety (see Fig. 1), in the
classic medical CPS of laser tracheotomy [2], the oxygen
ventilator has the “safe” ventilating state, and the “risky”
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pause state; the laser-scalpel has the “safe” shutoff state,
and the “risky” emission state. In order to emit the laser,
the oxygen ventilator must first enter the pause state,
and only then can the laser-scalpel enter the emission
state. Otherwise, the laser emission can trigger fire on the
oxygen ventilated trachea of the patient. Conversely, the
laser-scalpel must first exit the emission state, and then
the ventilator can exit the pause state. Thirdly, certain
minimal temporal spacing must be maintained during
enter/exit of “risky” states, as shown by t1 and t2 in
Fig. 1 (e.g., t1 means that only after the oxygen ventilator
has paused for t1 can laser start emission, otherwise
the patient’s trachea may still have high enough oxygen
concentration to catch fire; note this “pause t1 before
laser emission” approach is chosen in real practice be-
cause hard real-time and error-free trachea oxygen level
sensing is impractical). Fourthly, the continuous dwelling
time, as shown by t3 and t4 in Fig. 1, must each be upper
bounded by a constant (e.g., the ventilator pause dura-
tion t3 must be upper bounded, for otherwise the patient
may suffocate to death). Modeling these sequenced CPS
operations constitute design patterns.

Fig. 1. Proper-Temporal-Embedding Example

Furthermore, as CPS environment entails wireless-
connected sensing, control and computing entities, guar-
anteeing PTE safety rules necessitates consideration of



unreliable wireless communication. Thus, we utilize and
adapt the established design pattern of “leasing” [3]–
[8], to ensure auto-reset of distributed entities under
communication faults. The basic idea is that each entity’s
dwelling duration in risky state is “lease” based (aka
leasing based). A lease is a timer, which takes effect when
the entity enters the risky state. When the lease expires,
the entity exits the risky state, no matter if it receives exit
command from another entity or not.

Lease based design pattern has been widely adopted
in distributed computer systems, particularly distributed
storage and database systems. We find it can also be
applied to cyber-physical systems, where discrete and
continuous states intermingle. Compared to the many
existing leasing based designs in computer systems, the
wireless CPS leasing based design faces the following
paradigm shifts.

First, leasing based designs in computer (i.e. cyber)
systems are often integrated with distributed check-
point and roll-back [3]–[6]. However, in CPS, computers
often have little control over the physical world states:
these states cannot be check-pointed or rolled-back. For
example, we cannot revive a killed patient; nor can we
recover a piece of burnt wood.

Second, in addition to logic-time, continuous-time du-
rations (e.g. the maximal dwelling duration and safe-
guard interval in PTE safety rules) matter.

Considering the above paradigm shifts, our leasing
based design pattern shall not use check-point or roll-
back. Instead, its safety is guaranteed by properly con-
figuring continuous-time temporal parameters.

These heuristics are systematically developed into a
lease based design pattern for wirelss CPS PTE safety
guarantee in this paper. Specifically, this paper’s contri-
butions include:

1. We formalize a temporal interlocking/mutual-
exclusion pattern (i.e. PTE safety rules) for CPS
physical component interactions.

2. We propose a rigorous leasing based design pattern
for wireless CPS; and identify a set of closed-form
constraints on software (i.e. cyber) configuration
parameters. We prove that as long as these con-
straints are satisfied, the design pattern guarantees
PTE safety rules under arbitrary packet losses over
wireless.

3. We propose utilizing hybrid modeling [9]–[11] to
describe and analyze CPS design patterns. Hybrid
modeling is a formal technique to describe/analyze
both the discrete and continuous dynamics of a sys-
tem, hence it is suitable for CPS. Recently, hybrid
modeling has gained popularity for CPS, though to
our best knowledge, it is mostly used for verifica-
tion and we are the first to apply it to CPS design
pattern research.

4. We propose a formal methodology to refine the
design pattern hybrid automata into specific wire-
less CPS designs. This methodology can effectively
isolate physical world parameters (which are much

harder to control, compared to the software/cyber
parameters) from affecting the PTE safety of the
resultant specific wireless CPS designs.

5. We conduct two case studies, respectively on wire-
less medical CPS and wireless control CPS, to vali-
date our proposed approach. We also compare our
approach with a polling based approach proposed
by Kim et al [12]. The comparison results show
that both approaches can guarantee PTE safety
against arbitrary communication failures. In terms
of resource occupation efficiency and user experi-
ence, the polling based approach performs better
under severely adverse wireless medium condi-
tions; while ours performs better under benign or
moderately adverse wireless medium conditions.

The rest of the paper is organized as follows. Sec-
tion 2 introduces the CPS hybrid modeling background;
Section 3 describes the requirements to guarantee PTE
safety rules; Section 4 formally defines the leasing based
design pattern, proves its guarantee of PTE safety rules,
and describes how to elaborate the design pattern into
specific designs. Section 5 and 6 respectively evaluate our
proposed approach with emulation/experiment based
case studies and simulation based comparisons. Section 7
discusses related work. Section 8 concludes paper. Ap-
pendices are included in the Supplementary File [13] as
an indispensable and integral part of this paper.

The conference version of this paper is published in
[14]. Compared to [14], in this paper, we give more case
studies and comparisons, and fixed several typos (see
Supplementary File Appendix I [13] of this paper).

2 BACKGROUND, TERMS AND MODELS

2.1 The Hybrid Modeling Terminology

Hybrid modeling is based on hybrid automaton [9]–
[11], [15], [16], a tool that suits CPS modeling extremely
well because it can formally describe/analyze both dis-
crete (cyber) and continuous (physical) dynamics. For
example, Fig. 2 illustrates a hybrid automaton A′

vent that
describes the discrete/continuous behaviors of a stand-
alone ventilator (see Appendix A of [13] for a more
detailed description on the ventilator’s working mech-
anism). Hvent(t) is the height of the ventilator piston at
time t. The hybrid automaton execution initially dwells
in the location of “PumpOut”: the piston continuously
moves downward at velocity Ḣvent(t) = −0.1(m/s).
When the piston hits bottom (Hvent = 0), a discrete event
happens: the execution moves to location “PumpIn”.
Once in location “PumpIn”, the piston continuously
moves upward at velocity Ḣvent(t) = +0.1(m/s). When
the piston hits ceiling (Hvent = 0.3(m)), a discrete event
happens: the execution moves to location “PumpOut”
again, so on and so forth.

In the rest of the paper, we reuse the notations pro-
posed by Alur et al. [11] to formally describe hybrid
automata. For reader’s convenience, the notation list is



Fig. 2. Hybrid Automaton A′

vent of a Stand-Alone Ven-
tilator. Hvent(t) is the data state variable denoting the
ventilator’s piston height at time t. “PumpOut” is the only
initial location.

also re-presented in our conference version paper [14],
and in Supplementary File Appendix B [13] of this paper.

2.2 System and Fault Model

A hybrid system H is a collection of hybrid automata
(each is called a member hybrid automaton of H), which
execute concurrently and coordinate with each other
via event communications (i.e., the sending/receiving
of synchronization labels). For simplicity, in this paper,
we assume no shared data state variables nor shared
locations between different hybrid automata of a hybrid
system. That is, data state variable names or location
names are local to their respective hybrid automata1.

A distributed sink-based wireless CPS consists of the
following entities: a base station ξ0 and N (in this paper,
we require N ≥ 2) remote entities ξ1, ξ2, . . ., ξN . A wireless
communication link from the base station to a remote
entity is called a downlink; and a wireless communication
link from a remote entity to the base station is called
an uplink. We assume that there is no direct wireless
communication links between any two remote entities
(such practice is desirable for wireless applications with
high dependability requirements [17], [18]).

We assume that each packet’s checksum is strong
enough to detect any bit error(s); a packet with bit
error(s) is discarded at the receiver. Our fault model
assumes that packets sent via wireless can be arbitrarily
lost (not received at all, or discarded at the receiver due
to checksum errors). As per PTE safety requirements, the
uplink communication delays are specified and handled
by the base station. For the downlink, the remote entities
locally specify delays as acceptable or as lost-messages.

3 SPECIFICATION OF PTE SAFETY RULES

For the wireless CPS system and communications fault
model described in Section 2.2, various safety require-
ments can be proposed. Addressing all of them is beyond
the scope of this paper. Instead, this paper considers a
representative subset of such safety requirements, i.e. the

1. To make an analogy, each hybrid automaton is like a class in
Object-Oriented programming. Data state variables and locations are
like class members, hence are “local” (“encapsulated”) to their respec-
tive hybrid automata (classes). Interactions between hybrid automata
are carried out via message (aka event) passing.

requirement to guarantee PTE safety rules. We start by
defining these safety rules.

Let hybrid system H = {Ai| (i = 0, 1, . . ., N )} describe
a wireless CPS. The hybrid automaton Ai describes
wireless CPS member entity ξi. The synchronization la-
bels/functions describe the communication relationships
between these hybrid automata.

We assume that for each hybrid automaton Ai = (~xi(t),
Vi, invi, Fi, Ei, gi, ri, Li, syni, Φ0,i) (where i = 1 ∼ N ), Vi

is partitioned into two subsets: V safe
i and V

risky
i . We call

a location v a “safe-location” iff v ∈ V safe
i ; and a “risky-

location” iff v ∈ V
risky
i (note we do not differentiate the

safe/risky locations for ξ0).
There are two types of PTE safety rules, namely:

PTE Safety Rule 1 (Bounded Dwelling): Each entity ξi’s
(i = 1 ∼ N ) continuous dwelling time (i.e. continuous-
stay time-span) in risky-locations is upper bounded by
a constant.

To describe the second PTE safety rule, however, we
must first introduce the following definition.

Definition 1 (Proper-Temporal-Embedding Partial Order):
We say that entity ξi and ξj has a proper-temporal-
embedding partial order ξi ≺ ξj iff their respective hybrid
automata Ai and Aj always satisfy the following
properties:

p1. If ξi dwells in safe-locations at time t (i.e. Ai’s
location counter ℓi(t) ∈ V safe

i ), then throughout
interval [t, t+Tmin

risky:i→j ], ξj dwells in safe-locations,
where positive constant Tmin

risky:i→j is the ξi to ξj
enter-risky safeguard interval.

p2. Whenever ξj dwells in risky-locations, ξi dwells in
risky-locations.

p3. If ξj dwells in risky-locations at time t, then
throughout interval [t, t + Tmin

safe:j→i], ξi dwells in
risky-locations, where positive constant Tmin

safe:j→i is
the ξj to ξi exit-risky safeguard interval.

Intuitively, Property p2 implies that whenever entity
ξj is in risky-locations, then entity ξi is already in risky-
locations. Property p1 and p3, in addition, specify the
safeguard interval requirements that ξi and ξj enter/exit
respective risky-locations. Specifically, Property p1 im-
plies that before ξj enters its risky-locations, ξi should
have already been in risky-locations for at least Tmin

risky:i→j .
Property p3 implies that after ξj exits its risky-locations
(i.e. returns to safe-locations), ξi must stay in risky-
locations for at least Tmin

safe:j→i.
The above intuition is illustrated by Fig. 1, where

in laser tracheotomy, ventilator ≺ laser-scalpel, if we
consider “pause” and “emission” are risky-locations and
“ventilating” and “shutoff” are safe-locations.

With this notion of PTE partial ordering, the second
PTE safety rule is defined as:



PTE Safety Rule 2 (Proper-Temporal-Embedding): The
proper-temporal-embedding partial ordering between
entities ξ1, ξ2, . . ., ξN forms a full ordering.

In the following, for narrative simplicity and without
loss of generality, we assume that PTE Safety Rule 2
implies a full ordering of

ξ1 < ξ2 < . . . < ξN . (1)

We call a safety rule set belongs to the category of PTE
safety rules iff the rule set consists of and only of PTE
Safety Rule 1 and 2. As mentioned before, in this paper,
we shall only focus on wireless CPS whose safety rules
belong to the category of PTE safety rules. For simplicity,
we call such wireless CPS “PTE wireless CPS”.

4 DESIGN PATTERN BASED SOLUTIONS

To guarantee PTE safety rules described in the previous
section, we propose a leasing based design pattern ap-
proach.

4.1 Leasing based Design Pattern

For a PTE wireless CPS, we assume that safety is
guaranteed if all its member entities stay in their safe-
locations. The challenge arises when a remote entity
needs to enter its risky-locations. When a remote entity
ξk (k ∈ {1, 2, . . . , N}) of a PTE wireless CPS requests to
enter its risky-locations, PTE Safety Rule 2 and Ineq. (1)
imply that entity ξ0, ξ1, . . . , ξk must coordinate. This
may be achieved through wireless communications (up-
link/downlink) via the base station ξ0. However, wire-
less communications are by nature unreliable. Messages
may be lost, and the states of participating entities may
become inconsistent, violating the PTE safety rules.

To deal with the unreliable wireless communications,
we propose a “lease” based design pattern, and (in the
subsequent subsections) show that as long as the PTE
wireless CPS design complies with the proposed design
pattern, the PTE safety rules are guaranteed.

Specifically, there are three roles for PTE wireless CPS
entities: Supervisor, Initializer, and Participant. The base
station ξ0 serves the role of “Supervisor”. Initially, all
entities stay in their respective safe-locations. We only
allow one remote entity to proactively request switching
to its risky-locations. Such a remote entity is called an
“Initializer”. For the time being, let us assume there is only
one Initializer; and without loss of generality, assume the
Initializer is remote entity ξN .

According to PTE Safety Rule 2 and Ineq. (1),
when ξN requests to enter risky-locations, remote entity
ξ1, ξ2, . . . , ξN−1 must enter respective risky-locations be-
fore ξN . Remote entities ξ1, ξ2, . . . , ξN−1 hence play the
role of “Participants”.

We require that every entity ξi’s (i ∈ {0, 1, 2, . . . , N})
dwelling in risky-locations is based on a lease, i.e. a

contract between the Supervisor and ξi. A lease specifies
the expiration time of dwelling in the risky-locations,
and takes effect upon the entrance to risky-locations.
If by the lease expiration, the Supervisor has not yet
aborted/cancelled the lease, ξi will exit to safe-location
automatically.

The above thinking guides us to propose the design
of Supervisor, Initializer, and Participant as shown in
Table 1. We respectively denote the Supervisor, Initializer,
and (the ith) Participant’s defining hybrid automata (see
Table 1) as Asupvsr, Ainitzr, and Aptcpnt,i. These hybrid
automata’s diagrams in Table 1 (and the respective de-
tailed diagrams in Appendix C of [13]) are elaborated in
the following.

Supervisor:

1. Asupvsr’s location set Vsupvsr include the following
locations: “Fall-Back”, “Lease ξi” (where i = 1 ∼
N ), “Cancel Lease ξi” (where i = 1 ∼ N ), and
“Abort Lease ξi” (where i = 1 ∼ N ).

2. Initially, the Supervisor dwells in location “Fall-
Back”, and all data state variables initial values are
zero.

3. When in location “Fall-Back”, if an event
evtξNToξ0Req is received (which is sent by
the Initializer requesting for entering risky-
locations, see the descriptions for Ainitzr in the
following paragraph), and the Supervisor has
been continuously dwelling in “Fall-Back” for
at least Tmin

fb,0, and the application dependent
proposition ApprovalCondition holds, then the
Supervisor transits to location “Lease ξ1”. Along
this transition2, the Supervisor sends out event
evtξ0Toξ1LeaseReq, requesting leasing Participant
ξ1.

4. When in location “Lease ξi” (where i = 1 ∼ N −
1), the behavior of Supervisor can be described by
Fig. 3 (a).

5. When in location “Lease ξN”, the behavior of Su-
pervisor can be described by Fig. 3 (b).

6. When in location “Cancel Lease ξi” (where i = 1 ∼
N ), the behavior of Supervisor can be described by
Fig. 3 (c).

7. When in location “Abort Lease ξi” (where i =
1 ∼ N ), the behavior of Supervisor can also be
described by Fig. 3 (c), except that every occurrence
of “Cancel” is replaced by “Abort”.

Initializer:

1. Ainitzr’s location set Vinitzr include the following
locations: “Fall-Back”, “Requesting”, “Entering”,
“Risky Core”, “Exiting 1”, and “Exiting 2”. V risky

initzr

2. In fact, this “transition” includes two consecutive transitions, the
first one is on receiving event evtξNToξ0Req, Supervisor enters an
intermediate location of 0 dwelling time; and then transit from this
intermediate location to “Lease ξ1” and send out evtξ0Toξ1LeaseReq.
For narrative simplicity, in the following, such intermediate locations
between two consecutive events are not elaborated.



TABLE 1
Specifications of Supervisor, Initializer, and Participant

Role Conceptual Description of Behaviors Hybrid Automata Specifications1,2,3

Supervisor

Conceptually, the Supervisor ξ0 shall start from a “Fall-Back” loca-
tion. Whenever the Initializer ξN requests leasing itself to enter risky-
locations, the Supervisor shall lease Participants ξ1, ξ2, . . ., ξN−1

according to PTE ordering first. After all ξ1 ∼ ξN−1 are leased
(i.e. ξ1 ∼ ξN−1 enter respective risky-locations), the Supervisor
approves ξN ’s lease request to enter risky-location. The Initializer
ξN can also request to cancel the leases; or when an application
dependent proposition ApprovalCondition is violated (e.g. in laser
tracheotomy wireless CPS, ApprovalCondition means blood oxy-
gen level SpO2 is higher than threshold ΘSpO2

), Supervisor ξ0 can
abort leases. Lease cancellations/aborts are conducted in the reverse
PTE order.

Initializer

Conceptually, the Initializer ξN shall start from a “Fall-Back” location.
It can randomly request to lease itself to enter risky-locations. If this
request is approved by the Supervisor ξ0, ξN enters risky-locations.
The dwelling in risky-locations can be cancelled by ξN or aborted by
ξ0 at any time; otherwise, ξN returns to “Fall-Back” when the lease
expires.

(ith) Participant

Conceptually, a Participant ξi (i = 1 ∼ N−1) shall start from a “Fall-
Back” location. Upon receiving lease request from the Supervisor ξ0,
and if the lease is approved, ξi enters risky-locations. The dwelling
in risky-locations can be cancelled by the Initializer ξN or aborted by
the Supervisor ξ0 at any time; otherwise, ξi returns to “Fall-Back”
when the lease expires.

1. All hybrid automata diagrams here are sketches. Please refer to Appendix C in [13] for respective detailed diagrams.
2. The hybrid automata for Supervisor, Initializer, and (the ith) Participant are respectively denoted as Asupvsr, Ainitzr, and Aptcpnt,i.
3. Note as mentioned in Section 2.2, all data state variable names and location names are local to the corresponding hybrid automata (just like in O-O programming,
all class member variable names are local to the class, in contrast to global variable names). For example, Asupvsr’s “Fall-Back” location is not Ainitzr’s “Fall-Back”
locations, although the two locations has the same name. Same way, Asupvsr’s tclk data state variable (see Fig. 11 in Appendix C of [13], the detailed diagram of
Asupvsr) is not Ainitzr’s tclk data state variable (see Fig. 12 in Appendix C of [13], the detailed diagram of Ainitzr).

include location “Risky Core” and “Exiting 1”; all
other locations belong to V safe

initzr.
2. Initially, the Initializer ξN dwells in location “Fall-

Back”; and all data state variables initial values are
zero.

3. When in location “Fall-Back” with continuous
dwelling duration over Tmin

fb,N , the Initializer ξN can
send event evtξNToξ0Req and transit to “Request-
ing” at any time.

4. When in location “Requesting”, the Initializer ξN
can send event evtξNToξ0Cancel and transit back
to “Fall-Back” at any time. Secondly, if ξN dwells
continuously in “Requesting” for Tmax

req,N , it will
automatically transit back to “Fall-Back”. Thirdly,
if event evtξ0ToξNLeaseApprove is received, ξN
transits to “Entering”.

5. When in location “Entering”, the Initializer ξN can
send event evtξNToξ0Cancel and transit to “Exiting
2”. Secondly, if evtξ0ToξNAbort is received, ξN
also transits to “Exiting 2”. Thirdly, if ξN dwells
continuously in “Entering” for Tmax

enter,N , it transits

to “Risky Core”.
6. When in location “Risky Core”, the Initializer ξN

can send event evtξNToξ0Cancel and transit to “Ex-
iting 1”. Secondly, if evtξ0ToξNAbort is received, ξN
also transits to “Exiting 1”. Thirdly, if ξN dwells
continuously in “Risky Core” for Tmax

run,N , it also
transits to “Exiting 1”.

7. When in location “Exiting 1” or “Exiting 2”, the Ini-
tializer ξN must continuously dwell in the location
for Texit,N , and then transit to “Fall-Back” and send
event evtξNToξ0Exit.

Participant:

1. Aptcpnt,i’s location set Vptcpnt,i include the follow-
ing locations: “Fall-Back”, “L0”, “Entering”, “Risky
Core”, “Exiting 1”, and “Exiting 2”. V risky

ptcpnt,i include
location “Risky Core” and “Exiting 1”; all other
locations belong to V safe

ptcpnt,i.
2. Initially, Participant ξi dwells in location “Fall-

Back”; and all data state variables initial values are
zero.



(a)

(b)

(c)

Fig. 3. Flow block diagram at location (a) “Lease ξi” (i =
1 ∼ N − 1); (b) “Lease ξN ”; (c) “Cancel Lease ξi” (i = 1 ∼
N ). Note “tLS1 expire” means tLS1 > Tmax

LS1 .

3. When in location “Fall-Back” with continuous
dwelling duration over Tmin

fb,i , upon receiving event
evtξ0ToξiLeaseReq, ξi transits to a temporary loca-
tion “L0”.

4. When in “L0”, if an application dependent
proposition ParticipationCondition sustains, ξi
sends event evtξiToξ0LeaseApprove and tran-
sits to “Entering”; otherwise, ξi sends event
evtξiToξ0LeaseDeny and transits back to “Fall-
Back”.

5. When in location “Entering”, if event
evtξ0ToξiCancel or evtξ0ToξiAbort is received,
ξi transits to “Exiting 2”. Otherwise, if ξi dwells
continuously in “Entering” for Tmax

enter,i, it transits
to “Risky Core”.

6. When in location “Risky Core”, if event
evtξ0ToξiCancel or evtξ0ToξiAbort is received,
ξi transits to “Exiting 1”. Otherwise, if ξi dwells
continuously in “Risky Core” for Tmax

run,i, it also
transits to “Exiting 1”.

7. When in location “Exiting 1” or “Exiting 2”, Par-
ticipant ξi must continuously dwell in the location
for Texit,i, and then transit to “Fall-Back” and send
event evtξiToξ0Exit.

4.2 Design Pattern Validity

We now analyze the validity of the proposed design
pattern. As mentioned before, the main threat to PTE
wireless CPS is the unreliable wireless communications.
Event reception between the Supervisor, Initializer, and
Participants can be lossy. If some important events are
not received, the holistic system can enter an inconsistent
state, which jeopardizes PTE safety rules.

A main contribution of this paper is that we prove
that by properly configuring the time constants of the
aforementioned Asupvsr, Ainitzr, and Aptcpnt,i, PTE safety
rules are guaranteed despite any communication faults.
Specifically, we have the following result.

Theorem 1 (Design Pattern Validity): Given a hybrid
system H of ξ0 as “Supervisor” (i.e. behaves per Asupvsr),
ξN (N ≥ 2) as “Initializer” (i.e. behaves per Ainitzr), and
ξi (i = 1, 2, . . . , N − 1) as “Participants” (i.e. behaves per
Aptcpnt,i). Suppose H starts with all entities (i.e. ξ0 ∼ ξN )
residing in location “Fall-Back”, and satisfies conditions
c1 ∼ c7:
c1. All configuration time constants (Tmax

wait, T
min

fb,0, Tmax

LS1 ,
Tmax

req,N , Tmin

fb,i , Tmax
enter,i, T

max
run,i, Texit,i, where i = 1 ∼ N )

are positive.

c2. Tmax

LS1
def
= Tmax

enter,1 + Tmax
run,1 + Texit,1 > NTmax

wait.
c3. (N − 1)Tmax

wait < Tmax

req,N < Tmax

LS1 .
c4. ∀i ∈ {1, 2, . . . , N}, there is

(i− 1)Tmax

wait + Tmax

enter,i + Tmax

run,i + Texit,i ≤ Tmax

LS1 .

c5. ∀i ∈ {1, 2, . . . , N − 1}, there is

Tmax

enter,i + Tmin

risky:i→i+1 < Tmax

enter,i+1.



c6. ∀i ∈ {1, 2, . . . , N − 1}, there is

Tmax

enter,i + Tmax

run,i > Tmax

wait + Tmax

enter,i+1 + Tmax

run,i+1

+Texit,i+1.

c7. ∀i ∈ {1, 2, . . . , N − 1}, there is Texit,i > Tmin

safe:i+1→i.
Then we have:

Claim 1 (Safety): Even if events sent between entities can
be arbitrarily lost, H still guarantees PTE safety rules.
That is, every entity’s continuous dwelling time in risky-
locations is upper bounded by Tmax

wait+Tmax

LS1 , and the PTE
full ordering of ξ1 < ξ2 < . . . < ξN is maintained.

Claim 2 (Liveness): Let PPER
N,0 denote the packet error rate

of the communication channel from the “Initializer” ξN
to “Supervisor” ξ0. If PPER

N,0 < 100%, i.e. ξN can send
events to ξ0 after all. Then i) suppose at t0 all entities
(i.e. ξ0 ∼ ξN ) reside in “Fall-Back”, then starting from t0,
every Tmin

fb,N +Tmax

req,N second, ξN has at least one chance to
send evtξNToξ0Req to ξ0, until ξ0 leaves location “Fall-
Back”; ii) suppose ξ0 non-zeno-ly leaves location “Fall-

Back” at t00 (i.e. ξ0 is not at “Fall-Back” at t+00), let Treset
def
=

(N − 1)Tmax

wait + Tmax

LS1 + Tmin

fb,N + Tmax

req,N + Tmax

enter,N + Tmax

run,N +
Texit,N , then ∃t ∈ (t00, t00 + Treset], such that all entities
(i.e. ξ0 ∼ ξN ) return to location “Fall-Back” at t.

Proof: The sketch of the proof is as follows.
First we can prove if the given parameters satisfy Con-

ditions c1 ∼ c7, and that all entities start from “Fall-Back”
location, the system will reset itself to “Fall-Back” within
Tmax

wait+Tmax

LS1 every time evtξ0Toξ1LeaseReq happens. This
is mainly because of the leases: even if messages are lost,
leases will expire to guarantee the return to “Fall-Back”
of the Initializer and every Participant.

Second, we prove between any two consecutive
evtξ0Toξ1LeaseReq events (or the last such event and
time ∞), any entity can only dwell in the risky-locations
for once.

Third, due to Conditions c1 ∼ c7, for each ξi and ξi+1

(i = 1 ∼ N − 1), the aforementioned single dwelling
intervals of ξi and ξi+1 satisfies PTE enter-risky/exit-
risky safeguard interval requirements.

The detailed proof appears in Supplementary File
Appendix. D [13] of this paper. �

4.3 Methodology to Transform Design Pattern into
Specific Designs

In the conference version of this paper [14], we further
proposed a methodology to transform the aforemen-
tioned design pattern hybrid automata Asupvsr, Ainitzr,
and Aptcpnt,i into specific PTE compliant wireless CPS
designs. We call this methodology “elaboration”.

The intuition of elaboration is that every location v of
Asupvsr, Ainitzr, and Aptcpnt,i can be expanded with a child
hybrid automata A′. As long as A′ is sufficiently indepen-
dent (i.e. orthogonal) from the rest part of Asupvsr, Ainitzr,
and Aptcpnt,i, it will not interfere the design pattern’s
guarantee on PTE safety rules.

Fig. 4 illustrates an example of elaboration. Denote
the hybrid automaton of Fig. 2 to be A′

vent. We use
A′

vent to elaborate hybrid automaton A of Fig. 4 (a)
at location “Fall-Back”. The resulted elaboration is the
hybrid automaton A′′ of Fig. 4 (b).

(a)

(b)

Fig. 4. Elaboration Example (compare the shaded areas
in (a) and (b)). (a) Hybrid Automaton A, which has one
data state variable x; the shaded location is to be elabo-
rated. (b) Hybrid Automaton A′′, which is the elaboration
of A (see (a)) at location “Fall-Back” with hybrid automaton
A′

vent (see Fig. 2); note no edge exists from “Risky” to
“PumpIn” because “PumpIn” is not an initial location of
A′

vent.

The formal description on elaboration is provided
Supplementary File Appendix E [13] of this paper for
reader’s convenience. One important feature of this elab-
oration methodology is summarized by Theorem 2 in
Supplementary File Appendix E [13] of this paper. Sketch
of Theorem 2 is re-presented in the following for reader’s
convenience:

Sketch of Theorem 2 (Design Pattern Compliance): if the
design pattern hybrid automata (i.e. Asupvsr, Ainitzr, and
Aptcpnt,i) satisfy Condition c1 ∼ c7 of Theorem 1, hence
guarantee PTE safety rules and liveness described in The-
orem 1 Claim 1 and 2, then any specific design resulted
from elaborating the design pattern hybrid automata still
guarantees the same PTE safety rules and liveness.

5 CASE STUDY

Next, we carry out two case studies to validate our
proposed leasing based hybrid design pattern approach.
The case studies are respectively on medical CPS and
control CPS, two major categories of CPS applications.

5.1 Laser Tracheotomy Wireless Medical CPS

Scenario and Design:



In laser tracheotomy wireless medical CPS (see Fig. 5
(a) for the application layout), a patient is under anesthe-
sia, hence must be connected to a ventilator to breathe
oxygen. However, a surgeon may randomly request a
laser-scalpel to emit laser, to cut the patient’s trachea.
Therefore, PTE safety rules apply as follows. Before the
emission of laser, the ventilator must have paused for
at least Tmin

risky:1→2 (we regard the ventilator as entity ξ1,
the Participant; and the laser-scalpel as entity ξ2, the
Initializer); after the emission of laser, the ventilator must
wait for at least Tmin

safe:2→1 before resuming. Otherwise,
if high concentration of oxygen in the patient’s trachea
(due to ventilation) is present when laser emits, the
patient’s trachea can catch fire. In addition, the durations
that the laser-scalpel can continuously emit and that the
ventilator can continuously pause shall respectively be
upper-bounded by a constant.

(a) (b)

Fig. 5. (a) Laser tracheotomy wireless medical CPS,
figure quoted from [2]; (b) Emulation Layout

The ventilator and the laser-scalpel are wirelessly con-
nected via a base station, which also plays the role of the
Supervisor (i.e. entity ξ0). The supervisor/initializer can
abort/cancel laser emission at any time (e.g., when the
supervisor detects the patient’s blood oxygen level SpO2

reaches below a threshold, it can immediately request
aborting laser emission and resuming ventilation), but
the PTE safety rules must be maintained.

On the other hand, because the supervisor, laser-
scalpel, and ventilator are connected via wireless, mes-
sage losses are possible. Therefore, we carry out our leas-
ing based design approach, so that even with message
losses, the wireless CPS can maintain PTE safety rules.

Interested readers can refer to Supplementary File
Appendix F [13] of this paper for the resulted detailed
design hybrid automata diagrams.

We configure the time parameters of the above de-
tailed design hybrid automata according to common-
sense laser tracheotomy requirements [19] as follows. For
the Supervisor (i.e. the laser tracheotomy supervisor),
Tmin

fb,0 = 13(s), Tmax

wait = 3(s). For the Initializer (i.e. the
laser-scalpel), Tmax

req,2 = 5(s), Tmax
enter,2 = 10(s), Tmax

run,2 = 20(s),
Texit,2 = 1.5(s). For Participant 1 (i.e. the ventilator),
Tmax
enter,1 = 3(s), Tmax

run,1 = 35(s), Texit,1 = 6(s). The PTE

enter-risky/exit-risky safeguard intervals are Tmin

risky:1→2 =

3(s) and Tmin

safe:2→1 = 1.5(s).
Per Theorem 2 (see Supplementary File Appendix E

[13] of this paper), the above configurations guarantee
PTE safety rules. To further validate this, we imple-
mented and carried out emulations of the above design.

Emulation Setup:
Fig. 5 (b) illustrates the layout of our emulation. The

laser tracheotomy ventilator, supervisor, and (surgeon
operated) laser-scalpel are respectively emulated by three
computers. The patient is emulated by a real human
subject (HS).

Instead of actually ventilating the human subject HS,
the ventilator emulator displays its current hybrid au-
tomata location (“PumpOut”, “PumpIn”, etc.). Human
subject HS watches the display and breathe accordingly.

We also emulate the following three kinds of events,
which cause all other events in the emulated system.

The first is the Initializer event evtξ2Toξ0Req, triggered
when the laser-scalpel is in “Fall-Back” and the surgeon
requests to supervisor to emit laser. In the real system,
this is triggered by the surgeon’s human will. In our
emulation, however, this is emulated by (re-)initializing
a timer Ton (Ton follows exponential distribution) when-
ever the laser-scalpel enters “Fall-Back”. When in “Fall-
Back” and Ton sets off, the (emulated) surgeon requests
to emit laser.

The second kind is the Initializer event
evtξ2Toξ0Cancel, triggered when the laser-scalpel
is emitting and the surgeon cancels the request to emit
laser. Again in a real system, this is triggered by the
surgeon’s human will. In our emulation, this is emulated
by (re-)initializing a timer Toff (Toff follows exponential
distribution) whenever the laser-scalpel enters “Risky
Core” (i.e. starts emission). When in “Risky Core” and
Toff sets off, the (emulated) surgeon requests to cancel
laser emission.

The third kind is the Supervisor event evtξ0ToξiAbort
(i = 1 ∼ N ), triggered when the supervisor is in
“Lease ξi” location and ApprovalCondition becomes
false. In our emulation, the human subject HS wears
an oximeter (Nonin 9843 [20]), which measures HS’s
blood oxygen level in real-time t (SpO2(t)). The oximeter
is wired to the laser tracheotomy supervisor emulator.
The ApprovalCondition is that the oximeter reading
SpO2(t) > ΘSpO2

, where ΘSpO2
is set to 92%.

The supervisor, ventilator, and laser-scalpel emulators
communicate with each other via wireless, with su-
pervisor as base station, and the other two as clients.
Their wireless interfaces are implemented via 2.45GHz
ZigBee TMote-Sky motes [21]. In addition, there is an
IEEE 802.11g WiFi interference source 2 meters away
from the supervisor. The interference source runs Iperf
(a standard network evaluation software, see http://
iperf.sourceforge.net) to generate 3Mbps interfering data
traffic to be broadcasted through a WiFi radio band
overlapping with that of the ZigBee TMote-Sky motes’.



Because the interference broadcast is independent from
the laser tracheotomy wireless CPS communications, any
packets/events between the supervisor, ventilator, and
laser-scalpel emulation computers can be lost.

5.2 Inverted Pendulum Remote Monitoring Wireless
Control CPS

Scenario and Design:
Inverted Pendulum (IP) is a metal rod (the pendulum)

with one end hinged on a cart, and the other end free
rotating. The cart can move along a rail (the “x-axis”)
to keep the hinged rod standing up-right still. Due to
its inborn instability, IP is a widely adopted test bed for
various control strategies, including control CPS [22] [23].

In our IP remote monitoring case study (see Fig 6 for
the application layout), the IP (entity ξ2, the Initializer)
may randomly request for a random walk, i.e. randomly
adjust the cart’s reference location (i.e. the target stabi-
lization location) on the rail. Because random walk is
considered a risky operation, the entire duration of ran-
dom walk, including Tmin

risky:1→2 seconds right before the
random walk, and Tmin

safe:2→1 seconds right after the ran-
dom walk, must be continuously monitored/recorded
by a remote video camera (entity ξ1, the Participant).
The video record can be used for real-time decision
making, or for future analysis, debugging, or accident-
forensics. Meanwhile, we do not allow infinite random
walk, hence the duration of each random walk, and the
corresponding duration of remote monitoring are upper
bounded.

Supervisor

CameraInverted 

Pendulum

IP

Camera

Supervisor
0.3 m

0.3 m

Interference

Source

2 m

(a) (b)

Fig. 6. (a) Inverted Pendulum (IP) remote monitoring
wireless control CPS; (b) Experiment Layout

Similar to the laser tracheotomy case, the monitor-
ing camera and the IP are wirelessly connected to
the supervisor (entity ξ0). The supervisor/initializer can
abort/cancel the random walk at any time, but the PTE
safety rules must be maintained.

Meanwhile, as the supervisor, IP, and camera are con-
nected via wireless, message losses are possible. There-
fore, we carry out our leasing based design approach,
so that even with message losses, the wireless CPS can
maintain PTE safety rules.

The detailed design of hybrid automata in IP remote
monitoring (see Appendix F in [13]) is similar to the laser
tracheotomy case, except that in “Risky Core” location,

the IP conducts random walk, and the camera conducts
video recording. We configure the time parameters of
the detailed design hybrid automata as follows. For the
Supervisor, Tmin

fb,0 = 0.1(s), Tmax

wait = 0.1(s). For the Initializer
(i.e. the IP), Tmax

req,2 = 0.1(s), Tmax
enter,2 = 3.0(s), Tmax

run,2 = 20(s),
Texit,2 = 2.5(s). For the Participant 1 (i.e. the camera),
Tmax
enter,1 = 1.0(s), Tmax

run,1 = 35.0(s), Texit,1 = 6(s). The PTE
enter-risky/exit-risky safeguard intervals are Tmin

risky:1→2 =

1.0(s) and Tmin

safe:2→1 = 1.5(s). The above settings satisfy
condition c1 ∼ c7 in Theorem 1, meanwhile allow reason-
able duration length for random walk and monitoring.

Experiment Setup:
We implemented the IP remote monitoring detailed

design, and carried out experiment evaluation. Fig. 6 (b)
shows our experiment layout. The layout and settings are
the same as those of our laser tracheotomy emulation,
except that the laser scalpel emulator, ventilator emula-
tor, and (laser tracheotomy) supervisor are respectively
replaced by the IP, camera, and the (IP remote monitor-
ing) supervisor.

5.3 Trials and Results

For laser tracheotomy wireless medical CPS (IP remote
monitoring wireless control CPS), we ran two emulation
(experiment) trials, each of 30 minutes duration. During
the trials, the PTE safety rules are:

1. Neither ventilator pause (camera monitoring) nor
laser emission (IP random walk) can last for more
than 1 minute;

2. Ventilator pause (camera monitoring) duration
must always properly-temporally-embedding laser
emission (IP random walk) duration, with enter-
ing/exiting safeguard interval of Tmin

risky:1→2 = 3

seconds (1 second) and Tmin

safe:2→1 = 1.5 second (1.5
second).

Violation of either of the PTE safety rules is a failure.
As mentioned before, in the two trials, the emu-

lated surgeon (IP) requests to emit/cancel-emit laser
(start/cancel random walk) according to timer Ton and
Toff , which are both random numbers following expo-
nential distribution. The expectation of Ton is 30 seconds.
The expectations of Toff are 18 seconds and 6 seconds
respectively in the two trials.

Because of the use of our proposed leasing based
design pattern, and the configuration of parameters sat-
isfying Theorem 2 (see Supplementary File Appendix E
[13] of this paper), although packets/events between
the ventilator emulator (camera), supervisor, and laser-
scalpel emulator (IP) can be arbitrarily lost, the PTE
safety rules are never violated. This is shown in Table 2,
the rows corresponding to “with Lease” always have 0
failures.

For comparison, for each case study, we also ran two
additional emulation (experiment) trials with the same
configurations but without using the leasing mechanism.
Specifically, the ventilator (camera) does not set up a



TABLE 2
PTE Safety Rule Violation (Failure) Statistics

(a) Laser Tracheotomy Emulation
Trial E(Toff) # of Laser # of # of

Mode (sec) Emissions Failures evtRunEnded

with Lease 18 19 0 5
without Lease 18 11 4 0

with Lease 6 19 0 3
without Lease 6 12 3 0

(b) IP Remote Monitoring Experiment
Trial E(Toff) # of IP random # of # of

Mode (sec) walks Failures evtRunEnded

with Lease 18 12 0 8
without Lease 18 11 6 0

with Lease 6 15 0 10
without Lease 6 13 7 0

1. Each trial lasts 30 minutes, and is under constant WiFi interference.
2. For each trial, the expectation E(Ton) ≡ 30(sec).
3. evtRunEnded occurs when lease expiration forces the laser-scalpel (IP) to
stop emitting (random walk), i.e. when lease mechanism takes effect to rescue
the system from violating the PTE safety rules.

lease timer when it starts pausing (monitoring), neither
does the laser-scalpel (IP) set up a lease timer when it
starts emitting laser (random walk). When the surgeon’s
cancel laser emission event (the IP’s cancel random walk
event) is lost or the supervisor’s abort event is lost, no
one can terminate the ventilator’s pause (the camera’s
monitoring) or the laser’s emission (the IP’s random
walk). Thus, as shown in Table 2, the rows corresponding
to “without Lease” all result in many failures.

To facilitate understanding of the above results, in the
following, we provide some more intuitive explanations.

Without loss of generality, let us focus on the laser
tracheotomy case study.

Because of leasing, the ventilator’s stay in the pause
state (i.e. risky-locations) expires on lease time-out; hence
it will automatically return to “Fall-Back” to continue
ventilating the patient, even when it is cut-off from
communications. Same applies to the laser-scalpel’s stay
in the emission state (i.e. risky-locations). Conditions c1
∼ c7 of Theorem 1 further guarantee that the automatic
returns to “Fall-Back” of ventilator and laser-scalpel both
conform to proper-temporal-embedding even under ar-
bitrary packet/event losses.

Interested readers can refer to Appendix G of [13] for
even more intuitive explanations.

6 COMPARISONS

PTE safety is a relatively new issue raised by CPS. To our
best knowledge, the state-of-the-art solution is a polling
based approach proposed by Kim et al. [12].

6.1 Polling Based Approach

Kim et al. [12]’s polling based approach also adopts a lay-
out of distributed entities, with a base station and several
remote entities. The base station also serves the role of
the Supervisor; one remote entity is the Initializer, and

the other remote entities serve the role of Participants.
However, different from our leasing based approach,
the Supervisor does not passively wait for messages
sent from the Initializer to trigger a sequence of PTE
operations. Instead, it periodically polls remote entities
for their current states. The polling message is also piggy
backed with a plan vector. The plan vector is basically
instructions on what the remote entity shall do in the cur-
rent and future periods, assuming communication link
with the base station will be broken in the future periods.
Also, the remote entities cannot change their (cyber)
states (though the Initializer can request to start/cancel
a sequence of PTE operations), unless instructed by the
plan vector from the Supervisor.

For example, the plan vector for laser-scalpel may
set the laser-scalpel to keep emitting for the next two
periods and then deactivate in the third period; whereas
the plan vector for ventilator may ask the ventilator to
keep pausing in the next four periods. The Supervisor
coordinates these plan vectors, ensuring the PTE safety
rules are guaranteed. The polling temporal sequence
(exemplified by the case of laser tracheotomy) is shown
in Fig 7.

SupervisorVentilator
Laser 

Scalpel

Period K-1

Period K

Polling and  

Plan Vector

Status AckStatus Ack

Polling and  

Plan Vector

Period K+1
Polling and  

Plan Vector
Polling and  

Plan Vector

Fig. 7. The Polling Temporal Sequence for Laser Tra-
cheotomy Wireless CPS (quoted from [12]).

6.2 Simulation Setup

We compare our leasing based approach with Kim et
al. [12]’s polling based approach with simulation.

We reuse laser tracheotomy and IP remote monitoring
described in Section 5 as the application background.
Particularly, the PTE safety demands remain the same.

For our leasing based approach, the simulation setup
matches what is described in Section 5. The only excep-
tion is that to improve the approach’s robustness, each
wireless packet is consecutively retransmitted ten times
from the application layer, once per 10ms.

For the polling based approach, we follow the in-
structions in [12]. The detailed designs and parameter
configurations are given in Appendix H of [13]. There
are two issues worth particular mentioning.

The first issue is on the choice of polling period. The
longer the polling period, the less wireless messages sent
per second, and hence better wireless medium occu-
pation efficiency (when the wireless medium is benign
or moderately adverse). On the other hand, the polling



period can neither be too long, due to two reasons. First,
the polling based approach assumes all remote entities’
physical state change within a polling period is neglegi-
ble (unless the plan vector instructs the remote entity to
conduct a state change). Second, response time to user
requests is at least one polling period; and for good
user experience, under benign or moderately adverse
wireless medium conditions, the response time should
be within tens of milliseconds [24] [25]. Considering the
above factors, we set the polling period at 50(ms).

The second issue is on the choice of other configuration
parameters. Note PTE safety rules only care about worst
case time bounds (e.g., the laser emission must take
place at least 1.5 seconds after the ventilator has paused).
Within these time bound constraints, many feasible con-
figurations exist for both the polling and the leasing
based approaches (e.g. the laser emission can take place
2 seconds, or 3 seconds after the ventilator has paused).
To make our comparisons fair, the polling and leasing
based approach parameters are configured so that the
default (i.e. when there is no cancellation nor abort, and
no communication packet loss) behaviors of ξ1, . . ., ξN
are the same under both approaches3.

6.3 Results and Analysis

Based on aforementioned analysis, emulations, and ex-
periments, we know that both our leasing based ap-
proach and Kim et al. [12]’s polling based approach
can guarantee PTE safety rules under arbitrary wireless
communication failures. However, their performance,
specifically, wireless medium occupation efficiency and
user experience, may be different.

To strictly quantify the two performance indicators,
we further consider three wireless medium conditions:
benign, moderately adverse, and adverse, respectively
corresponds to a Packet Error Rate (PER) of 0.5%, 5%,
and 50%.

For each approach (leasing based vs. polling based),
each application (laser tracheotomy, IP remote moni-
toring), and each wireless medium condition, we run
1000 simulation trials. In each trail, all entities start from
“Fall-Back”-equivalent locations/states 4 , and then the
Initializer will request to run a complete sequence of
PTE operations. The Initializer will keep requesting until
approval is received from the Supervisor 5 . Suppose the

3. Here we ignore the delay differences caused by polling period and
packet transmission, which is in 6 50ms range.

4. For leasing based approach, this means the Supervisor and Ini-
tializer both start from the “Fall-Back” location (see Fig. 14, 15, 17, 18
in [13]); the Participant starts from “PumpOut” location in the case of
laser tracheotomy (see Fig. 16 in [13]) , and from “Fall-Back” location
in the case of IP remote monitoring (see Fig. 19 in [13]). For polling
based approach, this means the Supervisor, Initializer, and Participant
all start from the “Fall-Back” state (see Fig. 20 ∼ 25 in [13]).

5. For leasing based approach, this means message
evtξ0Toξ2LeaseApprove is received by the Initializer (see Fig. 15,
18 in [13], the Supplementary File of this paper). For polling based
approach, this means message evtξ0Ack is received by the Initializer
(see Fig. 21, 24 in [13]).

Initializer started to request at t0, and first received the
Supervisor’s approval at t1, we call the duration (t1− t0)
the “initialization response time”.

Once the Initializer enters its “Risky-Core” loca-
tion/state, it (re-)initializes a timer Toff . Toff follows
exponential distribution with an expectation of 18(s). If
Toff sets off and the Initializer is still in “Risky-Core”
location/state, the Initializer requests to cancel the risky
activity (i.e. laser emission or IP random walk). Suppose
the Initializer requests to cancel the risky activity at t2,
and suppose if no message is lost, the Participant can
return to “Fall-Back” location/state at t∗3. Meanwhile,
denote the actual time the Participant returns to “Fall-
Back” location/state to be t3. Then we call the difference
(t3 − t∗3) the “extra suffering time”. Extra suffering time
quantifies the extra suffering time endured by the Par-
ticipant due to message losses in the cancellation process.
That is, the Initializer has cancelled the risky activity, but
the Participant is not notified, hence has to suffer longer,
waiting for the leasing or polling mechanism to return it
to “Fall-Back” location/state.

We use initialization response time and extra suffering
time to quantify user experiences. For both metrics, the
shorter means better user experience (quicker response
or less extra suffering). Wireless medium occupation,
however, is quantified by the ratio of time used for
wireless transmission during the whole interval of [t0, t3].
The higher the ratio, the worse the wireless medium oc-
cupation efficiency (i.e. the more wasteful of the wireless
medium).

The simulations results for laser tracheotomy are sum-
marized in Fig. 8. We can make several observations from
these figures.

First, our leasing based approach incurs less wireless
medium occupation ratio than polling based approach.
As shown in Fig. 8 (a)(d), leasing’s wireless medium
occupation ratio is upper bounded by 0.65%; while
polling’s is lower bounded by 5.69%. Later we will see
the impact of this difference on system scalability. This
difference is intuitive: our leasing based approach is
an event based approach, no messages are sent unless
certain event takes place; while polling based approach
sends messages every period no matter what. The benefit
of wireless medium occupation efficiency will become
more significant when we evaluate system scalability (see
later paragraphs).

Second, when wireless medium is benign (e.g. PER =
0.5%) or moderately adverse (e.g. PER = 5%), leasing
based approach can provide slightly better user expe-
rience. As shown in Fig. 8 (b)(e), leasing’s initialization
response time is upper bounded by 44ms, while polling’s
is lower bounded by 100ms; and as shown in Fig. 8
(c)(f), leasing’s extra suffering time statistics (1st/3rd
quartile, median, maximum) are all roughly one order of
magnitude shorter than polling’s. This is because under
benign or moderately adverse wireless medium condi-
tion, packet loss is rare. Under leasing based approach,
an event can be immediately responded to; while under



polling based approach, every response must take at least
one polling period. However, when wireless medium
is severely adverse (e.g. PER = 50%), polling based
approach provides better user experience than leasing
based approach (see Fig. 8 (b)(c)(e)(f), leasing’s maximum
initialization response time and extra suffering time can
respectively reach 10s and 31.03s, while polling’s only
respectively reach 2.52s and 0.671s). This is intuitive:
polling based approach is basically continuously retrans-
mitting messages every period, hence has better chance
of delivering messages when packet loss rate is high6.

Finally, we also evaluate the scalability of the two
approaches. We study an N -IP remote monitoring sce-
nario, where N pairs of IP-camera are being coordinated
by a Supervisor. Fig. 9 compares the performances of
leasing and polling based approaches when N scales
up from 1 to 12 (wireless medium is set to moderately
adverse, i.e. PER = 5%). We can see that polling based ap-
proach uses up wireless bandwidth quickly as N grows;
when N = 12, nearly all wireless bandwidth is used
up (91.72% in the worst case). In contrast, our leasing
based approach only uses a small portion of the wireless
bandwidth for all N values (5.86% in the worst case).
This matches intuition, as our leasing based approach
carries out event based interrupt-like communication,
which is well-known to be more communication resource
thrift than polling.

7 RELATED WORK

Lease based design pattern was originally proposed by
Gray et al. [3] and is used to provide efficient consistent
access to cached data in distributed computer systems. In
the past decades, various leasing based distributed com-
puter systems have been implemented to achieve system
consistency [4]–[8], [26]. As pointed out in Section 1, all
these distributed computer systems are fundamentally
different from CPS due to following reasons: 1) check-
point and roll-back, two fundamental operations in lease-
based distributed computer systems are often impossible
for CPS (e.g. we cannot revive a killed patient); 2)
PTE temporal ordering, particularly the continuous-time
duration requirements (such as the minimal safeguard
interval) are usually not present for distributed computer
systems (which instead focus on logical-time, aka causal
precedences).

6. It is worth noting that initialization response time refers to the
duration of a request-reply sequence taking place at the very beginning
of PTE (and assuming all entities starts from “Fall-Back”). Therefore,
it is irrelevant to most of PTE configuration parameters except Tmax

req,N

(request time out). In both leasing and polling schemes, Tmax

req,N
are

the same, hence the comparison is fair. Meanwhile, extra suffering
time refers to the difference between actual response time and the ideal
response time when PER = 0. Most PTE parameters are cancelled
out due to the substraction, leaving only ξ1 (Participant)’s maximum
dwelling time in risky-location relevant: in the worst case, the patient
(camera) has to suffer this maximum dwelling time longer than the
PER = 0 case. Again, this parameter settings are the same for both
leasing and polling schemes, hence the comparison is fair.

Although formal methods have been applied to de-
sign pattern research [27], [28], hybrid modeling is
mostly used for verification [2], [9]–[11], [15]. Recently,
Tichakorn [29] proposed a subclass of hybrid automata
for a class of hybrid control systems in which certain
control actions occur roughly periodically and applied it
to verify the safety of an autonomous vehicle. However,
the focus there is still verification, rather than design.

8 CONCLUSION AND FUTURE WORK

In this paper, we formalize a temporal
interlocking/mutual-exclusion pattern called PTE
safety rules for CPS physical component interactions.
We propose a leasing based design pattern to guarantee
PTE safety rules in wireless CPS, as part of the effort
to address challenges arising from poor reliability of
wireless communication on CPS’ mission/life criticality.
We derive a set of closed-form constraints, and prove that
as long as system parameters are configured to satisfy
these constraints, PTE safety rules are guaranteed under
arbitrary wireless communication faults. Furthermore,
we develop hybrid modeling approaches to describe the
design patterns, and develope a formal methodology to
elaborate the design pattern into specific designs that
provide PTE safety guarantees. Our case studies on
laser tracheotomy wireless CPS and inverted pendulum
remote monitoring validate the proposed design
methodology. We also compare our solutions with a
polling based solution. The comparison results show
that the polling based solution performs better under
severely adverse wireless medium conditions, while ours
performs better under benign or moderately adverse
wireless medium conditions. As our future work, we
will investigate additional network protocol technologies
to enhance wireless communication reliability, hence
to further improve the performance of our leasing
based approach and the polling based approach. We
will also explore more application domains for the
proposed design pattern, such as chemical plant safety,
anesthesiology, control, where timing (time duration) is
an important parameter in defining safety rules.
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Fig. 8. Comparisons between Leasing-Based Approach and Polling-Based Approach in Laser Tracheotomy ((a) ∼ (c))
and IP Remote Monitoring ((d) ∼ (f)) Wireless CPS
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Fig. 9. Scalability Comparisons between Leasing-Based Approach and Polling-Based Approach (N is the number of
IPs being remotely monitored)
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APPENDIX A
VENTILATOR WORKING MECHANISM

The working mechanism of our ventilator is illustrated
by Fig. 10.

Basically, our ventilator consists of a cylinder, a pis-
ton, and two valves. The piston moves up/down the
cylinder to pump oxygen from oxygen tank into patient.
When the piston moves downward, the valve toward the
patient is opened and the valve from the oxygen tank
is closed, hence oxygen is pumped out to the patient,
forcing the patient to inhale. When the piston moves
upward, the valve from the oxygen tank is opened,
hence oxygen is pumped into the cylinder; meanwhile
the valve to the patient is closed, allowing the patient to
naturally exhale due to his/her chest weight.

We denote the current height of the piston as Hvent(t);
its movement range is from 0(m) to 0.3(m). Ḣvent(t) is
the velocity of the piston. When the piston moves down-
ward, Ḣvent(t) = −0.1(m/s). When the piston moves
upward, Ḣvent(t) = +0.1(m/s). The piston movement
changes direction when Hvent(t) hits its bottom 0(m) or
ceiling 0.3(m).

(a) Pumping Out (b) Pumping In

Fig. 10. Ventilator Working Mechanism. Hvent(t) is the
piston height at time t. Ḣvent(t) is the piston velocity at
time t. (a) when the piston moves downward, oxygen is to
pumped out to patient (forcing patient to inhale); (b) when
the piston moves upward, oxygen is pumped in from tank
(meanwhile patient exhales naturally due to chest weight).

APPENDIX B
FORMAL DEFINITIONS OF HYBRID AUTOMATA

As one goal of this paper is to provide formal descriptions
and analysis, it is necessary to first give the formal defini-
tion of hybrid automaton. We use the hybrid automaton
of Fig. 2 to explain the following abstract definitions.

According to [9]–[11], a hybrid automaton A is a
tuple (~x(t), V , inv, F , E, g, R, L, syn, Φ0) of following
components:

1. A data state variables vector ~x(t) = (x1(t), x2(t), . . . ,
xn) ∈ R

n of n data state variables of time t, where n is
called the dimension of A. A possible evaluation of ~x(t),
denoted as ~s ∈ R

n, is called a data state of A (at time t).
In the example of Fig. 2, the data state variables vector
is (Hvent(t)), i.e. it contains only one data state variable:
Hvent(t), which is the height of the ventilator piston at
time t.

2. A finite set V of vertices called locations. The state of
A (at time t) is a tuple φ(t) = (ℓ(t), ~x(t)) of two variables
of time t: the aforementioned data state variables vector
~x(t), and the location counter ℓ(t) ∈ V , which indicates
the current location that A dwells at. In the example of
Fig. 2, the ventilator hybrid automaton has two locations:
PumpOut and PumpIn.

3. A function inv that assigns to each v ∈ V a subset of
R

n, aka. the invariant set. As long as the location counter
ℓ(t) = v, ~x(t) must satisfy ~x(t) ∈ inv(v). In the example
of Fig. 2, in location PumpOut, the invariant is that the
ventilator piston height Hvent(t) stays in the range 0 ≤
Hvent(t) ≤ 0.3(m).

4. A set of flow maps F = {fv|fv : Rn 7→ R
n, ∀v ∈ V },

with each element fv defining a set of differential equations
~̇x = fv(~x) over data state variables vector ~x(t) for each
location v ∈ V . These differential equations specify the
continuous dynamics of ~x(t) when ℓ(t) = v. In the example
of Fig. 2, in location PumpOut, the flow maps only
involve one differential equation: Ḣvent(t) = −0.1(m/s),
i.e. the ventilator piston pushes downward at a velocity
of −0.1(m/s).

5. A finite set of edges E. Each edge e ∈ E identifies
a discrete transition (v, v′) from a source location v ∈ V
to a destination location v′ ∈ V . We denote the source
location of edge e as src(e); while the destination location
as des(e). An edge e = (v, v′) specifies the possible discrete
dynamics of A’s state: it can switch from ℓ(t) = v to
ℓ(t+) = v′. In the example of Fig. 2, there are two edges:
from location PumpOut to PumpIn, and vice versa.

6. A guard function g : E 7→ R
n that assigns each

e ∈ E a guard set g(e) ⊆ inv(src(e)). Discrete transition e
can only take place when ~x(t) ∈ g(e). In the example of
Fig. 2, the guard condition for the edge (transition) from
PumpOut to PumpIn is that the ventilator piston reaches
the bottom of its movement range, i.e. Hvent(t) = 0.

7. A finite set of reset functions R = {re|re :
inv(src(e)) 7→ 2inv(des(e)), ∀e ∈ E}. When the A’s state
switches from ℓ(t) = src(e) to ℓ(t+) = des(e) via transition
e ∈ E, ~x(t+) is assigned a new data state from set re(~x).
In the example of Fig. 2, the reset functions for both edges
are the identity function, i.e., the state variables vector
((Hvent(t)) does not change value after each transition
(edge). We hence omit the reset functions in the figure.

8. A finite set L of synchronization labels and a synchro-
nization labeling function syn that assigns to each edge e ∈
E a synchronization label syn(e) ∈ L. A synchronization
label consists of a root and a prefix, which respectively
represent a event and the role of the hybrid automaton
for that event.

When entity ξ1 (whose hybrid automaton is A1) sends
an event l to entity ξ2 (whose hybrid automaton is A2),
a transition e1 in A1 takes place; and on receiving the
event, transition e2 is triggered in A2. Correspondingly,
we put a synchronization label !l to e1 and ?l to e2. We
respectively add the prefixes ! and ? to the root l, to
distinguish the sender and the receiver of event l. In
case l is received unreliably, which is typical for wireless,



we use ?? instead of a single ? prefix. Synchronization
labels with different prefixes or roots are regarded as
different. For example, !l, ?l, ??l are considered three
different synchronization labels, though they are related
to a same event by the root l.

If an event (correspondingly, a synchronization label
root) is communicated across multiple hybrid automata,
then the corresponding synchronization labels are exter-
nal; otherwise, the corresponding synchronization labels
are internal. For an internal synchronization label whose
corresponding event does not have receiver(s), prefix ! is
omitted.

In the example of Fig. 2, when the transition
from location PumpOut to PumpIn happens, event
evtV PumpIn happens; in the other way around, event
evtV PumpOut happens. The ! prefix to evtV PumpIn
and evtV PumpOut in the figure indicates the events
are broadcasted. If there are other hybrid automata in
the system, some transitions may be triggered on re-
ceiving these events, the corresponding transitions are
labeled with ?evtV PumpIn or ?evtV PumpOut. In case
the reception of events are via unreliable (e.g. wireless)
communication links, the corresponding labels should be
??evtV PumpIn or ??evtV PumpOut.

9. A set of possible initial states Φ0 ⊆ {(v,~s) ∈ V ×
R

n|v ∈ V,~s ∈ inv(v)}. We also call Φ0’s projection on
location set V as initial locations, denoted as Φ0|V . In
the example of Fig. 2, the possible initial states can be
Φ0 = {(PumpOut, (h0))}, where h0 ∈ [0, 0.3]; i.e. starting
from location PumpOut and piston height Hvent(0) ∈
[0, 0.3](m).

APPENDIX C
DETAILED DIAGRAMS FOR DESIGN PATTERN

HYBRID AUTOMATA

Please see Fig. 11, 12, and 13 for the detailed diagram
of Asupvsr, Ainitzr, and Aptcpnt,i, the hybrid automaton
for Supervisor, Initializer, and the ith Participant respec-
tively. Note all hybrid automata’s initial locations are
“Fall-Back”, and all data state variables are initialized
to 0.

APPENDIX D
PROOF OF THEOREM 1
First, we can prove the following lemma.

Lemma 1 (Guaranteed Resetting): Suppose
evtξ0Toξ1LeaseReq happens at time t0, then we
have
∀i ∈ {0, 1, . . . , N} · ℓi(t

−

0 ) ≡ “Fall-Back”.

Proof: First, because evtξ0Toξ1LeaseReq happens at
t0 and ξ0’s location “L0” allows 0 dwelling time, we
have ℓ0(t

−

0 ) = “Fall-Back”. ξ0’s location “L0” allows 0
dwelling time also implies evtξNToξ0Req happens at t0,
so ℓN (t−0 ) = “Fall-Back” (see Fig. 12).

Now all we need to prove is

ℓi(t
−

0 ) = “Fall-Back” (i = 1 ∼ N − 1). (2)

We can prove this inductively. As all hybrid automata
of H start from respective “Fall-Back” locations, if t0
is the first time evtξ0Toξ1LeaseReq happens, Claim (2)
sustains.

Suppose Claim (2) sustains for t0, a time instance
that evtξ0Toξ1LeaseReq happens. Suppose t1 > t0 is
the next time instance that evtξ0Toξ1LeaseReq happens.
Then there can be two cases for the interval of [t0, t1).

Case 1: During [t0, t1), evtξ1LeaseExpire never hap-
pens.

Suppose during [t0, t1), ℓ0 ever reaches location “Lease
ξj” but not location “Lease ξj+1” (j ∈ {1, 2, . . . , N − 1}).

Then throughout [t0, t1), ξj+1, ξj+2, . . ., ξN−1 never get
a chance to leave their respective “Fall-Back” locations.

By checking all possible exit paths from “Lease ξj”
in Fig. 11, and knowing that evtξ1LeaseExpire never
happens, we find for each entity ξk (where k = j, j −
1, . . . , 1), ∃t ∈ [t0, t1)· either evtξkToξ0LeaseDeny or
evtξkToξ0Exit happens at t. For otherwise, ℓ0 cannot
be at “Fall-Back” at t−1 , which has already been proven
at the beginning of this proof. Meanwhile, according to
Fig. 13, as soon as evtξkToξ0LeaseDeny or evtξkToξ0Exit
happens, ℓk enters “Fall-Back”, and stays there till t−1
because there is no more evtξ0Toξ1LeaseReq (hence
evtξ0ToξkLeaseReq) during [t, t1).

The same analysis applies to the case when ℓ0 ever
reaches location “Lease ξN” during [t0, t1).

Therefore, Claim (2) sustains for t1 in Case 1.

Case 2: ∃t ∈ [t0, t1), evtξ1LeaseExpire happens. Then
according to Fig. 11, 12, and 13, t0+Tmax

LS1 ≤ t. As defined,
t < t1, so t0 + Tmax

LS1 < t1.
On the other hand, the latest time during [t0, t1) for

ξi (i ∈ {1, 2, . . . , N − 1}) to leave “Fall-Back” (if it ever
leaves) is at t0+(i−1)Tmax

wait (see Fig. 11, 13). After that, ξi’s
maximal stay outside of “Fall-Back” is Tmax

enter,i + Tmax
run,i +

Texit,i (see Fig. 13). Because of Condition c4, this means
by t0 + Tmax

LS1 < t1, ξi should have returned “Fall-Back”.
Due to the same reason as in Case 1, after the return, ξi
should have stayed in “Fall-Back” till t−1 .

Therefore, Claim (2) sustains for t1 in Case 2.

Due to Case 1 and 2, Claim (2) sustains for t1. Induc-
tion sustains.

Note no matter there are infinite, or finite occurrences
of evtξ0Toξ1LeaseReq, the above induction based proof
sustains. �

Then we have the following lemma.

Lemma 2 (Single Visit between Resets): Let t0, t1
(t0 < t1) be the time instances that two consecutive
evtξ0Toξ1LeaseReq happen; or let t0 be the last time
that evtξ0Toξ1LeaseReq happens and t1 = ∞. Either



Fig. 11. Diagram of Hybrid Automaton Asupvsr, the Design Pattern for Supervisor. Each rectangle box indicates a
location. Inside the box, the first line is the location’s name (note state variable names and location names are local to
their respective hybrid automata; hence two distinct locations of two distinct hybrid automata may have the same name).
Annotations to each edge (aka transition) comply with the following conventions. Before the ‘:’ are the synchronization
label and the guard formula (quoted by brackets “[]”) for the edge. After the ‘:’ are the data state value resets (“x ← a”
means “assigning x of value a”). The above notational conventions also apply to Fig. 12 and 13.



Fig. 12. Diagram of Hybrid Automaton Ainitzr, the Design Pattern for Initializer

Fig. 13. Diagram of Hybrid Automaton Aptcpnt,i, the Design Pattern for the ith Participant.

way,

∀t ∈ (t0, t1) · no evtξ0Toξ1LeaseReq happens at t. (3)

We then have
Claim 2.1: ∀i ∈ {1, 2, . . . , N − 1}, throughout interval

[t0, t1), ξi can respectively enter its location (set) “L0”,
“Entering”, {“Risky Core”, “Exiting 1”}, and “Exiting 2”
(see Fig. 13) for at the most once, and continuously dwell
there for no more than 0, Tmax

enter,i, T
max
run,i+Texit,i, and Texit,i

respectively.
Claim 2.2: Throughout interval [t0, t1), ξN can respec-

tively enter its location (set) “Entering”, {“Risky Core”,

“Exiting 1”}, and “Exiting 2” (see Fig. 12) for at the most
once, and continuously dwell there for no more than
Tmax

enter,N , Tmax

run,N + Texit,N , and Texit,N respectively.

Proof: Due to Lemma 1, we have ∀i ∈ {0, 1, . . . , N} ·
ℓi(t

−

0 ) = “Fall-Back”.

∀i ∈ {1, 2, . . . , N − 1}, for ℓi to enter “L0” twice in
interval [t0, t1), evtξ0ToξiLeaseReq must happen twice
(see Fig. 13), which implies evtξ0Toξ1LeaseReq hap-
pen twice (see Fig. 11), which implies ∃t2 ∈ (t0, t1) ·
evtξ0Toξ1LeaseReq happens at t2. This contradicts For-
mula (3) (note due to c1, Tmin

fb,0 > 0, hence no zeno can



happen). The continuous dwelling time upper bound of
0 follows naturally due to “L0”’s dwelling constraint.

Same reasoning also applies to location (set) “Enter-
ing”, {“Risky Core”, “Exiting 1”}, and “Exiting 2”. Hence
Claim 2.1 is proven.

Same way we can prove Claim 2.2, where
evtξ0ToξNLeaseApprove replaces evtξ0ToξiLeaseReq. �

Furthermore, we have the following lemma.

Lemma 3 (PTE Compliance): Let t0, t1 (t0 < t1) be the
time instances when two consecutive evtξ0Toξ1LeaseReq
happen; or let t0 be the last time evtξ0Toξ1LeaseReq
happens and t1 =∞. In both cases, ∀t ∈ [t0, t1), Ineq. (1)
sustains.

Proof: Without loss of generality, let us first focus on
entity ξi and ξi−1 (where i ∈ {2, 3, . . . , N − 1}).

If ξi never entered risky-locations throughout interval
[t0, t1), then the PTE ordering of ξi−1 < ξi trivially
sustains.

Otherwise, there must be a maximal interval [t2, t3) ⊆
[t0, t1) that ℓi stays in risky-locations. That is, evtEntered
happens at t2, evtξiToξ0Exit happens at t3 < t1 (no
matter t1 < ∞ or t1 = ∞, we know t3 < t1 due to
Lemma 1 and 2), and ∀t ∈ (t2, t3) · ℓi(t) ∈ {“Risky Core”,
“Exiting 1”}.

Due to Lemma 2, (t2, t3) is the only maximal interval
in [t0, t1) that ℓi stays in risky-locations. Due to Lemma 1,
ℓi(t

−

0 ) = “Fall-Back”. By exhaustively examining all pos-
sible paths in Aptcpnt,i of Fig. 13, we have

t0 + Tmax

enter,i ≤ t2 ≤ t0 + (i− 1)Tmax

wait + Tmax

enter,i; (4)

and t2 + Texit,i ≤ t3 ≤ t2 + Tmax

run,i + Texit,i. (5)

Now let us check the duration that ξi−1 may stay in
its risky-locations within [t0, t1).

By exhaustively examining all possible paths in
Aptcpnt,i of Fig. 13, for ξi’s evtEntered to happen at t2,
evtξiToξ0LeaseApprove must happen at

t4 = t2 − Tmax

enter,i. (6)

Note t4 ≥ t0 because of Ineq. (4). According to
Asupvsr of Fig. 11, because ℓ0(t

−

0 ) = “Fall-Back”, for
evtξiToξ0LeaseApprove to happen at t4 ∈ [t0, t2),
evtξi−1Toξ0LeaseApprove must have happened at some
time instance t5, where

t0 ≤ t5 ≤ t4. (7)

Due to Condition c5,

t5 + Tmax

enter,i−1 + Tmin

risky:i−1→i

< t4 + Tmax

enter,i = t2 (due to Eq. (6)). (8)

On the otherhand, because after t0, the first occurrence
of evtξiToξ0Exit happens at t3, by exhaustively checking
all possible paths in Asupvsr of Fig. 11, this implies the
following proposition.

Proposition 1: No evtξ0ToξjAbort nor evtξ0ToξjCancel
ever happened during [t0, t3) (∀j = i− 1, i− 2, . . . , 1). �

Because of Proposition 1, Ineq. (7)(8) imply that after
ℓi−1 enters location “Entering” at t5, it enters “Risky
Core”, i.e. risky-locations, at

t6 = t5 + Tmax

enter,i−1. (9)

Due to Ineq. (8), we have

t6 < t2 − Tmin

risky:i−1→i < t3. (10)

On the other hand, from Fig. 11, we see

t5 ≥ t4 − Tmax

wait. (11)

Ineq. (11) and Condition c6 together imply

t5 + Tmax

enter,i−1 + Tmax

run,i−1

> t4 + Tmax

enter,i + Tmax

run,i + Texit,i

= t2 + Tmax

run,i + Texit,i (due to Eq. (6))

≥ t3. (due to Ineq. (5)) (12)

Due to Proposition 1, during [t5, t3), ξi−1 never re-
ceives evtξ0Toξi−1Abort or evtξ0Toξi−1Cancel. This fact,
combined with Ineq. (12), implies the earliest time in-
stance after t5 that ξi−1 may receive evtξ0Toξi−1Abort
or evtξ0Toξi−1Cancel is t3. Let t7 ∈ [t0, t1) be the time
instance that ℓi−1 exits risky-locations, then

t7 ≥ min{t5 + Tmax

enter,i−1 + Tmax

run,i−1 + Texit,i−1,

t3 + Texit,i−1}

= t3 + Texit,i−1 (due to Ineq. (12))

> t3 + Tmin

safe:i→i−1 (due to Condition c7) (13)

Note Ineq. (10)(13) implies t6 < t7; and no matter t1 <∞
or t1 = ∞, Lemma 1 and 2 imply t7 < t1. Therefore,
to summarize, ξi−1 must have visited risky-locations for
once during interval [t0, t1); and the visit starts at t6,
and ends at t7, where t6 compiles with Ineq. (10), and
t7 complies with Ineq. (13). In other words, the PTE
ordering of ξi−1 < ξi sustains during interval [t0, t1).

Using the same approach, we can also prove ξN−1 <
ξN during [t0, t1). �

With the above lemmas, we can prove Theorem 1 as
follows.

Proof of Claim 1:
Throughout the execution of hybrid system H, if

evtξ0Toξ1LeaseReq never happens, as all entities are
initialized from “Fall-Back” locations, the PTE safety
rules trivially sustain.

If infinite number of evtξ0Toξ1LeaseReq happen.
Then before the first evtξ0Toξ1LeaseReq, all entities
stay in “Fall-Back” locations, PTE safety rules triv-
ially sustain. After that, between any two consecu-
tive evtξ0Toξ1LeaseReq, due to Lemma 1 and 2, PTE
Safety Rule 1 sustains, and a risky-locations continu-
ous dwelling time upper bound is Tmax

run,i + Tmax

exit,i for ξi



(i = 1, 2, . . . , N ); due to Lemma 3, PTE Safety Rule 2 also
sustains. Therefore, PTE safety rules sustain.

The same proving approach can be applied to the sce-
nario where finite number of evtξ0Toξ1LeaseReq happen
(we need to check the special case: the interval between
the last occurrence of evtξ0Toξ1LeaseReq and time ∞;
but the same proving approach can be applied, and the
conclusion is the same). �

Proof of Claim 2.i:
We can prove by contradiction. Suppose in any du-

ration of length Tmin

fb,N + Tmax

req,N in [t0,+∞), ξN never
get a chance to send evtξNToξ0Req. Then ξ0 can never
leave location “Fall-Back” in [t0,+∞) (see Fig. 11,
12 in Appendix C of [13]); hence can never send
evtξ0ToξNLeaveApprove; hence ξN can never leave the
location set of {“Fall-Back”, “Requesting”} in [t0,+∞).
Then in any duration [ta, tb] of length Tmin

fb,N + Tmax

req,N in
[t0,+∞), suppose
a) at ta, ξN resides in “Fall-Back”, then by ta + Tmin

fb,N ∈
[ta, tb], ξN get the chance to send evtξNToξ0Req, contra-
diction reached;
b) at ta, ξN resides in “Requesting”, then by ta+Tmax

req,N ∈
[ta, tb], ξN must have returned to “Fall-Back”, suppose
the return time instance is tc, then ta ≤ tc ≤ ta+Tmax

req,N ≤

tb, then by tc + Tmin

fb,N ≤ ta + Tmax

req,N + Tmin

fb,N = tb,
ξN get the chance to send evtξNToξ0Req, also reached
contradiction. �

Proof of Claim 2.ii:
According to Supervisor’s hybrid automata Asupvsr

(see Fig. 11 in Appendix C of [13]), every location other
than “Fall-Back” has a dwelling time upper bound. By
checking all possible paths of Asupvsr, we know that ξ0
can continuously stay away from “Fall-Back” for at the

most Treset,0
def
= (N − 1)Tmax

wait + Tmax

LS1 . Therefore, once ξ0
non-zeno-ly leaves “Fall-Back” at t00, ξ0 will return to
“Fall-Back” by t+00 + Treset,0. That is, ∃ta ∈ (t+00, t

+
00 +

Treset,0], such that ξ0 first returns to “Fall-Back” at ta.
Meanwhile, according to Initializer’s hybrid automata

Ainitzr (see Fig. 12 in Appendix C of [13]), every location
other than “Fall-Back” has a dwelling time upper bound.
By checking all possible paths of Ainitzr, we know that
ξN can continuously stay away from “Fall-Back” for at

the most Treset,N
def
= Tmax

req,N + Tmax

enter,N + Tmax

run,N + Texit,N .

Therefore, ∃tb ∈ [ta, ta + Treset,N + Tmin

fb,N ], such that
tb is the first time instance in [ta, ta + Treset,N + Tmin

fb,N ]
that ξN have continuously resided in “Fall-Back” for at
least Tmin

fb,N . In other words, tb is the first time instance in
[ta, ta + Treset,N + Tmin

fb,N ] that ξN can send evtξNToξ0Req
to ξ0.

As at ta, ξ0 resides in “Fall-Back”, and ξ0 cannot
leave “Fall-Back” unless receiving evtξNToξ0Req from
ξN . Suppose ξN sends ξ0 event evtξNToξ0Req at tb, and
ξ0 receives the event, then this will trigger ξ0 to send
evtξ0Toξ1LeaseReq at tb. Then according to Lemma 1,
we can infer that at t−b , all entities (ξ0 ∼ ξN ) reside in

“Fall-Back”. As all entities’ residing location at t−b is not
determined by events happening in tb, therefore, even
if ξ0 does not receive evtξNToξ0Req at tb, we can still
conclude that at t−b , all entities are residing in “Fall-
Back”.

As tb ≥ ta > t+00, we have t−b > t00.
As tb ≤ ta + Tmin

fb,N + Treset,N ≤ t+00 + Treset,0 + Tmin

fb,N +

Treset,N = t+00 + Treset, we have t−b ≤ t00 + Treset.
Therefore, we conclude that ∃t ∈ (t00, t00+Treset], such

that all entities (ξ0 ∼ ξN ) return to location “Fall-Back”
at t (where t = tb). �

APPENDIX E
FORMAL DESCRIPTION ON ATOMIC ELABORA-
TION OF HYBRID AUTOMATON

In the following, we first propose the formal concept of
independence between hybrid automata. We then propose
a formal methodology on elaborating locations of design
pattern hybrid automata with independent child hybrid
automata. Finally, we prove following the proposed elab-
oration method, the resulted specific designs maintains
the PTE safety rules guarantees.

Unless explicitly denoted, the rest of the paper assumes
every hybrid automaton to be time-block-free and non-zeno7.

We now define hybrid automata independence.

Definition 2 (Hybrid Automata Independence): Given hy-
brid automata A = (~x(t), V , inv, F , E, g, R, L, syn, Φ0)
and A′ = (~x′(t), V ′, inv′, F ′, E′, g′, R′, L′, syn′, Φ′

0), we
say “A and A′ are independent” iff

1. elements(~x(t)) ∩ elements(~x′(t)) = ∅;
2. and V ∩ V ′ = ∅;
3. and L ∩ L′ = ∅.

Furthermore, we say “a set of hybrid automata A1, A2, . . .,
Ak are mutually independent”, iff ∀i, j ∈ {1, 2, . . ., k} and
i 6= j, Ai and Aj are independent.

We further define simple hybrid automaton.

Definition 3 (Simple Hybrid Automaton): A hybrid au-
tomaton A = (~x(t), V , inv, F , E, g, R, L, syn, Φ0) is
simple iff

1. ∀v1, v2 ∈ V , inv(v1) = inv(v2).
2. ∀v ∈ Φ0|V · ∀~s ∈ inv(v) · (v,~s) ∈ Φ0, where Φ0|V

means Φ0’s projection on V .
3. ∀v ∈ Φ0|V · (v,0) ∈ Φ0, where 0 is the zero data

state vector.
4. A has no time-convergent paths, no timelock loca-

tions, and no zeno paths.

7. For the aforementioned design pattern hybrid automata Asupvsr,
Ainitzr, and Aptcpnt,i, as long as Condition c1 ∼ c7 hold, they are
time-block-free and non-zeno. Besides, time-block-free and non-zeno
are well-known concepts in formal modeling, and most practical hybrid
automata are time-block-free and non-zeno. Due to above reasons, we
are not going to elaborate the definitions of these two concepts in this
paper.



Let us first describe the intuition on how to elaborate a
given hybrid automaton at one location with one child
hybrid automaton.

Atomic Elaboration of Hybrid Automaton (Intuition):
Given a hybrid automaton A = (~x(t), V , inv, F , E,

g, R, L, syn, Φ0), location v ∈ V , and a simple hybrid
automaton A′ = (~x′(t), V ′, inv′, F ′, E′, g′, R′, L′, syn′,
Φ′

0) such that A and A′ are independent, then we can
create the “(atomic) elaboration of A at v with A′”, i.e. a
hybrid automaton A′′ = (~x′′(t), V ′′, inv′′, F ′′, E′′, g′′, R′′,
L′′, syn′′, Φ′′

0), according to the following intuitions.

1. Location v of hybrid automaton A is replaced by
simple hybrid automaton A′.

2. All former ingress edges to v in A become ingress
edges to A′ (A′’s initial locations to be more spe-
cific).

3. All former egress edges from v in A become egress
edges from A′.

4. When in A′, the data state variables ~x(t) of A
maintain their continuous behavior as if they are
in v.

5. When out of A′, the data state variables ~x′(t) of A′

remain unchanged (until return to A′ again in the
future).

The above intuitive methodology can be formalized as
follows.
Formal Description on Atomic Elaboration of Hybrid Automa-
ton:

The formal description assumes the following.

1. Given ~xa = (xa
1 , xa

2 , . . ., xa
n) ∈ R

n and ~xb = (xb
1, xb

2,

. . ., xb
m) ∈ R

m, (~xa, ~xb)
def
= (xa

1 , xa
2 , . . ., xa

n, xb
1, xb

2,
. . ., xb

m) ∈ R
n+m.

2. Given an n-element tuple X = (x1, x2, . . ., xn), we
use X|i (i ∈ {1, 2, . . . , n}) to denote X’s ith element:

xi. We use elements(X)
def
= {x1, x2, . . ., xn} to denote

the set of all elements of X .

Under the above assumptions, the formal description
on how to carry out atomic elaboration of hybrid au-
tomaton runs as follows.

Given a hybrid automaton A = (~x(t), V , inv, F , E,
g, R, L, syn, Φ0), location v ∈ V , and a simple hybrid
automaton A′ = (~x′(t), V ′, inv′, F ′, E′, g′, R′, L′, syn′,
Φ′

0) such that A and A′ are independent, then we can
create the “atomic elaboration of A at v with A′”, i.e. a
hybrid automaton A′′ = (~x′′(t), V ′′, inv′′, F ′′, E′′, g′′, R′′,
L′′, syn′′, Φ′′

0), according to the following steps.

1. ~x′′(t)
def
= (~x(t), ~x′(t)); denote A and A′’s dimensions

as respectively n and n′, then ~x′′(t) ∈ R
n+n′

.

2. V ′′
def
= (V ∪ V ′)\{v}.

3. ∀u ∈ V \{v}, inv′′(u)
def
= inv(u)× inv′(v′), where “×”

means Cartesian product, v′ is an arbitrary location

in V ′; ∀u ∈ V ′, inv′′(u)
def
= inv(v)× inv′′(u).

4. F ′′
def
= {f ′′

u |f
′′

u : Rn+n′

7→ R
n+n′

, ∀u ∈ V ′′} such that
at location u ∈ V ′′, we have

4.1. if u ∈ V \{v}, then

f ′′

u

(
(x1, x2, . . . , xn, x

′

1, x
′

2, . . . , x
′

n′)
)
|i

def
=







fu
(
(x1, x2, . . . , xn)

)
|i

(when 1 ≤ i ≤ n),

0 (otherwise);

4.2. if u ∈ V ′, then

f ′′

u

(
(x1, x2, . . . , xn, x

′

1, x
′

2, . . . , x
′

n′)
)
|i

def
=







fv
(
(x1, x2, . . . , xn)

)
|i

(when 1 ≤ i ≤ n),

f ′

u

(
(x′

1, x
′

2, . . . , x
′

n′)
)
|i−n (otherwise).

5. L′′
def
= L ∪ L′.

6. E′′, g′′, R′′, syn′′ are created according to the fol-
lowing process.

6.1. Initially E′′ = ∅.
6.2. For each e = (v1, v2) ∈ E, where v1, v2 6= v

(hence v1, v2 ∈ V ′′), we add edge e′′ = (v1, v2)

into E′′. Furthermore, we define g′′(e′′)
def
=

g(e)× R
n′

;

r′′e′′
(
(s1, s2, . . . , sn, s

′

1, s
′

2, . . . , s
′

n′)
)

def
= re

(
(s1, s2, . . . , sn)

)
× {(s′1, s

′

2, . . . , s
′

n′)},

∀(s1, s2, . . . , sn, s
′

1, s
′

2, . . . , s
′

n′) ∈ inv′′(v1);

and syn′′(e′′)
def
= syn(e).

6.3. For each e = (v1, v) ∈ E, where v1 6= v (hence
v1 ∈ V ′′), we add for each v′ ∈ Φ′

0|V ′ (i.e. Φ′

0’s
projection on V ′) an edge e′′ = (v1, v

′) into E′′.

Furthermore, we define g′′(e′′)
def
= g(e)× R

n′

;

r′′e′′
(
(s1, s2, . . . , sn, s

′

1, s
′

2, . . . , s
′

n′)
)

def
= re

(
(s1, s2, . . . , sn)

)
× {(s′1, s

′

2, . . . , s
′

n′)},

∀(s1, s2, . . . , sn, s
′

1, s
′

2, . . . , s
′

n′) ∈ inv′′(v1);

and syn′′(e′′)
def
= syn(e).

6.4. For each e = (v, v2) ∈ E, where v2 6= v (hence
v2 ∈ V ′′), we add for each v′ ∈ V ′ an edge
e′′ = (v′, v2) into E′′. Furthermore, we define

g′′(e′′)
def
= g(e)× R

n′

;

r′′e′′
(
(s1, s2, . . . , sn, s

′

1, s
′

2, . . . , s
′

n′)
)

def
= re

(
(s1, s2, . . . , sn)

)
× {(s′1, s

′

2, . . . , s
′

n′)},

∀(s1, s2, . . . , sn, s
′

1, s
′

2, . . . , s
′

n′) ∈ inv′′(v′);

and syn′′(e′′)
def
= syn(e).

6.5. For each e = (v, v) ∈ E, we add for each v′ ∈
V ′ an edge e′′ = (v′, v′) into E′′. Furthermore,



we define g′′(e′′)
def
= g(e)× R

n′

;

r′′e′′
(
(s1, s2, . . . , sn, s

′

1, s
′

2, . . . , s
′

n′)
)

def
= re

(
(s1, s2, . . . , sn)

)
× {(s′1, s

′

2, . . . , s
′

n′)},

∀(s1, s2, . . . , sn, s
′

1, s
′

2, . . . , s
′

n′) ∈ inv′′(v′);

and syn′′(e′′)
def
= syn(e).

6.6. For each e′ = (v1, v2) ∈ E′ (hence v1, v2 ∈ V ′′),
we add an edge e′′ = (v1, v2) into E′′. Further-

more, we define g′′(e′′)
def
= R

n × g′(e′);

r′′e′′
(
(s1, s2, . . . , sn, s

′

1, s
′

2, . . . , s
′

n′)
)

def
= {(s1, s2, . . . , sn)} × r′e′

(
(s′1, s

′

2, . . . , s
′

n′)
)
;

∀(s1, s2, . . . , sn, s
′

1, s
′

2, . . . , s
′

n′) ∈ inv′′(v1);

and syn′′(e′′)
def
= syn′(e).

7. Φ′′

0 is created according to the following process.

7.1. Initially Φ′′

0 = ∅.
7.2. For each (v1, ~s) ∈ Φ0, where v1 6= v, we add

(v1, (~s, 0, 0, . . . , 0
︸ ︷︷ ︸

n′ zeros

)) into Φ′′

0 .

7.3. For each (v,~s) ∈ Φ0, we add for each (v′, ~s′) ∈
Φ′

0 a state value (v′, (~s,~s′)) into Φ′′

0 .

8. For PTE CPS, there is the issue of partitioning
V ′′ into safe-locations V ′′ safe and risky-locations

V ′′ risky. In case v ∈ V safe, V ′′ safe def
= V ′∪ (V safe\{v})

and V ′′ risky def
= V ′′\V ′′ safe; otherwise, V ′′ risky def

=

V ′ ∪ (V risky\{v}) and V ′′ safe def
= V ′′\V ′′ risky.

We denote A′′, the atomic elaboration of A at v with A′,
as

A′′ = E(A, v,A′).

With atomic elaboration at hand, we can go further.
Given hybrid automaton A, k distinct locations v1 ∼

vk ∈ V (where V is A’s location set), and k simple
hybrid automata A1 ∼ Ak such that A, A1, . . ., Ak are
mutually independent, then we can carry out “(parallel)
elaboration of A at v1, v2, . . . , vk with A1, A2, . . ., Ak”,
denoted as

E(A, (v1, v2, . . . , vk), (A1, A2, . . . , Ak))
def
= E(. . . E(E(

︸ ︷︷ ︸

repeat k times

A, v1, A1), v2, A2) . . .), vk, Ak).

Denote A′ = E(A, (v1, v2, . . . , vk), (A1, A2, . . . , Ak)), we
also say “A′ elaborates A at v1, v2, . . ., vk with A1, A2, . . .,
Ak respectively”.

Intuitively, parallel elaboration of A at v1, v2, . . . , vk
with A1, A2, . . ., Ak can be implemented by elaborating
A at v1 with A1, v2 with A2, so on and so forth, until vk
with Ak.

If a specific wireless CPS design, described by hybrid
system H′, has its member hybrid automata respectively
elaborating the Supervisor, Initializer, and Participant

design pattern hybrid automata (i.e. Asupvsr, Ainitzr, and
Aptcpnt,i), then the design H′ maintains the properties of
our design pattern and guarantee of PTE safety rules.
Formally, this is expressed in the form of the following
theorem.

Theorem 2 (Design Pattern Compliance): Given a hybrid
system H′ consisting of entities ξ′0, ξ

′

1, . . . , ξ
′

N , which
respectively corresponds to hybrid automata of
A′

0, A
′

1, . . . , A
′

N . If the following conditions are satisfied:

1. There are distinct locations v01 , v02 , . . ., v0k0
∈ Vsupvsr,

and simple hybrid automata A0
1, A0

2, . . ., A0
k0

, such
that Asupvsr and A0

j (j = 1 ∼ k0) are independent,
and A′

0 elaborates Asupvsr at v01 , v02 , . . ., v0k0
with A0

1,
A0

2, . . ., A0
k0

respectively;
2. For each i ∈ {1, 2, . . ., N − 1}, there are distinct

locations vi1, vi2, . . ., viki
∈ Vptcpnt,i, and simple

hybrid automata Ai
1, Ai

2, . . ., Ai
ki

, such that Aptcpnt,i

and Ai
j (j = 1 ∼ ki) are independent, and A′

i

elaborates Ai
ptcpnt,i at vi1, vi2, . . ., viki

with Ai
1, Ai

2,
. . ., Ai

ki
respectively;

3. There are distinct locations vN1 , vN2 , . . ., vNkN
∈ Vinitzr,

and simple hybrid automata AN
1 , AN

2 , . . ., AN
kN

, such
that Ainitzr and AN

j (j = 1 ∼ kN ) are independent,
and A′

N elaborates Ainitzr at vN1 , vN2 , . . ., vNkN
with

AN
1 , AN

2 , . . ., AN
kN

respectively;
4. Hybrid automata Ai

j are mutually independent,
where i = 0, 1, . . . , N , j = 1, 2, . . . , ki;

5. Condition c1 ∼ c7 of Theorem 1 sustain;

where Vsupvsr, Vptcpnt,i, and Vinitzr are respectively
Asupvsr, Aptcpnt,i, and Ainitzr’s location sets, then H′ satis-
fies PTE safety rules and liveness described in Theorem 1
Claim 1 and 2.

Proof: If not, there must be an execution trace φ′(t) (see
[11] for the rigorous definition of “execution trace”, aka
“trajectory” of a hybrid system) of H′ that violates PTE
safety rules (liveness). According to the methodology
we elaborate hybrid automata, φ′(t) corresponds to an
execution trace φ(t) of H (the hybrid system of Asupvsr,
Aptcpnt,i (i = 1, 2, . . . , N−1), and Ainitzr) that also violates
PTE safety rules (liveness). This contradicts Theorem 1.
�

APPENDIX F
DETAILED DESIGN OF LEASING BASED AP-
PROACH FOR CASE STUDIES

We start our design of laser tracheotomy wireless CPS
per proposed leasing-based design approach.

First, we see the wireless laser tracheotomy CPS con-
sists of three entities (i.e. N = 2): the laser tracheotomy
supervisor (together with the SpO2 sensor wired to it)
plays the role of Supervisor, hence entity ξ0; the (surgeon
operated) laser-scalpel plays the role of Initializer, hence



entity ξ2; and the ventilator plays the role of Participant
1, hence entity ξ1.

Next, we design the hybrid automata for the laser
tracheotomy supervisor, laser-scalpel, and ventilator by
respectively elaborating Asupvsr, Ainitzr, and Aptcpnt,1.

Take the ventilator detailed design for example. The
detailed design of a stand-alone ventilator has already
been described by the simple hybrid automaton A′

vent
of Fig. 2. The stand-alone design of A′

vent, however, is
not aware of the communications/collaborations with
supervisor and laser-scalpel; hence cannot guarantee PTE
safety rules. In order to guarantee PTE safety rules,
we revise the ventilator design by elaborating the Par-
ticipant Design Pattern hybrid automaton Aptcpnt,i (see
Section 4.1-Participant; also see Fig. 13 for the diagram of
the hybrid automaton) at location “Fall-Back” with A′

vent,
using the elaboration method described in Section 4.3.

The Initializer hybrid automaton Ainitzr and Supervi-
sor hybrid automaton Asupvsr do not need to be further
elaborated. They can be directly used to describe the be-
havior of laser-scalpel and laser tracheotomy supervisor
respectively.

The resulted detailed designs for the wireless laser
tracheotomy entities are shown in Fig. 14, 15, and 16
respectively. Some data state variable names and/or
locations names in the corresponding design patterns
are modified to better reflect their meanings in laser
tracheotomy.

Via the same approach, we derive the detailed designs
for the wireless IP remote monitoring entities, which
are shown in Fig. 17, 18, and 19 respectively. Some
data state variable names and/or locations names in
the corresponding design patterns are modified to better
reflect their meanings in IP remote monitoring.

APPENDIX G
EXAMPLE SCENARIOS WHERE LEASING PRO-
TECTS PTE SAFETY RULES

Let us further consider a number of typical scenarios to
get better intuitions on how leasing approach works in
the laser tracheotomy case study.

One scenario is that after the ventilator is paused
and the laser-scalpel is emitting, the surgeon may for-
get to cancel laser emission until too late (e.g. Toff is
set to 1 hour). Without leasing, only the abort request
from the supervisor can stop laser emission and resume
ventilator before it is too late. However, this requires a
sequence of correct send/receive of events through wire-
less: evtξ0Toξ2Abort, followed by evtξ2Toξ0Exit, and fol-
lowed by evtξ0Toξ1Abort. Losing any one of these events
at the receiver end will cause PTE safety rules violation.
For example, losing evtξ2Toξ0Exit, the supervisor may
think the laser-scalpel is stuck and cannot stop laser
emission, hence ventilator shall keep pausing.

With leasing, the laser emission terminates within the
lease Tmax

run,2 = 20(s) with or without surgeon’s request

to cancel; and the ventilator resumes within the lease
Tmax
run,1 = 35(s) with or without supervisor’s requests.

Hence PTE safety rules are protected.
Similar analysis applies to the scenario that the sur-

geon remembers to cancel laser emission, but his/her
cancelling request (i.e. evtξ2Toξ0Cancel) is not received
at the supervisor. Without lease, the ventilator may keep
pausing till for too long; with lease, the ventilator will
keep pausing for Tmax

run,1 = 35(s) at the most, hence cannot
suffocate the patient.

A third scenario involves the parameter configuration
constraints. Suppose we set Tmax

enter,2 = Tmax
enter,1 = 0(s)

(or any other value so that Tmax
enter,2 = Tmax

enter,1), then
because Tmin

risky:1→2 = 3(s) > 0, Condition c5 of Theorem 1
is violated. Under such design, immediately after the
ventilator is paused, the laser-scalpel can emit laser,
violating the PTE requirement of Tmin

risky:1→2 = 3(s): that
the laser-scalpel must wait for another 3(s) after the
ventilator pauses, and then can it emit laser.

In summary, if we follow the proposed lease based
design approach, Theorem 1 and 2 can guarantee PTE
safety rules.

APPENDIX H
DETAILED DESIGN OF POLLING BASED AP-
PROACH FOR CASE STUDIES

The detailed design state diagrams of laser tracheotomy
and IP remote monitoring per polling based ap-
proach [12] are shown in Fig 20 ∼ 25 respectively.

In these figures, CurrentT ime refers to the wall clock
time, Tperiod = 50(ms) is the polling period. For laser
tracheotomy (see Fig. 20, 21, and 22), T

ξ1
length = 44(s),

T
ξ1
Entering = 3(s), T ξ2

length = 31.5(s), T ξ2
Entering = 10(s), and

T
ξ2
Exiting = 1.5(s). For IP remote monitoring (see Fig. 23,

24, and 25), T ξ1
length = 42(s), T ξ1

Entering = 1(s), T ξ2
length =

25.5(s), T ξ2
Entering = 3(s), and T

ξ2
Exiting = 2.5(s).

APPENDIX I
CORRIGENDA TO CONFERENCE VERSION

We found the following editing errors/omissions in the
conference version of this paper [14] (in this section,
unless otherwise mentioned, all reference numbers refer
to [14]). These editing errors/omissions occurred in [14]
when reformatting Fig.8, 9, 10 (respectively the full-
fledged hybrid automata diagrams of Supervisor, Initial-
izer, and Participant in the appendices) to the narrations
of Section IV for reader’s ease-of-understanding. Fortu-
nately, all analyses and evaluations of the conference
paper are still correct, as they are based on Fig.8, 9, 10
of the appendices.

1) In Fig.4 (a), the block of “Send evtξ0ToξiCancel.
Transit to “Cancel Lease ξi”.” missed “Set timer
tLS1 ← 0 iff i = 1.” as its first line.



Fig. 14. Laser Tracheotomy Supervisor Detailed Design. Note entity ξ1 refers to the ventilator, and ξ2 refers to the
laser-scalpel.

2) In Fig.4 (a), the block of “Send ξ0ToξiAbort. Transit
to “Abort Lease ξi”.” should be “Set timer tLS1 ←
0 iff i = 1. Send evtξ0ToξiAbort. Transit to “Abort
Lease ξi”.”

3) Step 4 of the narration for Initializer, last
sentence: “evtξ0ToξNApprove” should be
“evtξ0ToξNLeaseApprove”. Correspondingly,
in Fig. 9 ( Diagram of Hybrid Automaton Ainitzr)
and Fig. 12 ( Laser Tracheotomy Laser-Scalpel
Detailed Design) of appendices, the respective
edge label of “evtξ0ToξNApprove” should be
evtξ0ToξNLeaseApprove”.

4) Step 7 of the narration for Initializer missed “and
send event evtξNToξ0Exit” in its end. Similarly,
Step 7 of the narration for Participant missed “and
send event evtξiToξ0Exit” in its end.

5) In Step 5 and 6 of the narration for Participant, the
two occurrences of “evtξ0ToξNAbort” should both
be “evtξ0ToξiAbort”.

6) In Fig. 11 (Laser Tracheotomy Supervisor Detailed
Design), the outgoing transition evtWaitξ1Expire

from location Leaseξ1, the guard condition vari-
able “tidle” should be “tclk”.

We would also like to add the following notes.

1) In Fig.4, “tLS1 expire” means “tLS1 ≥ Tmax

LS1”.
2) In Fig.13 of appendices, note the two edges of

“!evtξ1Toξ0LeaseDeny” actually can never happen
because the guard condition is always false. This
means either of the two edges can be removed,
and location “L0,0” and “L0,1” can be merged.

3) To rigorously remove zenos in the model, it is bet-
ter to add a positive minimum dwelling time con-
straint to both Initializer and Participant’s “Fall-
Back” locations.

4) Lemma 1 Claim 1.2 is not necessary to the proof;
in fact, a better time upper bound can be derived
during the proof of Lemma 2. Please refer to our
journal publication for a better proof.



Fig. 15. Laser Tracheotomy Laser-Scalpel Detailed Design. Note the laser-scalpel emits and only emits laser when
dwelling in location “Risky Core”.

Fig. 16. Laser Tracheotomy Ventilator Detailed Design, by elaborating Participant Design Pattern.



Fall-Back:

ṫclk = 1

Lease ξ2 (ξ2 is IP ):
ṫLS1 = 1;

0 ! tLS1 < T
max

LS1

Abort Lease ξ1:

ṫLS1 = 1;

0 ! tLS1 < T
max

LS1

Lease ξ1 (ξ1 is Camera):
ṫclk = 1;

0 ! tclk < Tmax

wait

Abort Lease ξ2:

ṫLS1 = 1;

0 ! tLS1 < T
max

LS1

Cancel Lease ξ1:

ṫLS1 = 1;

0 ! tLS1 < T
max

LS1

Cancel Lease ξ2:

ṫLS1 = 1;

0 ! tLS1 < T
max

LS1

??evtξ2Toξ0Req

[tclk ! Tmin

fb,0 ∧ high battery level]

!evtξ0Toξ1LeaseReq:

tclk ← 0

!evtξ0Toξ1Abort

[low battery level]:
tLS1 ← 0

??evtξ1Toξ0Exit:

tclk ← 0

evtξ1LeaseExpire

[tLS1 ! Tmax

LS1
]:

tclk ← 0

!evtξ0Toξ1Abort

??evtξ2Toξ0Exit

evtξ1LeaseExpire

[tLS1 ! Tmax

LS1
]:

tclk ← 0

evtξ1LeaseExpire

[tLS1 ! Tmax

LS1
]:

tclk ← 0

!evtξ0Toξ2Abort

[low battery level]

??evtξ1Toξ0LeaseApprove

!evtξ0Toξ2LeaseApprove

??evtξ1Toξ0LeaseDeny:

tclk ← 0

evtWaitExpire

[tclk ! Tmax

wait
]

!evtξ0Toξ1Cancel:

tclk ← 0

??evtξ2Toξ0Cancel

!evtξ0Toξ1Cancel:

tLS1 ← 0

??evtξ2Toξ0Exit

??evtξ2Toξ0Cancel

!evtξ0Toξ1Cancel

evtξ1LeaseExpire

[tLS1 ! Tmax

LS1
]:

tclk ← 0

??evtξ2Toξ0Exit

!evtξ0Toξ1Cancel

evtξ1LeaseExpire

[tLS1 ! Tmax

LS1
]:

tclk ← 0

??evtξ1Toξ0Exit:

tclk ← 0

Intermediate state btw two events. Cost 0 time

Fig. 17. IP Remote Monitoring Supervisor Detailed Design. Note entity ξ1 refers to the camera, and ξ2 refers to the IP.

Fall-Back:

ṫclk = 1

Requesting:

ṫclk = 1;

0 ! tclk < T
max

req,2

Entering:

ṫclk = 1;

0 ! tclk < T
max

enter,2

Risky Core:

ṫclk = 1;

0 ! tclk < T
max

run,2

Exiting 1:

ṫclk = 1;

0 ! tclk < Texit,2

Exiting 2:

ṫclk = 1;

0 ! tclk < Texit,2

evtReqExpire
[tclk ! Tmax

req,2]:
tclk ← 0

!evtξ2Toξ0Cancel:

tclk ← 0

??evtξ0Toξ2LeaseApprove:
tclk ← 0

!evtξ2Toξ0Cancel:

tclk ← 0

!evtξ2Toξ0Cancel:

tclk ← 0

??evtξ0Toξ2Abort:
tclk ← 0

??evtξ0Toξ2Abort:
tclk ← 0

!evtξ2Toξ0Exit

[tclk ! Texit,2]:
tclk ← 0

!evtξ2Toξ0Exit

[tclk ! Texit,2]:
tclk ← 0

evtEntered

[tclk ! T
max

enter,2]:
tclk ← 0

evtRunEnded

[tclk ! T
max

run,2]:
tclk ← 0

!evtξ2Toξ0Req[tclk ! Tmin

fb,2]:
tclk ← 0

Fig. 18. IP Remote Monitoring IP Detailed Design. Note the IP conducts random walk when and only when dwelling in
location “Risky Core”.



Fall-Back:

ṫclk = 1

Entering:

ṫclk = 1;

0 ! tclk < T
max

enter,1

Risky Core:

ṫclk = 1;

0 ! tclk < T
max

run,1

Exiting 1:

ṫclk = 1;

0 ! tclk < Texit,1

Exiting 2:

ṫclk = 1;

0 ! tclk < Texit,1

Intermediate state btw two events.Cost 0 time

??evtξ0Toξ1LeaseReq

[tclk ! Tmin

fb,1]:
tclk ← 0

!evtξ1Toξ0LeaseDeny

[false]: tclk ← 0
!evtξ1Toξ0LeaseApprove

[true]: tclk ← 0

??evtξ0Toξ1Abort:
tclk ← 0

??evtξ0Toξ1Cancel:

tclk ← 0

??evtξ0Toξ1Abort:

tclk ← 0

??evtξ0Toξ1Cancel:

tclk ← 0

evtEntered

[tclk ! T
max

enter,1]:
tclk ← 0

evtRunEnded

[tclk ! T
max

run,1]:
tclk ← 0

!evtξ1Toξ0Exit

[tclk ! Texit,1]:
tclk ← 0

!evtξ1Toξ0Exit

[tclk ! Texit,1]:
tclk ← 0

Fig. 19. IP Remote Monitoring Camera Detailed Design.



[CurrentT ime ! Dξ1 ]:
evtDξ1reaches

[CurrentT ime ! Dξ2 ]:
evtDξ2reaches

[CurrentT ime ! Dξ1 ]:
evtDξ1reaches

!evtξ0Polling

??evtξ2AbortAck

??evtξ0Toξ1FallbackAck
??evtξ1InTransactionAck

??evtξ2InTransactionAck

??evtξ0Toξ1FallbackAck

??evtξ2FallBack

??evtξ2Exiting

??evtξ2FallBack

OtherWise

??evtξ2Exiting

[CurrentT ime ! (Dξ2 − T
ξ2
Exiting)]:

evtξ2Exiting

[OtherWise]:
!evtξ0Toξ1Fallback

[Dξ1 > CurrentT ime ! (Dξ1 − T
ξ1
Entering)]:

!evtξ0Toξ1Fallback

[(Dξ2 − T
ξ2
Exiting) > CurrentT ime ! (Dξ2 − T

ξ2
Entering − T

ξ2
Exiting)]:

!evtξ0Toξ2Abort(Dξ2)

[CurrentT ime < (Dξ1 − T
ξ1
Entering)]:

!evtξ0Toξ1Req(Dξ1)

??evtξ2Req

WaitMsg

ξ2FallbackOrIn

Transaction,

ξ1InTransaction

ξ2FallbackOrInT

ransactionOrExiting,
ξ1InTransaction

ξ2Exiting,

ξ1InTransaction

ξ2Fallback,

ξ1InTransactionOr

Fallback

[CurrentT ime < (Dξ2

−T
ξ2
Entering − T

ξ2
Exiting)]:

!evtξ0Ack(Dξ2)

[CurrentT ime ! (Dξ2 − T
ξ2
Exiting)] :

evtξ2Exiting

ξ2Req, ξ1Fallback

OrInTransaction

Fallback

[OtherWise]:
!evtξ0Polling

[OtherWise]:
!evtξ0Polling

OtherWise

WaitMsg

WaitMsg

OtherWise

WaitMsg

OtherWise

WaitMsg

OtherWise

WaitMsg

OtherWise
WaitMsg

OtherWise

??evtξ2FallBack

??evtξ2FallBack

WaitMsg

OtherWise

??evtξ2Req

Dξ1 ← CurrentT ime+ Tperiod + T
ξ1
length

Dξ2 ← CurrentT ime+ Tperiod + T
ξ2
length

Fig. 20. Laser Tracheotomy Supervisor (aka Entity ξ0) Detailed Design, per Kim et al [12]’s Polling-Based Approach



Fall-Back
Request

RiskyCore

Exiting

Entering

!evtξ2FallBack

??AnyMessageFromξ0

??evtξ0Polling

??evtξ0Polling

!evtξ2InTransactionAck

??evtξ0Polling

!evtξ2InTransactionAck

!evtξ2RiskyCore
[CurrentT ime ! Dlocal

ξ2
− TExiting]:

evtExit

!evtξ2AbortAck

!evtξ2Exiting

evtRequest
[CurrentT ime ! Dlocal

ξ2
]:

evtDξ2reaches

!evξ2Entering

[OtherWise]:
!evtξ2Req

??evtξ0Toξ2Abort??evtξ0Toξ2Abort

??evtξ0Toξ2Abort

??evtξ0Toξ2Abort!evtξ2FallBack

??OtherMessageFromξ0

??evtξ0Ack (Dξ2)

??evtξ0Ack (Dξ2)

evtCancel

CancelF lag ← true

Intermediate state btw two events. Cost 0 time

[Tentering passes in Entering]:
evtξ2RiskyCore

[CancelF lag = true

∧ TExiting passes in Exiting]:
evtξ2Exit

??evtξ0Ack(Dξ2)
CancelF lag ← false

Dlocal

ξ2
← Dξ2

[CancelF lag = true ∧ CurrentT ime < Dlocal

ξ2
] :

!evtξ2FallBack

Fig. 21. Laser Tracheotomy Laser Scalpel (the Initializer, aka Entity ξ2) Detailed Design, per Kim et al [12]’s Polling-
Based Approach

Fall-Back

Entering

RiskyCore

!evtξ1RiskyCore

[TEntering passes in Entering]:
evtξ1RiskyCore

[CurrentT ime ! Dlocal

ξ1
]:

evtξ1Fallback

??evtξ0Toξ1Fallback

??evtξ0Toξ1Fallback

!evtξ1InTransactionAck

!evtξ1InTransactionAck

!evtξ1FallBack

??evtξ0Polling

!evtξ1Entering

??evtξ0Polling

??evtξ0Polling

??evtξ0Toξ1Req (Dξ1)
Dlocal

ξ1
← Dξ1

??evtξ0Toξ1Req(Dξ1)

!evtξ0Toξ1FallbackAck

!evtξ0Toξ1FallbackAck

!evtξ0Toξ1FallbackAck

??evtξ0Toξ1Fallback

??evtξ0Toξ1Req(Dξ1)

Intermediate state btw two events.Cost 0 time

Fig. 22. Laser Tracheotomy Ventilator (the Participant, aka Entity ξ1) Detailed Design, per Kim et al [12]’s Polling-Based
Approach



[CurrentT ime ! Dξ1 ]:
evtDξ1reaches

[CurrentT ime ! Dξ2 ]:
evtDξ2reaches

[CurrentT ime ! Dξ1 ]:
evtDξ1reaches

!evtξ0Polling

??evtξ2AbortAck

??evtξ0Toξ1FallbackAck
??evtξ1InTransactionAck

??evtξ2InTransactionAck

??evtξ0Toξ1FallbackAck

??evtξ2FallBack

??evtξ2Exiting

??evtξ2FallBack

OtherWise

??evtξ2Exiting

[CurrentT ime ! (Dξ2 − T
ξ2
Exiting)]:

evtξ2Exiting

[OtherWise]:
!evtξ0Toξ1Fallback

[Dξ1 > CurrentT ime ! (Dξ1 − T
ξ1
Entering)]:

!evtξ0Toξ1Fallback

[(Dξ2 − T
ξ2
Exiting) > CurrentT ime ! (Dξ2 − T

ξ2
Entering − T

ξ2
Exiting)]:

!evtξ0Toξ2Abort(Dξ2)

[CurrentT ime < (Dξ1 − T
ξ1
Entering)]:

!evtξ0Toξ1Req(Dξ1)

??evtξ2Req

WaitMsg

ξ2FallbackOrIn

Transaction,

ξ1InTransaction

ξ2FallbackOrInT

ransactionOrExiting,
ξ1InTransaction

ξ2Exiting,

ξ1InTransaction

ξ2Fallback,

ξ1InTransactionOr

Fallback

[CurrentT ime < (Dξ2

−T
ξ2
Entering − T

ξ2
Exiting)]:

!evtξ0Ack(Dξ2)

[CurrentT ime ! (Dξ2 − T
ξ2
Exiting)] :

evtξ2Exiting

ξ2Req, ξ1Fallback

OrInTransaction

Fallback

[OtherWise]:
!evtξ0Polling

[OtherWise]:
!evtξ0Polling

OtherWise

WaitMsg

WaitMsg

OtherWise

WaitMsg

OtherWise

WaitMsg

OtherWise

WaitMsg

OtherWise
WaitMsg

OtherWise

??evtξ2FallBack

??evtξ2FallBack

WaitMsg

OtherWise

??evtξ2Req

Dξ1 ← CurrentT ime+ Tperiod + T
ξ1
length

Dξ2 ← CurrentT ime+ Tperiod + T
ξ2
length

Fig. 23. IP Remote Monitoring Supervisor (aka Entity ξ0) Detailed Design, per Kim et al [12]’s Polling-Based Approach



Fall-Back
Request

RiskyCore

Exiting

Entering

!evtξ2FallBack

??AnyMessageFromξ0

??evtξ0Polling

??evtξ0Polling

!evtξ2InTransactionAck

??evtξ0Polling

!evtξ2InTransactionAck

!evtξ2RiskyCore
[CurrentT ime ! Dlocal

ξ2
− TExiting]:

evtExit

!evtξ2AbortAck

!evtξ2Exiting

evtRequest
[CurrentT ime ! Dlocal

ξ2
]:

evtDξ2reaches

!evξ2Entering

[OtherWise]:
!evtξ2Req

??evtξ0Toξ2Abort??evtξ0Toξ2Abort

??evtξ0Toξ2Abort

??evtξ0Toξ2Abort!evtξ2FallBack

??OtherMessageFromξ0

??evtξ0Ack (Dξ2)

??evtξ0Ack (Dξ2)

evtCancel

CancelF lag ← true

Intermediate state btw two events. Cost 0 time

[Tentering passes in Entering]:
evtξ2RiskyCore

[CancelF lag = true

∧ TExiting passes in Exiting]:
evtξ2Exit

??evtξ0Ack(Dξ2)
CancelF lag ← false

Dlocal

ξ2
← Dξ2

[CancelF lag = true ∧ CurrentT ime < Dlocal

ξ2
] :

!evtξ2FallBack

Fig. 24. IP Remote Monitoring IP (the Initializer, aka Entity ξ2) Detailed Design, per Kim et al [12]’s Polling-Based
Approach

Fall-Back

Entering

RiskyCore

!evtξ1RiskyCore

[TEntering passes in Entering]:
evtξ1RiskyCore

[CurrentT ime ! Dlocal

ξ1
]:

evtξ1Fallback

??evtξ0Toξ1Fallback

??evtξ0Toξ1Fallback

!evtξ1InTransactionAck

!evtξ1InTransactionAck

!evtξ1FallBack

??evtξ0Polling

!evtξ1Entering

??evtξ0Polling

??evtξ0Polling

??evtξ0Toξ1Req (Dξ1)
Dlocal

ξ1
← Dξ1

??evtξ0Toξ1Req(Dξ1)

!evtξ0Toξ1FallbackAck

!evtξ0Toξ1FallbackAck

!evtξ0Toξ1FallbackAck

??evtξ0Toξ1Fallback

??evtξ0Toξ1Req(Dξ1)

Intermediate state btw two events.Cost 0 time

Fig. 25. IP Remote Monitoring Camera (the Participant, aka Entity ξ1) Detailed Design, per Kim et al [12]’s Polling-Based
Approach


