ORTEGA: An Efficient and Flexible Online Fault Tolerance Architecture for Real-Time Control Systems

Xue Liu, Qixin Wang, Sathish Gopalakrishnan, Wenbo He, Lui Sha, Hui Ding, Kihwal Lee



- Motivation and related work
- ORTEGA goals
- ORTEGA architecture
- Details of ORTEGA designs
- Implementation and evaluation
- Demo

### Motivations

#### Cyber-Physical Systems

- Real-world systems involves not only computer science, but knowledge related to various disciplines.
- Not only the computer system becomes more complex, the complexity of integrated system (i.e. the cyberphysical system) grows even faster.
- Major challenge: how to let engineers of drastically different backgrounds collaborate with each other?

# Motivations

- Control Systems
  - Conventional analog control systems u = -Kx
  - Digital control systems
- Computer Systems
  - Real-time scheduling
  - Fault tolerance
  - Reliable/online software upgrade
- We need to design a framework so that computer engineers and control engineers can easily collaborate and integrate their knowledge

$$\dot{x} = Ax + Bu$$

$$x(kh+h) = e^{Ah}x(kh) + \left(\int_0^h e^{As}ds\right)Bu(kh)$$

$$u(kh) = -Kx(kh)$$

#### Related work: Simplex architecture

#### Demand:

- Low cost development of upgraded control systems for mission critical control applications
  - instead of multi-versioning, just develop one version
  - Focus on the control theories
- Runtime upgrade/testing of the single version buggy new system.
- Applications:
  - Aircraft control (F-16, Seto et. al, 2000)
  - Submarine control (NSSN, new attack submarine program at US navy)

#### Simplex for real-time control



### Simplex for real-time control

Given LTI control system:

$$\dot{x} = \overline{A}x + Bu$$
$$= \overline{A}x - BKx = Ax$$



The above LTI control system is stable iff there exists a P>0, such that the Lyapunov function

$$x^T (A^T P + PA) x < 0$$

The solution ellipsoid is maximized by minimizing  $\log \det P^{-1}$ 

### Simplex for real-time control



We can choose smaller solution ellipsoid (i.e.  $x^TPx < x^TP^{max}x$ ) to leave margins to guard against model/actuator/measurement errors.

# Drawbacks of Simplex

#### P1: Lack of Efficiency

- Analytically redundant high assurance controller (HAC) runs in parallel with complex controller (HPC)
  - Lowers system performance, increase operating costs
  - Limits the application of Simplex in only safety-critical domains

#### P2: Lack of Flexibility

- Enforces the same execution period on HAC and HPC
  - In practice, different controllers may use different periods for different performance considerations
  - For example: fast HAC recovery

# Design goals of ORTEGA

On-demand Real-TimE GuArd (ORTEGA)

- A new efficient fault tolerance software architecture designed for real-time control systems
- More efficient resource usage (P1)
  - Through on-demand real-time recovery
- Flexible design (P2)
  - Allows HAC and HPC to run at different rates
  - Through new design and schedulability analysis
- Applicable to a wider range of real-time control systems

#### **ORTEGA** Architecture



# **On-demand execution of HAC**

- At any time, only one of the HAC or HPC is running to control the plant
- Decision module (DM) uses a mutex semaphore to control which of the HAC and HPC is running
  - When the HPC is running well, the HAC blocks on the semaphore;
  - Only when a fault is detected in the HPC, the DM releases the semaphore to allow HAC to take over
- Decision logic is based on stability regions
  - Determined through Linear Matrix Inequality theory
  - Details later

# CPU savings of ORTEGA

HPC's timing parameters: { $C^{p}$ ,  $T^{p}$ }; HAC's timing parameters: { $C^{a}$ ,  $T^{a}$ };

Pr. the percentage of time for recovery (HAC) during a total time of T

• Total CPU resource usage under Simplex

$$R_{Simplex} = (1 - P_r) \cdot \left( C^a \cdot \left\lceil \frac{T}{T^a} \right\rceil + C^p \cdot \left\lceil \frac{T}{T^p} \right\rceil \right) + P_r \cdot C^a \cdot \left\lceil \frac{T}{T^a} \right\rceil$$

• Total CPU resource usage under ORTEGA

$$R_{ORTEGA} = (1 - P_r) \cdot C^p \cdot \left\lceil \frac{T}{T^p} \right\rceil + P_r \cdot C^a \cdot \left\lceil \frac{T}{T^a} \right\rceil$$

• CPU resource usage savings:  $(1-P_r) \cdot C^a \cdot \left[\frac{T}{T^a}\right]$ 

#### No Free Lunch: An extra period of delay



#### up to T<sup>a</sup> incurred due to the on-demand execution of HAC

#### Handle the extra delay by state projections



Resource usage reduction v.s. extra delay :

(1) Extra delay causes disturbances when fault occurs (infrequent)(2) But the gain in resource usage is large.

# Recovery region design



- The decision module uses recovery region to determine when to switch to HAC
- Recovery region is defined as the maximum region in which the HAC can make the plant stable

# Determine recovery region (1)

Digital controllers:  

$$\frac{dx(t)}{dt} = Ax(t) + Bu(t),$$

$$x(k+1) = F(h)x(k) + G(h)u(k),$$

$$u(k) = -Kx(k)$$

$$x(k+1) = \overline{F}x(k) \quad (*) \quad (\overline{F} = F - GK)$$
State constraints:  

$$\alpha_m^T x \le 1, \quad m = 1, \dots, q. \quad (1)$$

Stability region:

The discrete LTI control system is stable iff there exists a P>0, such that  $\overline{F}^T P \overline{F} - P < 0$ 

# Determine recovery region (1)

Digital controllers:  

$$\frac{dx(t)}{dt} = Ax(t) + Bu(t),$$

$$x(k+1) = F(h)x(k) + G(h)u(k),$$

$$u(k) = -Kx(k)$$

$$x(k+1) = \overline{F}x(k) \quad (*) \quad (\overline{F} = F - GK)$$
Choice correctionizes

State constraints:

 $\alpha_m^T x \le 1, \quad m = 1, \cdots, q. \quad (1)$ 

Stability region:

Stability region of the system with respect to P is defined as  $\{x \mid x^T P x < 1\}.$ 

# Determine recovery region (2)



**Theorem**: Determine the maximum stability region of digital implemented closed loop system with constraints (1) can be transformed to the following MAXDET (LMI) problem.



#### Recovery region v.s. control loop period

#### Stability Index A(T): Area of the maximum stability region

• It is a function of the control loop period T. The smaller the controller loop period, the larger the maximum stability region.



#### Controller

u(k) = -[5.7807, 42.2087, 14.0953, 8.6016]x(k)

The smaller the period, the larger the recovery region.

ORTEGA allows larger recovery region (more flexible) 20

# Implementation and evaluation

- Inverted pendulum from Quanser
- CPU: Pentium II 350MHz
- OS: Linux kernel 2.4.18-3 with RMS
- HAC: field tested state feedback controller



#### **Evaluation of CPU savings**

| Controller | Average<br>Execution<br>Time (µs) | Variance of<br>Execution<br>Time | Minimum<br>Execution<br>Time (µs) | Maximum<br>Execution<br>Time (µs) |
|------------|-----------------------------------|----------------------------------|-----------------------------------|-----------------------------------|
| HPC        | 2.6705                            | 0.02181                          | 2.3571                            | 3.2857                            |
| HAC        | 1.1060                            | 0.005812                         | 0.9429                            | 1.6371                            |

#### Table 1. Execution statistics for the non-faulty HPC and the HAC

- If HAC and HPC both run at 50Hz, ORTEGA's CPU saving is 29.29%
- If HAC runs at 50Hz, HPC runs at 20Hz, ORTEGA's CPU saving is 50.87%

## Evaluation of fault tolerance

- Infinite loop bug
- Non-performing bug
- Maximum control output bug
- Divided by zero bug
- Bang-Bang type bug
- Positive feedback bug
- Tricky design bug

#### Evaluation of fault tolerance



#### Evaluation of fault tolerance





Thank You



# Backup Slides

#### Schedulability analysis of ORTEGA

#### Mode-Change Problem Incurred by Recovery

**Example**: Suppose one plant  $\tau_1^{p}$  :  $(C_1^{p}, T_1^{p}) = (3,5); \tau_1^{a} : (C_1^{a}, T_1^{a}) = (4,10);$ with another real time task  $\tau_2 : (C_2, T_2) = (6,15).$ 

- Before the recovery at t=10,  $\{\tau_1^p, \tau_2\} = \{(3,5), \{6,15\}\}$  is schedulable; • After the recovery transition,  $\{\tau_1^a, \tau 2\} = \{(4,10), \{6,15\}\}$  is also schedulable;
- However, during the transition of recovery,  $\tau_2$  misses its deadline at t=15!

Unschedulable of tasks due to the recovery



Mode-change in fixed priority scheduling is a well-recognized difficult problem by the real-time community

Schedulability Analysis: We adopt the work by Real and Crespo (2004)

Idea: Analyze the transitional scheduling overhead incurred by the recovery.

- (I) Schedulability analysis of steady state task set
- (II) Schedulability analysis of old-mode tasks with transitional scheduling overhead (due to the mode change)

$$w_i(x) = C_i + \left\lfloor \frac{x}{T_k^p} \right\rfloor C_k^p + \min\left(x - \left\lfloor \frac{x}{T_k^p} \right\rfloor T_k^p, C_k^p\right) + \left\lceil \frac{w_i(x) - x}{T_k^a} \right\rceil_0 C_k^a + \sum_{j < i, j \neq k} \left\lceil \frac{w_i(x)}{T_j} \right\rceil C_j .$$

(III) Schedulability analysis of new-mode tasks with transitional scheduling overhead (due to the mode change) <sub>RR</sub>

$$w_i = C_i + \left[\frac{w_i}{T_k^a}\right] C_k^a + \sum_{j < i, j \neq k} \left( \left[\frac{w_i}{T_j}\right] C_j \right)$$
.



Fault Tolerance and Scheduling Co-design -- one FT-enabled task case

Maximize the recovery region subject to schedulability constraint

Find the smallest (optimal) control loop period T<sub>k</sub>\*a, s.t. the task set is schedulable under random recoveries



Given the schedulability test, we can use binary search algorithm to find  $T_{\nu}^{*a}$  **Example**: 3 tasks.  $\tau_1 = (2, 4)$  and  $\tau_3 = (3, 30)$  are ordinary real-time tasks.  $\tau_2$  is a FT-enabled task, with  $\tau_2^p = (2, 8)$ .

#### Numerical Solution:

(1) If 
$$C_2^a = 2.0$$
, we have  
 $T_2^{*a} = 6.5 < T_2^p$ ;  
(2) If  $C_2^a = 1.5$ , we have  
 $T_2^{*a} = 4.5 < T_2^p$ ;  
(3) If  $C_2^a = 1.0$ , we have  
 $T_2^{*a} = 3.0 < T_2^p$ ;  
(4) If  $C_2^a = 0.5$ , we have  
 $T_2^{*a} = 2.5 < T_2^p$ .

-30

## P2: Recovery Region for Digital Controllers $\frac{dx(t)}{dt} = Ax(t) + Bu(t), \implies x(k+1) = F(h)x(k) + G(h)u(k),$ Sampling time h, $F(h) = e^{Ah}$ , $G(h) = \int_{0}^{h} e^{As} dsB$ . Zero-order hold u(k) = -Kx(k)Controller $x(k+1) = Fx(k) \qquad (\overline{F} = F - GK)$

**Theorem (Lyapunov):** A discrete time LTI system shown above is stable iff there exists a matrix P > 0, such that

$$\overline{F}^T P \overline{F} - P < 0.$$

Stability Region (Continued)

Stability region of the system  $X(k+1) = \overline{F}x(k)$ , with respect to *P* is defined as:  $\{x \mid x^T P x < 1\}$ .

#### **Stability Region with Constraints**



**Lemma**: The stability region defined above satisfy constraints (1) iff  $\alpha_m^T P^{-1} \alpha_m \leq 1$ ,  $m = 1, \Im$ .