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Abstract—With the emergence of many commercial-off-the-
shelf (COTS) and/or open-source hardware and software, we
can now build cheap Unmanned Aerial Vehicles (UAVs). This will
enable a broad spectrum of potential UAV based mobile applica-
tions. In this work, we propose a simple open UAV platform: Ard-
µ-copter. Ard-µ-copter is a quadcopter built upon the open source
ArduPilot [1] infrastructure library and hardware. Comparing
to the many existing commercial quadcopters platforms and open
source quadcopter platforms, Ard-µ-copter platform is fully open
source, simple (i.e. what the “µ” stands for), and with good
documentations.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) are becoming increas-

ingly popular due to the sharp drop of UAV components’

prices. They are wildly used for more and more mobile

applications [2].

Quadcopters are probably the most popular type of UAVs,

due to the wide availability of COTS quadcopter components,

and simplicity of their control. Existing commercial quad-

copters are mostly not open source. Most existing open source

quadcopters, however, either are too complex, or have poor

documentations. This motivate us to build an open quadcopter

platform that is simple and with good documentations.

The following summarizes our contributions.

1) We build an open source quadcopter platform, Ard-µ-

copter (see Fig. 1), upon the open source Ardupilot [1] low

layer libraries and hardware.

2) Comparing to ArduPilot platform (which includes the up-

per layer, the low layer libraries, and hardware), Ard-µ-copter

platform is much simpler (only involves 135KB of upper layer

source code), and is better documented. Developers just need

basic matrix knowledge and control law to understand the

source code.

The rest of the paper is organized as follows. Section II

discusses related work; Section III describes the hardware

and software (control strategy) of Ard-µ-copter platform;

Section IV evaluates Ard-µ-copter with experiments; and

Section V concludes the paper.

II. RELATED WORK

Although UAVs become commercially popular in recent

years, theories to build UAVs have been developed for long

time, including those for quadrotors [4] [5] [6], hexarotors

[7] [8], and octorotors [9] [10]. In this paper, we are not

Fig. 1. Our prototype Ard-µ-copter (image quoted from [3])

to develop new theories for quadcopter controls, but to use

existing theories to build a simple and well documented open

source quadcopter platform.

Table I compares Ard-µ-copter platform with other well-

known existing quadcopter platforms: DJI [11], MicroPi-

lot [12], and ArduPilot [1]. All of these are small to mid-sized

quadcopters comparable to our quadcopter platform. Generally

speaking, commercial quadcopter platforms (such as DJI and

MicroPilot) operate at higher sampling/actuating rates, hence

are capable of higher control performance. But commercial

platforms are generally more expensive, and not fully open

source (though some provide limited programming interfaces

for application developers). Non-commercial quadcopter plat-

forms (such ArduPilot) are open source, but the source code

may be too complex and poorly documented, which result in

steep learning curve and high maintenance cost.

In comparison, Ard-µ-copter platform is fully open source

and simple. The source code size is only 135KB. Besides, Ard-

µ-copter platform supports a wide range of onboard sensors

and high sampling rate.

III. PLATFORM ARCHITECTURE

In this section, we elaborate the architecture of Ard-µ-

copter. Fig. 2 gives the overall architecture of Ard-µ-copter.

The overall architecture is layered. At the bottom lies the

hardware layer, which involves various sensors and actuators.

In the middle lies the driver layer. At the top lies the main

program layer, where control strategies are carried out.



TABLE I
PRODUCTS COMPARISON

Product DJI MicroPilot Ardupilot Ard-µ-copter

Inertial sensors djiIMU MP2128 MPU6050 MPU6050

Magnetometers djiIMU(integrate magnet) MP2128(integrate magnet) HMC5883 HMC5883

Barometer djiIMU(integrate barometer) MP2128(integrate barometer) MS5611 MS5611

GPS djiIMU(integrate GPS) ublox-6M ublox-6M or ublox-6H ublox-6H

Wireless Module Usmile Mini OSD MP2128(integrate wireless) MAVlink 433M MAVlink 433M

Open Source No No Yes(21.31MB) Yes(135KB)

Fig. 2. Ard-µ-copter Overall Architecture

In the following, Section III-A will describe the hardware

layer, and Section III-B will describe the main program

layer. The driver layer is basically the open source ArduPilot

infrastructure libraries [1], hence will not be elaborated in this

paper.

A. Hardware Layer

The Ardu-µ-copter hardware layer reuses the open specifi-

cation ArduPilot Mega 2.5.2 board (aka APM 2.5.2 board) [1].

This board integrates an ATmega 2560 [13] Micro-Controller

Unit (MCU) with various sensors and actuators, as listed in

Table II.

TABLE II
HARDWARE COMPONENT DETAILS

MCU ATmega 2560

IMU MPU-6050

Magnetometer HMC5883

GPS UBLOX-6H

Barometer MS5611

Sonar XL-MaxSonar EZ4

Wireless Usmile Mini 433M

The following further elaborates each hardware component

listed in Table II.



1) Inertial Measurement Unit (IMU): The MPU-6050 IMU

includes a 3-axis gyroscope and a 3-axis accelerometer. As

a result, the output of IMU has 6 degrees of freedom. It

works under 2.375V ∼ 3.46V. MPU-6050 has an internal 16bit

ADC to convert its gyroscope and accelerometer readings

to 16-bit digital output. With its internal Digital Motion

Processing (DMP) engine, MPU-6050 can speed up its angle

calculation [2].

MPU-6050 has to be initialized and programmed with

proper sampling rate and desired scaling factor. It features

an SPI interface and is connected to one of the MCU’s SPI

interface. MPU-6050 works in 400HZ frequency and data

exposed on the SPI interface at the programmed sampling

frequency. Besides providing angular velocity (from gyro) and

linear acceleration readings (from accelerometer), MPU-6050

also provide angle readings using its DMP engine.

2) Magnetic Measurement Unit: Magnetometer HMC5883

is not used in our current implementation due to disturbances

from electrical circuit and strong external electromagnetic

interferences.

Nonetheless, HMC5883L is a sophisticated module. It is a

triple axis compass magnetometer sensor module, accessible

through a IIC Peripheral Interface. With proper timing pa-

rameter of IIC interface, three-axis magnetic field data can

be polled. Similar to IMU, this unit has to be initialized and

programmed with proper sampling rate and scaling factor. The

measuring range is 1.3 ∼ 8 gauss. The package size is 1.8 x 1.3

cm. This module has to be initialized with calibration and used

with yaw angle compensation due to possible board leaning.

3) GPS Unit: In order to get an accurate position of copter,

a GPS module is needed. We choose Ublox NEO-6M High

Precision GPS Module Built-in Compass with fast satellite

searching speed and high precision. This module is compatible

with APM serial port and I2C port with a package size of

15× 12× 2cm and weight of 57g.

4) Barometer Unit: As we know, GPS module’s height (i.e.

altitude) readings are unreliable. Instead we use barometer

(or sonar) to sense the height. The barometer sensor used

is MS5611. MS5611 has a built-in 24bit AD converter, the

communication interface is SPI.

5) Sonar Unit: In addition to barometer, we also use sonar

to determine the height (altitude) of the quadcopter. The sonar

sensor is attached to the bottom of the quadcopter. This sonar

unit output analog voltages, and has a maximum sensing range

of 7.65 meters.

6) Wireless Communication: In addition to the standard

remote controller communication modules, we also install a

Usmile Mini OSD MAVLink Flight Communication Module,

to support digital communications between the quadcopter and

ground computer station.

the MAVLink module works at 433MHZ. Its operating

voltage is between 5V and 12V with standard 6-pin ISP header.

It communicates with the quadcopter’s microcontroller via

standard UART interface.

7) Pulse Width Modulation (PWM) Inputs/Outputs: Motors

are driven by PWM signals. The duty cycle of PWM on our

quadcopter is 2.5ms (i.e. 400Hz) [2].

B. Main Program Layer: Control Strategies

Next, let us elaborate the control strategies implemented

in the main program. The control strategies include location-

angular control and height control, the control outputs of

the two control sub-strategies are combined to drive the four

propeller motors.

Location-Angular Control

The location control of a flying quadcopter is tightly cou-

pled with the quadcopter’s pitch, roll, yaw angular dynamics

(sometimes the three angular dynamics are holistically called

the “attitude” of the quadcopter) control. As shown in Fig. 3,

a quadcopter moves forward/backward iff its pitch angle is

non-zero; a quadcopter moves leftward/rightward iff its roll

angle is non-zero.

Fig. 3. Three Angular Movement Dimensions and Propeller Motor Num-
bering of a Quadcopter

Therefore, the location-angular control takes a nested outer-

inner control loop form, as shown in Fig. 4. The outer control

loop is the location control loop; and the inner control loop is

the angular control loop.

Fig. 4. Location-Angular Nested Control Loops

The input to the location (i.e. outer) control loop is the

desired location coordinates (in terms of body-oriented (x, y)-
coordinates, to be explained later) Xb

ref = (xbref , y
b
ref)

T. The



control loop feedback Xb = (xb, yb)T is the current quad-

copter location coordinates (again, in body-oriented (x, y)-
coordinates). The error (Xb

ref −X
b) is fed to a PID controller

to derive a desired attitude angle (θref , φref)
T, where θref is

the desired pitch angle and φref is the desired roll angle. The

desired pitch and roll angles serve as the input to the angular

(i.e. inner) control loop, which will tilt the quadcopter’s pitch

angle θ and roll angle φ toward θref and φref respectively.

Formally, the control output of the outer control loop is

described as follows.

θref = kpx(x
b
ref − xb) + kdx(ẋ

b
ref − ẋb)

+kix

∫ t

0

(xbref(τ)− xb(τ))dτ,

φref = kpy (y
b
ref − yb) + kdy (ẏ

b
ref − ẏb)

+kiy

∫ t

0

(ybref(τ)− yb(τ))dτ,

where kpx (also kpy ), kix (also kiy), and kdx (also kdy ) are

respectively the proportional, integral, and derivative control

coefficients; t is the current time.

Note when specifying the (x, y)-coordinates of an aerial

vehicle’s location, usually two coordinate systems are used, as

shown in Fig. 5. One is the ground (x, y)-coordinate system,

where a fixed point on ground is chosen as the origin, the

x-axis positive direction orients north, and the y-axis positive

direction orients east. The other is the body-oriented (x, y)-
coordinate system, which shares the same origin as the ground

(x, y)-coordinate system, but rotates in the (x, y) plane by an

angle ψ, such that the positive direction of x-axis aligns with

the aerial vehicle’s heading direction.

Fig. 5. Ground and Body-Oriented (x, y)-Coordinate Systems

The conversion formula between a ground (x, y)-coordinate

(xg, yg)T and a body-oriented (x, y)-coordinate (xb, yb)T is
[

xb

yb

]

=

[

sinψ cosψ

cosψ −sinψ

] [

xg

yg

]

.

Next, let us discuss the angular (i.e. inner) control loop.

The angular control loop is much more complex than the

outer control loop, mainly because the angle sensor readings

are unreliable. This is an inborn feature of MPU-6050 IMU

sensors. However, thanks to the gyro inside of MPU-6050

IMU, we can get very reliable angular velocity readings. To

fully exploit the above features, we adopt the well-known two-

level PID angular control strategy [14] to implement Ard-µ-

copter’s angular control. This strategy is re-stated as follows.

Without loss of generality, the two-level PID pitch angular

control diagram is shown in Fig. 6 (the roll and yaw angular

control follows the same principles). Again this consists of

an outer and an inner control loop. The outer control loop is

the pitch angle control loop. The input is the desired pitch

θref , the feedback is the sensed current quadcopter pitch θ.

The error (θref − θ) is fed to a PID controller to generate a

desired pitch angular velocity ωref
θ . The desired pitch angular

velocity ωref
θ serves as the input to the inner control loop:

the pitch angular velocity control loop. The feed back of the

pitch angular velocity control loop is the sensed pitch angular

velocity ωθ (sensed by the gyro in the MPU-6050 IMU). The

error (ωref
θ − ωθ) is fed to a PID controller to generate the

control signal u′θ to be applied to quadcopter propeller motors

(see Eq. (2) ∼ (5)). You can think of u′θ as the component to

adjust propeller motors to satisfy pitch angle control needs.

Fig. 6. Two-Level PID Pitch Angular Control

Formally, we have

ωref
θ = k

p
θ (θref − θ) + kdθ (θ̇ref − θ̇)

+kiθ

∫ t

0

(θref(τ)− θ(τ))dτ,

u′θ = kpωθ
(ωref
θ − ωθ) + kdωθ

(ω̇ref
θ − ω̇θ)

+kiωθ

∫ t

0

(ωref
θ (τ)− ωθ(τ))dτ,

where k
p
θ (also kpωθ

), kiθ (also kiωθ
), and kdθ (also kdωθ

) are

respectively the proportional, integral, and derivative control

coefficients.

Similarly, we can derive the control signal u′φ and u′ψ for

roll and yaw angle control.

Height Control

The height control faces the similar challenge as angle

control. The quadcopter height reading is provided by the

barometer (MS5611) and/or sonar (XL-MaxSonar EZ4). This



reading is also unreliable. On the other hand, the vertical

(i.e. height direction) acceleration readings a (provided by

the accelerometer inside of the MPU-6050 IMU) is accurate.

Therefore, the two-level PID angular control strategy of [14]

also applies to height control [14]. We re-state the strategy as

follows.

Fig. 7 describes the two-level height control loop. The outer

loop is the height control loop. The input is the desired height

href . The feedback is the sensed quadcopter height h. The

error (href − h) is fed to a PID controller to output a desired

vertical acceleration aref . This aref together with gravitational

acceleration g constitute the input to the inner control loop:

the vertical acceleration control loop. The feedback of the

vertical acceleration control loop is the sensed quadcopter’s

vertical acceleration a (sensed by the accelerometer inside of

the MPU-6050 IMU). The error (aref + g − a) is fed to a

PID controller to create a control signal ∆uf to adjust the

quadcopter propeller motors’ throttle (see Eq. (1)(2) ∼ (5)).

You can think of ∆uf as the component to adjust propeller

motors to satisfy the vertical acceleration needs.

Fig. 7. Two-Level PID Height Control

Formally, we have

aref = k
p
h(href − h) + kdh(ḣref − ḣ)

+kih

∫ t

0

(href(τ)− h(τ))dτ,

∆uf = kpa(aref + g − a) + kda(ȧref + ġ − ȧ)

+kia

∫ t

0

(aref(τ) + g(τ)− a(τ))dτ,

where k
p
h (also kpa), kih (also kia), and kdh (also kda) are

respectively the proportional, integral, and derivative control

coefficients.

Total Control Output

Finally, all the above control outputs converge to become

the control output toward quadcopter propeller motors.

The total control output consists of two high level compo-

nents: throttle and angular control adjustments. The throttle

component uf is to control the vertical acceleration (ulti-

mately, height) of the quadcopter. It is the same to each of the

four propeller motors (see Fig. 3). The height control output

∆uf affects the throttle component: uf is updated as per

uf (t+ dt) = uf (t) + ∆uf (t). (1)

The angular control adjustments are different to each of the

four propeller motors. Without loss of generality, suppose we

are adjusting the pitch. Suppose we want to increase the pitch

angle (see Fig. 3), then propeller 1 and 3’s motors should

speed up, while propeller 2 and 4’s motors should slow down.

Meanwhile, we cannot change the total throttle component.

Therefore, the pitch angle control signal u′θ should be applied

positively to motor 1 and 3, but negatively to motor 2 and 4.

Combining all the above considerations, suppose U1, U2,

U3, and U4 respectively represent the raw total control signal

applied to propeller motor 1, 2, 3, and 4, then the update rules

are

U1(t+ dt) = uf (t+ dt) + u′θ(t) + u′φ(t)− u′ψ(t), (2)

U2(t+ dt) = uf (t+ dt)− u′θ(t) + u′φ(t) + u′ψ(t), (3)

U3(t+ dt) = uf (t+ dt) + u′θ(t)− u′φ(t) + u′ψ(t), (4)

U4(t+ dt) = uf (t+ dt)− u′θ(t)− u′φ(t)− u′ψ(t). (5)

The above raw control signals U1, U2, U3, U4 are then

range constrained and then normalized to create a PWM wave

to drive the respective motors. A normalized value of 100%
drives the motor to maximum speed, while 0% stops the motor.

Tuning PID Coefficients

PID controllers date back to 1890s. While proportional

control provides fast response to reference set point changes

and small disturbances, it cannot fully eliminate the impacts

of steady disturbances, e.g. a stiff gale. To eliminate the

steady disturbance impacts, we need integral control. Finally,

derivative control constrains overshoot, hence improves control

stability [15].

Generally, we first tune the proportional coefficients of

the PID controllers to see if the quadcopter can achieve

fast enough response time and acceptable overshoot. Then

we increase the derivative coefficients to further reduce the

overshoots. The integral control We will show the experiment

result in the next section to prove our solution.

IV. EVALUATION

We implemented the Ard-µ-copter architecture described in

Section III (see Fig. 1). Next, we carry out various experiments

to evaluate the performance of our implementation.

First, we fix the pitch axis (see Fig. 3) to a rig, which is in

turn fixed on ground. We want to check whether the pitch angle

control can keep the quadcopter horizontal on the pitch angular

direction. We turn on the IMU sensor at time t = 0 (the IMU

sensor needs to be powered on for at least 8 seconds before it

can properly work); and turn on the motors at around t = 15
second. The pitch angle trace is shown in Fig. 8. According to

the figure, we see the pitch angle control can effectively keep

the quadcopter horizontal on the pitch angle dimension.

Next, we test how well the pitch control can track manual

control inputs. That is, instead of keeping a pitch setpoint of

0, we now manually change the setpoint. Fig. 9 shows the

pitch angle trace tracking the setpoint trace. The red curve is

the trace of the pitch setpoint (i.e. where the operator wants



Fig. 8. Pitch Angle Horizontal Stabilization (IMU sensor powered on since
t = 0; motors powered on since around t = 15 second; “Setpoint” means
the desired pitch angle)

the pitch angle to be); while the blue curve is the trace of

the controlled pitch angle. The IMU is powered on at t = 0;

the motors are powered on around t = 10 second. We see the

pitch trace very well tracks the setpoint trace.

Fig. 9. Pitch Tracking (IMU sensor powered on since t = 0; motors powered
on since around t = 10 second; “Setpoint” means the desired pitch angle)

Next, we do the same to test the roll angle control. The

derived roll angle horizontal stabilization trace and tracking

trace are shown in Fig. 10 and 11 respectively.

Next, we no longer fix the quadcopter to a rig, but let it

hover in the air and test its height control. Fig. 12 shows the

height control trace. The IMU and sonar are powered on at

t = 0. At about t = 17 second, we power on the motor to

a very high speed, so that the quadcopter takes off. At about

t = 19 second, we change the height setpoint (i.e. the desired

height) from 0cm to about 95cm. After that, we can see the

height control takes effect: the quadcopter quickly stabilizes

itself around the new height setpoint.

Fig. 10. Roll Angle Horizontal Stabilization (IMU sensor powered on since
t = 0; motors powered on since around t = 9 second; “Setpoint” means the
desired roll angle)

Fig. 11. Roll Tracking (IMU sensor powered on since t = 0; motors powered
on since around t = 15 second; “Setpoint” means the desired roll angle)

V. CONCLUSION

In this paper, we build an open and simple quadcopter

platform, Ard-µ-copter. Comparing to other open source quad-

copter platforms, Ard-µ-copter has a very shall source code

size (135KB), and is very well documented. Experiments show

that the quadcopter can effectively control its flight.
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