
Analysis of TDMA Crossbar Real-Time Switch

Design for AFDX Networks

Lei Rao∗†, Qixin Wang∗§, Xue Liu‡, Yufei Wang∗

Abstract—The rapid scaling up of modern avionics is forcing
its communication infrastructure to evolve from shared medium
toward multi-hop switched real-time networks. This prompts
the proposal of avionics full-duplex switched Ethernet (AFDX)
standard. Since its publication, AFDX has been well-received,
and is deployed or to-be-deployed in state-of-the-art aircrafts,
such as Airbus A380/A400M/A350, Boeing 787, Bombardier
CSeries etc. On the other hand, AFDX standard only specifies
the behavior that an underlying switch must follow, but leaves
the architecture design open. This creates an open market for
switch vendors. Among the different candidate designs for this
market, the TDMA crossbar real-time switch architecture stands
out as it complies with and even simplifies many mainstream
switch architectures, hence lays a smooth evolution path toward
AFDX. In this paper, we focus on analyzing this switch design
for AFDX networks. We first prove that TDMA crossbar real-
time switch architecture complies with the AFDX specifications;
and derive closed-form formulae on the corresponding AFDX
networks’ traffic characteristics and end-to-end real-time delay
bound. Then we prove the resource planning problem in the
corresponding AFDX networks is NP-Hard. To address this NP-
Hard challenge, we re-model the problem. Based upon the re-
modeling, we propose an approximation algorithm.

I. INTRODUCTION

Modern avionics systems are rapidly scaling up to support

various advanced computing demands, such as fly-by-wire,

auto pilot, head-up display, helmet mounted display, digital

combat systems etc.[1][2]. As an example, Airbus A380 is

already deploying hundreds of processors onboard. This forces

the avionics communication infrastructure to evlove from

single-hop shared medium to multi-hop switched real-time

networks. As a result, avionics full-duplex switched Ethernet

(AFDX), a.k.a. ARINC 664 Part 7, is published as a standard

for such networks [3][4].

AFDX is well-received by the avionics industry, and is

deployed or to-be-deployed in many state-of-the-art aircrafts,

such as Airbus A380/A400M/A350, Boeing 787, Sukhoi Su-

perjet 100, AgustaWestland AW101, Irkut MS-21, Bombardier

CSeries etc. [5].

As most avionics network flows are for safety/mission-

critical control loops (to keep the aircraft in the air, or to

conduct combat etc.), the key demand to AFDX networks is

to guarantee end-to-end real-time, i.e., every packet’s end-to-

end delay is upper bounded by a preconfigured constant.

To support end-to-end real-time, AFDX mimics a virtual

point-to-point connection, a.k.a. virtual link (VL), between

∗ Dept. of Computing, The Hong Kong Polytechnic University
† Present Address: School of Computer Science, McGill University
‡ School of Computer Science, McGill University
§ Corresponding Author Email: csqwang@comp.polyu.edu.hk

any source-end destination-end pair. We can regard each VL

conducts one unicast flow (support of flow aggregation [3]

is beyond the scope of this paper) from a source-end to a

destination-end. Along the VL’s route, before entering each

AFDX switch, the VL flow f must behave as if policed by

a token bucket [6]. The token bucket is defined by a bucket

size σf
def
= Lmax

f (1 + Jf/BAGf) and a bucket refilling rate

ρf
def
= Lmax

f /BAGf , where Lmax
f is the maximum packet bit

length of f ; BAGf ∈ R
>0 is the bandwidth allocation gap

of f ; and Jf ∈ R
≥0 is the maximum admissible jitter of f .

For this paper, it is enough to know Lmax
f , BAGf , and Jf are

all constants throughout VL’s runtime life cycle (interested

readers can refer to [3] for their intuitive meanings).

With the above per hop token bucket policing and proper

switch architecture design, we can guarantee end-to-end real-

time for each VL. AFDX standard leaves the switch architec-

ture design open, so that vendors can propose their own.

In other words, given a switch architecture and a network

of such switches, if the aforementioned per-flow token bucket

policing and end-to-end real-time are supported, then the flow

is considered running in a VL, and the switched network is

AFDX compliant.

The openess of the AFDX standard/market attracts switch

vendors. However, the challenge is, most vendors want to reuse

their legacy switch architectures, particularly the non-real-time

Internet switch architectures, instead of a complete redesign.

To address this challenge, this paper tries to build AFDX

networks using a (if not “the”) popular real-time switch

architecture, which we call “time division multiple access

(TDMA) crossbar real-time switch” [7][8][9][10][11]. The

merit of this architecture lies in its compliance with (even

simplifications to) many mainstream non-real-time switch

architectures [7][9][11], particularly iSLIP [12], a de facto

standard for Internet switches. Such backward compatibility

lays a smooth evolution path for non-real-time switch vendors

toward AFDX.

In summary, our main contributions include: i) we proved

that TDMA crossbar real-time switched network is AFDX

compliant, and derived the formulae for its traffic pattern

and end-to-end real-time delay bound; ii) we proved the

corresponding AFDX network’s resource planning problem

is NP-Hard; iii) we proposed a re-modeling approach, upon

which, we proposed an approximation algorithm.

In the following, Section II introduces the TDMA cross-

bar real-time switch architecture; Section III proves TDMA

crossbar real-time switched networks are AFDX compliant;

Section IV proves the resource planning in such AFDX net-

works is NP-Hard; Section V re-models the resource planning

problem, and finds it an approximation algorithm; Section VI

discusses related work; and Section VII concludes the paper.

II. BACKGROUND

Let us first introduce the TDMA crossbar real-time switch

architecture.

Switch architectures generally fall into two categories:

output-queueing and input-queueing. In output-queueing, only

output ports (simplified as “outputs” in the following) can

buffer packets. Once a packet enters a switch, it is immediately

routed to its corresponding output to be buffered there. This

simple scheme, however, has a fatal shortcoming: if N packets

arrive at the switch’s N input ports (simplified as “inputs” in

the following) simultaneously, and all route to the same output

O, then the switch internal fabric at the entrance of O must

be N times faster than the input port capacity (assume all

inputs have the same capacity) [13]. Due to this shortcoming of

output-queueing, input-queueing instead becomes the de facto

standard for high performance switches [7][12].

In input-queueing, a crossbar fabric connects a switch’s

inputs with outputs (see Fig. 1(a)). Packets are only buffered

at the inputs. When a packet enters an input, it is immediately

buffered at a proper queue in the input (see Fig. 1(b)). At

scheduled time, the destination output will fetch the packet

through the crossbar and directly forward it to the next hop

without further buffering (see Fig. 1(c)).

To facilitate scheduling, inside an input-queueing switched

network, all packets are fragmented into same-size units

called cells. Inside of a switch, outputs fetch/forward cells

synchronously and periodically. The period is called a cell-

time. At the beginning of a cell-time, the switch decides a one-

to-one matching between its inputs and outputs. During the

cell-time, each output fetches/forwards a cell (if there is one)

from its matched input via the crossbar. One-to-one matching

is necessary due to the crossbar constraint that at any time,

one input can only connect to one output and vice versa.

Depending on the detailed queueing and matching schemes,

various input-queueing switch architectures exist. Among

them is the TDMA crossbar real-time switch architecture

[7][9][10][11] (in [10], the switch architecture is called

“Birkhoff-von Neumann” architecture, as it is inspired by

Birkhoff [15] and Von Neumann [16]’s math models). Its

deterministic TDMA scheduling allows end-to-end real-time

guarantee; meanwhile, it also complies with (or even simpli-

fies) mainstream non-real-time switch architectures [7][9][11],

particularly the iSLIP architecture[12], which happens to be

the industry de facto standard for Internet switches. This

backward compliance lays a smooth evolution path for switch

vendors toward real-time switched networks, such as AFDX.

The details of TDMA crossbar real-time switch architecture

are as follows.

In such a switch, each input carries out per-flow queue-

ing, and each output runs a static TDMA schedule of M
cell-time, a.k.a. an M -slot frame (note static scheduling is

(a) crossbar fabric, which connects inputs with outputs;

each input connects to a data bus (the horizontal line

segments) that intersects with each output’s data bus

(the vertical line segments); the intersections (grey dots)

can be connected/disconnected during runtime by sched-

uler(s); note at any time, one input can connect to at the

most one output, and vice versa.

(b) an input port: packet routing and queueing are carried

out in it; in input i, the kth queue buffering packets to

output j is denoted as Q(i, j, k).

(c) an output port: at different time slot, the output fetches

packets from different input queues according to the

switch scheduling scheme.

Fig. 1. Input Queueing Switch Architecture (quoted from [14])

Fig. 2. Conflict free schedule for TDMA crossbar real-time switch (quoted
from [14]): in this example, the switch has N = 4 inputs and outputs, frame
size is M = 5 slots (note in reality, M is in the order of 103 ∼ 10

5); each
row of the “schedule matrix” is a conflict free schedule for its corresponding
output, which means at any time slot (i.e., any column of the “schedule
matrix”), no two outputs contend for the same input (for different input
queues).

possible because real-time network flows are for persistent

sensing/actuating, and are configured offline; e.g., avionics

control loop flows persist throughout each flight from taking

off to landing). The kth (k = 0, 1, . . . ,M−1) slot of the frame

specifies from which input per-flow queue shall the output

fetch cell at the kth (modulo M) cell-time of the switch. Note

since the TDMA schedule is static, if the corresponding input

queue happens to be empty, the output just fetches/forwards

nothing during the cell-time.

To ease narration, in the following, we will use the term

“M -slot frame” and “frame” interchangeably; and the term

“slot” and “cell-time” interchangeably.

One rule is that at any cell-time of the switch, no two

outputs can fetch from the same input (i.e., the aforementioned

one-to-one matching rule). If the switch outputs’ M -slot

frame schedules all respect this rule, we say the switch has

a conflict free schedule (see Fig. 2). An important thoerem

on conflict free schedulability is as follows (quoted from [7]):

Theorem 1 (Schedulability). For an N inputs N outputs

TDMA crossbar real-time switch described above, if in every

M -slot frame, each output needs to fetch no more than M
cells, and each input needs to send no more than M cells,

then we can always derive a conflict free schedule for the

switch with O(N4) time cost.

The corresponding O(N4) scheduling algorithm is in [7].

Note as real-time networks carry out scheduling offline, such

complexity is satisfactory.

III. AFDX COMPLIANCE OF TDMA CROSSBAR

REAL-TIME SWITCHED NETWORKS

In the following, we shall show how to build a basic AFDX

network with TDMA crossbar real-time switches.

As mentioned in Section I, to make a switched network

AFDX compliant, the core challenges are to ensure each flow

i) behaves as if being policed by a token bucket before entering

each switch; ii) has end-to-end real-time guarantee, i.e., end-

to-end delay is upper bounded.

To address these challenges, we first look at the features

of AFDX network flows. AFDX network flows are mostly

periodical sensing/actuating/video flows. Even if there are a

few non-real-time flows, their source-ends can send data in a

periodical pattern. Therefore, we can assume the following:

Assumption 1 (Stable Periodical Traffic Source). Let F be

the set of all flows in an AFDX network. For each flow f ∈
F , its source-end injects no more than Lsrc

f ∈ Z
≥0

bits of

data into network at and only at time instances φf + kP src
f

(second), where k ∈ Z
≥0

, P src
f ∈ R

>0

and φf ≥ 0 (second) is
the phase (i.e., initialization time) of flow f . We call Lsrc

f (bit)

and P src
f (second) the source-end maximum packet length

and source-end period of flow f respectively.

Lsrc
f and P src

f use the units of “bit” and “second” respec-

tively. We can adapt the units into “cell” and “cell-time” to

more directly match the switch architecture.

Specifically, let τ (second) be the duration of a cell-time,

then each M -cell-time frame lasts

T
def
= Mτ (second).

In practice, switches with wire capacity of 10Gbps are already
in mass production (in fact, wire capacity of 100Gbps and

beyond may emerge in in near future [17]), and the standard

cell size ℓ is around 500 bits. This implies τ is at the

magnitude of 5 ∼ 50 nanoseconds. So even if M is as

big as 2, 000 ∼ 20, 000, the corresponding T remains at

the magnitude of 0.1 millisecond. On the otherhand, avionics

sensing/actuating/video periods usually range within 1 ∼ 1000
millisecond. This allows another assumption:

Assumption 2. T << P src
min

def
= min∀f∈F {P

src
f }.

Then for each f ∈ F , we can adapt its source-end maximum

packet length and source-end period into following:

Lf
def
= ⌈Lsrc

f /ℓ⌉ (cell); (1)

Pf
def
= ⌊P src

f /(τM)⌋M = ⌊P src
f /T ⌋M (cell-time); (2)

where constant ℓ (bit) is the standard cell size. We call Lf and

Pf flow f ’s in-network maximum packet length and in-network

period.

Note Lf and Pf ’s units are now cell and cell-time respec-

tively. Also note due to Assumption 2, Pf/M = ⌊P src
f /T ⌋ ∈

Z
>0

. This guarantees Pf/M 6= 0, hence for each flow f , we
can define its per-frame throughput θf as

θf
def
= ⌈Lf/(Pf/M)⌉ (cell) . (3)

When θf = 0 (i.e., Lf = 0), flow

f is inactive. When θf > 0, we have:

Theorem 2 (AFDX Compliance). If a flow f with per-frame

throughput of θf > 0 cells routes through a set of TDMA

crossbar real-time switches. If each switch can schedule

Cf ≥ θf (Cf ∈ Z
≥0) slots per frame to forward f , then

Claim 1) f behaves as if being policed by a token bucket

of bucket size σf = Lf (1 +HfM/Pf) (cell), and token

refilling rate ρf = Lf/Pf (cell/cell-time), where Hf is the

total hop count of f , i.e., the number of switches that f
passes excluding the source and destination ends;

Claim 2) for each of the Hf switches that f passes, the

queue backlog for f is upper bounded by Qf = Lf +
HfLfM/Pf (cell);

Claim 3) the end-to-end delay of f is upper bounded by

∆f = HfM + LfM/Cf ≤ HfM + Pf (cell-time).

Proof: First we define two functions of time t: rate-latency
function F

rate latency
γ,δ (t) and affine function Faffine

ρ,σ (t) as follows

F
rate latency
γ,δ (t)

def
= γ · [t− δ]+,

Faffine
ρ,σ (t)

def
=

{

0 for t = 0

ρt+ σ for t > 0
.

where [x]+
def
= max{0, x}. We call γ and δ the rate and latency

of F
rate latency
γ,δ (t) respectively; and ρ and σ the rate and burst

of Faffine
ρ,σ (t) respectively.

Now we can start our analysis. Without loss of generality,

Fig. 3 shows a flow f that leaves source-end and travels

Hf hops of TDMA crossbar real-time switches (denoted as

v0, v1, . . . , vHf−1 in the figure) to reach its destination end

vHf
.

Fig. 3. An example flow f in a TDMA crossbar real-time switched network.

To analyze f , we carry out network calculus [18]. Let a
(k)
f

and s
(k)
f be f ’s network calculus arrival curve and service

curve respectively at switch vk (k = 0, 1, . . . , Hf − 1). In the

following, we first try to derive the closed form expressions

for a
(k)
f and s

(k)
f .

We notice that the source-end packet size is
Lsrc

f

ℓ (cell) ≤ Lf (cell), and the source-end data rate is
Lsrc

f /ℓ

P src
f

/τ (cell/cell-time) ≤
Lf

Pf
(cell/cell-time) (for consistency,

throughout the proof, we convert all data size units to

“cell”, and time units to “cell-time”). These, combined with

Assumption 1, imply a network calculus arrival curve [18] of

a
(0)
f (t) = Faffine

Lf/Pf ,Lf
(t). (4)

On the other hand, because of the Cf TDMA slots allocated

to serve f every M -cell-time frame, we can write

s
(0)
f (t) = F

rate latency

Cf/M,M (t).

Because s
(0)
f (t) has a rate Cf/M no less than a

(0)
f (t)’s rate

Lf/Pf (as Cf ≥ θf ≥ LfM/Pf), according to Theorem 1.4.1

of [18], the queue backlog of f at v0 is upper bounded by

Q
(0)
f = Lf +

Lf

Pf
M ;

according to Theorem 1.4.2 of [18], the packet delay of f at

v0 is upper bounded by

∆
(0)
f = M +

Lf

Cf/M
;

according to Theorem 1.4.3 of [18], when f exits v0, f
complies with arrival curve

a
(1)
f (t) = a

(0)
f (t)⊘ s

(0)
f (t) = Faffine

Lf/Pf ,Lf+
Lf
Pf

M
(t).

We can apply the above analysis iteratively to v1, v2, . . .,
vHf−1 to derive per hop arrival curve, service curve, queue

backlog upper bound, and delay upper bound respectively as

a
(k)
f (t) = Faffine

Lf/Pf ,Lf+
kLfM

Pf

(t) (k = 0 ∼ Hf),

s
(k)
f (t) = F

rate latency

Cf/M,M (t) (k = 0 ∼ Hf − 1), (5)

Q
(k)
f = Lf +

(k + 1)LfM

Pf
(k = 0 ∼ Hf − 1), (6)

∆
(k)
f = M +

Lf + kLfM/Pf

Cf/M
(k = 0 ∼ Hf − 1). (7)

Because ∀k ∈ {0, . . . , Hf}, flow f ’s arrival curve a
(k)
f (t)

is an affine function with burst Lf + kLfM/Pf ≤ Lf (1 +
HfM/Pf), flow f hence also complies with arrival curve

af (t) = Faffine

Lf/Pf ,Lf (1+
HfM

Pf
)
(t) (8)

throughout its route. Due to the equivalence of affine function

arrival curve and token bucket policing (see [18]), Formula (8)

means f complies with a token bucket of bucket size σf =

Lf (1 +
HfM
Pf

) (cell) and token refilling rate ρf = Lf/Pf

(cell/cell-time). Hence Claim 1 sustains.

Because ∀k ∈ {0, . . . , Hf − 1}, Lf +
(k+1)LfM

Pf
≤ Lf +

HfLfM
Pf

, Formula (6) implies that Claim 2 sustains.

Though Formula (7) implies an end-to-end upper bound

for f , a tighter bound exists. According to Formula (5), the

concatenation of the v0 ∼ vHf−1 together (as a black box)

provide a service curve of

sf (t) = s
(0)
f (t)⊗ s

(1)
f (t)⊗ . . .⊗ s

(Hf−1)
f (t)

= F
rate latency

Cf/M,HfM
(t) (9)

for flow f . Combining Formula (9) and (4), we get end-to-end

delay upper bound for f is

∆f = HfM +
Lf

Cf/M
= HfM +

Lf

Cf
M

≤ HfM +
Lf

Lf/Pf
= HfM + Pf .

Hence Claim 3 sustains. �

Combining Theorem 2 and the description of AFDX in

Section I, we see a network built upon TDMA crossbar real-

time switches is AFDX compliant.

IV. RESOURCE PLANNING PROBLEM

Section III proves the legitimacy of using TDMA crossbar

real-time switches to build AFDX networks. Next, we are

interested in how to optimally plan such AFDX networks.

In practice, AFDX networks mainly serve the persistent,

real-time, and periodical sensing/actuating/video flows. Such a

flow f has a real-time end-to-end deadline Df (cell-time), i.e.,

every packet sent by its source-end must reach the destination-

end within Df cell-time. Also, f typically has a set of

discrete alternatives on source-end maximum packet size Lsrc
f

and source-end packet period P src
f (hence sampling rate). For

example, when f ’s source-end is a sensor, its sensor reading

can be 500 bits or 1000bits, and sampling rate can be 1, 2, . . . ,
100Hz; when f ’s source-end is a camera, its video resolution

can be 800 × 600, 1024 × 768, or 1920 × 1080 pixels, and

video sampling rate can be 40Hz, 50Hz, or 100Hz etc.

With the above understanding of individual flow, we now

model the network. Suppose we have an AFDX network

G(V,E) of TDMA crossbar real-time switches, where

V is the set of all switches (vertices) of the network,

and E is the set of links between the switches. Let

F be the set of flows in the AFDX network. We assume

Assumption 3 (Fixed Routes). Unless explicitly denoted, for

each flow f ∈ F , its route is given (i.e., fixed).

For each flow f ∈ F , its set of alternatives for source-end

maximum packet length and source-end period is

Asrc
f = {(Lsrc

f,k, P
src
f,k)},

where k = 0, 1, . . . , |Asrc
f | − 1 is the index of alternatives.

In the following, we call Asrc
f flow f ’s source-end alter-

natives set; we denote the kth alternative in Asrc
f as Asrc

f,k

(k = 0, 1, . . . , |Asrc
f | − 1); what is more, ∀f ∈ F , Asrc

f always

has its 0th alternative Asrc
f,0 = (0,Mτ) (∀f ∈ F), which

corresponds to the alternative that flow f is inactive.

Asrc
f further implies another form to write the set of alter-

natives:

Af = {(Lf,k, Pf,k, θf,k, uf,k(Lf,k, Pf,k)},

(k = 0, 1, . . . , |Af | − 1 is the index of alternatives),

where Lf is flow f ’s in-network maximum packet length (see

Formula (1)), Pf is f ’s in-network period (see Formula (2)), θf
is f ’s per-frame throughput (see Formula (3)), and uf (Lf , Pf)

is f ’s utility. Utility uf (Lf , Pf) ∈ Z
≥0

is a function of Lf

and Pf . It quantifies the quality of service that f provides

to application layer. In the following, we call Af flow f ’s
in-network alternatives set; we denote the kth alternative in

Af as Af,k (k = 0, 1, . . . , |Af | − 1); what is more, ∀f ∈ F ,

Af always has its 0th alternative Af,0 = (0,M, 0, 0), which
corresponds to the alternative that f is inactive.

For each switch v ∈ V , let I(v) be its set of inputs, and

O(v) be its set of outputs. For input i ∈ I(v), let F̌
(v)
i be the

set of flows entering switch v via i. For output j ∈ O(v), let

F̂
(v)
j be the set of flows leaving switch v via j. As all flows’

routes are given (see Assumption 3), all F̌
(v)
i and F̂

(v)
j are

also given.

According to Theorem 1, switch v is schedulable if and

only if Formulae (10) and (11) both hold:

∑

f∈F̌
(v)
i

Cf ≤ M, ∀i ∈ I(v), ∀v ∈ V ; (10)

∑

f∈F̂
(v)
j

Cf ≤ M, ∀j ∈ O(v), ∀v ∈ V ; (11)

where Cf ≥ θf = ⌈
Lf

Pf/M
⌉, and Cf ∈ Z

≥0.

is the per-frame allocated slots to forward f .
Therefore, we can model the TDMA crossbar real-

time switch AFDX network resource planning problem

P(G(V,E), F) as follows.

max
∑

f∈F

uf (Lf , Pf)

s.t.
∑

f∈F̌
(v)
i

Cf ≤ M, ∀i ∈ I(v), ∀v ∈ V ;

∑

f∈F̂
(v)
j

Cf ≤ M, ∀j ∈ O(v), ∀v ∈ V ;

Cf ≥ θf =

⌈

Lf

Pf/M

⌉

, ∀f ∈ F ; (12)

HfM +
Lf

Cf
M ≤ Df , ∀f ∈ F and θf > 0; (13)

(Lf , Pf , θf , uf) ∈ Af , ∀f ∈ F ;

Cf ∈ Z
≥0

, ∀f ∈ F.

where Hf is the route hop number for f . As routes are

given (see Assumption 3), Hf is a constant. The variables

of P(G(V,E), F) are tuple (Lf , Pf , θf , uf) ∈ Af (∀f ∈ F)

and the per-frame allocated slots Cf (∀f ∈ F).

Based on the above definition, we have

Theorem 3. Claim 1) P(G(V,E), F) is NP-Hard. Claim

2) P(G(V,E), F) is NP-Hard even if ∀f ∈ F , its utility uf

is a non-decreasing function of Lf/Pf .

Proof: To prove Claim 1, we can show the well-

known NP-Hard knapsack problem [19] can be reduced to

P(G(V,E), F).
An instance of knapsack problem K(Ξ, size, value,Θs,Θv)

is as follows.

Ξ is a finite set, each item ξ ∈ Ξ has a size size(ξ) ∈
Z
>0 and a value value(ξ) ∈ Z

>0; Θs ∈ Z
>0; and Θv ∈

Z
>0. The problem asks if there is a subset Ξ′ ⊆ Ξ, such that

∑

ξ∈Ξ′ size(ξ) ≤ Θs and
∑

ξ∈Ξ′ value(ξ) ≥ Θv .

Given knapsack problem instance K(Ξ, size, value,Θs,Θv),
we can construct an instance of P(G(V,E), F) as follows.
Initially, F = ∅. For each ξ ∈ Ξ, we construct a flow f

and add it into F . Flow f has the following configurations.

Its source-end alternatives set Asrc
f has only two elements

Asrc
f = {(Lsrc

f,0, P
src
f,0), (L

src
f,1, P

src
f,1)},

where P src
f,0 = P src

f,1 = Mτ seconds (τ (second) is the duration

of a cell-time), Lsrc
f,0 = 0, and Lsrc

f,1 = size(ξ)ℓ bits (ℓ (bit) is

the size of a cell).

Correspondingly, f ’s in-network alternatives set Af also has

only two elements

Af = {(Lf,0, Pf,0, θf,0, uf,0), (Lf,1, Pf,1, θf,1, uf,1)},

where per Formula (1), Lf,0 = Lsrc
f,0/ℓ = 0, Lf,1 =

⌈Lsrc
f,1/ℓ⌉ = size(ξ) (cell); per Formula (2), Pf,1 = Pf,0 =

⌊P src
f,1/τ⌋ = M (cell-time); per Formula (3), θf,0 = Lf,0 = 0,

θf,1 = Lf,1 = size(ξ) (cell); and we set uf,0 = 0,
uf,1 = value(ξ).
Since the above constructed f ∈ F is one-to-one mapped

with ξ ∈ Ξ, we use function map : F 7→ Ξ to denote this

mapping: ξ = map(f), and f = map−1(ξ).
We further construct an AFDX network G(V,E) of three

nodes: one source-end, connected by one TDMA crossbar

switch v, to one destination end. In other words, G(V,E) has
the same topology of the network in Fig. 3, where Hf = 1.
The only switch v in the network has just one input and one

output, i.e., |I(v)| = |O(v)| = 1. All flows f ∈ F originates

from the only source-end, enters v via its only input and exits

v via its only output to the only destination-end. Therefore,

∀f ∈ F , f ’s route is fixed, which has only one hop, i.e.,

Hf = 1. Besides, we set Df = 2M (cell-time), and M = Θs.

For our constructedG(V,E) and F , the corresponding prob-

lem P(G(V,E), F) (after simplification) becomes following.

max
∑

f∈F

uf

s.t.
∑

f∈F

Cf ≤ Θs;

Cf ≥ Lf , ∀f ∈ F ;

(Lf , uf) ∈ {(0, 0),

(size(map(f)), value(map(f)))}, ∀f ∈ F ;

Cf ∈ Z
≥0

, ∀f ∈ F.

Asking “yes/no” question to the original knapsack problem

K(Ξ, size, value,Θs,Θv) is equivalent to ask “is the con-

structed P(G(V,E), F) results in a maximum ≥ Θv”.

From all above, Claim 1 holds.

Meanwhile, ∀f ∈ F and ξ = map(f), we have uf,0 =
0, Lf,0/Pf,0 = 0, uf,1 = value(ξ) > 0 = uf,0, and

Lf,1/Pf,1 = size(ξ)/M > 0 = Lf,0/Pf,0. Therefore, uf is

a non-decreasing function of Lf/Pf . So the same proof for

Claim 1 also applies to Claim 2. �

Corollary 1. Without Assumption 3, Theorem 3 still holds.

Proof: Without Assumption 3, the resource planning problem

becomes more general (harder). �

Therefore, to be focused, we leave the routing problem to

future work, and concentrate on cases where Assumption 3

holds in the rest of this paper.

V. APPROXIMATION ALGORITHM

In this section, we try to address the challenge that resource

planning problem P(G(V,E), F) is NP-Hard (see Section IV).
Specifically, we propose a re-modeling approach, upon which,

we propose an approximation algorithm for P(G(V,E), F).

A. Notations and Re-Modeling

To ease the narration of the approximation algorithm, we

need to first clarify the following notations.

Let X ⊆ R
K×1 be a set of K-dimension vectors. X’s

cardinality is denoted as |X|. An ~x ∈ X is denoted as

~x = (x0, x1, . . . , xK−1)
T

, whose modulus is defined as

‖~x‖
def
= maxk=0,1,...,K−1{xk}. Therefore for a ~x ∈ X and

a scalar y ∈ R, we define ~x ≤ y if and only if ‖~x‖ ≤ y.

We define the minimum of X to be minX
def
= ~x∗, where

~x∗ ∈ X and ‖~x∗‖ = min∀~x∈X{‖~x‖}. For ∀~x, ~y ∈ X ,

the vector + and − operations are defined as ~x ± ~y
def
=

(x0 ± y0, x1 ± y1, . . . , xK−1 ± yK−1)
T

; while scalar-vector

product is defined as c~x
def
= (cx0, cx1, . . . , cxK−1)

T

, ∀c ∈ R.

Now we introduce some additional notations to re-model the

aforementioned resource planning problem P(G(V,E), F).

First, since the TDMA crossbar real-time switch based

AFDX network G(V,E) is given, let us use Π to denote the

set of all ports (no matter input port or output port, no matter

which switch the port belongs to) involved in G. The kth
(k = 0, 1, . . . , |Π| − 1) element of Π is denoted as Πk.

Next, we focus on the flow set F = {f0, f1, . . . , f|F |−1}.
For each f ∈ F , since f ’s route is given, we define its routing
vector ~Rf ∈ {0, 1}|Π|×1 as follows:

~Rf = (Rf,0, Rf,1, . . . , Rf,|Π|−1)
T

, where

Rf,k =

{

1, if f routes through port Πk

0, otherwise
,

k = 0, 1, . . . , |Π| − 1. (14)

Thirdly, with

Λ
def
= maxf∈F {|Af |},

we rewrite the in-network alternatives set Af into A′
f for each

flow f ∈ F as follows.

A′
f has Λ alternatives, the kth (k = 0, 1, . . . ,Λ − 1)

alternative is denoted as tuple

A′
f,k = (Lf,k, Pf,k, θf,k, uf,k, C

min
f,k , ~C

min
f,k),

where as before, Lf is the in-network maximum packet length,

Pf is the in-network period, θf is the per-frame throughput,

uf is utility and is a function of Lf and Pf , and k is the

index of the alternative. The added elements for the in-network

alternative tuple are Cmin
f,k and ~Cmin

f,k defined as follows:

Cmin
f,k

def
= min{c| c ∈ Z

≥0

; and c ≥ θf,k =

⌈

Lf,k

Pf,k/M

⌉

;

and in case θf,k > 0, HfM +
Lf,k

c
M ≤ Df}, (15)

where Hf is the hop number of f ’s given route, and Df is

f ’s given end-to-end real-time deadline. Cmin
f,k represents f ’s

the minimum slot-per-frame demand for each port f passes.

In other words, for each port (no matter input or output)

that f passes, the port has to allocate no less than Cmin
f

slots per frame to forward f , so as to meet f ’s throughput

demand (see Formula (12)) and end-to-end real-time demand

(see Formula (13)). For convenience, we further define

~Cmin
f

def
= Cmin

f
~Rf , (16)

where ~Rf is f ’s routing vector (see Formula (14)).

When k ∈ {0, 1, . . . , |Af | − 1}, the first four elements

(Lf,k, Pf,k, θf,k, and uf,k) of tuple A′
f,k are just copied

from the corresponding elements in tuple Af,k; the next two

elements Cmin
f,k and ~Cmin

f,k are derived from Formulae (15) and

(16) respectively. Note this implies

A′
f,0 = (0,M, 0, 0, 0, 0)

for all f ∈ F , which corresponds to the alternative that f is

inactive.

When k ∈ {|Af |, |Af |+ 1, . . . ,Λ− 1}, we define A′
f,k

def
=

(0,M, 0, 0, 0, 0).

For narrative convenience, ∀f ∈ F , we say “f se-

lects alternative A′
f,k” or “f is configured (set) to alter-

native A′
f,k” if and only if f is configured such that

(Lf , Pf , θf , uf , C
min
f , ~Cmin

f) = A′
f,k. We say f is active

(inactive) when f is configured such that Lf 6= 0 (Lf = 0),
which also implies θf 6= 0 (θf = 0), Cmin

f 6= 0 (Cmin
f = 0),

and ~Cmin
f 6= 0 (~Cmin

f = 0).

Fourthly, we introduce the notion of configuration function

and the set of configuration functions.

A configuration function cfg is a function of F 7→
{0, 1, . . . ,Λ − 1}. We denote the set of all possible config-

uration functions as

C
def
= {cfg | cfg : F 7→ {0, 1, . . . ,Λ− 1}}.

We say “we choose configuration cfg ∈ C” or “under config-

uration cfg ∈ C” if and only if ∀f ∈ F , f is set to alternative

A′
f,cfg(f).

In addition, given integer ϕ̄ ∈ {0, 1, . . . , |F |−1}, we define
a subset of C:

Cϕ̄
def
= {cfg | cfg ∈ C and

∀ϕ ∈ {ϕ̄+ 1, ϕ̄+ 2, . . . , |F | − 1}, cfg(fϕ) = 0};

i.e., under any configuration cfg ∈ Cϕ̄, only flow f0, f1, . . . , fϕ̄
can be active.

Further more, given U ∈ Z
≥0

, we define a subset of Cϕ̄:

Cϕ̄,U
def
= {cfg | cfg ∈ Cϕ̄ and

∑

f∈F

uf,cfg(f) = U},

i.e., under any configuration cfg ∈ Cϕ̄,U , only flow

f0, f1, . . . , fϕ̄ can be active, and the total utility is U .

We define the minimum total slot-per-frame demand vector

under constraint (ϕ̄, U), simplified as min-dmd-(ϕ̄, U)-vector,
as

~Φmin dmd
ϕ̄,U

def
=

min∀ cfg∈Cϕ̄,U
{
∑

∀f∈F
~Cmin
f,cfg(f)},

when Cϕ̄,U 6= ∅;

∞, otherwise;

and the corresponding minimum total slot-per-frame demand

configuration under constraint (ϕ̄, U), simplified as min-dmd-

(ϕ̄, U)-configuration, as

cfgmin dmd
ϕ̄,U

def
=

argmin∀ cfg∈Cϕ̄,U
{
∑

∀f∈F
~Cmin
f,cfg(f)},

when Cϕ̄,U 6= ∅;

nil, otherwise.

Let

umax
def
= max∀f∈F,∀k∈{0,1,...,Λ−1}{uf,k| ~C

min
f,k ≤ M}. (17)

Then the feasible values of the network’s total utility is

bounded in the set {0, 1, . . . , |F | · umax}.
We design a dynamic programming subroutine to calcu-

late ~Φmin dmd
ϕ̄,U and the corresponding cfgmin dmd

ϕ̄,U for ϕ̄ =
0, 1, . . . , |F |−1 and U = 0, 1, . . . , |F |·umax. Then the solution

to resource planning problem P(G(V,E), F) is

U∗ = max{U | ~Φmin dmd
|F |−1,U ≤ M},

and cfg∗ = cfgmin dmd
|F |−1,U∗ .

B. Dynamic Programming Subroutine

The dynamic programming subroutine to calculate ~Φmin dmd
ϕ̄,U

and cfgmin dmd
ϕ̄,U (ϕ̄ = 0, 1, . . . , |F | − 1 and U = 0, 1, . . . , |F | ·

umax) is as follows.

When ϕ̄ = 0, we can calculate ~Φmin dmd
0,U and cfgmin dmd

0,U

(U = 0, 1, . . . , |F | · umax) within O(|F | · umax · Λ|Π|) time:

only f0 ∈ F can be active, and we just try every alternative

of f0 to see if its utility is U .

Let us use

cfg2 = cfg1 +(f ′, k′), where f ′ ∈ F, k′ ∈ {0, 1, . . . ,Λ− 1},

to express the modification of an old configuration function

cfg1 into a new one cfg2, where ∀f ∈ F ,

cfg2(f) =

k′ (when f = f ′ and cfg1 6= nil),

cfg1(f) (when f 6= f ′ and cfg1 6= nil),

nil (when cfg1 = nil).

Then we can calculate ~Φmin dmd
ϕ̄,U and cfgmin dmd

ϕ̄,U (ϕ̄ =
1, 2, . . . , |F | − 1 and U = 0, 1, . . . , |F | · umax) using the

following dynamic programming. For U = 0, 1, . . . , |F |·umax:

~Φmin dmd
ϕ̄+1,U = min{~Φmin dmd

ϕ̄,U−ufϕ̄+1,0
+ ~Cmin

fϕ̄+1,0,

~Φmin dmd
ϕ̄,U−ufϕ̄+1,1

+ ~Cmin
fϕ̄+1,1, . . . ,

~Φmin dmd
ϕ̄,U−ufϕ̄+1,Λ−1

+ ~Cmin
fϕ̄+1,Λ−1}, (18)

where each element in Formula (18)’s right hand side

corresponds to a configuration function, respectively

cfgmin dmd
ϕ̄,U−ufϕ̄+1,0

+(fϕ̄+1, 0) (note this configuration

function equals cfgmin dmd
ϕ̄,U as (fϕ̄+1, 0) means fϕ̄+1

is set to inactive), cfgmin dmd
ϕ̄,U−ufϕ̄+1,1

+(fϕ̄+1, 1), . . ., and

cfgmin dmd
ϕ̄,U−ufϕ̄+1,Λ−1

+(fϕ̄+1,Λ−1). Among these configuration

functions, the one that corresponds to the minimum element

(i.e., ~Φmin dmd
ϕ̄+1,U) is then cfgmin dmd

ϕ̄+1,U .

C. Main Body of Approximation Algorithm

With the above dynamic programming subroutine, we pro-

pose the following main body of approximation algorithm:

1) Given ε > 0, let µ = εumax/|F |;
2) For each f ∈ F and k ∈ {0, 1, . . . ,Λ − 1}, re-define

utility u′
f,k = ⌊uf,k/µ⌋;

3) With the re-defined utilities {u′
f,k}, use the dynamic

programming subroutine of Section V-B to get set S′ =
{cfgmin dmd

|F |−1,U ′ | ~Φmin dmd
|F |−1,U ′ ≤ M}. Find the element in S′

with the largest U ′, denote it as cfg∼;

4) Output cfg∼ as the configuration for the original resource

planning problem P(G(V,E), F).

Let U∼ and U∗ be the total utility (using the original

utilities {uf,k}) corresponding to cfg∼ and the actual

optimal cfg∗ respectively. We can prove the following:

Theorem 4. U∼ ≥ (1 − ε)U∗; and the approximation

algorithm’s time complexity is O(|F |3

ε (Λ|Π|+ |F |)).

Proof: Denote U∗′ def
=

∑

f∈F u′
f,cfg∗(f), then

U∗′ =
∑

f∈F

u′
f,cfg∗(f) ≥

∑

f∈F

(

uf,cfg∗(f)

µ
− 1

)

⇒ µU∗′ ≥ U∗ − µ|F |. (19)

On the other hand, denote U ′∗ def
=

∑

f∈F u′
f,cfg∼(f) =

∑

f∈F ⌊uf,cfg∼(f)/µ⌋, we have

U∼ =
∑

f∈F

uf,cfg∼(f)

≥
∑

f∈F

µ⌊uf,cfg∼(f)/µ⌋ = µU ′∗ (20)

≥ µU∗′ ≥ U∗ − µ|F | (∵ Formula (19)) (21)

= U∗ −
εumax

|F |
|F | = U∗ − εumax (22)

≥ U∗ − εU∗ = (1− ε)U∗. (23)

Note from Formula (20) to (21) is because U ′∗ is the optimal

solution under re-defined utilities {u′
f,k}. From Formula (22)

to (23) is because umax corresponds to the total utility of

a feasible configuration with a single active flow (see For-

mula (17)), while U∗ is the optimum, so umax ≤ U∗.

As for time complexity, the approximation algorithm Step

1, 2 and 4 take O(|F |Λ) time. For Step 3, the dynamic

programming calculates O(|F | · |F |u′
max) items of ~Φmin dmd

ϕ̄,U ′

and cfgmin dmd
ϕ̄,U ′ , and each item takes O(Λ|Π| + |F |) time. So

the total time complexity is O(|F |2u′
max · (Λ|Π| + |F |)) =

O(|F |2⌊umax

µ ⌋(Λ|Π|+ |F |)) = O(|F |3

ε (Λ|Π|+ |F |)). �

VI. RELATED WORK

Since its publication, the AFDX standard is well-received

by industry. This is followed by growing volume of aca-

demic literature that intends to carry out rigorous analy-

sis/optimizations.

Scharbarg et al. [20] and Charara et al. [21] analyzed the

real-time behavior of AFDX networks upon switches that run

first-in-first-out (FIFO) queueing. Such switch architecture let

multiple flows share queues, which is fundamentally differ-

ent from the per-flow queueing switch architecture that this

paper is about. Hua et al. [22] also analyzed the real-time

behavior of AFDX networks upon switches that runs deficit

round robin scheduling. Such queueing mechanism is work-

conserving [23], which is also fundamentally different from

our TDMA scheduling, which is non-work-conserving.

There are also many industrial fieldbus designs, such as

Foundation Fieldbus [24], CAN bus [25], TTEthernet [26], and

other designs in the academic literature [27]. However, these

designs are mainly for shared medium local area networking,

instead of multi-hop switched networking. More importantly,

unlike AFDX, they are not specialized for future avionics, and

are not widely adopted by the avionics industry as the future

de facto standard.

As our resource planning problem is a generalization of

knapsack problem (see proof for Theorem 3), it is not sur-

prising that one source of inspirations for our approximation

algorithm is the knapsack problem approximation algorithm

[28]. One of our major contributions is that through the

proposal of notions such as min-dmd-(ϕ̄, U)-vector, min-dmd-

(ϕ̄, U)-configuration etc., we discovered a way to re-model the

TDMA crossbar real-time switched AFDX network resource

planning problem, so that the new model can readily borrow

knapsack approximation algorithm’s heuristics.

VII. CONCLUSION

In conclusion, we proved that TDMA crossbar real-time

switched networks comply with the AFDX network standard;

and derived closed-form formulae on the corresponding AFDX

network’s traffic characteristics and real-time end-to-end delay

bound. We also proved the resource planning on TDMA

crossbar real-time switched AFDX networks is NP-Hard.

To address this NP-Hardness challenge, we proposed a re-

modeling approach, through which, we further proposed an

approximation algorithm.

ACKNOWLEDGEMENT

The project related to this paper is supported in part by

NSERC Discovery Grant 341823-07, FQRNT grant 2010-NC-

131844, CRIAQ AVIO402-INTL, The Hong Kong Polytechnic

University (HK PolyU) Internal Competitive Research Grant

(DA) A-PJ68, HK PolyU Newly Recruited Junior Academic

Staff Grant A-PJ80, HK PolyU Fund for CERG Project Rated

3.5 (DA) grant A-PK46, HK RGC General Research Fund

(GRF) PolyU 5245/09E. Dr. Qixin Wang, Dr. Xue Liu, and

Mr. Yufei Wang are also supported by HK PolyU Dept. of

Computing start up fund, departmental visitor program, and

FTE fund respectively.

Any opinions, findings, and conclusions or recommenda-

tions expressed in this publication are those of the authors and

do not necessarily reflect the views of sponsors. The authors

thank anonymous reviewers for their advice on improving this

paper.

REFERENCES

[1] Head-up display. http://en.wikipedia.org/wiki/Head-up\ display.

[2] Fly-by-wire. http://en.wikipedia.org/wiki/Fly-by-wire.

[3] ARINC Specification 664P7: Aircraft Data Network Part 7, Avionics Full

Duplex Switched Ethernet (AFDX) Network. http://www.arinc.com.

[4] Avionics Databus Solutions. http://www.afdx.com.

[5] Avionics Full-Duplex Switched Ethernet. http://www.wikipedia.org.

[6] L. L. Peterson and B. S. Davie, Computer Networks: A System Approach,
4th ed. Margan Kaufmann, 2007.

[7] Q. Wang and S. Gopalakrishnan, “Adapting a main-stream internet
switch architecture for multi-hop real-time industrial networks,” IEEE

Transactions on Industrial Informatics, vol. 6, no. 3, May 2010.

[8] Q. Wang et al., “A switch design for real-time industrial networks,” in
Proc. of IEEE RTAS 2008, Apr. 2008, pp. 367–376.

[9] F. Dopatka and R. Wismuller, “Design of a realtime industrial ethernet
network including hot-pluggable asynchronous devices,” IEEE Interna-

tional Symposium on Industrial Electronics (ISIE 2007), 2007.

[10] C.-S. Chang, W.-J. Chen, and H.-Y. Huang, “On service guarantees for
input buffered crossbar switches: a capacity decomposition approach by
birkhoff and von neumann,” IEEE IWQoS’99, pp. 79–86, 1999.

[11] Y.-W. Leung and T.-S. Yum, “A TDM-based multibus packet switch,”
IEEE Trans. on Communications, vol. 45, no. 7, pp. 859–866, Jul. 1997.

[12] N. McKeown, “The iSLIP scheduling algorithm for input-queued
switches,” IEEE/ACM TON, vol. 7, no. 2, Apr. 1999.

[13] S. Gopalakrishnan et al., “Switch scheduling and network design for
real-time systems,” in Proc. of IEEE RTAS 2006, Apr. 2006.

[14] L. Chen et al., “A real-time multicast routing scheme for multi-hop
switched fieldbuses,” Proc. of INFOCOM’11, pp. 3209–3217, 2011.

[15] G. Birkhoff, “Tres observaciones sobre el algebra lineal,” Univ. Nac.

Tucuman Rev. Ser. A, vol. 39, pp. 147–151, 1946.

[16] J. von Neumann, “A certain zero-sum two-pwerson game equivalent to
the optimal assignment problem,” Contributions to the Theory of Games,
vol. 2, pp. 5–12, 1953.

[17] List of device bit rates. http://en.wikipedia.org.
[18] J.-Y. L. Boudec and P. Thiran, Network Calculus: A Theory of Deter-

ministic Queuing Systems for the Internet. Springer, 2001.
[19] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide

to the Theory of NP-Completeness. W. H. Freeman and Co., 1979.
[20] J.-L. Scharbarg, F. Ridouard, and C. Fraboul, “A probabilistic analysis

of end-to-end delays on an afdx avionic network,” IEEE Transactions

on Industrial Informatics, vol. 5, no. 1, pp. 38–49, 2009.
[21] H. Charara, J. luc Scharbarg, J. Ermont, and C. Fraboul, “Methods for

bounding end-to-end delays on an afdx network,” Euromicro Conference

on Real-Time Systems, 2006.
[22] Y. Hua and X. Liu, “Scheduling design and analysis for end-to-end

heterogeneous flows in an avionics network,” Proc. of INFOCOM’11,
pp. 2417–2425, 2011.

[23] J. W. S. Liu, Real-Time Systems. Prentice Hall, 2000.
[24] Fieldbus Foundation. http://www.fieldbus.org.
[25] CAN in Automation. http://www.can-cia.org.
[26] TTEthernet Specification. TTTech Computertechnik AG, 2008.
[27] R. Santos, R. Marau, A. Vieira, P. Pedreiras, A. Oliveira, and L. Almeida,

“A synthesizable ethernet switch with enhanced real-time features,”
Proc. of IECON’09, pp. 2817–2824, 2009.

[28] V. V. Vazirani, Approximation Algorithms. Springer, 2003.

