
A Real-Time Multicast Routing Scheme for

Multi-Hop Switched Fieldbuses

Lixiong Chen∗, Xue Liu†, Qixin Wang‡, Yufei Wang‡

∗ Department of ECE, † School of Computer Science, McGill University,

Email: {lixiong.chen, xue.liu}@mcgill.ca
‡ Department of Computing, The Hong Kong Polytechnic University,

Email: {csqwang, csyufewang}@comp.polyu.edu.hk

Abstract—The rapid scaling up of Networked Control Systems
(NCS) is forcing traditional single-hop shared medium industrial
fieldbuses (a.k.a. fieldbuses) to evolve toward multi-hop switched
fieldbuses. Such evolution faces many challenges. The first is the
re-design of switch architecture. To meet the real-time nature of
NCS traffic, and to lay a smooth evolution path for switch manu-
facturers, it is widely agreed that a (if not the) promising switch
architecture is an input queueing crossbar architecture running
TDMA scheduling. The second challenge is real-time multicast.
NCS applications usually involve complex distributed multiple-
input-multiple-output interactions, which by their nature neces-
sitate real-time multicast. In shared medium fieldbuses, real-time
multicast is straightforward as data sent to the medium is heard
by all nodes. On multi-hop switched fieldbuses, however, real-time
multicast becomes non-trivial. In this paper, we prove real-time
multicast on multi-hop switched fieldbuses is NP-Hard. What
is more, real-time multicast on multi-hop switched fieldbuses
is fundamentally different from Internet multicast, due to real-
time requirement and the homogeneous input queueing crossbar
switch architecture. Particularly, switch external links’ capacities
are no longer mutually independent. Such drastic change of
assumptions warrants developing new routing algorithms, and
a heuristic algorithm is hereby proposed.

I. INTRODUCTION

Cyber-physical systems (CPS), which merge the computa-

tional elements with the physical world, are widely considered

as a theme for future computer science research [1][2][3]. One

representative CPS application is networked control systems

(NCS), where distributed sensors, controllers, and actuators

have to be integrated via a specialized network. The special-

ized networks for NCS are also known as industrial fieldbuses,

or simply fieldbuses.

A fieldbus is fundamentally different from the Internet.

Firstly, a fieldbus must support hard real-time, i.e., pe-

riodical sensing/actuating messages must be delivered (to

controllers, actuators etc.) within hard deadlines (i.e., the

deadline is an explicit constant); otherwise critical failures may

happen. A typical example is the fieldbus used in avionics.

A deadline miss or packet loss may endanger the aircraft

safety. In contrast, Internet is best effort: it is hard to predict

a deadline or end-to-end delay bound (although statistical

estimations are possible). Sometimes Internet may even allow

or utilize packet losses.

Secondly, fieldbus traffic is specialized. Typical fieldbus

flows are periodical sensing/actuating streams. They are stable

and long-lasting: may persist for hours or even days; and re-

configurations are carried out in a well managed manner, often

offline. In contrast, Internet traffic is highly heterogeneous and

unpredictable; many Internet flows are transient and/or bursty.

Thirdly, fieldbus boundary is well defined. We can have

full knowledge and control of the fieldbus, to carry out more

sophisticated management that is impossible for the Internet.

For example, all the switches in a fieldbus can have the same

architecture; while it is nearly impossible to require/assume

the same for Internet applications.

The above differences distinguish fieldbus research from

Internet research. Yet fieldbus research is also evolving. Tradi-

tional fieldbuses research mainly focus on single-hop solutions

[4][5], however, the everlasting scaling up of NCS is forcing

single-hop fieldbuses to evolve toward multi-hop switched

fieldbuses. For example, there are already hundreds of CPUs

and peripherals in a modern airplane, such as A380. Such scale

of distributed real-time embedded systems cannot be hosted

by just one shared medium fieldbus. In response, multiple

international standardization organizations are launched to

develop multi-hop switched fieldbus standards and protocols

[6][7][8] in recent years.

NCS on multi-hop switched fieldbuses raise many new

challenges as multi-hop networking is more complicated than

single-hop. Some assumptions on traditional linear state space

control models have to be adapted to merge with real-time

multi-hop networking considerations, such as multi-hop broad-

cast/multicast, end-to-end delay, packet loss, synchronization

etc.[9][10][11].

In this paper, we shall study a critical service in multi-hop

switched fieldbuses: real-time multicast. This is motivated by

the following fact:

The basic form of most modern control systems, including

NCS, can be modeled by Equation System (1) [12][13]:

ẋ(t) = Ax(t) +Bu(t),

u(t) = −Kx(t),
(1)

where x(t) ∈ R
n×1 is the vector of n sensor readings (a.k.a.

system states) at time t; u(t) ∈ R
m×1 is the vector of m

actuator control signals applied at time t; A, B,M are constant

matrices of dimension R
n×n, Rn×m, and R

m×n respectively.

As shown by this equation system, each element of x(t)
may participate in the calculation of each element of u(t).
This implies that in an NCS, a sensor reading (i.e., element of

vector x(t)) may have to be multicasted to multiple controllers

to calculate the various control signals (i.e. elements of vector

u(t)). In fact, in more practical/advanced NCSs, a control

signal may have to be further multicasted to many observers

to create various system state estimations [12][13].

In this paper, we will show that the real-time multicast

scheduling (RTMS) problem is NP-Hard. Therefore, seeking

an optimal solution is impractical; instead, we shall pursue an

efficient heuristic solution for practical demands.

In the following, Section II gives background on multi-hop

switched fieldbuses, real-time switch architecture, and its mul-

ticast mechanisms; Section III analyzes the complexity of real-

time multicast scheduling/routing problem; Section IV gives

our heuristic real-time multicast routing algorithm; Section V

evaluates our algorithm; Section VI discusses related work;

and Section VII concludes the paper.

II. BACKGROUND

To support real-time multicast, we must first understand

real-time switches and their multicast mechanisms.

Network switches (no matter real-time or not) can be

generally categorized as output queueing or input queueing.

In output queueing, input ports (simplified as “inputs” in the

following) does not buffer packets. Once a packet enters an

input, it is immediately routed to its corresponding output port

(simplified as “output” in the following) and buffered there.

Though output queueing is simple and intuitive, its inborn

“N speed-up” problem1 [14] limits its real-world adoption.

Input queueing, instead, becomes the de facto standard among

switch vendors.

In input queueing, a crossbar fabric connects inputs with

outputs (see Fig. 1(a)). Packets are only buffered at inputs;

when a packet enters an input, it is immediately routed into the

intended queue in the input (see Fig. 1(b)). At scheduled time,

an output connects with one input, picks one of its queues, and

fetches the queue’s header packet. The fetched packet exits the

output directly without further buffering (see Fig. 1(c)).

To facilitate scheduling, each packet is typically manipu-

lated as fixed-size (typically 512 bit, and is the same uni-

versally) fragments called cells. The time cost to send one

cell across the crossbar is called one cell-time. To satisfy

the crossbar constraint that at any time instance, an input

can connect to at the most one output and vice versa, input

switches operate periodically, and the period is one cell-

time. At the beginning of each cell-time, the switch scheduler

decides a one-to-one matching (simplified as “matching” in the

following) between inputs and outputs and connect/disconnect

crossbar intersections (the grey dots in Fig. 1(a)) accordingly.

1For an output queueing switch of N inputs and N outputs, suppose the
capacities of all inputs are the same, then inside the switch, the fabric capacity
at each output must be N times that of an input’s capacity. This is for the
case that all inputs inject traffic to a same output with their full capacities.

During the cell-time, each output tries to fetch a cell from its

matched input for outputing.

Depending on the input-output matching and cell picking

schemes, many input queueing switch designs exist. But to

our best knowledge, it is widely agreed that a proper (if not

the best) input queueing real-time switch architecture is as

follows [15][16][17][18]:

Each input carries out per-flow queueing. Each output

maintains a static schedule2. This schedule is a time division

multiple access (TDMA) schedule of M cell-time, a.k.a., the

M -slot frame. The gth (g = 0, 1, . . . ,M−1) slot of the frame

specifies which per-flow queue in which input to grant (i.e.,

to send a “grant” signal) at the beginning of the gth cell-time.

Here g is a global counter incremented by 1 every cell-time

(modulo M). On receiving a grant, the input per-flow queue

shall send its header cell to the granting output during the

cell-time; or do nothing if the queue is empty.

To ease narration, in the following, we use the term “M -slot

frame” and “frame” interchangeably; and the term “slot” and

“cell-time” interchangeably.

An important result for the above real-time switch design is

its schedulability test method proposed by [16], quoted here

as Theorem 1:

Theorem 1 (Schedulability): For an N × N real-time

switch described above, if in every M -slot frame, each

output needs to receive no more than M cells, and each

input needs to send no more than M cells, then we can

always derive a conflict free schedule with a time cost of

O(N4).

The term “conflict free” means at any slot of the frame,

each input is granted by no more than one output, and vice

versa. That is, a conflict free schedule is the combined M -slot

frame schedules of all N outputs, which dictates a matching

between the N inputs and N outputs in each cell-time. Fig. 2

illustrates the meanings of conflict free schedule3.

The above real-time switch design can be easily extended

to support multicast (as shown in Fig. 3). When a to-be-

multicasted cell enters an input (see Fig. 3 (a)), it is duplicated

into m copies (see Fig. 3 (b)), one for each output that it shall

multicast to. Each copy enters its corresponding input per-

flow queue, and the rest is the same as unicast. When the

copy enters the next-hop switch, same thing can happen again

for further multicasts.

Such extension complies with the common constraint of

crossbar that at any time instance, one input can connect to at

the most one output and vice versa; hence will benefit legacy

reuse and smooth design evolution.

Note one specialty of the above real-time switch multicast is

that output links’ capacities are no longer independent. This

is shown by Fig. 4. In the figure, a multicast tree branches

to output O1, O2, and O3. The traffic load on O1, O2,

2We can use static schedule because for most real-time applications, such
as avionics and industrial control, most flows are for stable and permanent
control loops.

3Interested readers can refer to [16] for the O(N4) scheduling algorithm.

(a) crossbar fabric, which connects inputs with outputs; each input
connects to a data bus (the horizontal line segments) that intersects with
each output’s data bus (the vertical line segments); the intersections (grey
dots) can be connected/disconnected during runtime by scheduler(s); note
at any time, one input can connect to at the most one output, and vice
versa.

(b) an input port: packet routing and queueing are carried out in it; in input
i, the kth queue buffering packets to output j is denoted as Q(i, j, k).

(c) an output port: at different time slot, the output fetches packets from
different input queues according to the switch scheduling scheme.

Fig. 1. Input Queueing Switch Architecture

Fig. 2. Conflict free schedule for real-time switch of [16]: in this example,
the switch has N = 4 inputs and outputs, frame size is M = 5 slots (note in
reality, M is in the order of 103 ∼ 106); each row of the “schedule matrix”
is a conflict free schedule for its corresponding output, which means at any
time slot (i.e., any column of the “schedule matrix”), no two outputs contend
for the same input (for different input queues).

(a) Step 1

(b) Step 2

Fig. 3. Multicast in Real-Time Switch of [16]

Fig. 4. Multiple outputs’ link capacity may be coupled via the shared input
during multicast

and O3 are all 1 cell/frame. But due to the duplication of

cells, the upstream input I0 have to schedule 3 cell/frame for

the multicast. In an extreme case where M = 2 cell/frame,

although none of O1 ∼ O3 reaches its capacity of 2cell/frame,

I0 already becomes unschedulable.

Also note one common misunderstanding is that the mul-

ticast is accomplished by an output connected to multiple

next-hop switches. In fact, each output is connected to just

ONE input of ONE next-hop switch. The output can create a

multicast cell, but the duplication of the cell takes place inside

the next-hop input.

III. REAL-TIME MULTICAST BETWEEN SWITCHES

Given individual switch design that supports real-time mul-

ticast, we now study how to coordinate these switches for real-

time multicast. We can start our discussion from the real-time

multicast scheduling (RTMS) problem.

A. Real-Time Multicast Scheduling (RTMS) Problem

To ease narration, we give the following assumption for

this paper (note in the following, our claims on problem

complexity still sustain even without this assumption; and we

leave the design of real-time multicast under clock skew to

our future publications).

Assumption 1: In the rest of this paper, we always assume

multi-hop switched fieldbuses use the multicast-capable

input queueing real-time switch described in Section II. We

also assume all switches have the same cell-time duration

and the same frame size of M cell-time/frame, a.k.a. M

slot/frame.

We can model every multi-hop switched fieldbus as a

directed graph ~G(V, ~E), where V and ~E are ~G’s vertex set

and edge set respectively. Every vertex v ∈ V corresponds

to a switch in the fieldbus. For every edge ~e ∈ ~E, let src(~e)
and des(~e) denote its source end and destination end vertices

respectively. Then ~e represents a physical link that connects

an output of switch src(~e) to an input of switch des(~e). We

can also denote ~e as 〈x, y〉, where x = src(~e) ∈ V and

y = des(~e) ∈ V .

Let M represent the set of all real-time multicast groups

to be routed. A real-time multicast group m ∈ M is a tuple

of m
def
= (s,D,w, T,H), where s ∈ V is the source end of

the multicast, D ⊆ V is the set of destination ends of the

multicast. T (cell-time) is the traffic generation period. That

is, in every T cell-time, the source end switch s has w cells

ready to be multicasted to the group. Note the w cells are

released at the exact beginning of each T cell-time period,

i.e., there is no jitter in traffic generation at the source end.

These w cells must reach all vertices in D within H cell-time.

An instance of an RTMS problem can be expressed as a

tuple q = (~G(V, ~E),M), who aims to find a feasible schedule

for every switch in ~G(V, ~E), so that for each multicast group

m ∈ M, m’s real-time multicast demand is satisfied.

B. RTMS Problem is NP-Hard

Before seeking an algorithm for RTMS problem, we are

interested in first knowing the problem complexity. We find

the following theorem:

Theorem 2: RTMS problem is NP-Hard.

Proof: Let us first set the following assumption in addition to

Assumption 1:

Assumption 2 (only used in this proof): We assume all

switches are perfectly synchronized, that is, all switches

have the same clock phase.

With Assumption 2, we can reduce the well-known NP-

Hard problem of Minimum Broadcast Time (MBT) [19] to

RTMS problem. For reader’s convenience, MBT problem [19]

is re-stated in the following.

Definition 1 (MBT Problem): Given a graph G = (V,E),
subset V0 ⊆ V , and a positive integer K, can a message

be “broadcast” from the base set V0 to all other vertices in

K steps. That is, is there a sequence V0, E1, V1, E2, . . .,

EK , VK such that each Vi ⊆ V , each Ei ⊆ E, and for

1 ≤ i ≤ K,

(1) each edge in Ei has exactly one end point in Vi−1,

(2) no two edges in Ei share a common end point, and

(3) Vi = Vi−1 ∪ {v|〈u, v〉 ∈ Ei}?

Our reduction goes as follows.

Given an instance of MBT problem, we build an RTMS

graph ~G(V ′, ~E) from the MBT graph G(V,E) through three

steps:

i) initially, V ′ := V and ~E := ∅;

ii) for every edge e = 〈u, v〉 ∈ E, add two directed edges

〈u, v〉 and 〈v, u〉 into ~E;

iii) if V0 of MBT problem only has one vertex, then denote

this vertex as s0; otherwise, add a new vertex s0 into V ′ and

add directed edges 〈s0, v〉 into ~E for each v ∈ V0.

The following proof applies to the |V0| = 1 case; the proof

for the |V0| > 1 case follows the same path, and is left for

interested readers for the brevity of analysis.

In our RTMS problem on ~G(V ′, ~E), every vertex in V ′ is

a multicast-capable input queueing real-time switch described

in Section II; and we set the globally consistent frame size

M := max{K, |V ′|}, where K is the broadcast deadline given

in the MBT problem, and |V ′| is the number of elements in

set V ′.

Our RTMS problem shall only have one multicast group:

m = (s0, VK , 1,M,K), where as mentioned before, M =
max{K, |V ′|}. That is, in each period of M cell-time, which

is also the length of a frame, one cell is generated at s0; and

this cell must be multicasted from s0 to all the vertices in VK

within K cell-time.

We claim the above reduction is valid due to the following

reasons.

First, the reduction apparently takes only polynomial time.

Second, our mapped RTMS problem’s solution schedule (if

exists) shall satisfy the original MBT problem’s requirement

(2). Remember due to Assumption 2, all switches in the

fieldbus are perfectly synchronized (0 phase difference), and

have the same cell-time and frame duration. Therefore, we

can focus on the schedule within just one frame. In each

frame, each switch can have at the most one input to be the

multicast upstream, i.e., where the singular to-be-multicasted

cell c enters. Without loss of generality, let us focus on one

such switch and denote its multicast upstream input as I .

Then in each cell-time of the frame, at most one output

can fetch c from I (due to the feature of crossbar, see

Section II). This means no two (out-going) edges of a same

vertex (switch) participate multicast in the same cell-time.

As all cell-time are globally synchronized, this means MBT

problem’s requirement (2) is satisfied (note: view each cell-

time as a MBT broadcast step).

Third, by viewing each cell-time of our RTMS solution

schedule as a step, MBT problem’s requirement (1) and (3)

are apparently satisfied.

Therefore, under Assumption 2, any instance of MBT prob-

lem can be reduced (within polynomial time) to an instance of

RTMS problem. Therefore, RTMS problem is also NP-Hard.

Now, if we remove Assumption 2, RTMS problem becomes

more general, and hence more difficult. Therefore, we can

claim even without Assumption 2, RTMS problem is still NP-

Hard. �

C. Converting RTMS Problem to Real-Time Multicast Routing

(RTMR) Problem

Due to the NP-Hardness, we cannot find an optimal algo-

rithm for RTMS problem (an optimal algorithm means for any

instance of RTMS problem that has solution(s), the algorithm

can always find a solution within polynomial time). Instead,

we shall pursue an efficient algorithm that can find a solution

in polynomial time for a fairly large number of RTMS problem

instances.

However, even to design such an efficient algorithm is too

difficult. Therefore, we choose to only focus on a RTMS prob-

lem subset, whose member multicast groups’ traffic generation

periods are always M cell-time, i.e., same as the universal

switch scheduling frame size. We call this subset of RTMS

problem M -slot Periodic RTMS problem,

The above concepts are summarized by the following sym-

bolic notations.

Let

Q
def
= {q|q is an instance of an RTMS problem} (2)

denote the set of all instances of RTMS problem. Then the

set of all instances of M -slot Periodic RTMS problem can be

denoted as Q′:

Q′ def
= {q′|q′ = (~G,M) ∈ Q, M = {mi},

mi = (si, Di, wi, Ti, Hi),

and ∀i, Ti ≡M}, (3)

where M (cell-time/frame) is the universal switch scheduling

frame size.

Unfortunately, Q′ is still too difficult. In fact, we have the

following proposition:

Proposition 1: M -slot Periodic RTMS problem is NP-

Hard.

Proof: Same as the proof of Theorem 2. �

Therefore, we decide to add some more constraints to

further shrink our problem space. Specifically, for each in-

stance q′ = (~G,M) ∈ Q′, where M = {mi}, we construct

another instance of problem denoted as q̃ = (~G,M̃). ~G still

represents the same multi-hop switch network topology as in

q′. M̃ = {m̃i} is the set of multicast groups in problem q̃, and

is constructed from M = {mi} as follows. For each multicast

groupmi = (si, Di, wi, Ti(≡M), Hi) ∈ M, a multicast group

m̃i = (si, Di, wi, Ti(≡M), H̃i) is added to M̃. The symbolic

meanings of si, Di, wi, and Ti(≡M) are still the same as in

mi. However,

H̃i
def
= max

{⌊

Hi −M

M + 1

⌋

, 0

}

, (4)

and now means the multicast tree must be NO taller than

H̃i hops. We call the constructed q̃ an instance of real-time

multicast routing (RTMR) problem, and denote the set of all

instances of RTMR problem as Q̃.

We have two observations:

Proposition 2: For a problem instance of

q̃ = (~G(V, ~E), {m̃i}) ∈ Q̃, if a switch v ∈ V

participates in the multicast for one multicast group

m̃i = (si, Di, wi, Ti(≡M), H̃i), then in each M -slot

frame, each of v’s participating output must schedule at

least wi slots to fetch (and hence forward) cells for m̃i.

This proposition also applies to M -slot Periodic RTMS

problem.

Proof: As the source si generates wi cells per M -slot frame

(remember Ti ≡M), and the real-time switch runs the same

TDMA schedule in every M -slot frame, if the output does

not schedule at least wi slots per M -slot frame, the queue

will overflow and hence cause deadline misses. �

Therefore, in designing an efficient algorithm for RTMR

problem, we add the following implicit rule:

Rule 1: For a problem instance of q̃ = (~G(V, ~E), {m̃i}) ∈
Q̃, if a switch v ∈ V participates in the multicast for one

multicast group m̃i = (si, Di, wi, Ti(≡M), H̃i), then in

each M -slot frame, each of v’s participating output must

schedule exactly wi slots to fetch (and hence forward) cells

for m̃i.

The other observation is as follows:

Proposition 3: If an instance of RTMR problem q̃ is

constructed from an instance of M -slot Periodic RTMS

problem q′ through the aforementioned method, then a

solution to q̃ is also a solution to q′.

Proof: Note a solution to q̃ means the end-to-end delay for

m̃i is bounded by Hi cell-time. �

Note the reverse is not necessarily true: a solution to q′ is not

necessarily a solution to q̃.

Nonetheless, the above proposition means if an algorithm

solves a fairly large number of RTMR problem instances,

then it also solves a fairly large number of RTMS problem

instances. That is, we can seek an efficient algorithm for RTMR

problem as our efficient algorithm for RTMS problem.

Besides, RTMR problem itself is also of good practical

value, and is mainly about routing, which we are more familiar

with.

IV. AN EFFICIENT RTMR ALGORITHM

Due to the above analysis, we are only interested in finding

an efficient heuristic algorithm for RTMR (and hence RTMS)

problems.

The accurate definition of our heuristic algorithm involves

a lot of trivial details. Hence we put it in Appendix A. In this

section, we shall only give some high level intuitions.

To “grow” (route) a multicast tree for a multicast group, we

can either choose “depth first” or “width first”. Without loss

of generality, we choose to grow multicast trees in a “depth

first” fashion. This is illustrated by Fig. 5. In the figure, the

nodes represent real-time switches, which form a network of

4× 4 grid. The example multicast group roots in node 1, and

Fig. 5. “Growing” (routing) multicast tree in a “Depth First” fashion

includes destination node 13 and 12. Initially, the tree only

includes root node 1, as shown in Fig. 5 (a). Since the closest

destination (from existing tree) is node 13, “depth first” routing
first “grows” route 1 → 5 → 9 → 13, as shown in Fig. 5 (b).

Now the closest destination (from existing tree) is node 12,
and the corresponding “branching” node is node 9. So “depth

first” routing then “grows” route 9 → 10 → 11 → 12, as
shown in Fig. 5 (c).

As mentioned before, a fieldbus is a confined system. We

can have global information. Besides, fieldbuses are usu-

ally configured/reconfigured offline. Therefore, our routing

algorithm can be carried out in a centralized way. When

there are multiple multicast trees to “grow”, we grow them

simultaneously with multiple iterations. In each iteration, one

link is added to each tree. Therefore, sometimes multiple trees

may contend for outputs and frame time-slots in a same switch.

The contention is addressed with a matching algorithm that

mimics job-hunting.

The intuition of “job-hunting” based matching runs like

following.

All trees play the role of “applicants” in the “job-hunting”,

while all outputs play the role of “employers”. The “job-

hunting” runs several iterations until all trees find their pre-

ferred outputs and frame time-slots, or declare failure.

Each iteration consists of three sequential steps.

Step 1 (Apply for Job): Each tree ranks all outputs,

and “applies” only to the output that ranks high-

est. Suppose O is the set of all outputs on the

switch; rt,o is the ranking of output o by tree

t; o(t,1)
def
= argmaxo∈O{rt,o}; and o(t,2)

def
=

argmaxo∈O−{o(t,1)}{rt,o}. Then t only applies to

o(t,1).

Step 2 (Offer Job): On receiving job application(s),

an output o grants the tree who is the

most “loyal”, i.e., o shall grant tree

t∗ = argmax{t|t applied to o}{rt,o(t,1) − rt,o(t,2)}.
Step 3 (Accept Job): If a tree is granted a “job-offer” from

Step 2, it accepts the granting output, and reserves

on scheduling frame slots accordingly.

Note as in Step 1, a tree only applies to ONE output, it can

be granted by at the most ONE output in Step 3.

More formal details of the “job-hunting” process is de-

scribed in Fig. 8 of Appendix A.

One key element of the above three step “job-hunting” is the

calculation of rank in Step 1, as the ranking directly influences

which tree is assigned with which output/route.

In our heuristic algorithm, suppose a “growing” tree t

attempts to route through an output o on switch u that connects

to next hop switch v (i.e. link 〈u, v〉), then t shall rank o as

follows:

rt,o =
γo(H̃ −H(t, v))

dis(v, t.target)
, (5)

where H̃ is the maximum tree height limit given by the RTMR

problem; H(t, v) is the hop count from t’s root to v along

the current tree t; t.target is the current depth first routing

destination picked by t (e.g., between Fig. 5 (a) to (b), the

target is node 13); dis(v, t.target) measures the shortest path

hop count between v and t.target in the whole switched

network.

Therefore, (H̃ − H(t, v)) indicates how much flexibility

is left if t picks o. In the extreme case, H(t, v) = H̃ , the

tree reaches its height upper bound, hence has no flexibility

any more. On the other hand, dis(v, t.target) add preference

to outputs that lead the tree closer to the intended target

destination.

The more complicated parameter in Equation (5) is γo. It

evaluates the expected congestion increase on switch u (the

switch that o belongs to) if the tree t chooses output o:

γo =



















1 (if maxj∈Ou
{Nj}

= maxj∈Ou
{N ′

j}),

exp(maxj∈Ou
{Nj} (otherwise)

−maxj∈Ou
{N ′

j})

, (6)

where Ou is the set of all outputs of switch u; Nj is the

number of reserved slots of output j’s M -slot frame schedule;

and N ′
j is the number of reserved slots of output j’s M -slot

frame schedule if tree t finally decides to route through output

o.

Combining all above, Equation (5) reflects our heuristic of

routing preference on a path that is least congested, minimally

increases tree height, and leads closer to target destinations.

We have the following propositions:

Proposition 4: IfK trees participate the “job-hunting”-like

edge/output-port assignment depicted in the pseudo code

of Fig. 8, then the process terminates in at the most K

iterations.

Proof: Due to line 19 of the pseudo code, the iteration will

terminate unless line 25 is executed, which implies line 24 is

executed, which implies at least one tree finds its matching

and is removed from the “applicant” set (A in Fig. 8). As

there are K (i.e., |A| = K) trees, there can be at the most K

iterations. �

Proposition 5: Our heuristic algorithm terminates in poly-

nomial time.

Proof: Due to Proposition 4 and the pseudo code presented in

Appendix A. �

Note, as fieldbus routing is planned offline, we leave the

more detailed algorithm time complexity analysis to interested

readers.

V. EVALUATION

In the Internet literature, the best known multicast al-

gorithms are Distance Vector Multicast Routing Protocol

(DVMRP) [20] and Multicast Extension to Open Shortest Path

First (MOSPF) [21][22]. However, under optimal conditions,

i.e., the network is static, and all nodes have accurate global

information, DVMRP and MOSPF both produce the shortest

path tree for the multicast group, using the well-known Dijk-

stra algorithm [23]. Therefore, we shall compare our RTMR

heuristic algorithm with Dijkstra algorithm.

Our comparisons are based on simulations. In our simula-

tion, we assume a multihop switched industrial fieldbus with a

two-dimensional 12× 12 switches grid topology. Each switch

has a per port capacity of 1Gbps. Without loss of generality,

we assume cell size is 500bit/cell; and M = 2000 cell/frame.

We generate typical real-time video and sensing/actuation

multicast traffic [15] with uniform multicast destinations dis-

tribution.

Our results show that our RTMR heuristics algorithm

achieves a 21% gain on acceptable (i.e., with a routing success

rate of over 50%) network utilization demand compared to

Dijkstra. More detailed simulation results are to be published

in the journal version of this paper due to page limits.

VI. RELATED WORK

Although multicast is not widely supported in the Inter-

net, many multicast schemes are proposed. Such as Reverse

Path Broadcasting/Multicasting (RPB/RPM) [24], Truncated

Reverse Path Broadcasting (TRPB) [24], Distance Vector Mul-

ticast Routing Protocol (DVMRP) [20], Multicast Extension

to Open Shortest Path First (MOSPF) [21][22], Protocol-

Independent Multicast (PIM) [25][26], Core-Based Tree Mul-

ticast Routing (CBT) [27], and more recently on overlay P2P

network multicasting [28][29].

Most Internet multicast routing protocols are to deal with

group management in the multicast tree. This is because of the

high dynamics of Internet: nodes join/leave multicast groups

frequently. Meanwhile, due to the enormous scale of Internet,

it is hard to maintain a global view, hence group management

must be distributed.

Dynamic and distributed group management, however, is

not fieldbus multicast routing’s major concern. As a field-

bus is a specialized confined network, we can have global

information. Meanwhile, most fieldbus traffic is for period-

ical sensing/actuating. Such traffic is typically stable and

consistent. Changes mainly take place offline during plant

reconfigurations. Therefore, we do not have to make the

routing algorithm as fast as online algorithms.

P2P and overlay network multicast are concerned with

statistical performance. Fieldbus multicast, on the other hand,

is hard real-time: every deadline must be caught, otherwise

major failure may happen.

VII. CONCLUSION

We proved that the Real-Time Multicast Scheduling

(RTMS) problem on multi-hop switched fieldbuses is NP-

Hard. To devise an efficient algorithm for RTMS, we trans-

form instances of RTMS problem to instances of Real-Time

Multicast Routing (RTMR) problem. We devised a heuristic

algorithm that takes into consideration of both link congestion

and real-time end-to-end deadline requirements. Simulation

results show that our heuristic RTMR algorithm achieves

higher routing success rate under high network utilization

demand than main-stream multicast algorithm.

ACKNOWLEDGEMENT

The project related to this paper is supported in part by

NSERC Discovery Grant 341823-07, NSERC Strategic Grant

STPGP 364910-08, FQRNT grant 2010-NC-131844, CFI

Leaders Opportunity Fund 23090, The Hong Kong Polytechnic

University (HK PolyU) Internal Competitive Research Grant

(DA) A-PJ68, HK PolyU Newly Recruited Junior Academic

Staff Grant A-PJ80, HK PolyU Fund for CERG Project Rated

3.5 (DA) grant A-PK46. Dr. Qixin Wang is also funded by

Department of Computing start up fund. Mr. Yufei Wang is

also supported by HK PolyU FTE fund.

Any opinions, findings, and conclusions or recommenda-

tions expressed in this publication are those of the authors and

do not necessarily reflect the views of sponsors. The authors

thank anonymous reviewers for their advice on improving this

paper.

REFERENCES

[1] Wayne Wolf, “Cyber-physical systems,” IEEE Computer, vol. 42, no. 3,
2009.

[2] Edward Lee, “Cyber-physical systems: Design challenges,” Proc. of

International Symposium on Object/Component/Service-Oriented Real-

Time Distributed Computing (ISORC), May 2008.
[3] PCAST, Federal Networking and Information technology R&D (NITRD)

Program Review, 2007.

[4] Fieldbus Foundation. http://www.fieldbus.org.
[5] CAN in Automation. http://www.can-cia.org.
[6] PI-PROFIBUS & PROFINET International. http://www.profibus.com.

[7] Avionics Databus Solutions. http://www.afdx.com.
[8] IEEE Standard 1588-2008, 2008.

[9] Qing-Long Han, “A new delay-dependent absolute stability criterion for
a class of nonlinear neutral systems,” Automatica, vol. 44, no. 1, pp.
272–277, Jan. 2008.

[10] Hongbo Li, Zengqi Sun, Mo-Yuen Chow, Huaping Liu, and Badong
Chen, “Stabilization of networked control systems with time delay
and packet dropout – part ii,” Proc. of IEEE Inernational Conf. on

Automation and Logistics, Aug. 2007.

[11] Mo-Yuen Chow and Yodyium Tipsuwan, “Network-based control sys-
tems: A tutorial,” Proc. of the 27th Annual Conf. of the IEEE Industrial

Electronics Society (IECON’01), 2001.
[12] Karl J. Astrom and Bjorn Wittenmark, Computer-Controlled Systems:

Theory and Design (3rd Ed.). Prentice Hall, Nov. 1996.
[13] Gene F. Franklin, J. David Powell, and Abbas Emami-Naeini, Feedback

Control of Dynamic Systems. Addison-Wesley Publishing Company,
Nov. 1993.

[14] Sathish Gopalakrishnan, Marco Caccamo, and Lui Sha, “Switch schedul-
ing and network design for real-time systems,” in Proc. of IEEE RTAS

2006, Apr. 2006.
[15] Qixin Wang and Sathish Gopalakrishnan, “Adapting a main-stream

internet switch architecture for multi-hop real-time industrial networks,”
IEEE Transactions on Industrial Informatics, vol. 6, no. 3, pp. 393–404,
2010.

[16] Qixin Wang, Sathish Gopalakrishnan, Xue Liu, and Lui Sha, “A switch
design for real-time industrial networks,” in Proc. of IEEE RTAS 2008,
Apr. 2008, pp. 367–376.

[17] F. Dopatka and R. Wismuller, “Design of a realtime industrial ethernet
network including hot-pluggable asynchronous devices,” IEEE Interna-

tional Symposium on Industrial Electronics (ISIE 2007), 2007.

[18] Yiu-Wing Leung and Tak-Shing Yum, “A TDM-based multibus packet
switch,” IEEE Trans. on Communications, vol. 45, no. 7, pp. 859–866,
Jul. 1997.

[19] Michael R. Garey and David S. Johnson, Computers and Intractability:

A Guide to the Theory of NP-Completeness. W. H. Freeman and
Company, 1979.

[20] D. Waitzman, C. Partridge, and S. Deering, Distance Vector Multicast

Routing Protocol. RFC 1075, Nov. 1988.

[21] John Moy, Multicast Extensions to OSPF. RFC 1584, Mar. 1994.

[22] ——, MOSPF: Analysis and Experience. RFC 1585, Mar. 1994.

[23] Gary Chartrand, Introductory Graph Theory. Dover Publications, Dec.
1984.

[24] Chuck Semeria and Tom Maufer, Introduction to IP Multicast Routing.
IETF draft-ietf-mboned-intro-multicast-03.txt, Jul. 1997.

[25] B. Fenner, M. Handley, H. Holbrook, and I. Kouvelas, Protocol In-

dependent Multicast – Sparse Mode (PIM-SM): Protocol Specification

(Revised). RFC 4601, Aug. 2006.

[26] A. Adams, J. Nicholas, and W. Siadak, Protocol Independent Multicast

– Dense Mode (PIM-DM): Protocol Specification (Revised). RFC 3973,
Jan. 2005.

[27] A. Ballardie, Core Based Trees (CBT) Multicast Routing Architecture.
RFC 2201, Sep. 1997.

[28] Yang-hua Chu, Sanjay G. Rao, Srinivasan Seshan, and Hui Zhang, “A
case for end system multicast,” ACM SIGMETRICS, 2000.

[29] Xiaowen Chu, Kaiyong Zhao, Zongpeng Li, and Anirban Mahanti,
“Auction-based on-demand p2p min-cost media streaming with network
coding,” IEEE Transactions on Parallel and Distributed Systems, vol. 20,
no. 12, Dec. 2009.

APPENDIX A

RTMR ALGORITHM PSEUDO CODE

In the following, we give the pseudo code of our heuristic

RTMR algorithm.

We assume the switched fieldbus graph ~G(V, ~E) and the set

of all multicast groups M̃ = {m̃i = (si, Di, wi,M, H̃i)} are

given global variables.

For convenience, we use the following data structures:
We use tuple t = (A,B, m̃, a, d,G) to represent a multicast

tree for multicast group m̃. A is t’s vertex set; B is t’s edge
set; m̃ is the corresponding multicast group; a is the current
growing vertex (explained later); d is the current routing
target (explained later); and G is a temporary data structure
only used in function AssignEdges (see Fig. 8), representing
the set of all candidate (a.k.a. granting) outputs for next
hop routing. In addition, A, B, m̃, a, d, and G are acces-
sible through t.vertex set, t.edge set, t.multicast group,
t.vertex to grow, t.cur target, and t.granting outputs
respectively. Before our program starts, for each multicast

group m̃i ∈ M̃, we initiate m̃i’s multicast tree ti :=
({si},∅, m̃i, si,null,∅), i.e.,

ti.vertex set = {si},

ti.edge set = ∅,

ti.multicast group = m̃i,

ti.vertex to grow = si,

ti.cur target = null,

ti.granting outputs = ∅.

We use tuple v = (I,O,A) to denote every vertex v ∈
V . Each vertex in V represents an aforementioned real-time

switch. I and O are vertex/switch v’s input set and output

set respectively. A is a temporary data structure only used in

function AssignEdges (see Fig. 8), representing the set of trees

that want to route through this vertex/switch. In addition, I,
O, and A are accessible via v.input ports, v.output ports,

and v.applicant trees.

With the above conventions, Fig. 6 shows the pseudo code

of our main program.

// Note ~G(V, ~E) and M̃ = {m̃i = (si, Di, wi,M, H̃i)}
// are given global variables
1. main function RTMR()

2. result: either claim unable to solve M̃; or find a routing tree ti for
each m̃i, such that ti’s root is si, ti’s leaves are Di, ti is a subgraph

of ~G, every vertex (switch) in ti is schedulable, and ti’s height is

no taller than H̃i hops.
3. {

4. Let the set of all successfully routed (grown) multicast trees T̃ := ∅;
5. Let the set of all to-be-grown multicast trees T :=

⋃
{ti};

6. while (T 6= ∅) {
7. foreach v ∈ V , set v.applicant trees := ∅;
8. foreach ti ∈ T {
9. UpdateVertexToGrow(ti);
10. Let v := ti.vertex to grow;

11. if (v = null) return claim unable to solve M̃;
12. else v.applicant trees := v.applicant trees

⋃
{ti};

13. }
14. foreach (v ∈ V and v.applicant trees 6= ∅) {
15. boolean result := AssignEdges(v);
16. if (result = true) {
17. ∆ := {δ ∈ v.applicant trees|δ reached all

intended multicast destinations};

18. T̃ := T̃
⋃

∆; T := T −∆;

19. }else return claim unable to solve M̃;
20. }
21. }

22. return the routed trees T̃ ;
23. }

Fig. 6. Main Function for RTMR

Fig. 7 describes the UpdateVertexToGrow function of the

main program. UpdateVertexToGrow plays the main role in

carrying out the “depth first” tree growth strategy.

1. function UpdateVertexToGrow(t)
2. result: update t.vertex to grow; or set t.vertex to grow := null if

failed to find feasible vertex to grow;
3. {

4. denote m̃ = (s,D,w,M, H̃) := t.multicast group;
5. if (t.cur target = null or t has reached t.cur target) {
6. Let D′ := D − t.vertex set, that is, D′ is the remaining

destinations of m̃ that t has not yet reached;
7. Choose a′ ∈ t.vertex set and d′ ∈ D′ such that

∀x ∈ t.vertex set and ∀y ∈ D′, dis(x, y) ≥ dis(a′, d′),
where dis(x, y) is the shortest hop count from vertex x to y

in graph ~G;
8. if (a′’s input can schedule a new branch of t toward d′) {
9. t.vertex to grow := a′;
10. t.target := d′;
11. }else t.vertex to grow := null; //return failure
12. } //else do nothing
13. }

Fig. 7. UpdateVertexToGrow Function for RTMR

Fig. 8 describes the AssignEdges function in the main

program. This function carries out the “job-hunting”-like tree

routing contention resolution mechanisms.

1. function AssignEdges(v)
2. result: if successfully assigns each applicant tree an output link

(i.e. each tree grows), return true;
otherwise, claim failure to find feasible route by returning false.

3. {
4. Let O := v.output ports; //analogy: set of employers
5. Let A := v.applicant trees; //analogy: set of applicants
6. foreach t ∈ A, set t.granting outputs := ∅;
7. boolean infeasible := false;
8. while (A 6= ∅ and not infeasible) {

//analogy: another iteration of job-hunting starts
9. ∀t ∈ A and ∀o ∈ O, let rt,o :=Ranking(t, o);

10. o(t,1) := argmaxo∈O{rt,o};

11. o(t,2) := argmax
o∈O−{o(t,1)}{rt,o};

//analogy: all applicants rank all employers; and apply only to o(t,1).
//rt,o indicates how much t prefers o as its next hop.

12. foreach (o ∈ O) {
13. Choose t∗ := argmax{t|t∈A and o=o(t,1)}{rt,o(t,1) − r

t,o(t,2)
};

14. Suppose t∗.multicast group = (s,D,w,M, H̃);
15. if (rt∗,o ≥ 0){ //o is feasible for t∗

16. t∗.granting outputs := t∗.granting outputs
⋃
{o};

//analogy: employer o offers job to the most loyal applicant
17. }
18. }
19. infeasible := true;
20. foreach (t ∈ A) {
21. Denote G = t.granting outputs;
22. if (G 6= ∅) {

23. t accepts o∗ = o(t,1)’s grant, i.e.,
t choose o∗ as the next step output, reserves proper
slots on o∗’s and corresponding input’s schedule, and update
t’s corresponding internal data structures;
//analogy: t accepts the best job offer

24. A := A− {t};
25. infeasible := false; //may have more possible matches
26. }
27. }
28. }
29. if (A 6= ∅ and infeasible) return false;
30. else return true;
31. }

Fig. 8. AssignEdges Function for RTMR

Fig. 9 is the Ranking function called in function As-

signEdges.

1. function Ranking(t, o)
2. result: a non-negative number indicating tree t’s preference on choosing

output o as its next hop, the larger the more preferable;
or −1 if choosing o is infeasible.

3. {

4. Let m̃ = {s,D,w,M, H̃} := t.multicast group;

5. if (choosing o as next hop output makes t’s height exceed H̃)
return −1;

6. if (o cannot schedule t’s traffic of w cell/frame) return −1;
7. if (in case of multicast branching, the corresponding input cannot

schedule additional w cell/frame of t’s traffic) return −1;
8. return ranking calculated per Equation (5) of Section IV;
9. }

Fig. 9. Ranking Function for RTMR

