From Offline Long-Run to Online Short-Run: Exploring A New Approach of Hybrid Systems Model Checking for MDPnP

Tao Li*, Qixin Wang*, Feng Tan*, Lei Bu, Jian-nong Cao*, Xue Liu, Yufei Wang*, Rong Zheng *The Hong Kong Polytechnic Univ.

CPS Week 2011

Content

Demand

Background

Challenge

Solution

Evaluation

Related Work

Content

Demand

Background

Challenge

Solution

Evaluation

Related Work

MDPnP leads to better safety, capability, and convenience of medical settings.

MDPnP can help prevent many serious/lethal accidents in medical settings.

Following the success of requiring avionics to be verifiably safe \rightarrow MDPnP to be verifiably safe.

Content

Demand

Background

Challenge

Solution

Evaluation

Related Work

 $Var = \{nbeer, nsoda\}, domain(nbeer) = \{0, 1, 2\}, domain(nsoda) = \{0, 1, 2\}$

$$PG = (Loc, Act, Effect, :\rightarrow, Loc_0, g_0)$$

Computer systems model checking verifies safety, liveliness, persistence, and other properties.

Transition System of a Program Graph Example

Note the combinatorial explosion of size.

refill:

nbeer = 0

nsoda = 0;

ret coin

nbeer := 2.

nsoda := 2.

Computer

Supervisor Surgeon SpO₂ O₂ Sensor Ventilator Laser Sensor Scalpel Patient

Biochemical

A state-of-the-art CPS model checking is Hybrid Systems Model Checking: Comp + Fdbk Ctrl.

Bouncing Ball Example

The state-of-the-art CPS model checking is Hybrid Systems Model Checking: Comp + Fdbk Ctrl.

The state-of-the-art CPS model checking is Hybrid Systems Model Checking: Comp + Fdbk Ctrl.

Content

Demand

Background

Challenge

Solution

Evaluation

Related Work

However, existing hybrid systems model checking (computer + fdbk ctrl) doesn't very well fit MDPnP.

However, existing hybrid systems model checking (computer + fdbk ctrl) doesn't very well fit MDPnP.

Existing model checking:

Offline (partly due to lack of time cost bound),

Time-Unbounded Behavior (Long-Run Future)

However, existing hybrid systems model checking (computer + fdbk ctrl) doesn't very well fit MDPnP.

Existing model checking:

Offline (partly due to lack of time cost bound),

Time-Unbounded Behavior (Long-Run Future)

Challenge 1: No good offline models for complex biomedical systems of human body.

However, existing hybrid systems model checking (computer + fdbk ctrl) doesn't very well fit MDPnP.

Existing model checking:

Offline (partly due to lack of time cost bound),

Time-Unbounded Behavior (Long-Run Future)

Challenge 1: No good offline models for complex biomedical systems of human body.

Challenge 2: Verification state space easily explode.

Take laser tracheotomy offline hybrid systems modeling as an example: model SpO₂ offline?

Content

Demand

Background

Challenge

Solution

Evaluation

Related Work

Traditional model checking vs. Ours:

Offline←→Online Periodical Real-TimeLong-Run Future ←→Short-Run Future

Traditional model checking vs. Ours:

Offline←→Online Periodical Real-TimeLong-Run Future ←→Short-Run Future

Challenge 1: No good offline models for complex biomedical systems of human body.

Traditional model checking vs. Ours:

Offline←→Online Periodical Real-TimeLong-Run Future ←→Short-Run Future

Challenge 1: No good offline models for complex biomedical systems of human body.

Most vital signs' online short-run behavior is easy to predict.

Traditional model checking vs. Ours:

Offline←→Online Periodical Real-TimeLong-Run Future ←→Short-Run Future

Challenge 1: No good offline models for complex biomedical systems of human body.

Most vital signs' online short-run behavior is easy to predict.

Challenge 2: Verification state space easily explode.

Traditional model checking vs. Ours:

Offline←→Online Periodical Real-TimeLong-Run Future ←→Short-Run Future

Challenge 1: No good offline models for complex biomedical systems of human body.

Most vital signs' online short-run behavior is easy to predict.

Challenge 2: Verification state space easily explode.

Online \rightarrow Fixes Many Parameters

Short-Run \rightarrow Shrink State Space

Let's model the patient again, now online and short-run, with period *T*.

Let's model the patient again, now online and short-run, with period *T*.

The online short-run model for ventilator.

The online short-run model for laser-scalpel.

The online short-run model for supervisor.

Hybrid Systems Model Checking \rightarrow undecidable

Hybrid Systems Model Checking \rightarrow undecidable

Linear Hybrid Automaton (LHA) model checking \rightarrow undecidable

Hybrid Systems Model Checking \rightarrow undecidable

Linear Hybrid Automaton (LHA) model checking \rightarrow undecidable

Simple Time-Bounded (STB) LHA model checking \rightarrow

Hybrid Systems Model Checking \rightarrow undecidable

Linear Hybrid Automaton (LHA) model checking \rightarrow undecidable

Simple Time-Bounded (STB) LHA model checking \rightarrow

We proved a well-known reachability calculation procedure terminates within polynomial time.

Hybrid Systems Model Checking \rightarrow undecidable

Linear Hybrid Automaton (LHA) model checking \rightarrow undecidable

Simple Time-Bounded (STB) LHA model checking \rightarrow

We proved a well-known reachability calculation procedure terminates within polynomial time.

STB LHA is powerful enough to describe laser tracheotomy scenario, a representative MDPnP application.

Content

Demand

a (A) ##

Background

Challenge

Solution

Related Work

Sampling/Model-Checking Period: T = 3 second.

Sampling/Model-Checking Period: T = 3 second.

Hand written online model generator + PHAVer hybrid systems model checker

Sampling/Model-Checking Period: T = 3 second.

Hand written online model generator + PHAVer hybrid systems model checker

Lenovo Thinkpad X201 + Intel Core i5 + 2.9G Mem + 32-bit Ubuntu 10.10 Statistics of execution (modeling + checking) time cost: real-time feasible (with pipelining).

Min	Max	Mean	Std
0.571	1.445	0.727	0.163

Statistics of online SpO₂ prediction accuracy

$$ERR_{SpO_2}(t_0 + T) = \frac{|\widehat{SpO}_2(t_0 + T) - \widetilde{SpO}_2(t_0 + T)|}{\widehat{SpO}_2(t_0 + T)}$$

Content

Demand

a States

Background

Challenge

Solution

Evaluation

Related Work

Runtime Verification [finkbeiner02]

Online discrete systems model checking [qi09][easwaran06]

Other hybrid systems model checkers [robby03][bartocci08]

Thank You!

References

[bartocci08] E. Bartocci, F. Corradini, E. Entcheva, R. Grosu, and S. A. Smolka, Cellexcite: An efficient simulation environment for excitable cells. BMC Bioinformatics, 9(2):1-13, Mar. 2008.

- [easwaran06] Arvind Easwaran, Sampath Kannan, Oleg Sokolsky: Steering of Discrete Event Systems: Control Theory Approach. Workshop on Runtime Verification 2006.
- [finkbeiner02] B. Finkbeiner, S. Sankaranarayanan, and H. Sipma, Collecting statistics over runtime executions. ENTCS, 70:4, 2002
- [qi09] Z. Qi, A. Liang, H. Guan, M. Wu, and Z. Zhang, A hybrid model checking and runtime monitoring method for c++ web services. Proc. of the Fifth International Joint Conference on INC, IMS and IDC, 2009.
- [robby03] Robby, M. B. Dwyer, and J. Hatcliff. Bogor: An extensible and highlymodular software model checking framework. Proc. of the 9th European Software Engineering Conference (ESEC/FSE-11), 2003.

Backup

 $Var = \{nbeer, nsoda\}, domain(nbeer) = \{0, 1, 2\}, domain(nsoda) = \{0, 1, 2\}$

$$PG = (Loc, Act, Effect, :\rightarrow, Loc_0, g_0)$$

Effect Function: $Act \times Eval(Var) \mapsto Eval(Var)$, e.g., $Effect(coin, \eta) = \eta$, $Effect(ret_coin, \eta) = \eta$, $Effect(sget, \eta) = \eta[nsoda := nsoda - 1]$, $Effect(bget, \eta) = \eta[nbeer := nbeer - 1]$, $Effect(refill, \eta) = [nsoda := 2, nbeer := 2]$.

$$PG = (Loc, Act, Effect, : \rightarrow, Loc_0, g_0)$$

Conditional Transition Relation : $\subseteq Loc \times Cond(Var) \times Act \times Loc$. Often use shortcut $l : \xrightarrow{g:\alpha} l'$ instead of (l, g, α, l') ; in cases where g = true, use $l : \xrightarrow{\alpha} l'$.

 $Var = \{nbeer, nsoda\}, domain(nbeer) = \{0, 1, 2\}, domain(nsoda) = \{0, 1, 2\}$

 $Var = \{nbeer, nsoda\}, domain(nbeer) = \{0, 1, 2\}, domain(nsoda) = \{0, 1, 2\}$

