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Abstract—Cyber-Physical Systems (CPS) integrate discrete-
time computing and continuous-time physical-world entities,
which are often wirelessly interlinked. The use of wireless safety
critical CPS (control, healthcare etc.) requires safety guarantees
despite communication faults. This paper focuses on one impor-
tant set of such safety rules: Proper-Temporal-Embedding (PTE).
Our solution introduces hybrid automata to formally describe
and analyze CPS design patterns. We propose a novel lease based
design pattern, along with closed-form configuration constraints,
to guarantee PTE safety rules under arbitrary wireless commu-
nication faults. We propose a formal methodology to transform
the design pattern hybrid automata into specific wireless CPS
designs. This methodology can effectively isolate physical world
parameters from affecting the PTE safety of the resultant specific
designs. We conduct a case study on laser tracheotomy wireless
CPS to show that the resulting system is safe and can withstand
communication disruptions.

I. INTRODUCTION

To introduce the CPS context [1]–[6], we consider a
classical system approach and annotate it with CPS specifics.

Consider a distributed CPS system where each entity has
an abstract “safe” state and an abstract “risky” state. During
idle time, all entities dwell in their safe states. However, to
accomplish a collective task, a distributed procedure must be
carried out: relevant entities must enter respective risky states
in a fixed order and with certain minimal temporal spacing;
and then (after the intended task is done) exit to the respective
safe states in exactly the reverse order, and with the requisite
temporal spacing. This is called Proper-Temporal-Embedding
(PTE). Furthermore, each entity’s continuous dwelling time
(i.e. the duration that it continuously stays in the state) in its
“risky” state must be upper bounded by a constant. The safety
rules encompassing the discrete ordering and continuous-time
temporal conditions are termed as PTE safety rules.

As an example of PTE safety (see Fig. 1), in laser tra-
cheotomy [3] (a classical case study in CPS), the oxygen
ventilator has the “safe” ventilating state, and the “risky” pause
state; the laser-scalpel has the “safe” shutoff state, and the
“risky” emission state. In order to emit the laser, the oxygen
ventilator must first enter the pause state, and only then can
the laser-scalpel enter the emission state. Otherwise, the laser
emission can trigger fire on the oxygen ventilated trachea of
the patient. Conversely, the laser-scalpel must first exit the
emission state, and then the ventilator can exit the pause state.
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Thirdly, certain minimal temporal spacing must be maintained
during enter/exit of “risky” states, as shown by t1 and t2 in
Fig. 1 (e.g., t1 means that only after the oxygen ventilator has
paused for t1 can laser start emission, otherwise the patient’s
trachea may still have high enough oxygen concentration to
catch fire; note this “pause t1 before laser emission” approach
is chosen in real practice because hard real-time and error-
free trachea oxygen level sensing is impractical). Fourthly, the
continuous dwelling time, as shown by t3 and t4 in Fig. 1,
must each be upper bounded by a constant (e.g., the ventilator
pause duration t3 must be upper bounded, for otherwise the
patient may suffocate to death). Modeling these sequenced
CPS operations constitute design patterns.

Fig. 1. Proper-Temporal-Embedding Example

Note that the above CPS procedure (i.e. the PTE safety
rules) is not a conventional distributed transaction. In a classi-
cal distributed transaction, each participating entity can check-
point its current state, i.e., log based recovery for aborts. If
the distributed transaction fails, each entity can roll-back to its
check point. This is often infeasible for physical world entities
in CPS, e.g., we cannot revive (roll-back) a killed patient; even
reviving (roll-back) an injured patient to his/her check-pointed
state when he/she enters hospital is hard.

As the CPS environment entails wireless-connected sens-
ing, control and computing entities, guaranteeing PTE safety
rules necessitates consideration of unreliable wireless commu-
nication. Thus, we utilize and adapt the established notion of
“leasing” [7]–[12], to ensure auto-reset of distributed entities
under communication faults. The basic idea is that each entity’s
dwelling duration in risky state is “lease” based. A lease is a
timer, which takes effect when the entity enters the risky state.
When the lease expires, the entity exits the risky state, no
matter if it receives exit command from another entity or not.

This paper develops a novel approach to utilize “leasing”
to ensure PTE safety rules in wireless CPS. Our contributions
being:

1. We propose utilizing hybrid modeling [13]–[15] to
describe and analyze CPS design patterns. Hybrid
modeling is a formal technique to describe/analyze
both the discrete and continuous dynamics of a sys-
tem, hence it is suitable for CPS. Recently, hybrid
modeling has gained popularity for CPS, though to
our best knowledge, it is mostly used for verification
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and we are the first to apply it to CPS design pattern
research.

2. We propose a rigorous lease based design pattern
for wireless CPS; and identify a set of closed-form
constraints on software (i.e. cyber) configuration pa-
rameters. We prove that as long as these constraints
are satisfied, the design pattern guarantees PTE safety
rules under arbitrary packet losses over wireless.

3. We propose a formal methodology to transform the
design pattern hybrid automata into specific wireless
CPS designs. This methodology can effectively isolate
physical world parameters (which are much harder
to control, if not impossible, compared to the soft-
ware/cyber parameters) from affecting the PTE safety
of the resultant specific wireless CPS designs1.

4. A case study on laser tracheotomy wireless CPS
is presented to validate our proposed approach and
analysis.

The rest of the paper is organized as follows. Section II
introduces the CPS hybrid modeling background; Section III
describes the requirements to guarantee PTE safety rules;
Section IV formally defines the lease based design pattern, and
proves its guarantee over PTE safety rules. The methodology
to elaborate the design patterns into specific designs is also
presented here. Section V conducts a case study to validate our
proposed approach. We present the related work in Section VI.

II. BACKGROUND, TERMINOLOGY AND MODELS

A. The Hybrid Modeling Terminology

Hybrid modeling is based on hybrid automaton [13]–
[16], and has been adapted in modeling CPS since it can
formally describe/analyze both discrete (cyber) and continuous
(physical) dynamics. For example, Fig. 2 illustrates a hybrid
automaton that describes the discrete/continuous behaviors
of a stand-alone ventilator. Hvent(t) is the height of the
ventilator cylinder at time t. The ventilator initially dwells in
the location of “PumpOut”: the cylinder moves downward at
speed 0.1(m/s). When it hits bottom (Hvent = 0), it moves to
location “PumpIn”, where the cylinder moves upward at speed
0.1(m/s). When it hits ceiling (Hvent = 0.3(m)), it moves to
location “PumpOut” again, so on and so forth.

As the goal of this paper is to provide formal descriptions
and analysis, it is necessary to first give the formal definition
of hybrid automaton. We use the hybrid automaton of Fig. 2
to explain the following abstract definitions.

According to [13]–[15], a hybrid automaton A is a tuple
(~x(t), V , inv, F , E, g, R, L, syn, Φ0) of following compo-
nents:

1. A data state variables vector ~x(t) = (x1(t), x2(t), . . . ,
xn) ∈ R

n of n data state variables of time t, where n is called

1Note a key difference between distributed computer systems and wireless
(hence distributed) CPS lies in the continuous variables, which represent
physical world states and are not fully controllable by the computer commands.
For example, in surgery, the surgeon is a human-in-the-loop entity of the
holistic CPS, where his/her actions are not fully controlled by computer
commands. Similarly, the patient’s precise blood oxygen level is only partially
controllable by computer control as many cyber and physical factors can affect
it, even including the patient’s emotion.

Fig. 2. Hybrid Automaton A′
vent of a Stand-Alone Ventilator. Hvent(t)

is the data state variable denoting the ventilator’s cylinder height at time t.
“PumpOut” is the only initial location.

the dimension of A. A possible evaluation of ~x(t), denoted as
~s ∈ R

n, is called a data state of A (at time t). In the example
of Fig. 2, the data state variables vector is (Hvent(t)), i.e. it
contains only one data state variable: Hvent(t), which is the
height of the ventilator cylinder at time t.

2. A finite set V of vertices called locations. The state of A
(at time t) is a tuple φ(t) = (ℓ(t), ~x(t)) of two variables of time
t: the aforementioned data state variables vector ~x(t), and the
location counter ℓ(t) ∈ V , which indicates the current location
that A dwells at. In the example of Fig. 2, the ventilator hybrid
automaton has two locations: PumpOut and PumpIn.

3. A function inv that assigns to each v ∈ V a subset of Rn,
aka. the invariant set. As long as the location counter ℓ(t) = v,
~x(t) must satisfy ~x(t) ∈ inv(v). In the example of Fig. 2, in
location PumpOut, the invariant is that the ventilator cylinder
height Hvent(t) stays in the range 0 < Hvent(t) ≤ 0.3(m).

4. A set of flow maps F = {fv|fv : Rn 7→ R
n, ∀v ∈ V },

with each element fv defining a set of differential equations

~̇x = fv(~x) over data state variables vector ~x(t) for each
location v ∈ V . These differential equations specify the
continuous dynamics of ~x(t) when ℓ(t) = v. In the example of
Fig. 2, in location PumpOut, the flow maps only involve one

differential equation: Ḣvent(t) = −0.1(m/s), i.e. the ventilator
cylinder pushes downward at a velocity of −0.1(m/s).

5. A finite set of edges E. Each edge e ∈ E identifies a
discrete transition (v, v′) from a source location v ∈ V to a
destination location v′ ∈ V . We denote the source location of
edge e as src(e); while the destination location as des(e). An
edge e = (v, v′) specifies the possible discrete dynamics of
A’s state: it can switch from ℓ(t) = v to ℓ(t+) = v′. In the
example of Fig. 2, there are two edges: from location PumpOut
to PumpIn, and vice versa.

6. A guard function g : E 7→ R
n that assigns each e ∈ E

a guard set g(e) ⊆ inv(src(e)). Discrete transition e can only
take place when ~x(t) ∈ g(e). In the example of Fig. 2, the
guard condition for the edge (transition) from PumpOut to
PumpIn is that the ventilator cylinder reaches the bottom of
its movement range, i.e. Hvent(t) = 0.

7. A finite set of reset functions R = {re|re : inv(src(e)) 7→
2inv(des(e)), ∀e ∈ E}. When the A’s state switches from
ℓ(t) = src(e) to ℓ(t+) = des(e) via transition e ∈ E, ~x(t+)
is assigned a new data state from set re(~x). In the example
of Fig. 2, the reset functions for both edges are the identity
function, i.e., the state variables vector ((Hvent(t)) does not
change value after each transition (edge). We hence omit the
reset functions in the figure.

8. A finite set L of synchronization labels and a synchro-



nization labeling function syn that assigns to each edge e ∈ E
a synchronization label syn(e) ∈ L. A synchronization label
consists of a root and a prefix, which respectively represent a
event and the role of the hybrid automaton for that event.

When entity ξ1 (whose hybrid automaton is A1) sends
an event l to entity ξ2 (whose hybrid automaton is A2), a
transition e1 in A1 takes place; and on receiving the event,
transition e2 is triggered in A2. Correspondingly, we put a
synchronization label !l to e1 and ?l to e2. We respectively
add the prefixes ! and ? to the root l, to distinguish the sender
and the receiver of event l. In case l is received unreliably,
which is typical for wireless, we use ?? instead of a single ?
prefix. Synchronization labels with different prefixes or roots
are regarded as different. For example, !l, ?l, ??l are considered
three different synchronization labels, though they are related
to a same event by the root l.

If an event (correspondingly, a synchronization label root)
is communicated across multiple hybrid automata, then the
corresponding synchronization labels are external; otherwise,
the corresponding synchronization labels are internal. For an
internal synchronization label whose corresponding event does
not have receiver(s), prefix ! is omitted.

In the example of Fig. 2, when the transition from location
PumpOut to PumpIn happens, event evtV PumpIn happens;
in the other way around, event evtV PumpOut happens. The
! prefix to evtV PumpIn and evtV PumpOut in the figure
indicates the events are broadcasted. If there are other hybrid
automata in the system, some transitions may be triggered
on receiving these events, the corresponding transitions are
labeled with ?evtV PumpIn or ?evtV PumpOut. In case
the reception of events are via unreliable (e.g. wireless)
communication links, the corresponding labels should be
??evtV PumpIn or ??evtV PumpOut.

9. A set of possible initial states Φ0 ⊆ {(v,~s) ∈ V ×
R

n|v ∈ V,~s ∈ inv(v)}. We also call Φ0’s projection on
location set V as initial locations, denoted as Φ0|V . In the
example of Fig. 2, the possible initial states can be Φ0 =
{(PumpOut, (h0))}, where h0 ∈ [0, 0.3]; i.e. starting from
location PumpOut and cylinder height Hvent(0) ∈ [0, 0.3](m).

B. System and Fault Model

A hybrid system H is a collection of hybrid automata
(each is called a member hybrid automaton of H), which
execute concurrently and coordinate with each other via event
communications (i.e., the sending/receiving of synchronization
labels). For simplicity, in this paper, we assume no shared data
state variables nor shared locations between different hybrid
automata of a hybrid system. That is, data state variable names
or location names are local to their respective hybrid automata.

A distributed sink-based wireless CPS consists of the
following entities: a central base station ξ0 and N (in this
paper, we require N ≥ 2) remote entities ξ1, ξ2, . . ., ξN . A
wireless communication link from the base station to a remote
entity is called a downlink; and a wireless communication link
from a remote entity to the base station is called an uplink. We
assume that there is no direct wireless communication links
between any two remote entities (such practice is desirable
for wireless applications with high dependability requirements
[17], [18]).

We assume that each packet’s checksum is strong enough
to detect any bit error(s); a packet with bit error(s) is discarded
at the receiver. Our fault model assumes that packets sent
via wireless can be arbitrarily lost (not received at all, or
discarded at the receiver due to checksum errors). As per
PTE safety requirements, the uplink communication delays are
specified and handled by the base station. For the downlink,
the remote entities locally specify delays as acceptable or as
lost-messages.

III. THE BASIS AND SPECIFICATION OF THE PTE SAFETY

RULES

For the wireless CPS system and communications fault
model described in Section II-B, various safety requirements
can be proposed. Addressing all of them is beyond the scope of
this paper. Instead, this paper considers a representative subset
of such safety requirements, i.e. the requirement to guarantee
PTE safety rules. We start by defining these safety rules.

Let hybrid system H = {Ai| (i = 0, 1, . . ., N )} describes
a wireless CPS. The hybrid automaton Ai describes wireless
CPS member entity ξi. The synchronization labels/functions
describe the communication relationships between these hybrid
automata.

We assume that for each hybrid automaton Ai = (~xi(t),
Vi, invi, Fi, Ei, gi, ri, Li, syni, Φ0,i) (where i = 1 ∼ N ),

Vi is partitioned into two subsets: V safe
i and V

risky
i . We call

a location v a “safe-location” iff v ∈ V safe
i ; and a “risky-

location” iff v ∈ V
risky
i (note we do not differentiate the

safe/risky locations for ξ0).

There are two types of PTE safety rules, namely:

PTE Safety Rule 1 (Bounded Dwelling): Each entity ξi’s
(i = 1 ∼ N ) continuous dwelling time (i.e. continuous-stay
time-span) in risky-locations is upper bounded by a constant.

To describe the second PTE safety rule, however, we must
first introduce the following definition.

Definition 1 (Proper-Temporal-Embedding Partial Order):
We say that entity ξi and ξj has a proper-temporal-embedding
partial order ξi ≺ ξj iff their respective hybrid automata Ai

and Aj always satisfy the following properties:

p1. If ξi dwells in safe-locations at time t (i.e. Ai’s loca-
tion counter ℓi(t) ∈ V safe

i ), then throughout interval
[t, t + Tmin

risky:i→j ], ξj dwells in safe-locations, where

constant Tmin

risky:i→j is the ξi to ξj enter-risky safeguard
interval.

p2. Whenever ξj dwells in risky-locations, ξi dwells in
risky-locations.

p3. If ξj dwells in risky-locations at time t, then through-
out interval [t, t + Tmin

safe:j→i], ξi dwells in risky-

locations, where constant Tmin

safe:j→i is the ξj to ξi exit-
risky safeguard interval.



Intuitively, Property p2 implies that whenever entity ξj is
in risky-locations, then entity ξi is already in risky-locations.
Property p1 and p3, in addition, specify the safeguard inter-
val requirements that ξi and ξj enter/exit respective risky-
locations. Specifically, Property p1 implies that before ξj
enters its risky-locations, ξi should have already been in risky-
locations for at least Tmin

risky:i→j . Property p3 implies that after
ξj exits its risky-locations (i.e. returns to safe-locations), ξi
must stay in risky-locations for at least Tmin

safe:j→i.

The above intuition is illustrated by Fig. 1, where in
laser tracheotomy, ventilator ≺ laser-scalpel, if we consider
“pause” and “emission” are risky-locations and “ventilating”
and “shutoff” are safe-locations.

With this notion of PTE partial ordering, the second PTE
safety rule is defined as:

PTE Safety Rule 2 (Proper-Temporal-Embedding): The
proper-temporal-embedding partial ordering between entities
ξ1, ξ2, . . ., ξN forms a full ordering.

In the following, for narrative simplicity and without loss
of generality, we assume that PTE Safety Rule 2 implies a full
ordering of

ξ1 < ξ2 < . . . < ξN . (1)

We call a safety rule set belongs to the category of PTE
safety rules iff the rule set consists of and only of PTE Safety
Rule 1 and 2. As mentioned before, in this paper, we shall
only focus on wireless CPS whose safety rules belong to the
category of PTE safety rules. For simplicity, we call such
wireless CPS “PTE wireless CPS”.

IV. DEVELOPING DESIGN PATTERN BASED SOLUTIONS

To guarantee PTE safety rules described in the previous
section, we propose a lease based design pattern approach.
This approach is elaborated in the following three subsections.
Subsection IV-A formally describes the proposed lease based
design pattern. Subsection IV-B analyzes the validity of the
proposed design pattern. Subsection IV-C describes how to
transform the lease based design pattern into specific designs.

A. The Lease Based Design Pattern

For a PTE wireless CPS, we assume that safety is guaran-
teed if all its member entities stay in their safe-locations. The
challenge arises when a remote entity needs to enter its risky-
locations. In the following, we propose a “lease” based design
pattern, and (in the subsequent subsections) show that as long
as the PTE wireless CPS design complies with the proposed
design pattern, the PTE safety rules are guaranteed.

When a remote entity ξk (k ∈ {1, 2, . . . , N}) of a PTE
wireless CPS requests to enter its risky-locations, PTE Safety
Rule 2 and Ineq. (1) imply that entity ξ0, ξ1, . . . , ξk must
coordinate. this may be achieved through wireless commu-
nications (uplink/downlink) via the base station ξ0. However,

wireless communications are by nature unreliable. Messages
may be lost, and the states of participating entities may become
inconsistent, violating the PTE safety rules.

To deal with the unreliable wireless communications, we
propose a design pattern based on the well-known “leasing”
design philosophy [7]. The “leasing” design philosophy says
that every (distributed) resource must be allocated according
to a “lease”, i.e. a contract specifying the start/expiration
time of using that resource. If, by the lease’ expiration, the
resource has not yet been released by the user, the resource will
release itself automatically. Therefore, even if the distributed
systems’ communication infrastructure fails, every resource
will be released in the end (by the user or itself) after all. This
can be used to eliminate/heal inconsistent states of distributed
systems.

Lease-based design has been widely adopted in distributed
computer systems, particularly distributed storage and database
systems. We find it can also be applied to cyber-physical
systems, where discrete and continuous states intermingle.
Compared to the many existing lease based designs in com-
puter systems, the CPS lease based design faces the following
paradigm shifts.

First, lease based designs in computer (i.e. cyber) systems
are often integrated with distributed check-point and roll-
back [7]–[10]. However, in CPS, computers often have little
control over the physical world states: these states cannot be
check-pointed or rolled-back. For example, we cannot revive
a killed patient; nor can we recover a piece of burnt wood.

Second, instead of carrying out check-point and roll-back,
we need to enforce the PTE temporal ordering and correspond-
ing safeguard intervals to guarantee safety.

Third, not only computers have little control over CPS
physical world states, these states can adversely interfere with
cyber system dynamics.

Considering the above paradigm shifts, our lease based
design pattern shall not use check-point or roll-back. Instead,
its safety is guaranteed by properly configuring temporal logic
parameters and (physical world) continuous state variables.

Specifically, there are three roles for PTE wireless CPS en-
tities: Supervisor, Initializer, and Participant. The base station
ξ0 serves the role of “Supervisor”. Initially, all entities stay in
their respective safe-locations. We only allow a remote entity
to proactively request switching to its risky-locations. Such a
remote entity is called an “Initializer”.

For the time being, let us assume there is only one
Initializer; and without loss of generality, assume the Initializer
is remote entity ξN .

According to PTE Safety Rule 2 and Ineq. (1), when ξN re-
quests to enter risky-locations, remote entity ξ1, ξ2, . . . , ξN−1

must enter respective risky-locations before ξN . Remote enti-
ties ξ1, ξ2, . . . , ξN−1 hence play the role of “Participants”.

We require that every entity ξi’s (i ∈ {0, 1, 2, . . . , N})
dwelling in risky-locations be based on a lease, i.e. a contract
between the Supervisor and ξi. A lease specifies the expiration
time of dwelling in the risky-locations, and takes effect upon
the entrance to risky-locations. If by the lease expiration, the



Supervisor has not yet aborted/cancelled the lease, ξi will exit
to safe-location automatically.

Guided by the above design philosophies, we propose the
design of Supervisor, Initializer, and Participant as following.

Supervisor:

Conceptually, the Supervisor ξ0 shall start from a “Fall-
Back” location. Whenever the Initializer ξN requests leasing
itself to enter risky-locations, the Supervisor shall lease Partic-
ipants ξ1, ξ2, . . ., ξN−1 according to PTE ordering first. After
all ξ1 ∼ ξN−1 are leased (i.e. ξ1 ∼ ξN−1 enter respective
risky-locations), the Supervisor approves ξN ’s lease request
to enter risky-location. The Initializer ξN can also request to
cancel the leases; or when an application dependent proposi-
tion ApprovalCondition is violated (e.g. in laser tracheotomy
wireless CPS, ApprovalCondition means blood oxygen level
SpO2 is higher than threshold ΘSpO2

), Supervisor ξ0 can
abort leases. Lease cancellations/abortions are conducted in
the reverse PTE order.

Fig. 3. Sketch of Hybrid Automaton Asupvsr, the Design Pattern for
Supervisor.

The above conceptual design of the Supervisor is specified
by a hybrid automaton Asupvsr (see Fig. 3 for the sketch of
Asupvsr) as follows.

1. Asupvsr’s location set Vsupvsr include the following
locations: “Fall-Back”, “Lease ξi” (where i = 1 ∼ N ),
“Cancel Lease ξi” (where i = 1 ∼ N ), and “Abort
Lease ξi” (where i = 1 ∼ N ).

2. Initially, the Supervisor dwells in location “Fall-
Back”, and all data state variables initial values are
zero.

3. When in location “Fall-Back”, if an event
evtξNToξ0Req is received (which is sent by
the Initializer requesting for entering risky-locations,
see the descriptions for Ainitzr in the following),
and the Supervisor has been continuously dwelling
in “Fall-Back” for at least Tmin

fb,0, and the application
dependent proposition ApprovalCondition holds,
then the Supervisor transits to location “Lease ξ1”.

Along this transition2, the Supervisor sends out event
evtξ0Toξ1LeaseReq, requesting leasing Participant
ξ1.

4. When in location “Lease ξi” (where i = 1 ∼ N − 1),
the behavior of Supervisor can be described by Fig. 4
(a).

5. When in location “Lease ξN”, the behavior of Super-
visor can be described by Fig. 4 (b).

6. When in location “Cancel Lease ξi” (where i = 1 ∼
N ), the behavior of Supervisor can be described by
Fig. 4 (c).

7. When in location “Abort Lease ξi” (where i = 1 ∼
N ), the behavior of Supervisor can also be described
by Fig. 4 (c), except that every occurrence of “Cancel”
is replaced by “Abort”.

Initializer:

Conceptually, the Initializer ξN shall start from a “Fall-
Back” location. It can randomly request to lease itself to enter
risky-locations. If this request is approved by the Supervisor
ξ0, ξN enters risky-locations. The dwelling in risky-locations
can be cancelled by ξN or aborted by ξ0 at any time; otherwise,
ξN returns to “Fall-Back” when the lease expires.

The above conceptual design of the Initializer is specified
by a hybrid automaton Ainitzr (see Fig. 5 (a) for the sketch of
Ainitzr) as follows.

1. Ainitzr’s location set Vinitzr include the following loca-
tions: “Fall-Back”, “Requesting”, “Entering”, “Risky

Core”, “Exiting 1”, and “Exiting 2”. V
risky
initzr include

location “Risky Core” and “Exiting 1”; all other
locations belong to V safe

initzr.

2. Initially, the Initializer ξN dwells in location “Fall-
Back”; and all data state variables initial values are
zero.

3. When in location “Fall-Back”, the Initializer ξN can
send event evtξNToξ0Req and transit to “Requesting”
at any time.

4. When in location “Requesting”, the Initializer ξN
can send event evtξNToξ0Cancel and transit back
to “Fall-Back” at any time. Secondly, if ξN dwells
continuously in “Requesting” for Tmax

req,N , it will au-
tomatically transit back to “Fall-Back”. Thirdly, if
event evtξ0ToξNApprove is received, ξN transits to
“Entering”.

5. When in location “Entering”, the Initializer ξN can
send event evtξNToξ0Cancel and transit to “Exiting
2”. Secondly, if evtξ0ToξNAbort is received, ξN
also transits to “Exiting 2”. Thirdly, if ξN dwells
continuously in “Entering” for Tmax

enter,N , it transits to
“Risky Core”.

2In fact, this “transition” includes two consecutive transitions, the first
one is on receiving event evtξNToξ0Req, Supervisor enters an intermediate

location of 0 dwelling time; and then transit from this intermediate location
to “Lease ξ1” and send out evtξ0Toξ1LeaseReq. For narrative simplicity,
in the following, such intermediate locations between two consecutive events
are not elaborated.
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(a)

(b)

(c)

Fig. 4. Flow block diagram at location (a) “Lease ξi” (i = 1 ∼ N − 1); (b)
“Lease ξN ”; (c) “Cancel Lease ξi” (i = 1 ∼ N ).

6. When in location “Risky Core”, the Initializer ξN can
send event evtξNToξ0Cancel and transit to “Exiting
1”. Secondly, if evtξ0ToξNAbort is received, ξN also
transits to “Exiting 1”. Thirdly, if ξN dwells contin-
uously in “Risky Core” for Tmax

run,N , it also transits to
“Exiting 1”.

7. When in location “Exiting 1” or “Exiting 2”, the
Initializer ξN must continuously dwell in the location
for Texit,N , and then transit to “Fall-Back”.

Note that all state variable names and location names are

local to the corresponding hybrid automata (so e.g. “Fall-
Back” of Asupvsr and “Fall-Back” of Ainitzr are two distinct
locations).

Participant:

Conceptually, a Participant ξi (i = 1 ∼ N − 1) shall start
from a “Fall-Back” location. Upon receiving lease request from
the Supervisor ξ0, and if the lease is approved, ξi enters risky-
locations. The dwelling in risky-locations can be cancelled by
the Initializer ξN or aborted by the Supervisor ξ0 at any time;
otherwise, ξi returns to “Fall-Back” when the lease expires.

The above conceptual design of Participant ξi (i = 1 ∼
N − 1) is specified by a hybrid automaton Aptcpnt (see Fig. 5
(b) for the sketch of Aptcpnt) as follows.

1. Aptcpnt’s location set Vptcpnt include the following lo-
cations: “Fall-Back”, “L0”, “Entering”, “Risky Core”,

“Exiting 1”, and “Exiting 2”. V
risky
ptcpnt include location

“Risky Core” and “Exiting 1”; all other locations
belong to V safe

ptcpnt.

2. Initially, Participant ξi dwells in location “Fall-Back”;
and all data state variables initial values are zero.

3. When in location “Fall-Back”, upon receiving event
evtξ0ToξiLeaseReq, ξi transits to a temporary loca-
tion “L0”.

4. When in “L0”, if an application dependent proposi-
tion ParticipationCondition sustains, ξi sends event
evtξiToξ0LeaseApprove and transits to “Entering”;
otherwise, ξi sends event evtξiToξ0LeaseDeny and
transits back to “Fall-Back”.

5. When in location “Entering”, if event
evtξ0ToξiCancel or evtξ0ToξNAbort is received,
ξi transits to “Exiting 2”. Otherwise, if ξi dwells
continuously in “Entering” for Tmax

enter,i, it transits to
“Risky Core”.

6. When in location “Risky Core”, if event
evtξ0ToξiCancel or evtξ0ToξNAbort is received,
ξi transits to “Exiting 1”. Otherwise, if ξi dwells
continuously in “Risky Core” for Tmax

run,i, it also
transits to “Exiting 1”.

7. When in location “Exiting 1” or “Exiting 2”, Partic-
ipant ξi must continuously dwell in the location for
Texit,i, and then transit to “Fall-Back”.

B. Ensuring Design Pattern Validity

We now analyze the validity of the proposed design pattern.
As mentioned before, the main threat to PTE wireless CPS
is the unreliable wireless communications. Event reception
between the Supervisor, Initializer, and Participants can be
lossy. If some important events are not received, the holistic
system can enter an inconsistent state, which jeopardizes PTE
safety rules.

A main contribution of this paper is that we prove that by
properly configuring the time constants of the aforementioned
Asupvsr, Ainitzr, and Aptcpnt, PTE safety rules are guaranteed
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(a)

(b)

Fig. 5. (a) Sketch of Hybrid Automaton Ainitzr, the Design Pattern for
Initializer; (b) Sketch of Hybrid Automaton Aptcpnt,i, the Design Pattern for
the ith Participant.

despite any communication faults. Specifically, we have the
following result.

Theorem 1 (Design Pattern Validity): If a hybrid system
H of ξ0 as “Supervisor” (i.e. behaves per Asupvsr), ξN
(N ≥ 2) as “Initializer” (i.e. behaves per Ainitzr), and ξi
(i = 1, 2, . . . , N − 1) as “Participants” (i.e. behaves per
Aptcpnt,i) satisfies conditions c1 ∼ c7:

c1. All configuration time constants (Tmax

wait, T
min

fb,0, T
max

LS1 ,
Tmax

req,N , Tmax
enter,i, T

max
run,i, Texit,i, where i = 1 ∼ N ) are

positive.

c2. Tmax

LS1
def
= Tmax

enter,1 + Tmax
run,1 + Texit,1 > NTmax

wait.

c3. (N − 1)Tmax

wait < Tmax

req,N < Tmax

LS1 .

c4. ∀i ∈ {1, 2, . . . , N}, there is

(i− 1)Tmax

wait + Tmax

enter,i + Tmax

run,i + Texit,i ≤ Tmax

LS1 .

c5. ∀i ∈ {1, 2, . . . , N − 1}, there is

Tmax

enter,i + Tmin

risky:i→i+1 < Tmax

enter,i+1.

c6. ∀i ∈ {1, 2, . . . , N − 1}, there is

Tmax

enter,i + Tmax

run,i > Tmax

wait + Tmax

enter,i+1 + Tmax

run,i+1

+Texit,i+1.

c7. ∀i ∈ {1, 2, . . . , N − 1}, there is Texit,i > Tmin

safe:i+1→i.

Then H satisfies PTE safety rules. Specifically, every entity’s
continuous dwelling time in risky-locations is upper bounded
by Tmax

wait+Tmax

LS1 , and the PTE full ordering of ξ1 < ξ2 < . . . <
ξN is maintained; also, events received through unreliable
communication channels (in the case of our wireless CPS,
these events refer to those between distributed wireless entities)
can be arbitrarily lost.

Proof: The sketch of the proof is as follows.

First we can prove if the given parameters satisfy Con-
ditions c1 ∼ c7, and that all entities start from “Fall-Back”
location, the system will reset itself to “Fall-Back” within
Tmax

wait + Tmax

LS1 every time evtξ0Toξ1LeaseReq happens. This

is mainly because of the leases: even if messages are lost,
leases will expire to guarantee the return to “Fall-Back” of the
Initializer and every Participant.

Second, we prove between any two consecutive
evtξ0Toξ1LeaseReq events (or the last such event and
time ∞), any entity can only dwell in the risky-locations for
once.

Third, due to Conditions c1 ∼ c7, for each ξi and ξi+1

(i = 1 ∼ N − 1), the aforementioned single dwelling intervals
of ξi and ξi+1 satisfies PTE enter-risky/exit-risky safeguard
interval requirements.

The detailed proof appears at [19]. �

C. Methodology to Transform Design Pattern into Specific
Designs

In this subsection, we propose a methodology to transform
the aforementioned design pattern hybrid automata Asupvsr,
Ainitzr, and Aptcpnt into specific PTE wireless CPS designs.

The intuition is that every location v of Asupvsr, Ainitzr,
and Aptcpnt can be expanded by a child hybrid automata A′.
However, A′ must be sufficiently independent (i.e. orthogonal)
from the rest part of Asupvsr, Ainitzr, and Aptcpnt, so that it
will not interfere the design pattern’s guarantee on PTE safety
rules.

For example, except clock/time variables, the design pat-
tern automata Asupvsr, Ainitzr, and Aptcpnt contains no other
continuous state variables. However, in a specific PTE wireless
CPS design, there will be various continuous state variables
representing all kinds of physical world properties. For ex-
ample, in laser tracheotomy PTE wireless CPS, there can be
Hvent(t), the height of the ventilator cylinder at time t, which
decides the behavior of the ventilator. Their dynamics are not
totally decided by the cyber-software. When elaborating design
pattern into specific designs, we must guarantee these details
will not affect the PTE safety rule guarantees.

In the following, we first propose the formal concept of
independence between hybrid automata. We then propose a
formal methodology on elaborating locations of design pat-
tern hybrid automata with independent child hybrid automata.
Finally, we prove following the proposed elaboration method,
the resulted specific designs maintains the PTE safety rules
guarantees.

Unless explicitly denoted, the rest of the paper assumes
every hybrid automaton to be time-block-free and non-zeno3.

We now define hybrid automata independence.

Definition 2 (Hybrid Automata Independence): Given hy-
brid automata A = (~x(t), V , inv, F , E, g, R, L, syn, Φ0) and

3Please see [20] for the definitions of time-block-free and non-zeno. For the
aforementioned design pattern hybrid automata in Fig. 3, 5 (a), 5 (b), as long
as Condition c1 ∼ c7 hold, they are time-block-free and non-zeno. Besides,
time-block-free and non-zeno are well-known concepts in formal modeling,
and most practical hybrid automata are time-block-free and non-zeno. Due
to above reasons, we are not going to elaborate the definitions of these two
concepts in this paper.



A′ = (~x′(t), V ′, inv′, F ′, E′, g′, R′, L′, syn′, Φ′

0), we say “A
and A′ are independent” iff

1. elements(~x(t)) ∩ elements(~x′(t)) = ∅;

2. and V ∩ V ′ = ∅;

3. and L ∩ L′ = ∅.

Furthermore, we say “a set of hybrid automata A1, A2, . . .,
Ak are mutually independent”, iff ∀i, j ∈ {1, 2, . . ., k} and
i 6= j, Ai and Aj are independent.

We further define simple hybrid automaton.

Definition 3 (Simple Hybrid Automaton): A hybrid au-
tomaton A = (~x(t), V , inv, F , E, g, R, L, syn, Φ0) is simple
iff

1. ∀v1, v2 ∈ V , inv(v1) = inv(v2).

2. ∀v ∈ Φ0|V · ∀~s ∈ inv(v) · (v,~s) ∈ Φ0, where Φ0|V
means Φ0’s projection on V .

3. ∀v ∈ Φ0|V ·(v,0) ∈ Φ0, where 0 is the zero data state
vector.

We can now describe the intuition on the how to elaborate
a given hybrid automaton.

Atomic Elaboration of Hybrid Automaton (Intuition):

Given a hybrid automaton A = (~x(t), V , inv, F , E, g, R,
L, syn, Φ0), location v ∈ V , and a simple hybrid automaton
A′ = (~x′(t), V ′, inv′, F ′, E′, g′, R′, L′, syn′, Φ′

0) such that
A and A′ are independent, then we can create the “(atomic)
elaboration of A at v with A′”, i.e. a hybrid automaton A′′ =
(~x′′(t), V ′′, inv′′, F ′′, E′′, g′′, R′′, L′′, syn′′, Φ′′

0), according
to the following intuitions.

1. Location v of hybrid automaton A is replaced by
simple hybrid automaton A′.

2. All former ingress edges to v in A become ingress
edges to A′ (A′’s initial locations to be more specific).

3. All former egress edges from v in A become egress
edges from A′.

4. When in A′, the data state variables ~x(t) of A maintain
their continuous behavior as if they are in v.

5. When out of A′, the data state variables ~x′(t) of A′

remain unchanged (until return to A′ again in the
future).

We denote A′′, the elaboration of A at v with A′, as

A′′ = E(A, v,A′).

The rigorous formal description on atomic elaboration of
hybrid automaton is provided in [19]

Fig. 6 illustrates an example of atomic elaboration of hybrid
automaton. Denote the hybrid automaton of Fig. 2 to be A′

vent.
We use A′

vent to elaborate hybrid automaton A of Fig. 6 (a)
at location “Fall-Back”. The resulted elaboration is the hybrid
automaton A′′ of Fig. 6 (b).

(a)

(b)

Fig. 6. Atomic Elaboration Example (compare the shaded areas in (a)
and (b)). (a) Hybrid Automaton A, which has one data state variable x; the
shaded location is to be elaborated. (b) Hybrid Automaton A′′, which is the
atomic elaboration of A (see (a)) at location “Fall-Back” with simple hybrid
automaton A′

vent (see Fig. 2); note there is no edge from “Risky” to “PumpIn”
because “PumpIn” is not an initial location of A′

vent.

With the above (atomic) elaboration methodology, we can
go further.

Given hybrid automaton A, k distinct locations v1 ∼ vk ∈
V (where V is A’s location set), and k simple hybrid automata
A1 ∼ Ak such that A, A1, . . ., Ak are mutually independent,
then we can carry out “(parallel) elaboration of A at v1, v2,
. . . , vk with A1, A2, . . ., Ak”, denoted as

E(A, (v1, v2, . . . , vk), (A1, A2, . . . , Ak))
def
= E(. . . E(E(

︸ ︷︷ ︸

repeat k times

A, v1, A1), v2, A2) . . .), vk, Ak).

Denote A′ = E(A, (v1, v2, . . . , vk), (A1, A2, . . . , Ak)), we
also say “A′ elaborates A at v1, v2, . . ., vk with A1, A2,
. . ., Ak respectively”.

Intuitively, parallel elaboration of A at v1, v2, . . . , vk with
A1, A2, . . ., Ak can be implemented by elaborating A at v1
with A1, v2 with A2, so on and so forth, until vk with Ak.

If a specific wireless CPS design, described by hybrid
system H′, has its member hybrid automata respectively elabo-
rating the Supervisor, Initializer, and Participant design pattern
hybrid automata (i.e. Asupvsr, Ainitzr, and Aptcpnt,i), then the
design H′ maintains the properties of our design pattern and
guarantee of PTE safety rules. Formally, this is expressed in
the form of the following theorem.

Theorem 2 (Design Pattern Compliance): Given a hybrid
system H′ consisting of entities ξ′0, ξ

′

1, . . . , ξ
′

N , which respec-
tively corresponds to hybrid automata of A′

0, A
′

1, . . . , A
′

N . If
the following conditions are satisfied:



1. There are distinct locations v01 , v
0
2 , . . ., v

0
k0

∈ Vsupvsr,

and simple hybrid automata A0
1, A

0
2, . . ., A

0
k0
, such

that Asupvsr and A0
j (j = 1 ∼ k0) are independent,

and A′

0 elaborates Asupvsr at v
0
1 , v

0
2 , . . ., v

0
k0

with A0
1,

A0
2, . . ., A

0
k0

respectively;

2. For each i ∈ {1, 2, . . ., N − 1}, there are distinct
locations vi1, v

i
2, . . ., v

i
ki

∈ Vptcpnt,i, and simple hybrid

automata Ai
1, A

i
2, . . ., A

i
ki
, such that Aptcpnt,i and

Ai
j (j = 1 ∼ ki) are independent, and A′

i elaborates

Ai
ptcpnt,i at vi1, v

i
2, . . ., v

i
ki

with Ai
1, A

i
2, . . ., A

i
ki

respectively;

3. There are distinct locations vN1 , vN2 , . . ., vNkN
∈ Vinitzr,

and simple hybrid automata AN
1 , AN

2 , . . ., AN
kN

, such

that Ainitzr and AN
j (j = 1 ∼ kN ) are independent,

and A′

N elaborates Ainitzr at vN1 , vN2 , . . ., vNkN
with

AN
1 , AN

2 , . . ., AN
kN

respectively;

4. Hybrid automata Ai
j are mutually independent, where

i = 0, 1, . . . , N , j = 1, 2, . . . , ki;

5. Condition c1 ∼ c7 of Theorem 1 sustain;

where Vsupvsr, Vptcpnt,i, and Vinitzr are respectively Asupvsr,
Aptcpnt,i, and Ainitzr’s location sets, then H′ satisfies PTE
safety rules.

Proof: If not, there must be an execution trace φ′(t)
(see [15] for the rigorous definition of “execution trace”, aka
“trajectory” of a hybrid system) of H′ that violates PTE safety
rules. According to the methodology we elaborate hybrid
automata, φ′(t) corresponds to an execution trace φ(t) of H
(the hybrid system of Asupvsr, Aptcpnt,i (i = 1, 2, . . . , N − 1),
and Ainitzr) that also violates PTE safety rules. This contradicts
Theorem 1. �

V. CASE STUDY

To demonstrate the use of our proposed lease design pat-
tern, we carry out a case study on wireless laser tracheotomy
as introduced in earlier sections.

Setup and Modeling:

In wireless laser tracheotomy (see Fig. 7 (a) for the
application layout), a patient is under anesthesia, hence must
be connected to a ventilator to breathe oxygen. However, a
surgeon may randomly request a laser-scalpel to emit laser, to
cut the patient’s trachea. Therefore, PTE safety rules apply as
follows. Before the emission of laser, the ventilator must have
paused for at least Tmin

risky:1→2 (we regard ventilator as entity ξ1
and the laser-scalpel as entity ξ2); after the emission of laser,
the ventilator must wait for at least Tmin

safe:2→1 before resuming.
Otherwise, if high concentration of oxygen in the patient’s
trachea (due to ventilation) is present when laser emits, the
patient’s trachea can catch fire. In addition, the durations that
the laser-scalpel can continuously emit and that the ventilator
can continuously pause shall respectively be upper-bounded by
a constant.

The ventilator and the laser-scalpel are wirelessly con-
nected via a central base station, which also plays the role of

(a) (b)

Fig. 7. (a) Laser Tracheotomy Wireless CPS Layout, figure quoted from
[3]. The SpO2 sensor (measuring the Patient’s blood oxygen level) is wired
to the Supervisor computer, forming entity ξ0. The Laser-Scalpel (operated
by the Surgeon) takes the role of Initializer entity, ξ2. The ventilator is the
Participant entity, ξ1. (b) Emulation Layout

supervisor. The supervisor/laser-scalpel can abort/cancel laser
emission at any time (for example, when the supervisor detects
the patient’s blood oxygen level reaches below a threshold, it
can immediately request aborting laser emission and resuming
ventilation), but the PTE safety rules must be maintained.

On the other hand, because the supervisor, laser-scalpel,
and the ventilator are connected through wireless, message
losses are possible. Therefore, we want all entities’ risky
behaviors lease based, so that even with message losses, the
wireless CPS can maintain the PTE safety rules.

In order to satisfy the above requirements, we start our
design using the proposed methodology.

First, we see the laser tracheotomy PTE wireless CPS
consists of three entities (i.e. N = 2): the laser tracheotomy
supervisor (together with the SpO2 sensor wired to it) plays
the role of Supervisor, hence entity ξ0; the (surgeon operated)
laser-scalpel plays the role of Initializer, hence entity ξ2; and
the ventilator plays the role of Participant 1, hence entity ξ1.

Next, we design the hybrid automata for the laser tra-
cheotomy supervisor, laser-scalpel, and ventilator by respec-
tively elaborating Asupvsr, Ainitzr, and Aptcpnt,1.

Take the ventilator detailed design for example. The de-
tailed design of a stand-alone ventilator has already been
described by the simple hybrid automaton A′

vent of Fig. 2.
The stand-alone design of A′

vent, however, is not aware of
the communications/collaborations with supervisor and laser-
scalpel; hence cannot guarantee PTE safety rules. In order to
guarantee PTE safety rules, we revise the ventilator design by
elaborating the Participant Design Pattern hybrid automaton
Aptcpnt,i (see Section IV-A-Participant; also see Fig. 5 (b)
for the sketch of the hybrid automaton) at location “Fall-
Back” with A′

vent, using the elaboration method described in
Section IV-C.

The Initializer hybrid automaton Ainitzr and Supervisor
hybrid automaton Asupvsr do not need to be further elaborated.
They can be directly used to describe the behavior of laser-
scalpel and laser tracheotomy supervisor respectively.

Interested readers shall refer to [19] for the diagrams of
these detailed designs.



We configure the time parameters of the above detailed
design hybrid automata according to common-sense laser tra-
cheotomy requirements [21] as follows. For the Supervisor (i.e.
the laser tracheotomy supervisor), Tmin

fb,0 = 13s, Tmax

wait = 3s. For
the Initializer (i.e. the laser-scalpel), Tmax

req,2 = 5s, Tmax
enter,2 =

10s, Tmax
run,2 = 20s, Texit,2 = 1.5s. For the Participant 1 (i.e. the

ventilator), Tmax
enter,1 = 3s, Tmax

run,1 = 35s, Texit,1 = 6s. The PTE

enter-risky/exit-risky safeguard intervals are Tmin

risky:1→2 = 3s

and Tmin

safe:2→1 = 1.5s.

Per Theorem 2, the above configurations guarantee PTE
safety rules. To further validate this, we implemented and
carried out emulations of the above design.

Emulation Setup:

Fig. 7 (b) illustrates the layout of our emulation. The laser
tracheotomy ventilator, supervisor, and (surgeon operated)
laser-scalpel are respectively emulated by three computers. The
patient is emulated by a real human subject (HS).

Instead of actually ventilating the human subject HS,
the ventilator emulator displays its current hybrid automata
location (“PumpOut”, “PumpIn”, etc.). Human subject HS
watches the display and breathe accordingly.

Another complex part of the experiments is the emulation
of externally triggered events. We emulate three kinds of such
events in the laser tracheotomy hybrid system (all other events
are consequences of this set).

The first is the Initializer event evtξ2Toξ0Req, triggered
when the laser-scalpel is in “Fall-Back” and the surgeon
requests to supervisor to emit laser. In the real system, this
is triggered by the surgeon’s human will. In our emulation,
however, this is emulated by setting up a random timer Ton

(following exponential distribution) whenever the laser-scalpel
enters “Fall-Back”. When in “Fall-Back” and Ton sets off,
the (emulated) surgeon requests to emit laser. Timer Ton

is destroyed whenever the laser-scalpel leaves “Fall-Back”
location.

The second kind is the Initializer event evtξ2Toξ0Cancel,
triggered when the laser-scalpel is emitting and the surgeon
cancels the request to emit laser. Again in a real system, this
is triggered by the surgeon’s human will. In our emulation,
this is emulated by setting up a random timer Toff (following
exponential distribution) whenever the laser-scalpel is emitting
laser. When emitting laser and Toff sets off, the (emulated) sur-
geon requests to cancel laser emission. Timer Toff is destroyed
whenever the laser-scalpel returns to “Fall-Back” location.

The third kind is the Supervisor event evtξ0ToξiAbort
(i = 1 ∼ N ), triggered when the supervisor is in “Lease
ξi” location and ApprovalCondition becomes false. In our
emulation, the human subject HS wears an oximeter (Nonin
9843 [22]), which measures HS’s blood oxygen level in
real-time t (SpO2(t)). The oximeter is wired to the laser
tracheotomy supervisor emulator. The ApprovalCondition is
that the oximeter reading SpO2(t) > ΘSpO2

, where ΘSpO2
is

set to 92%.

The supervisor, ventilator, and laser-scalpel emulators com-
municate with each other via wireless, with supervisor as
base station, and the other two as clients. Their wireless

TABLE I. PTE SAFETY RULE VIOLATION (FAILURE) STATISTICS OF

EMULATION TRIALS

Trial E(Toff) # of Laser # of # of

Mode (sec) Emissions Failures evtToStop

with Lease 18 19 0 5

without Lease 18 11 4 0

with Lease 6 19 0 3

without Lease 6 12 3 0

1. Each trial lasts 30 minutes, and is under constant WiFi interference.

2. For each trial, the expectation E(Ton) ≡ 30(sec).
3. evtToStop occurs when lease expiration forces the laser-scalpel to stop

emitting (see Fig. 12), i.e. when lease mechanism takes effect to rescue

the system from violating the PTE safety rules.

interfaces are implemented via ZigBee TMote-Sky motes [23].
In addition, there is an IEEE 802.11g WiFi interference source
2 meters away from the supervisor. The Interference source
broadcasts interfering WiFi packets at a data rate of 3Mbps
at a radio band overlapping with that of the ZigBee TMote-
Sky motes’. Because the interference broadcast is independent
from the laser tracheotomy wireless CPS communications, any
packets/events between the supervisor, ventilator, and laser-
scalpel emulation computers can be lost.

Trials and Results:

We ran two emulation trials, each of 30 minutes duration.
During the emulation, the PTE safety rules are:

1. Neither ventilator pause nor laser emission can last for
more than 1 minute (we assume that holding breath
for 6 1 minute is always safe);

2. Ventilator pause duration must always properly-
temporally-embedding laser emission duration, with
entering/exiting safeguard interval of Tmin

risky:1→2 =

3(s) and Tmin

safe:2→1 = 1.5(s).

violation of either of the PTE safety rules is a failure.

As mentioned before, in the two emulation trials, the
emulated surgeon request to emit/cancel-emit laser according
to timer Ton and Toff , both are random numbers following
exponential distribution. The expectation of Ton is 30(s). The
expectations of Toff are 18(s) and 6(s) respectively in the two
emulation trials.

Because of the use of our proposed lease based design
pattern, and the configuration of parameters satisfying Theo-
rem 2, although packets/events between ventilator, supervisor,
and laser-scalpel emulator can be arbitrarily lost, the PTE
safety rules are never violated. This is shown in Table I, the
two rows corresponding to “with Lease” both have 0 failures.

For comparison, we also ran two additional emulation trials
with the same configurations but without using the leasing
mechanism. Specifically, the ventilator does not set up a lease
timer when it is pausing, neither does the laser-scalpel set up
a lease timer when it is emitting laser. When the surgeon’s
cancel laser emission event is lost or the supervisor’s abort
event is lost, no one can terminate the ventilator’s pause or
the laser’s emission. Thus, as shown in Table I, the two rows
corresponding to “without Lease” both result in many failures.

The intuitive explanations to the above empirical evidences
are as follows. Because of leasing, the ventilator’s stay in



the pause state (i.e. risky-locations) expires on lease time-
out; hence it will automatically return to “Fall-Back” to
continue ventilating the patient, even when it is cut-off from
communications. Same applies to the laser-scalpel’s stay in
the emission state (i.e. risky-locations). Conditions c1 ∼ c7
of Theorem 2 further guarantees that the automatic returns
to “Fall-Back” of ventilator and laser-scalpel both conform to
proper-temporal-embedding even under arbitrary packet/event
losses.

We further consider a number of typical scenarios to get
better intuitions on why the proposed leasing approach and
parameter configuration constraints are critical in guaranteeing
PTE safety rules.

One scenario is that after the ventilator is paused and the
laser-scalpel is emitting, the surgeon may forget to cancel laser
emission until too late (e.g. Toff is set to 1 hour). In this case,
only the abort request from the supervisor can stop laser emis-
sion and resume ventilator before it is too late. However, this
requires a sequence of correct send/receive of events through
wireless: evtξ0Toξ2Abort, followed by evtξ2Toξ0Exit, and
followed by evtξ0Toξ1Abort. Losing any one of these events
at the receiver end will cause PTE safety rules violation. For
example, losing evtξ2Toξ0Exit, the supervisor may think the
laser-scalpel is stuck and cannot stop laser emission, hence
ventilator shall keep pausing.

With leasing, the laser emission terminates within the lease
Tmax
run,2 = 20s with or without surgeon’s request to cancel;

and the ventilator resumes within the lease Tmax
run,1 = 35s with

or without supervisor’s requests. Hence PTE safety rules are
protected.

Similar analysis applies to the scenario that the surgeon
remembers to cancel laser emission, but his/her cancelling re-
quest (i.e. evtξ2Toξ0Cancel) is not received at the supervisor.
Without lease, the ventilator may keep pausing till for too long;
with lease, the ventilator will keep pausing for Tmax

run,1 = 35s
at the most, hence cannot suffocate the patient.

A third scenario involves the parameter configuration con-
straints. Suppose we set Tmax

enter,2 = Tmax
enter,1 = 0s (or any other

value so that Tmax
enter,2 = Tmax

enter,1), then because Tmin

risky:1→2 = 3s
> 0, Condition c5 of Theorem 1 is violated. Under such
design, immediately after the ventilator is paused, the laser-
scalpel can emit laser, violating the PTE requirement of
Tmin

risky:1→2 = 3s: that the laser-scalpel must wait for another
3s after the ventilator pauses, and then can it emit laser.

More failure scenarios are possible. However, if we follow
the proposed lease based design approach and meet parameter
configuration constraints listed in Theorem 1, Theorem 1 and
2 guarantees PTE safety rules.

VI. RELATED WORK

Lease protocol was originally proposed by Gray et al. [7]
and is used to provide efficient consistent access to cached data
in distributed computer systems. With leases, the inconsisten-
cies caused by communication faults can be recovered. In the
past decades, various lease based distributed computer systems
have been implemented to achieve system consistency [8]–
[10]. Recently, Chen et al. [24] proposed a dynamic lease
technique to keep track of the local DNS name servers.

Boix et al. [11] applied leases to mobile ad hoc networks;
and Adya et al. [12] applied lease to cloud computing. As
pointed out in Section IV-A, all these distributed computer
systems are fundamentally different from CPS due to following
reasons: 1) check-point and roll-back, which are intensively
used in lease protocols for distributed computer systems are
often impossible for CPS (e.g. we cannot revive a killed
patient); 2) PTE temporal ordering, particularly the minimum
safeguard interval requirements are usually not present for
distributed computer systems (which usually focus on causal
precedences); 3) in CPS, uncontrollable physical world param-
eters can often interfere with the computer software dynamics.

Formal methods and model checking techniques have been
widely used in various applications. Majzik et al. [25] apply the
formal methods in the quantitative evaluation of the Driver Ma-
chine Interface (DMI). Ramasamy et al. [26] employ the SPIN
model checker to validate the correctness of a formal model of
the intrusion-tolerant Group Membership Protocol(GMP). Do-
natelli et al. [27] solve the problem of Continuous Stochastic
Logic (CSL) model checking in the context of Generalized
Stochastic Petri Nets. Buchholz et al. [28] present a new
framework for model checking techniques that can be applied
to the general class of weighted automata. Haverkort [29]
gives a short paper summarizing the formal modelling of timed
system in practice.

In the design pattern formalization, formal methods have
also been applied [30]–[33]. For the hybrid modelling, it is
mostly used for verification [3], [13]–[16]. Recently, Tichakorn
[34] proposed a subclass of hybrid automata for a class of
hybrid control systems in which certain control actions occur
roughly periodically and applied it to verify the safety of an
autonomous vehicle. However, the intent there is verification,
than a design methodology as in our work.

VII. CONCLUSION

In this paper, we have proposed a lease based design pattern
to guarantee PTE safety rules in wireless CPS, as part of
the effort to address challenges arising from poor reliability
of wireless communication on CPS’ mission/life criticality.
We derived a set of closed-form constraints, and proved that
as long as system parameters are configured to satisfy these
constraints, PTE safety rules are guaranteed under arbitrary
wireless communication faults. Furthermore, we developed
hybrid modeling approaches to describe the design patterns,
and developed a formal methodology to elaborate the design
pattern into specific designs that provide PTE safety guar-
antees. Our case study on laser tracheotomy wireless CPS
validates the proposed design methodology.
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