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Abstract—Incorporating physical-world objects and informa-
tion into the virtual world is a key aspect of enhancing im-
mersiveness in the metaverse. However, existing solutions are
neither efficient nor scalable when projecting enormous objects
due to their reliance on expensive specialized equipment. To
fill this gap, we propose PolyVerse, an edge computing-powered
metaverse platform that supports practical Physical-to-Virtual
(P2V) projection while preserving low costs. PolyVerse tackles
two challenges in P2V. First, P2V inherently requires real-time
projection of enormous physical objects, which is difficult to
achieve without specialized equipment. To overcome this issue,
we alternatively utilize edge computing-based methods to collect,
process, and analyze large-scale physical-world data with cost-
effective edge devices and AI models. Workloads are adaptively
scheduled among edge devices through a heuristic algorithm to
reduce latency. Second, metaverse users may encounter incon-
sistent states among multiple metaverse service providers, which
can be caused by potential networking issues or malicious state
tampering when projecting vast objects. To this end, we develop a
blockchain-based metaverse management scheme among service
providers to ensure a consistent view for users. States are initially
constructed as a Metaverse State Tree that supports efficient
accumulation, retrieval, and membership proof generation. The
tree digests are further secured by blockchain consensus to ensure
consistency. Finally, we develop a metaverse campus prototype
where real-world pedestrians are projected into the virtual world
in real-time. Evaluation shows that PolyVerse can project objects
within an average latency of 250ms.

Index Terms—Metaverse, Immersive Experience, Edge Com-
puting, Blockchain

I. INTRODUCTION

The metaverse is an interconnected platform enabling users
to interact with a shared digital world, thus facilitating an
immersive and engaging experience that merges the physical
and virtual realms. This concept has attracted significant
interest from industry and academia in recent years, resulting
in the development of numerous metaverse platforms catering
to various purposes such as gaming, social media, online
collaboration, and dynamics simulation.

The Problem and Motivations. The core value of the
metaverse lies in its immersiveness, allowing users to in-
teract with virtual objects while experiencing a heightened
sense of presence, engagement, and authenticity. To this end,
existing metaverse platforms attempt to provide users with
immersive experiences from different perspectives, such as
finely-rendered building models and customizable avatar tools.
Among them, Physical-to-Virtual Projection (P2V) is an
important method for enhancing immersiveness, which refers
to incorporating physical-world objects and information into
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Fig. 1: A conceptional illustration of Physical-to-Virtual projection in meta-
verse. Physical-world information can significantly enhance the immersive
experience of the metaverse

the virtual world [1], as shown in Fig.1. P2V connects users
with the physical world, allowing them to experience external
activities without direct physical participation. For instance,
some education metaverse platforms aim to offer normal
university life experiences for disabled students. By including
real-time scenes and activities occurring on campus, these
students gain a greater sense of participation, even if they
cannot attend them physically [2].

However, practical P2V solutions that offer significant effi-
ciency and scalability are still lacking. Specifically, existing
metaverse platforms either provide only user-generated 3D
models [2] to simulate the real-world environments, or rely on
expensive specialized Virtual Reality (VR) systems to incorpo-
rate physical objects into virtual worlds [3] [4]. These solutions
are neither efficient nor scalable because most physical objects
are vast, dynamic, and scattered in practice. For example, when
there are a large number of pedestrians in a physical scene, it is
infeasible to collect their attributes using VR equipment. As a
result, most metaverse platforms cannot provide P2V, leading
to reduced immersiveness and limited application scenarios.

Research Challenges. Enabling practical P2V in the meta-
verse poses several challenges. On the one hand, it implicitly
requires real-time collection, processing, and analysis of large
volumes of physical data to achieve immersive experiences
[5]. These tasks demand significant computation, storage, and
networking resources, which are difficult to obtain without
high-end devices. On the other hand, state inconsistency may
arise when projecting large volumes of physical objects [6] [7]
[8]. Specifically, networking issues, such as packet dropping
and transmission delays caused by high network bandwidth
requirements for real-time projection, and malicious state
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Fig. 2: PolyVerse Overview: the first edge computing-empowered metaverse platform that facilitates Physical-to-Virtual projection (P2V), providing immersive
experiences. We deploy sensors (e.g., cameras) and edge devices to collect, process, and analyze physical world information with AI models in real-time and
represent it in the virtual world. Besides, a blockchain-based state management system is also integrated to ensure the state consistency among MSPs.

modifications from Metaverse Service Providers (MSPs), may
lead to inconsistent views of metaverse states among different
users, which would negatively impact their experience. As far
as we know, existing works and platforms fail to adequately
address these issues while missing detailed solutions [9] [10].

Our Approach and Contributions. In this paper, we
introduce PolyVerse, an edge computing-powered metaverse
platform that facilitates practical Physical-to-Virtual (P2V)
object projection. PolyVerse addresses the real-time and con-
sistency challenges by incorporating two key techniques. First,
we deploy an edge computing cluster in the physical world
to collect, process, and analyze sensor data using AI mod-
els, enabling low-latency physical state updates in a cost-
effective manner. Within the cluster, workloads are scheduled
through a heuristic algorithm to optimize latency on resource-
constrained edge devices. Second, we develop a blockchain-
based metaverse management scheme to ensure consistency
among multiple MSPs. States are initially constructed as a
Metaverse State Tree (MST), which supports efficient state
accumulation, retrieval, and membership proof generation.
Then, the digests of the MST are uploaded to a blockchain
network, collaboratively maintained by MSPs. Furthermore,
we demonstrate that PolyVerse is extensible and can be
easily adapted for projecting various physical objects into the
metaverse, encompassing heterogeneous information sources
such as sound and voice.

In summary, our contributions are listed as follows:

• Metaverse with Real-time Edge AI Projection. To the

best of our knowledge, PolyVerse is the first metaverse
platform that incorporates physical world information in
an efficient and scalable manner to enhance immersive-
ness. To achieve this, we employ edge computing clusters
with integrated AI models to support low-latency data
collection and processing for enormous physical objects.
We also propose a task scheduling algorithm to allocate
workloads among edge devices and sensors, thereby im-
proving overall efficiency. Additionally, PolyVerse can be
easily extended to project other heterogeneous physical
information.

• Blockchain-based Metaverse State Management. To
ensure a consistent view of metaverse states even un-
der potential malicious MSPs or networking issues, we
propose a blockchain-based state management scheme.
Specifically, we develop a new data structure named
MST to organize states, enabling efficient accumulation,
retrieval, and generation of membership proofs. The states
are further secured by a decentralized Byzantine Fault
Tolerant (BFT) consensus mechanism, which makes them
resistant to malicious tampering and service unavailabil-
ity.

• Prototype and Evaluation. We implement PolyVerse
through a metaverse campus prototype. We demonstrate
that this prototype can and efficiently project campus
pedestrian states of physical-world pedestrians., e.g., lo-
cations and attributes, into the metaverse in real-time with
low-end edge devices.



II. POLYVERSE DESIGN GOALS

PolyVerse aims to offer efficient and scalable P2V ability to
achieve high immersiveness in metaverse. Real-time projection
with consistent state update are fundamental requirements to
achieve such immersiveness.

Real-time Projection. It refers to the continuous and in-
stantaneous mapping, representation, and rendering of virtual
objects (e.g, avatars) into a virtual environment according
to physical objects (e.g, pedestrians). This allows users to
experience and interact with the dynamic external activities
in virtual world. For example, if an avatar can not follow a
real-world person’s movement in real-time, we can hardly say
such projection is immersive due to the unexpected hysteresis.

Definition 1 Let V be the virtual environment in the
metaverse, and V O = {vo1, vo2, ..., von} be a set of virtual
object states, each element in V O corresponding to a physical
object in set P = {po1, po2, ..., pon}. A real-time projection
in metaverse is a function f : P×T → V , where T represents
time. For a given object state poi and time instance t ∈ T ,
f(poi, t) projects the object state poi into the virtual environ-
ment V at the time instance t, and update corresponding voi.
The projection f is considered real-time if the time period ∆
required for updating voi from f(poi, t1) to f(poi, t2) < ϵ,
where ϵ is a given threshold.

State Consistency It is essential for MUs to have a
consistent view of virtual world states, even under unstable
or adversarial environments. In case of inconsistency, honest
MUs should be able to actively detect it through cryptographic
proofs. Inconsistency situations are likely to occur when
implementing real-time projection. For instance, when a group
of MSPs needs to obtain physical states from real-time data
sources, some states may be occasionally ignored by certain
MSPs due to high network traffic. This leads to metaverse
users (MUs) having inconsistent views. Similarly, some MSPs
might be malicious, motivated by the high-value items inside
the metaverse platform, such as digital assets, and may attempt
to tamper with some states.

Definition 2 Let M be a set of MSPs which jointly host
V by maintaining V O and PO. V is considered consistent
under adversarial environments if the following conditions are
satisfied:

• If two honest MSPs m and m′ project a poi as voi and
vo

′

i using f , then voi = vo
′

i.
• For any malicious MSP m ∈ M that does not honestly

update the virtual object states, there exists a crypto-
graphic proof π such that any honest MUs can actively
detect the malicious behavior using π.

III. POLYVERSE OVERVIEW

In this section, we provide a brief overview of PolyVerse,
focusing on its system model and two essential modules. The
architecture of PolyVerse is shown in Fig. 2,

System model. The system model of PolyVerse consists of
the following entities:

• Physical Objects: These refer to the objects from the
physical world that are to be projected into the meta-
verse. Distinct from MUs, these objects do not actively
participate in the metaverse (e.g., pedestrians and build-
ings). Their primary purpose is to provide physical-world
information to enhance immersiveness.

• Edge Computing Cluster (ECC): It gathers information
from the physical world and transforms it into physical
states. These states are then transmitted to MSPs for
further processing.

• Metaverse Service Providers (MSPs): MSPs offer meta-
verse services by facilitating network communication and
managing metaverse states. They are responsible for re-
ceiving physical states from the ECC and calculating the
corresponding virtual states based on specific mapping
rules. The states managed by multiple MSPs should be
identical.

• Metaverse Users (MUs): MUs access the metaverse by
connecting to MSPs through their client software. They
obtain the virtual states V O from the MSPs and render
them locally using their client software.

To facilitate P2V within this system model, we develop two
techniques:

Real-time projection with edge AI. We utilize edge
computing-based methods for executing projection tasks to
enable real-time P2V. Specifically, sensors are deployed to
collect physical data, and nearby edge devices process and
analyze this data using AI models to obtain physical states.
For example, cameras are used to detect pedestrian physical
locations with object detection models and send their locations
to MSPs in our prototype. However, the inference of AI
models is resource-greedy and computation-intensive, while
the resources of individual edge devices are constrained.
When faced with heavy workloads, such as a large number
of pedestrians entering into the camera view, the models
will suffer from significant inference delays. To address this
issue, we design an efficient task scheduling algorithm that
enables resource sharing among multiple edge devices and
distributes tasks among these devices. inference tasks are
accelerated reasonably, and the real-time P2V requirement
is met successfully. The detailed design of the projection
procedures is shown in Section IV.

Blockchain-based metaverse state management. In Poly-
Verse, states are managed by MSPs who jointly maintain a
consortium blockchain network to ensure state consistency.
Physical states from the edge computing cluster and corre-
sponding virtual states are submitted to the blockchain network
in the form of transactions for consensus. Consequently, MUs
can verify the consistency of the virtual world view among
MSPs. However, the high latency and low throughput natures
of the consensus algorithm cannot meet real-time state update
requirements. To address this issue, we develop a new authenti-
cated data structure (ADS) called Metaverse State Tree, which
is optimized for rapid state updates and verification. The MST
recursively accumulates states and outputs a digest, allowing
MUs to verify if the states are correctly included. States are



first constructed as MSTs upon their arrival at MSPs. When a
state verification is triggered by MUs, or a specific time/size
epoch has passed, the digest and states are then submitted
to the blockchain network. This optimization allows MSPs
to add states without waiting for blockchain consensus while
still guaranteeing the consistency, thus improving the overall
performance of PolyVerse. The details of state update system
is shown in Section V.

IV. REAL-TIME PROJECTION WITH EDGE AI

We first formulate the real-time projection as a task schedul-
ing problem with constrained resources and then propose
a heuristic algorithm, named PolyHeuristic, to solve it. For
clarity, we use the projection of physical-world pedestrians as
an illustrative example. This technique can be generalized and
extended to project other physical objects by simply deploying
other types of sensors and AI models on edge devices.

A. Network Model

PolyVerse constructs an edge network to connect edge
devices and cameras. The network is modeled as a graph
G = (V,E), where V = i|1 ≤ i ≤M is the set of edge
devices and E = lij |i, j ∈ V is the set of network links.
Suppose there are K cameras, and each camera can stream
the video to any edge device in the network. We use PSi to
represent the computation capacity of device i. Each device
also has a limited resource of Ri

max, and the available re-
source is indicated by Ri

avail. Let eij represent the bandwidth
between devices i and j. The devices and network links can be
heterogeneous in computation and bandwidth capacities. The
transmission rate between edge devices i and j is Rij . The
video transmission latency between camera k and edge device
i is Tik.

B. Application Model

Without loss of generality, we assume the application as
AI model based personal attributes recognition, which aims
to recognize attributes of a person, such as gender, clothing
color, and hairstyle. This information will be updated in the
metaverse to render the virtual objects. The application model
for personal attribute recognition is considered as sequence of
two dependent tasks, i.e., pedestrian detection and attribute
recognition. The computation workload for detection and
attribute recognition tasks corresponding to camera stream k is
T k
d and T k

r , respectively. The dependent data between the two
tasks is Dk

d,r. Resource requests of the detection model and
attribute recognition model are Rdet

req and Rreg
req , respectively.

C. Problem Formulation

There are two decision variables for mapping camera
streams and scheduling DL tasks. The first decision variable
xik is binary, which equals 1 if the camera video stream k is
scheduled to device i. It also indicates that the detection task is
deployed on device i. Another decision variable yik is binary,
which equals 1 if the attribute recognition task corresponding
to camera video stream k is scheduled to device i. For each

camera stream, the detection and attribute recognition tasks
can be locally executed or offloaded to another device. The
time for executing the models on each device depends on the
overall workload and the computation capacity of the device.

The total resource request on device i, notated as Rreq, can
be calculated as follows:

Rreq =

K∑
k=1

(xik · T k
d + yik · T k

r ) (1)

The overall processing time for camera stream k, i.e., Lk,
can be calculated as:

Lk =

M∑
i=1

xik · Tik +

M∑
i=1

xik ·
T k
d

PSi
+

M∑
j=1

yjk ·
T k
r

PSj

+

M∑
i=1

M∑
j=1

xik · yjk ·
Dk

d,r

Ri,j
· σ(i− j)

(2)

where σ(·) is an indicator function. When · is zero, σ(·)
equals to 1, otherwise σ(·) equals to 0.

The objective function is to minimize the sum of completion
time for all applications from camera streams.

min
xik,yik

K∑
k=1

Lk (3)

Rreq ≤ Ri
max, ∀i ∈ V (4)

M∑
i=1

xik = 1, ∀j ∈ V, k ∈ {1, 2, · · · ,K} (5)

M∑
j=1

yik = 1, ∀i ∈ V, k ∈ {1, 2, · · · ,K} (6)

xik, yik ∈ {0, 1}, ∀i, j ∈ V, k ∈ {1, 2, · · · ,K} (7)

Eq. 4 indicates that the resource request on an edge device
cannot exceed its maximum resource. Eq. 5 and Eq. 6 show
that the detection model and the attribute recognition model
of a stream can only be deployed on one edge device.

D. Proposed Algorithm

The formulated optimization problem is a nonlinear integer
programming problem, which can be reduced to a generalized
assignment problem, proven to be NP-hard in literature. Con-
sequently, we propose a heuristic algorithm (PolyHeuristic)
to solve the problem. The algorithm is developed with two
fundamental principles:

• High workload first. Generally, handling video streams
with high workloads results in much larger latency than
those with moderate workloads. If we allocate edge
resources to video streams with moderate workloads first,
high workload streams may suffer from prolonged latency
when the remaining edge resources are inadequate.

• Reusing attribute recognition model. In the person at-
tribute recognition application, the attribute recognition



model should not be frequently invoked because an
individual’s attributes do not change within a short period
and a person will be continuously tracked once their
attributes are determined. Hence, we consider the de-
pendent deployment of the two models. When available
resources are constrained, the attribute recognition model
can be reused to handle multiple video streams, adapting
to constrained edge resources.

Based on these principles, we solve the problem in two
stages, as shown in Algo. 1. The first stage schedules the video
stream and the detection task, while the second stage schedules
the attribute recognition task. We first determine the priority
of stream scheduling by sorting the video streams according
to their workloads. Next, we filter candidate edge devices with
abundant resources for the detection model. The video stream
is allocated to the edge device with the minimum execution
time, considering both the raw video transmission time and
the inference time of the detection model.

min
i
(xik ·

Dk
d,r

Ri,j
+

Tr,k

PSi
), i ∈Mdeployed, k ∈ Vrest (8)

After determining xik, we then allocate the attribute recog-
nition models in stage 2. We use a similar greedy approach
to allocate these models. To determine where to deploy the
attribute recognition model, we allocate the models for streams
with high workloads. When the available resources cannot
support the deployment of new attribute recognition models,
we reuse the existing models. The rest of the streams Vrest

will be allocated to the edge device, which satisfies Eq. 8. By
solving Eq. 8, the rest of the streams will be scheduled to the
deployed attribute recognition model that can provide the least
intermediate data transmission and inference time.

V. BLOCKCHAIN-BASED METAVERSE STATE
MANAGEMENT

This section presents the blockchain-based metaverse state
management scheme in PolyVerse. We first review the used
data models with involved entities, and then we discuss the
threat model. At last, we give the details of state update and
verification operations that jointly ensure the state consistency
in PolyVerse.

A. Data Model

We define the following data model in PolyVerse:
• State that contains physical states PO describing the

information of physical objects, and corresponding virtual
states V O calculated by particular mapping rules MR.
A sid is associated with each po by ECC, which indexes
the states.

• Mapping rule that indicates the relationship between V O
and PO, which also aligns the virtual world and phys-
ical world. For example, the coordinate correspondence
between a physical scene and a virtual scene. Because
of the uniqueness of such relationship, a mapping rule

Algorithm 1: PolyVerse Joint Stream and Task
Scheduling Heuristic (PolyHeuristic)
Input: Video stream V , computation capacity

{PSi}Mi=1 and available resource {Rj
avail}Mj=1

Output: Video and task allocation policy xik and yik
1 Create stream priority I in descending workload;
2 for t← 1 to I do // Stage 1
3 for each device i← 1 to M do
4 if Rj

avail > Rdet
req then

5 Calculate tiexec = Tik +
Td,k

PSi
;

6 end
7 end
8 Select device i∗ with the shortest execution time

i∗ = mini{tjexec};
9 xi∗,k ← 1, update Ri∗

avail for device i∗;
10 end
11 for t← 1 to I do // Stage 2
12 for each device i← 1 to M do
13 if Rj

avail > Rreg
req then

14 Calculate tiexec = xik ·
Dk

d,r

Ri,j
+

Tr,k

PSi
;

15 end
16 end
17 Select device i∗ with the shortest execution time

i∗ = mini{tjexec};
18 Add i to candidate list Mdeployed;
19 if Vrest ̸= ∅ then
20 Schedule remaining streams by solving Eq. 8;
21 end
22 yi∗,k ← 1, update Ri∗

avail for device i∗;
23 end
24 return xik, yik

can also somehow represent a fix scene in the PolyVerse.
Mapping rules are coded as binary strings.

• Auxiliary data. aux includes all supplement data for the
states, such as timestamps, MSP identity information, etc.

B. Threat Model

We assume that MSPs could be malicious (BFT adversarial)
in PolyVerse. Specifically, when states are posted by ECC,
MSPs attempt to synchronize them with each other through
broadcasting. Their goal is to provide MUs with a consistent
view of metaverse states. Malicious MSPs may try to modify
the states, deliberately remain silent to prevent other honest
MSPs from obtaining complete states, or engage in other
arbitrary malicious behaviors to obtain illegal benefits. Given
this scenario, we require that at least 2/3 of the MSPs are
honest, which is a common security boundary for blockchain
consensus [11]. We also assume that the MSPs possess lim-
ited probabilistic polynomial-time (PPT) computational power,
which prevents them from breaking secure hash functions or
signature schemes.



C. Metaverse State Tree

MST is a Merkle Tree-like ADS that accumulates states in
PolyVerse [12] [13]. As shown in Fig. 3, we define three type
of nodes in MST:

Leaf nodes contain state and auxiliary data (po, vo, aux) at
depth D (tree depth). Fleaf and Fempty are flag constants to
distinguish leaf nodes and empty nodes.

Nleaf = Hash(indexi||D||(poi, voi, aux)||Fleaf )

The index is calculated by concatenating mapping rule code
MR as prefix, and the sid of its po. For example, when a MR
is coded as 00 and with sid is 1, the index is:

indexi = 00︸︷︷︸
MR

∥ 1︸︷︷︸
sid

Empty nodes do not contain state or auxiliary data, but
only contain MR as prefix at at depth D

Nempty = Hash(MR||D||Fempty)

Interior nodes are computed by two child nodes with
index 0 and 1. The top interior node is the root node, which
accumulates the entire tree content into a digest.

Ninterior = Hash(child0||child1)

The MST serves for three main purposes: 1) generating
states’ membership proofs for MUs to verify if states are
correctly included by MSPs. 2) improving the throughput
of receiving states without awaiting them to be confirmed
by blockchain consensus. 3) providing high states retrieval
efficiency by indexing states’ MR.

D. State Operation

To address the issue of potential inconsistency among
MSPs, we leverage the BFT capability of blockchain con-
sensus. By submitting the MST root hash (digest) to the
blockchain network, divergent views created by MSPs within
the security boundary are prevented through verifiable digest.
In the followings, we define two operations built on the MST
and blockchain network. These operations are executed by
MSPs and MUs, respectively. Then we introduce optimization
techniques to enhance throughput and reduce the latency of
the two operations.

State Update is responsible for receiving states from edge
computing clusters, calculating MST, and commit the MST
digest into blockchain networks, which is run by MSPs.
Specifically, it contains following steps:

• putPO(ECC) → id, PO, aux: This function al-
lows a MSP to obtain real-time physical states PO
with auxiliary data aux from the ECC (for simplicity,
we assume there is a specific edge device within the
ECC that provides the APIs for obtaining PO). In our
prototype, PO is a stream containing pedestrian ID,
location coordinates, and other attributes.

• calculateVO(PO,MR) → VO: This function allows
an MSP to calculate V O based on PO and a mapping

Fig. 3: Metaverse State Tree (MST) in PolyVerse: the indexi of states
(poi, voi, aux) is 001, whose membership proofs are the red leaf nodes.
Following the red arrow, MSP can efficiently retrieve the states.

rule MR. As mentioned before, MR maps and aligns
the PO to V O in the metaverse.

• generateADS(PO,VO,sid,aux,N) → digest:
This function allows an MSP to construct state tuples
(V O,PO, aux) and sid as an MST and output its
digest. N is the maximum size of state tuples that an
MST can accumulate. D and F can be chosen offline
by MSPs.

• submitTX(PO,VO,aux,digest) → receipt:
This function allows an MSP to submit transactions that
contain multiple (V O,PO, aux) sets and their digest,
and returns the receipts of these transactions, such as the
included block height.

State Verify is performed by MUs to request states and
verify the consistency of them among multiple MSPs.

• getVO(MSP) → VO: MUs retrieve V O from an MSP.
Client software used by MUs renders these V O into
virtual objects.

• reqVerify(VO) → (digest, proofs,
receipt): MUs request the membership proofs
and the blockchain receipt from MSPs for further local
verification. The proofs are the authentication path in
the MST. As shown in Fig. 3, the red leaf nodes jointly
form a path to the root node.

• verifyVO(VO, digest, proofs, receipt)
→ bool: MUs verify if the V O is consistent among
MSPs by checking if it satisfies the following conditions:
(1) V O and proofs can form the identical digest. (2)
receipt is valid for the blockchain network, i.e., it shows
that the transaction is confirmed.

Throughput Optimization. In the aforementioned opera-
tions, if submitTX is triggered for each state update, the
throughput would be limited by the blockchain consensus
speed. New state updates would have to wait for previous
pending updates to be confirmed. To address this issue, we
implement a lazy trigger rule. Specifically, states constructed
as MST can be accessed by MUs before the digest is con-
firmed. This means MUs can obtain states (getVO) as soon as
MSPs complete the virtual state calculation (calculateVO)
and output the ADS (generateADS), whose performance



0

100

200

300
CAM1

0

100

200

300
CAM2

0

100

200

300
CAM3

12:00 12:10 12:20 12:30

Time

0

100

200

300

W
o

rk
lo

a
d

CAM4

(a) Workload dynamics

12:00 12:10 12:20 12:30

Time

0

0.5

1

1.5

2

2.5

L
a

te
n

c
y
 (

s
)

Server Only (SO)

Single Edge (SE)

PolyVerse

(b) Latency vs. dynamic workload

5 6 7 8 9

The number of devices

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

L
a

te
n

c
y
(s

)

Server Only (SO)

Single Edge (SE)

PolyVerse

(c) Latency vs. number of devices

Fig. 4: (a) Workload dynamics of four cameras in real-world deployment. We can observe that the workload is not evenly distributed among different cameras.
(b) In the case of a heavy workload, PolyVerse achieves much lower latency. (c) PolyVerse achieve better performance with increasing edge devices.

is determined by hardware rather than blockchain consensus
algorithms. Consequently, submitTX can be triggered after
reaching a maximum number of unconfirmed states, or a
state verification request from MUs (verifyVO) that veri-
fies certain unconfirmed states. Although this approach may
occasionally return stale states, these issues will be resolved
within a defined boundary due to the trigger rule outlined in
the blockchain consensus [14]. In other words, stale states will
not grow indefinitely, as there will be a maximal threshold or
a limit on verification requests, depending on which is reached
earlier.

VI. IMPLEMENTATION AND EVALUATION

A. Prototype

We develop metaverse campus prototype to demonstrate
PolyVerse, where pedestrians are projected in real-time. We
implement it with a workstation, 5 edge devices, and 9
cameras. We use 3 Jetson Xavier NX (384-core Volta GPU
with 8GB RAM) and 2 Jetson TX2 (256-core GPU with 8GB
RAM) as the edge devices. A workstation with an Intel Core
i9-11900K and 64GB RAM is used to to run a Minecraft server
for hosting a virtual campus scene [15].

Human attribute recognition. We use MobileNet-V2 as the
backbone network for pedestrian detection. MobileNet-V2 is a
lightweight deep convolutional network suitable for resource-
constrained edge devices. A Kalman filter-based tracker is used
to track the pedestrians. For the attribute recognition model,
we use ResNet-50 as the backbone network. The resolution of
the video is 1920x1080 with 30fps.

Blockchain network. We utilize Ethereum in a private net-
work setting through Geth client, which employs a Proof of
Authority (POA) consensus [16].

B. Experimental Evaluation

Latency is a crucial factor for immersiveness in P2V pro-
jection. To showcase the effectiveness of implementing edge
computing techniques in PolyVerse, we conduct a comparative
analysis of the prototype’s end-to-end latency against multi-
ple established baselines, which are similar with settings of
existing VR systems.

• Server Only (SO): the video streams are sent to the server,
where all the computation tasks are executed.

• Single Edge (SE): the video streams are allocated to the
edge devices with the shortest video transmission time.
Computation tasks are executed locally without resource
sharing among edge devices.

We test the prototype under various workloads with varying
numbers of pedestrians to demonstrate the low-latency feature
of PolyVerse. Fig. 4(a) shows the workloads of 4 cameras
between 12:00 and 12:30 a.m.. The workload of each video
stream varies with the number of pedestrians in a video
stream and is dynamic as the content captured by each camera
changes over time. We can also see that the workloads are
different among cameras. In particular, camera 1 and camera
4 have a higher average workload than other two cameras as
they are nearer to the library and canteen.

As shown in Fig.4(b), the latency of SE and PolyVerse is
much lower than that of SO. This is because they process the
application workloads, i.e., model inference of human attribute
recognition, on local edge devices, which can respond in real-
time. SO requires raw videos to be transmitted and processed
on remote server, suffering from unexpected network latency.
Moreover, we also observe that PolyVerse outperforms SE,
especially when there is a high workload. From 12:05 to 12:25,
PolyVerse and SE tend to have similar performance, as the
data transmission latency is the main factor that dominates the
end-to-end latency. As the workload increases, the inference
latency becomes the dominant factor. In this case, PolyVerse
shows apparent superiority, as it schedules the workloads
among collaborative edge devices to achieve optimal latency,
while SE does not enable resource sharing among edge de-
vices. A similar finding is also shown in Fig.4(c), where the
overall latency decreases with the increment of the number
of edge devices for PolyVerse, demonstrating its ability to
efficiently utilize the collaborative edge resources.

VII. RELATED WORKS

Recently, several representative industrial metaverse plat-
forms have emerged. Sandbox Games like [17] offer immer-
sive experiences through digital asset trading and avatar inter-



action in virtual 3D environments. Simulation Platforms like
NVIDIA’s Omniverse [18] provide real-time 3D simulations
and visualizations for industrial applications. Collaboration
Tools, such as Meta Horizon Workrooms [19], facilitate pro-
ductive and collaborative VR experiences for enterprise teams.

Recent research efforts have also explored various aspects
of the metaverse. Duan et al. built a blockchain-driven virtual
campus and discussed its benefits for social goods [2]. Lam et
al. proposed a human-avatar framework with full-body motion
capture for metaverse [20]. Dhelim et al. proposed hybrid
Fog-Edge computing architectures for metaverse tasks like
3D simulation [21]. Wang et al. designed a framework for
Metaverse classrooms to achieve real-time synchronization
of a large number of participants through VR equipment
and sensors [3]. Shen et al. introduced the cyber-physical-
social system (CPSS) paradigm to enhance lecturers’ space
immersion through sparse consumer-grade RGBD cameras [4].
Cai and Karunarathna et al. discussed networking optimization
for efficient metaverse systems [22] [23].

However, existing works do not provide complete and de-
tailed solutions for real-time projection of enormous physical
objects into the metaverse in a scalable manner to enhance
immersiveness.

VIII. CONCLUSION

In this paper, we introduce PolyVerse, an edge computing-
powered metaverse platform that facilitates Physical-to-Virtual
(P2V) object projection to provide an enhanced immersive
experience. By leveraging edge computing and blockchain
technology, PolyVerse efficiently collects, processes, and an-
alyze sensor data, enabling the projection of physical-world
objects into the virtual world while ensuring state consistency.

In the future, we will explore how to implement PolyVerse
in full edge computing environments through edge blockchains
and distributed rendering to further improve the security and
performance [24] [25]. In addition, potential privacy issues
such as attribute leakage during P2V processes are also
important to discuss and address.
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