
A

Cache Design of SSD-based Search Engine Architectures: An
Experimental Study

JIANGUO WANG, University of California, San Diego
ERIC LO, The Hong Kong Polytechnic University
MAN LUNG YIU, The Hong Kong Polytechnic University
JIANCONG TONG, Nankai University
GANG WANG, Nankai University
XIAOGUANG LIU, Nankai University

Caching is an important optimization in search engine architectures. Existing caching techniques for search
engine optimization are mostly biased towards the reduction of random accesses to disks, because random
accesses are known to be much more expensive than sequential accesses in traditional magnetic hard disk
drive (HDD). Recently, solid state drive (SSD) has emerged as a new kind of secondary storage medium, and
some search engines like Baidu have already used SSD to completely replace HDD in their infrastructure.
One notable property of SSD is that its random access latency is comparable to its sequential access latency.
Therefore, the use of SSDs to replace HDDs in a search engine infrastructure may void the cache manage-
ment of existing search engines. In this paper, we carry out a series of empirical experiments to study the
impact of SSD on search engine cache management. Based on the results, we give insights to practitioners
and researchers on how to adapt the infrastructure and caching policies for SSD-based search engines.

Categories and Subject Descriptors: H.3.3 [Information Search and Retrieval]: Search Process

General Terms: Experimentation, Measurement, Performance

Additional Key Words and Phrases: Search Engine, Solid State Drive, Cache, Query Processing

ACM Reference Format:
Jianguo Wang, Eric Lo, Man Lung Yiu, Jiancong Tong, Gang Wang, Xiaoguang Liu, 2014. Cache Design
of SSD-based Search Engine Architectures: An Experimental Study. ACM Trans. Inf. Syst. V, N, Article A
(October 2014), 27 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
Caching is an important optimization in search engine architectures. Over the years,
many caching techniques have been developed and used in search engines [Markatos
2001; Baeza-Yates and Saint-Jean 2003; Baeza-Yates et al. 2007b; Turpin et al. 2007;
Ozcan et al. 2008; Baeza-Yates et al. 2008; Gan and Suel 2009; Altingovde et al. 2009;
Ozcan et al. 2011b; Ozcan et al. 2011a; Saraiva et al. 2001; Ceccarelli et al. 2011]. The
primary goal of caching is to reduce query latency. To that end, search engines com-
monly dedicate portions of servers’ memory to cache certain query results [Markatos

This article is a substantially enhanced version of a paper presented in Proceedings of the 36th Annual ACM
Conference on Research and Development in Information Retrieval (SIGIR’13) [Wang et al. 2013].
Authors’ addresses: J. Wang, Department of Computer Science and Engineering, University of Califor-
nia, San Diego; email: csjgwang@cs.ucsd.edu; E. Lo and M. L. Yiu, Department of Computing, The Hong
Kong Polytechnic University; email: {ericlo, csmlyiu}@comp.polyu.edu.hk; J. Tong and G. Wang and X. Liu,
Nankai-Baidu Joint Lab, Nan Kai University; email: {lingfenghx, wgzwpzy, liuxguang}@gmail.com.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2014 ACM 1046-8188/2014/10-ARTA $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: October 2014.

A:2 J. Wang et al.

 0.01

 0.1

 1

 10

HDD1 HDD2 SSD1 SSD2

la
te

nc
y

of
 a

 r
ea

d
(m

s)
 (

lo
g-

sc
al

e)

100x 130x

2.4x 2.3x

Random read
Sequential read

Fig. 1. Read latency on two HDDs and two SSDs. Each read fetches 4KB. The OS buffer is by-passed. Both
HDDs are 7200rpm, with seek time ranging from 8ms to 10ms, maximum data transfer around 200MB/s.
Both SSDs have maximum data transfer rates as 550MB/s (sequential read) and 160MB/s (random read).

2001; Ozcan et al. 2008; Gan and Suel 2009], posting lists [Baeza-Yates and Saint-Jean
2003; Baeza-Yates et al. 2007b; 2008], documents [Turpin et al. 2007] and snippets
[Ceccarelli et al. 2011] in order to avoid the excessive disk access and computation.

Recently, solid state drive (SSD) has emerged as a new kind of secondary storage
medium. SSD offers a number of benefits over magnetic hard disk drive (HDD). For
example, random reads in SSD are one to two orders of magnitude faster than in HDD
[Graefe 2009; Lee et al. 2008; Chen et al. 2009; Narayanan et al. 2009]. In addition,
SSD is much more energy efficient than HDD (around 2.5% of HDD energy consump-
tion [Seo et al. 2008; Chen et al. 2011]). Now, SSD is getting cheaper and cheaper (e.g.,
it dropped from $40/GB in 2007 to $1/GB in 2012 [Technology 2012]). Therefore, SSD
has been employed in many industrial settings including MySpace1, Facebook2, and
Microsoft Azure3. Baidu, the largest search engine in China, has used SSD to com-
pletely replace HDD as its main storage since 2011 [Ma 2010].

The growing trend of using SSD to replace HDD has raised an interesting research
question specific to the information retrieval community: “what is the impact of SSD on
the cache management of a search engine?” Figure 1 shows the average cost (latency) of
a random read and a sequential read on two brands of SSDs and two brands of HDDs.
It shows that the cost of a random read is 100 to 130 times of a sequential read in
HDD. Due to the wide speed gap between random read and sequential read in HDD,
the benefit of a cache hit, traditionally, has been largely attributed to the saving of the
expensive random read operations. In other words, although a cache hit of a data item
could save the random read of seeking the item and the subsequent sequential reads
of the data when the item spans more than one block [Trotman 2003], the saving of
those sequential reads has been traditionally regarded as less noticeable — because
the random seek operation usually dominates the data retrieval time.

Since a random read is much more expensive than a sequential read in HDD, most
traditional caching techniques have been designed to minimize random reads. The
technology landscape, however, has changed if SSD is used to replace HDD. Specif-

1http://www.fusionio.com/press/MySpace-Uses-Fusion
2http://www.facebook.com/note.php?note id=388112370932
3http://www.storagelook.com/microsoft-azure-ocz-ssds

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: October 2014.

Cache Design of SSD-based Search Engine Architectures: An Experimental Study A:3

ically, Figure 1 shows that the cost of a random read is only about twice that of a
sequential read in SSD. As such, in an SSD-based search engine infrastructure, the
benefit of a cache hit should now attribute to the saving of both random read and sub-
sequent sequential reads for data items that are larger than one block. Furthermore,
since both random reads and sequential reads are fast on SSD while query process-
ing in modern search engines involves several CPU-intensive steps (e.g., query result
ranking [Turtle and Flood 1995; Broder et al. 2003] and snippet generations [Turpin
et al. 2007; Tombros and Sanderson 1998]), we expect that SSD would yield the follow-
ing impacts on the cache management of search engines:

(1) Caching techniques should now target to minimize both random reads and sequen-
tial reads.

(2) The size of the data item and the CPU cost of the other computational components
(e.g., snippet generation) play a more important role in the effectiveness of various
types of caching policies.

Therefore, the first part of this article (Section 4) is devoted to carrying out a large-
scale experimental study that evaluates the impact of SSD on the effectiveness of var-
ious caching policies on prominent cache types found in a typical search engine archi-
tecture. We note that the traditional metric cache hit ratio for evaluating the caching
effectiveness is inadequate in this study — in the past the effectiveness of a caching
policy can be measured by the cache hit ratio because it is a reliable reflection of the ac-
tual query latency: a cache hit can save the retrieval of a data item from disk, and the
latency improvement is roughly the same for a large data item and a small data item
because both require one random read, which dominates the time of retrieving the
whole data item from disk. With SSD replacing HDD, the cache hit ratio is no longer a
reliable reflection of the actual query latency because a larger data item being found in
the cache yields a higher query latency improvement over a smaller data item (a cache
hit for a larger item can save a number of time-significant sequential reads). In fact,
the cache hit ratio is not an adequate measure whenever the cache-miss costs are not
uniform [Altingovde et al. 2009; Gan and Suel 2009; Ozcan et al. 2011a; Marin et al.
2010]. In our study, therefore, one caching policy may be more effective than another
even though they achieve the same cache hit ratio if one generally caches some larger
data items. To complement the inadequacy of cache hit ratio as the metric, our study
is based on the real replays of a million of queries on an SSD-enabled search engine
architecture and our reported findings are mainly based on the actual query
latency.

As we will present later, the empirical results in the first part of this article do
suggest that practitioners who have used or are planning to use SSD to replace HDD
in their search engine infrastructures should revise their caching policies. Therefore,
the second part of this article (Section 5) aims to provide insights to practitioners and
researchers on how to adapt the infrastructure and caching policies for SSD-based
search engines.

To the best of our knowledge, this is the first article to evaluate the impact of SSD
on search engine cache management and provide insights to the redesign of caching
policies for SSD-based search engine infrastructures. A preliminary version of this
article appeared in [Wang et al. 2013]. In this version, we have the following new
contributions:

(1) We refresh all empirical results using a new setting. Specifically, in the early version
of this paper [Wang et al. 2013], when evaluating a particular type of cache in, say,
web server, caches in other servers (e.g., index server) were disabled. In practice,
however, all cache types in all types of servers should be enabled together. Therefore,

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: October 2014.

A:4 J. Wang et al.

in this version, we repeat all experiments using the all-cache-enabled setting and
present the new results.

(2) We strengthen the results by adding a dataset to our experiments. Specifically, in
the early version of this paper [Wang et al. 2013], our results were based on replay-
ing Sogou’s (a Chinese commercial search engine) query logs on Sogou’s web data.
In this version, we strengthen our results by replaying the AOL query logs (Table
II) on ClueWeb dataset (Table III).

(3) We add a new empirical study to identify the performance bottleneck when a search
engine infrastructure switches to use SSD as the core storage (Section 5.1). Based
on that result, we then study which type of (new) cache can be incorporated into
an SSD-based search engine infrastructure (Section 5.2) and how to allocate the
memory among the new and existing cache types (Section 5.3) in order to mitigate
the new bottleneck. Empirically results show that our idea can bring 66.7% to 69.9%
of query latency speedup.

(4) We expand the discussion of the related work in this version, which gives a more
thorough overview of system research related to SSD (Section 6).

The remainder of this paper is organized as follows. Section 2 provides an overview
of contemporary search engine architectures and the prominent types of caches in-
volved. Section 3 details the experimental setting. Section 4 presents our large-scale
experimental study that evaluates the impact of SSD on the effectiveness of various
caching policies. Section 5 presents our new empirical study that identifies the main
latency bottleneck in SSD-based search engine infrastructures and suggests an effec-
tive cache type for such infrastructures. Section 6 discusses the related studies and
Section 7 summarizes the main findings of this study.

2. BACKGROUND AND PRELIMINARY
In this section, we first give an overview of the architecture of the state-of-the-art
web search engines and the major cache types involved (Section 2.1). Then we give
a review of the prominent types of caching policies used in web search engine cache
management (Section 2.2).

2.1. Search Engine Architecture
The architecture of a typical large-scale search engine [Barroso et al. 2003; Dean 2009;
Baeza-Yates et al. 2007a] is shown in Figure 2. A search engine is typically composed
of three sets of servers: Web Servers (WS), Index Servers (IS), and Document Servers
(DS).
Web Servers The web servers are the front-ends for interacting with end users and
coordinating the whole process of query evaluation. Upon receiving a user’s query q
with n terms t1, t2, ..., tn [STEP 1©], the web server that is in charge of q checks whether
q is in its in-memory Query Result Cache (QRC) [Markatos 2001; Saraiva et al. 2001;
Fagni et al. 2006; Baeza-Yates et al. 2007b; Ozcan et al. 2008; Gan and Suel 2009;
Ozcan et al. 2011b; Ozcan et al. 2011a]. The QRC maintains query results of some past
queries. If the results of q are found in the QRC (i.e., a cache hit), the server returns
the cached results of q to the user directly. Generally, query results are roughly of the
same size and a query result consists of (i) the title, (ii) the URL, and (iii) the snippet
[Turpin et al. 2007; Tombros and Sanderson 1998] (i.e., an extract of the document
with terms in q being highlighted) of the top-k ranked results related to q (where k is
a system parameter, e.g., 10 [Fagni et al. 2006; Altingovde et al. 2011; Ceccarelli et al.

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: October 2014.

Cache Design of SSD-based Search Engine Architectures: An Experimental Study A:5

Fig. 2. Web search engine architecture

2011; Ozcan et al. 2011a]). If the results of q are not found in the QRC (i.e., a cache
miss), the query is forwarded to an index server [STEP 2©].
Index Servers The index servers are responsible for the computation of the top-k
ranked results related to a query q. An index server works by: [STEP IS1] retrieving the
corresponding posting list PLi = [d1, d2, ...] of each term ti in q, [STEP IS2] intersecting
all the retrieved posting lists PL1, PL2, ..., PLn to obtain a list of document identifiers
(ids) that contain all terms in q, and [STEP IS3] ranking the documents for q according
to a ranking model. After that, the index server sends the ordered list of document
ids d1, d2, ..., dk of the top-k most relevant documents of query q back to the web server
[STEP 3©]. In an index server, an in-memory Posting List Cache (PLC) [Saraiva et al.
2001; Baeza-Yates et al. 2007b; Zhang et al. 2008] is employed to cache the posting
lists of some terms. Upon receiving a query q(t1, t2, ..., tn) from a web server, an index
server skips STEP IS1 if a posting list is found in the PLC.
Document Servers Upon receiving the ordered list of document ids d1, d2, ..., dk from
the index server, the web server forwards the list and the query q to a document server
for further processing [STEP 4©]. The document server is responsible for generating the
final result. The final result is a web page that includes the title, URL, and a snippet
for each of the top-k documents. The snippet si of a document di is query-specific — it is
a portion of a document which can best match the terms in q. The generation process
is as follows: [STEP DS1] First, the original documents that the list of document ids
referred to are retrieved. [STEP DS2] Then, the snippet of each document for query q is
generated. There are two levels of caches in the document servers: Snippet Cache (SC)
[Ceccarelli et al. 2011] and Document Cache (DC) [Turpin et al. 2007]. The in-memory
Snippet Cache (SC) stores some snippets that have been previously generated for some
query-document pairs. If a particular query-document pair is found in the SC, STEP
DS1 and STEP DS2 for that pair can be skipped. The in-memory Document Cache (DC)
stores some documents that have been previously retrieved. If a particular requested
document is in the DC, STEP DS1 can be skipped. As the output, the document server

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: October 2014.

A:6 J. Wang et al.

returns the final result (in the form of a web page with a ranked list of snippets of the
k most relevant documents of query q) to the web server [STEP 5©] and the web server
may cache the result in the QRC and then pass the result back to the end user [STEP
6©].

2.2. Caching Policy
Caching is a widely-used optimization technique to improve system performance
[Markatos 2001; Herrero et al. 2008; Fitzpatrick 2009; Elhardt and Bayer 1984]. Web
search engines use caches in different types of servers to reduce the query response
time [Saraiva et al. 2001]. There are two types of caching policies being used in search
engines: (1) Dynamic Caching and (2) Static Caching. Dynamic caching is the classic. If
the cache memory is full, dynamic caching follows a replacement policy (a.k.a. eviction
policy) to evict some items in order to admit the new items [Belady 1966; Jiang and
Zhang 2002; Podlipnig and Böszörmenyi 2003]. Static caching is less common but does
exist in search engines [Markatos 2001; Ozcan et al. 2008; Baeza-Yates et al. 2007b;
2008; Altingovde et al. 2009; Ozcan et al. 2011a; Ozcan et al. 2011b]. Initially when
the cache is empty, a static cache follows an admission policy to select data items to
fill the cache. Once the cache has been filled, it does not admit any new item at run-
time. The same cache content continuously serves the requests and its entire content
is refreshed in a periodic manner [Markatos 2001]. Static caching can avoid the sit-
uations of having long-lasting popular items being evicted by the admission of many
momentarily popular items as in dynamic caching. In the following, we briefly review
the prominent cache policies found in industrial-strength search engine architectures.
They may not be exhaustive, but we believe they are representative. Table I shows the
nomenclature for this paper.

Table I. Caching policy

Dynamic Static

Query Result
Cache (QRC)

D-QRC-LRU [Markatos 2001]
D-QRC-LFU [Markatos 2001]
D-QRC-CA [Ozcan et al. 2011a]
D-QRC-FB [Gan and Suel 2009]

S-QRC-Freq [Markatos 2001]
S-QRC-FreqStab [Ozcan et al. 2008]
S-QRC-CA [Altingovde et al. 2009]

Posting List
Cache (PLC)

D-PLC-LRU [Saraiva et al. 2001]
D-PLC-LFU [Baeza-Yates et al. 2007b]
D-PLC-FreqSize [Baeza-Yates et al. 2007b]

S-PLC-Freq [Baeza-Yates and Saint-Jean 2003]
S-PLC-FreqSize [Baeza-Yates et al. 2007b]

Document
Cache (DC) DC-LRU [Turpin et al. 2007] –

Snippet
Cache (SC) SC-LRU [Ceccarelli et al. 2011] –

2.2.1. Cache in Web Servers. Query Result Cache (QRC) is the cache used in the web
servers. It caches the query results such that the whole stack of query processing can
be entirely skipped if the result of query q is found in the QRC. Both dynamic and
static query result caches exist in the literature.
Dynamic Query Result Cache (D-QRC) Markatos was the first to discuss about
the use of dynamic query result cache (D-QRC) in search engines [Markatos 2001].
By analyzing the query logs of Excite search engine, the author observed a significant
temporal locality in the queries. Therefore, he proposed the use of query result cache.
Two classic replacement policies were used there: least-recently-used (LRU) and the
least-frequently-used (LFU). In this paper, we refer to them as D-QRC-LRU and D-
QRC-LFU, respectively.

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: October 2014.

Cache Design of SSD-based Search Engine Architectures: An Experimental Study A:7

Gan and Suel have developed a feature-based replacement policy for dynamic query
result caching [Gan and Suel 2009]. In this paper, we refer to that policy as D-QRC-FB.
In addition to query frequency, the policy considers nine more features (e.g., query re-
cency) to predict the reoccurrence of a query. More specifically, each of the ten features
(dimensions) is divided into eight intervals and thus the whole space is divided into
810 buckets. Each bucket is associated with a weight, which is the cache hit ratio for
queries belonging to that bucket. Then, queries falling in the buckets with the lowest
weights are chosen to be evicted first.

Recently, Ozcan et al. presented a cost-aware policy for dynamic query result caching
[Ozcan et al. 2011a]. We refer to it as D-QRC-CA. The policy takes a query’s execution
cost into account during eviction. Specifically, each query q is associated with a weight
wq = (fq × cq)/sq + A, where fq is the query frequency, cq is the execution cost of
q (including only the basic execution costs such as list access, list intersection, and
ranking cost), sq is the query result size of q, and A is an aging factor (initially set as 0)
that would be increased along with the time. When eviction takes place, the query with
the smallest weight wmin is chosen and the value of A is updated as wmin. Whenever
a cache item is accessed, its corresponding weight is recalculated using the updated
value of A. This adopted D-QRC-CA policy is referred as the GDSF policy in [Ozcan
et al. 2011a].
Static Query Result Cache Markatos discussed about the potential use of static
caching in search engines [Markatos 2001]. In that work, a static query result cache
with an admission policy that analyzes the query logs and fills the cache with the
most frequently posed queries was proposed. In this paper, we refer to this policy as
S-QRC-Freq.

Ozcan et al. reported that some query results cached by S-QRC-Freq policy are not
useful because there is a significant number of frequent queries quickly lose their
popularities but still reside in the static cache before the next periodic cache refresh
[Ozcan et al. 2008]. Consequently, they proposed another admission policy that selects
queries with high frequency stability. More specifically, the query log is first partitioned
by time into n parts. Let f be the total frequency of a query q in the log and and fi
be the frequency of q in the i-th part of the log. Then, the frequency stability of q is∑n

i=1
|fi−f ′|

f ′ , where f ′ is the average frequency of q for a part, i.e., f ′ = f/n. Queries
with high frequency stability are those frequent queries and the logs show that they
remain frequent over a time period. In this paper, we refer to this policy as S-QRC-
FreqStab.

Later on, Altingovde et al. developed a cost-aware replacement policy for static query
result cache [Altingovde et al. 2009; Ozcan et al. 2011b; Ozcan et al. 2011a]. In this
paper, we refer to that as S-QRC-CA. It is essentially the static version of D-QRC-
CA (with the aging factor A being 0). That is, each query is associated with a weight,
which is the product of its frequency and basic execution costs. That policy admits
queries with the highest weights, until the cache is full.
Remark: According to [Gan and Suel 2009] and [Ozcan et al. 2011a], D-QRC-FB and
D-QRC-CA typically have the highest effectiveness among all other dynamic query
result caching policies. Nonetheless, there is no direct comparison between D-QRC-FB
and D-QRC-CA. The effectiveness of D-QRC-FB, however, is sensitive to the various
parameters (e.g., the number of intervals of each dimension).

According to [Altingovde et al. 2009; Ozcan et al. 2011b; Ozcan et al. 2011a], S-QRC-
CA is the most stable and effective policy in static query result caching. Dynamic and
static result caching can co-exist and share the main memory of a web server. In [Fagni

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: October 2014.

A:8 J. Wang et al.

et al. 2006], they empirically suggested ratios for D-QRC to S-QRC are 6:4, 2:8, and
7:3 for Tiscali, AltaVista, and Excite data, respectively.

2.2.2. Cache in Index Servers. Posting List Cache (PLC) is the cache used in the index
servers. It caches some posting lists in the memory so that the disk read of a posting
list PL of a term t in query q can possibly be skipped. Both dynamic and static posting
list caches exist in the literature.
Dynamic Posting List Cache Saraiva et al. were the first to discuss the effective-
ness of dynamic posting list caching in index servers [Saraiva et al. 2001]. In that
work, the simple LRU policy was used. In this paper, we refer to this as D-PLC-LRU.
In [Baeza-Yates et al. 2007b; 2008], the authors also evaluated another common used
policy, LFU, in dynamic PLC, in which we refer to this as D-PLC-LFU in this paper.
To balance the tradeoff between term popularity and the effective use of the cache (to
cache more items), the authors developed a replacement policy that favors terms with
a high frequency to posting list length ratio. In this paper, we refer to this policy as
D-PLC-FreqSize.
Static Posting List Cache Static posting list caching was first studied in [Baeza-
Yates and Saint-Jean 2003] and the admission policy was based on selecting post-
ing lists with high access frequency. In this paper, we refer to this as S-PLC-Freq. In
[Baeza-Yates et al. 2007b; 2008], the static cache version of D-PLC-FreqSize was also
discussed. We refer to that as S-PLC-FreqSize here.
Remark: According to [Baeza-Yates et al. 2007b; 2008], S-PLC-FreqSize is the winner
over all static and dynamic posting list caching policies.

2.2.3. Cache in Document Servers. Two types of caches could be used in the document
servers: Document Cache (DC) and Snippet Cache (SC). These caches store some doc-
uments and snippets in the memory of the document servers. So far, only dynamic
document cache and dynamic snippet cache have been discussed and there is no corre-
sponding static caching techniques yet.
Document Cache In [Turpin et al. 2007], the authors observed that the time of read-
ing a document from disk dominates the snippet generation process. So, they proposed
to cache some documents in the document server’s memory so as to reduce the snippet
generation time. In that work, the simple LRU replacement policy was used and here
we refer to it as DC-LRU. According to [Turpin et al. 2007], document caching is able
to significantly reduce the time for generating snippets.
Snippet Cache In [Ceccarelli et al. 2011], the authors pointed out that the snippet
generation process is very expensive in terms of both CPU computation and disk access
in the document servers. Therefore, the authors proposed to cache some generated
snippets in the document server’s main memory. In this paper, we refer to this as SC-
LRU because it uses the LRU policy as replacement policy.

3. EXPERIMENTAL SETTING
In this article, we use a typical search engine architecture (Figure 2) that consists
of index servers, document servers, and web servers. We focus on a pure SSD-based
architecture like Baidu [Ma 2010]. Many studies predict that SSD will soon completely
replace HDD in all layers [Kerekes 2009; Gray 2006; Hauksson and Smundsson 2007].
The study of using SSD as a layer between main memory and HDD in a search engine
architecture before SSD completely replaces HDD has been studied elsewhere in [Li
et al. 2012].

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: October 2014.

Cache Design of SSD-based Search Engine Architectures: An Experimental Study A:9

We deploy Lucene4 search engine on a sandbox infrastructure consisting of one in-
dex server, one document server, and one web server. All servers are Intel commodity
machines (2.5GHz CPU, 8GB RAM) with Windows 7 installed. We have carried out
our experiments on two SSDs and two HDDs (evaluated in Figure 1). The experimen-
tal results are largely similar and thus we only present the results of using SSD1 and
HDD1. In the experiments, the OS buffer is disabled. The experiments were carried
out using two datasets:

(1) Sogou
— Sogou query5. It is a collection of real queries (in Chinese) found in the Sogou

search engine (sogou.com), a famous commercial search engine in China, in June
2008. The log contains 51.5 million queries. To ensure the replay can be done in
a manageable time, we draw a random sample of 1 million queries for our experi-
ments (as a reference, 0.7 million queries were used in [Ozcan et al. 2011a]). The
query frequency and term frequency of our sampled query set follow the power-
law distribution with skew-factor α = 0.85 and 1.48, respectively (see Figures 3(a)
and (b)). As a reference, the query frequencies in some related work like [Saraiva
et al. 2001; Gan and Suel 2009; Baeza-Yates et al. 2008] follow the power-law
distribution with α equals 0.59, 0.82, and 0.83, respectively; and the term fre-
quencies in some recent work like [Baeza-Yates et al. 2008] follow the power-law
distribution with α = 1.06.

— Sogou web data6. It is a real collection of web pages (in Chinese) crawled in the
middle of 2008, by Sogou. The entire data set takes over 5TB. To accommodate
our experimental setup, we draw a random sample of 100GB data (about 12 mil-
lion documents). It is a reasonable setting because large-scale web search engines
shard their indexes and data across clusters of machines [Ma 2010]. As a refer-
ence, the sampled data sets in some recent works are 15GB in [Baeza-Yates et al.
2008], 37GB in [Ozcan et al. 2011a], and 2.78 million web pages in [Baeza-Yates
et al. 2007b].

(2) AOL query on ClueWeb web data
— AOL query7. It is a collection of 36,389,567 real queries (in English) submitted to

the AOL search engine (search.aol.com) between March 1 and May 31, 2006. We
draw a sample of 1 million queries. The query frequency and term frequency of
the sampled AOL query logs follow the power-law distribution with skew-factor
α = 0.55 and 1.48, respectively (see Figures 3(c) and (d)).

— ClueWeb web data8. It is a real collection of web pages crawled in January and
February 2009 consisting of 10 languages. To be compatible with the size of Sogou
web data, we draw a sample of about 12 million English web pages. The sampled
web data is around 88GB.

Table II shows the characteristics of our query set9 and Table III shows the char-
acteristics of our data set. In the following, we refer to “Sogou” as replaying Sogou
queries on Sogou web data, and we refer to “ClueWeb” as replaying AOL queries on
ClueWeb data.

We divide the real query log into two parts: 50% of the queries are used for warming
the cache and the other 50% are for the replay, following the usual settings [Markatos

4http://lucene.apache.org
5http://www.sogou.com/labs/dl/q-e.html (2008 version)
6http://www.sogou.com/labs/dl/t-e.html (2008 version)
7http://www.gregsadetsky.com/aol-data
8http://lemurproject.org/clueweb09
9Query logs used are de-identified for privacy reasons.

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: October 2014.

A:10 J. Wang et al.

(a) Query frequency distribution – Sogou (b) Term frequency distribution – Sogou

(c) Query frequency distribution – AOL (d) Term frequency distribution – AOL

Fig. 3. Frequency distribution of our query set

Table II. Statistics of query set

Sogou AOL
Number of queries 1,000,000 1,000,000
Number of distinct queries 200,444 495,073
Number of terms 1,940,671 2,007,985
Number of distinct terms 82,503 343,065
Average number of terms per query 3.89 2.05
Total size of the posting lists of the
distinct terms 3.89GB 3.48GB

Power-law skew-factor α for query frequency 0.85 0.55
Power-law skew-factor α for term frequency 1.48 1.48

Table III. Statistics of web data

Sogou ClueWeb
Number of documents 11,970,265 12,408,626
Average document size 8KB 7KB
Total data size 100GB 88GB
Inverted index size 10GB 7.5GB

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: October 2014.

Cache Design of SSD-based Search Engine Architectures: An Experimental Study A:11

2001; Altingovde et al. 2009; Ozcan et al. 2011a; Altingovde et al. 2011; Ozcan et al.
2011b].

In the experiments, we follow some standard settings found in recent work. Specifi-
cally, we follow [Fagni et al. 2006; Altingovde et al. 2011; Ceccarelli et al. 2011; Ozcan
et al. 2011a] to retrieve the top-10 most relevant documents. We follow [Saraiva et al.
2001] to configure the snippet generator to generate snippets with at most 250 char-
acters. Posting list compression is enabled. To improve the experimental repeatability,
we use the standard variable-byte compression method [Scholer et al. 2002] in the ex-
periments. The page (block) size in the system is 4KB [Gal and Toledo 2005; Debnath
et al. 2010; Tsirogiannis et al. 2009]. As the query latencies differ a lot between HDD-
based and SSD-based architectures, we follow [Baeza-Yates et al. 2007b; Agrawal et al.
2008] to report the normalized average end-to-end query latency instead of the abso-
lute query latency. In [Manning et al. 2008; Webber and Moffat 2005], it was suggested
that a posting list would not be fragmented to distant disk blocks but stored in contin-
uous disk blocks. In this paper, we follow that to configure Lucene.

4. THE IMPACT OF SOLID STATE DRIVE ON SEARCH ENGINE CACHE MANAGEMENT
In this section, we evaluate the impact of SSD on the cache management of the index
servers (Section 4.1), the document servers (Section 4.2), and the web servers (Section
4.3).

To show the effectiveness of each individual caching policy in a realistic manner,
when evaluating a particular type of cache, we fill up the other caches to attain a
typical cache hit ratio about 30% to 60% as reported in [Dean 2009; Baeza-Yates et al.
2007b; Markatos 2001]. Table IV shows the default cache sizes that are required to
fall into the typical hit ratio range in our platform. When replaying AOL queries over
ClueWeb data, the hit ratio of document cache cannot increase beyond 15.6% even we
allocate more than 1024MB memory to the document cache. That is because many
items had already been hit in the query result cache and the snippet cache. For the
setting where all other caches are disabled when evaluating a particular type of cache,
we refer readers to [Wang et al. 2013], the preliminary version of this article.

Table IV. Cache used to attain typical hit ratios

Sogou ClueWeb
Cache type Cache size Hit ratio Cache size Hit ratio
Query result cache (QRC) 64MB 50% 8MB 31.3%
Posting list cache (PLC) 512MB 48% 512MB 36.0%
Snippet cache (SC) 1GB 59% 256MB 30.3%
Document cache (DC) 4GB 38% 1024MB 15.6%

4.1. The Impact of SSD on Index Servers
We first evaluate the impact of SSD on the posting list cache management in an index
server. As mentioned, on SSD, a long posting list being found in the cache should have
a larger query latency improvement than a short posting list being found because (i)
a cache hit can save more sequential read accesses if the list is a long one and (ii) the
cost of a sequential read is now comparable to the cost of a random read (see Figure 1).

To verify our claim, Figure 4 shows the access latency of fetching from disk the
posting lists of terms found in Sogou query log. We see that the latency of reading a
list from HDD increases mildly with the list length because the random seek operation
dominates the access time. In contrast, we see the latency of reading a list from SSD
increases with the list length at a faster rate.

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: October 2014.

A:12 J. Wang et al.

 0

 10

 20

 30

 40

 50

 0 50 100 150 200 250 300

re
tr

ie
va

l t
im

e
(m

s)

posting list length (in blocks)

HDD

 0

 2

 4

 6

 8

 10

 0 50 100 150 200 250 300

re
tr

ie
va

l t
im

e
(m

s)

posting list length (in blocks)

SSD

(a) on HDD (b) on SSD

Fig. 4. Read access latency of posting lists of varying lengths on Sogou data. We ran experiments five times
to get the average.

Based on that observation, we believe that the effectiveness of some existing posting
list caching policies would change when they are applied to an SSD-based search en-
gine infrastructure. For example, according to [Baeza-Yates et al. 2007b; 2008], S-PLC-
FreqSize has the best caching effectiveness on HDD-based search engines because it
favors popular terms with short posting lists (i.e., a high frequency to length ratio)
for the purpose of caching more popular terms. However, on SSD, a short list being in
the cache has a smaller query latency improvement than a long list. As such, we
believe that design principle is void in an SSD-based search engine infrastructure.

To verify our claim, we carried out experiments to re-evaluate the static and dynamic
posting list caching policies in our SSD search engine sandbox. In the evaluation, we
focus on the effectiveness of individual caching policy type. The empirical evaluation of
the optimal ratio between static cache and dynamic cache on SSD-based search engine
architectures is beyond the scope of this paper.

4.1.1. Reevaluation of static posting list caching policies on SSD-based search engine architec-
tures. We begin with presenting the evaluation results of the two existing static post-
ing list caching policies, (1) S-PLC-Freq and (2) S-PLC-FreqSize, mentioned in Section
2.2.2. Figure 5 shows the cache hit ratio and the average query latency of S-PLC-Freq
and S-PLC-FreqSize under different cache memory sizes.

Echoing the results in [Baeza-Yates et al. 2007b; 2008], Figures 5(a) and (b) show
that S-PLC-FreqSize, which tends to cache popular terms with short posting lists, has
a higher cache hit ratio than S-PLC-Freq. The two policies have the same cache hit
ratio when the cache size is 4GB because the cache is large enough to accommodate
all the posting lists of the query terms (see Table II) in the cache warming phase. The
reported cache misses are all attributed to the difference between the terms found in
the training queries and the terms found in the replay queries.

Although it has a higher cache hit ratio, Figures 5(c) and (d) show that the aver-
age query latency of S-PLC-FreqSize is actually longer than that of S-PLC-Freq in an
SSD-based search engine architecture. As the caching policy S-PLC-FreqSize tends to
cache terms with short posting lists, the benefit brought by the higher cache hit ratio
is watered down by the fewer sequential read savings caused by short posting lists.
This explains why S-PLC-FreqSize becomes poor in terms of query latency. Apart from
the above, the experimental results above are real examples that illustrate the cache
hit ratio is not an adequate measure whenever the cache-miss costs are not uniform
[Altingovde et al. 2009; Gan and Suel 2009; Ozcan et al. 2011a; Marin et al. 2010].

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: October 2014.

Cache Design of SSD-based Search Engine Architectures: An Experimental Study A:13

 20

 30

 40

 50

 60

 70

 80

 90

 100

512 1024 2048 4096

hi
t r

at
io

 (
%

)

cache size (MB)

S-PLC-Freq
S-PLC-FreqSize

 20

 30

 40

 50

 60

 70

 80

 90

 100

512 1024 2048 4096

hi
t r

at
io

 (
%

)

cache size (MB)

S-PLC-Freq
S-PLC-FreqSize

(a) Hit ratio – Sogou (b) Hit ratio – ClueWeb

0.80

0.84

0.88

0.92

0.96

1.00

512 1024 2048 4096

av
er

ag
e

qu
er

y
la

te
nc

y
(n

or
m

al
iz

ed
)

cache size (MB)

S-PLC-Freq
S-PLC-FreqSize

 0.84

 0.88

 0.92

 0.96

 1.00

512 1024 2048 4096

av
er

ag
e

qu
er

y
la

te
nc

y
(n

or
m

al
iz

ed
)

cache size (MB)

S-PLC-Freq
S-PLC-FreqSize

(c) Query latency on SSD – Sogou (d) Query latency on SSD – ClueWeb

0.84

0.88

0.92

0.96

1.00

512 1024 2048 4096

av
er

ag
e

qu
er

y
la

te
nc

y
(n

or
m

al
iz

ed
)

cache size (MB)

S-PLC-Freq
S-PLC-FreqSize

0.84

0.88

0.92

0.96

1.00

512 1024 2048 4096

av
er

ag
e

qu
er

y
la

te
nc

y
(n

or
m

al
iz

ed
)

cache size (MB)

S-PLC-Freq
S-PLC-FreqSize

(e) Query latency on HDD – Sogou (f) Query latency on HDD – ClueWeb

Fig. 5. [Index Server] Effectiveness of static posting list caching policies

Figures 5(e) and (f) show the average query latency on HDD. We also observe that
S-PLC-FreqSize’s average query latency is slightly worse than S-PLC-Freq at 512MB
cache memory even though the former has a much higher cache hit ratio than the
latter. To explain, Figure 6 shows the average sizes of the posting lists participating in
all cache hits (i.e., whenever there is a hit in the PLC, we record its size and report the
average). We see that when the cache memory is small (e.g., 512MB), S-PLC-FreqSize
consistently keeps short lists in the cache. In contrast, S-PLC-Freq keeps relatively

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: October 2014.

A:14 J. Wang et al.

 200

 300

 400

 500

 600

 700

 512 1024 2048 4096

av
er

ag
e

li
st

 s
iz

e
pe

r
hi

t (
in

 b
lo

ck
s)

cache size (MB)

S-PLC-Freq
S-PLC-FreqSize

 100

 200

 300

 400

 512 1024 2048 4096

av
er

ag
e

li
st

 s
iz

e
pe

r
hi

t (
in

 b
lo

ck
s)

cache size (MB)

S-PLC-Freq
S-PLC-FreqSize

(a) on Sogou (b) on ClueWeb

Fig. 6. Average list size (in blocks) of all hits in static posting list cache

longer posting lists. Take the Sogou case as an example. At 512MB cache memory, a
cache hit under S-PLC-Freq policy can save 693 − 307 = 386 more sequential reads
than S-PLC-FreqSize. Even though sequential reads are cheap on HDD, a total of 386
sequential reads are actually as expensive as 3 to 4 random seeks (see Figure 1). In
other words, although Figure 5(a) shows that the cache hit ratio of S-PLC-Freq is
20% lower than S-PLC-FreqSize at 512MB cache, that is outweighed by the 386 extra
sequential reads (equivalent to 3 to 4 extra random seeks) between the two policies.
That explains why S-PLC-Freq slightly outperforms S-PLC-FreqSize at 512MB cache.
Of course, when the cache memory increases, S-PLC-Freq starts to admit more short
lists into the cache memory, which reduces its benefit per cache hit, and that causes
S-PLC-FreqSize to outperform S-PLC-Freq again through the better cache hit ratio.

4.1.2. Reevaluation of dynamic posting list caching policies on SSD-based search engine architec-
tures. We next present the evaluation results of the three existing dynamic posting list
caching policies, (1) D-PLC-LRU, (2) D-PLC-LFU, and (3) D-PLC-FreqSize, mentioned
in Section 2.2.2. Figure 7 shows the cache hit ratio and the average query latency of
the three policies under different cache memory sizes.

First, we also see that while D-PLC-FreqSize has a better cache hit ratio than D-
PLC-LFU (Figures 7(a) and (b)), its query latency is actually longer than D-PLC-LFU
(Figures 7(c) and (d)) in SSD-based architectures. This further supports that the claim
of favoring terms with high frequency over length ratio no longer sustains in SSD-
based search engine architectures. Also, this gives yet another example of the fact that
cache hit ratio is not a reliable measure in SSD cache management , as the average
length of posting lists that are admitted by D-PLC-FreqSize is much shorter than by
D-PLC-LFU (Figure 8), making the cache-miss costs non-uniform.

Second, comparing D-PLC-LRU and D-PLC-LFU, we see that while D-PLC-LFU has
a poorer cache hit ratio than D-PLC-LRU, their query latencies are quite close in SSD-
based architectures. D-PLC-LFU tends to admit longer lists than D-PLC-LRU (Figure
8) because there is a small correlation (0.424 in Yahoo! data [Baeza-Yates et al. 2007b]
and 0.35 in our Sogou data) between term frequency and posting list length. As men-
tioned, on SSD, the benefit of finding a term with a longer list in cache is higher than
that of finding a term with shorter list. This explains why D-PLC-LFU has a query
latency close to D-PLC-LRU, which has a higher cache hit ratio.

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: October 2014.

Cache Design of SSD-based Search Engine Architectures: An Experimental Study A:15

 20

 30

 40

 50

 60

 70

 80

 90

 100

512 1024 2048 4096

hi
t r

at
io

 (
%

)

cache size (MB)

D-PLC-LFU
D-PLC-FreqSize

D-PLC-LRU

 30

 40

 50

 60

 70

 80

512 1024 2048 4096

hi
t r

at
io

 (
%

)

cache size (MB)

D-PLC-LFU
D-PLC-FreqSize

D-PLC-LRU

(a) Hit ratio – Sogou (b) Hit ratio – ClueWeb

0.80

0.84

0.88

0.92

0.96

1.00

512 1024 2048 4096

av
er

ag
e

qu
er

y
la

te
nc

y
(n

or
m

al
iz

ed
)

cache size (MB)

D-PLC-LFU
D-PLC-FreqSize

D-PLC-LRU

 0.84

 0.88

 0.92

 0.96

 1.00

512 1024 2048 4096

av
er

ag
e

qu
er

y
la

te
nc

y
(n

or
m

al
iz

ed
)

cache size (MB)

D-PLC-LFU
D-PLC-FreqSize

D-PLC-LRU

(c) Query latency on SSD – Sogou (d) Query latency on SSD – ClueWeb

0.84

0.88

0.92

0.96

1.00

512 1024 2048 4096

av
er

ag
e

qu
er

y
la

te
nc

y
(n

or
m

al
iz

ed
)

cache size (MB)

D-PLC-LFU
D-PLC-FreqSize

D-PLC-LRU

0.84

0.88

0.92

0.96

1.00

512 1024 2048 4096

av
er

ag
e

qu
er

y
la

te
nc

y
(n

or
m

al
iz

ed
)

cache size (MB)

D-PLC-LFU
D-PLC-FreqSize

D-PLC-LRU

(e) Query latency on HDD – Sogou (f) Query latency on HDD – ClueWeb

Fig. 7. [Index Server] Effectiveness of dynamic posting list cache policies

 200

 300

 400

 500

 600

 700

 512 1024 2048 4096

av
er

ag
e

li
st

 s
iz

e
pe

r
hi

t (
in

 b
lo

ck
s)

cache size (MB)

D-PLC-LFU
D-PLC-FreqSize

D-PLC-LRU

 200

 250

 300

 350

 400

 450

 500

 550

 512 1024 2048 4096

av
er

ag
e

li
st

 s
iz

e
pe

r
hi

t (
in

 b
lo

ck
s)

cache size (MB)

D-PLC-LFU
D-PLC-FreqSize

D-PLC-LRU

(a) on Sogou (b) on ClueWeb

Fig. 8. Average list size (in blocks) of all hits in dynamic posting list cache

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: October 2014.

A:16 J. Wang et al.

Figure 7(e) and (f) show the average query latency on HDD. First, we once again
see that cache hit ratio is not reliable even on HDD-based architectures. For example,
while D-PLC-FreqSize has a higher cache hit ratio than D-PLC-LFU (except when the
cache is large enough to hold all posting lists), their query latencies are quite close
to each other in HDD-based architectures. That is due to the same reason that we
explained in static caching — Figure 8(a) and (b) show that D-PLC-LFU can save
hundreds of sequential reads more than D-PLC-FreqSize per cache hit when the cache
memory is less than 1GB. That outweighs the cache hit ratio difference between the
two. In contrast, while D-PLC-LRU has a better cache hit ratio than D-PLC-LFU, they
follow the tradition that the former outperforms the latter in latency because Figure
8(a) and (b) show the size difference of the posting lists that participated in the cache
hits (i.e., the benefit gap in terms of query latency) between D-PLC-LRU and D-PLC-
LFU is not as significant as the time of one random seek operation. Therefore, D-PLC-
LRU yields a shorter query latency than D-PLC-LFU based on its higher cache hit
ratio.

4.2. The Impact of SSD on Document Servers
We next evaluate the impact of SSD on the cache management of the document servers.
A document server is responsible for storing part of the whole document collection and
generating the final query result. It receives a query q and an ordered list of document
ids {d1, d2, . . . , dk} for the top k most relevant documents from a web server, retrieves
the corresponding documents from the disk, and generates the query-specific snippet
for each document and consolidates them as a result page. In the process, k query-
specific snippets have to be generated. If a query-specific snippet 〈q, di〉 is found in the
snippet cache, the retrieval of di from the disk and the generation of that snippet are
skipped. If a query-specific snippet is not found in the snippet cache, but the document
di is in found the document cache, the retrieval of di from the disk is skipped. In our
data (Table III), a document is about 7KB to 8KB on average. With a 4KB page size,
retrieving a document from the disk thus requires one random seek (read) and a few
more sequential reads.

Fig. 9. Document retrieval time vs. snippet generation in a document server

In traditional search engine architectures using HDD in the document servers, the
latency from receiving the query and document list from the web server to the return
of the query result is dominated by the k random read operations that seek the k doc-
uments from the HDD (see Figures 9(a) and (c)). These motivated the use of document

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: October 2014.

Cache Design of SSD-based Search Engine Architectures: An Experimental Study A:17

cache to improve the latency. As the random reads are much faster on SSD, we now
believe that the time bottleneck in the document servers will shift from document re-
trieval (disk access) to snippet generation (CPU computation). More specifically, the
snippet generation process that finds every occurrence of q in di and identifies the best
text synopsis [Turpin et al. 2007; Tombros and Sanderson 1998] according to a specific
ranking function [Tombros and Sanderson 1998] is indeed CPU-intensive. Figures 9(b)
and (d) show that the CPU time spent on snippet generation becomes two times the
document retrieval time if SSD is used in a document server. Therefore, contrary to
the significant time reduction brought by document cache in traditional HDD-based
search engine architectures [Turpin et al. 2007], we believe the importance of docu-
ment cache in SSD-based search engine architectures is significantly diminished.

To verify our claim, we carried out experiments to vary the cache memories allocated
to the document cache, with all the other caches enabled as default in Table IV, in our
SSD- and HDD-based sandbox infrastructure. The caching policies in document cache
and snippet cache are DC-LRU [Turpin et al. 2007] and SC-LRU [Ceccarelli et al.
2011], respectively.

 0

 0.2

 0.4

 0.6

 0.8

 1

0 256 512 1024 2048 4096

av
g.

 q
ue

ry
 r

es
po

ns
e

ti
m

e
(n

or
m

al
iz

ed
)

document cache size (MB)

reduction: 3.2%

 0

 0.2

 0.4

 0.6

 0.8

 1

0 256 512 1024 2048 4096

av
g.

 q
ue

ry
 r

es
po

ns
e

ti
m

e
(n

or
m

al
iz

ed
)

document cache size (MB)

reduction: 18.7%

(a) Query latency on SSD – Sogou (b) Query latency on HDD – Sogou

 0

 0.2

 0.4

 0.6

 0.8

 1

0 256 512 1024 2048 4096

av
g.

 q
ue

ry
 r

es
po

ns
e

ti
m

e
(n

or
m

al
iz

ed
)

document cache size (MB)

reduction: 3.8%

 0

 0.2

 0.4

 0.6

 0.8

 1

0 256 512 1024 2048 4096

av
g.

 q
ue

ry
 r

es
po

ns
e

ti
m

e
(n

or
m

al
iz

ed
)

document cache size (MB)

reduction: 20.3%

(c) Query latency on SSD – ClueWeb (d) Query latency on HDD – ClueWeb

Fig. 10. [Document Server] Effectiveness of document cache

Figure 10 shows the query latency when varying the size of document cache from 0
to 4GB. We can see on HDD (Figures 10(b) and (d)), the document cache is effective,
since it can reduce the overall query latency up to 18.7–20.3%. However, on SSD (Fig-
ures 10(a) and (c)), the document cache can reduce only up to 3.2–3.8% of the overall

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: October 2014.

A:18 J. Wang et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

0 256 512 1024 2048 4096

av
g.

 q
ue

ry
 r

es
po

ns
e

ti
m

e
(n

or
m

al
iz

ed
)

snippet cache size (MB)

reduction: 15.3%

 0

 0.2

 0.4

 0.6

 0.8

 1

0 256 512 1024 2048 4096

av
g.

 q
ue

ry
 r

es
po

ns
e

ti
m

e
(n

or
m

al
iz

ed
)

snippet cache size (MB)

reduction: 16.1%

(a) Query latency on SSD – Sogou (b) Query latency on HDD – Sogou

 0

 0.2

 0.4

 0.6

 0.8

 1

0 256 512 1024 2048 4096

av
g.

 q
ue

ry
 r

es
po

ns
e

ti
m

e
(n

or
m

al
iz

ed
)

snippet cache size (MB)

reduction: 12.4%

 0

 0.2

 0.4

 0.6

 0.8

 1

0 256 512 1024 2048 4096

av
g.

 q
ue

ry
 r

es
po

ns
e

ti
m

e
(n

or
m

al
iz

ed
)

snippet cache size (MB)

reduction: 12.1%

(c) Query latency on SSD – ClueWeb (d) Query latency on HDD – ClueWeb

Fig. 11. [Document Server] Effectiveness of snippet cache

latency, which is much less effective. That is because of the excellent random access
performance on SSD, making document retrieval on SSD much faster.

In contrast, we believe the snippet cache is still powerful in an SSD-based search
engine architecture for two reasons:

(1) A cache hit in a snippet cache can reduce both the time of snippet generation and
document retrieval; and

(2) The memory footprint of a snippet (e.g., 250 characters) is much smaller than the
memory footprint of a document (e.g., an average 7KB to 8KB in our data).

To verify our claim, we carried experiments to vary the size of snippet cache from 0
to 4GB. Figure 11 shows the results. In HDD-based architectures, snippet cache can
yield up to 12.1–16.1% query latency reduction. In SSD-based architectures, snippet
cache can yield up to 12.4–15.3% query latency reduction. These results show that the
effectiveness of snippet cache is not influenced by the change of storage model.

4.3. The Impact of SSD on Web Servers
Clearly, the use of SSD to replace HDD improves the query latency of a search engine
because of the better performance of SSD over HDD. However, we believe the use of
SSD has little impact on the cache management in the web servers because the
disks in the web servers are only for temporary storage (see Figure 2).

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: October 2014.

Cache Design of SSD-based Search Engine Architectures: An Experimental Study A:19

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

256 512 1024 2048

av
er

ag
e

qu
er

y
la

te
nc

y
(n

or
m

al
iz

ed
)

cache size (MB)

S-QRC-Freq
S-QRC-CA

D-QRC-LRU
D-QRC-LFU

D-QRC-CA

 0.6

 0.7

 0.8

 0.9

 1

8 32 128 512 1024

av
er

ag
e

qu
er

y
la

te
nc

y
(n

or
m

al
iz

ed
)

cache size (MB)

S-QRC-Freq
S-QRC-CA
D-QRC-LRU
D-QRC-LFU
D-QRC-CA

(a) Query latency on SSD – Sogou (b) Query latency on SSD – ClueWeb

 0.5

 0.6

 0.7

 0.8

 0.9

 1

256 512 1024 2048

av
er

ag
e

qu
er

y
la

te
nc

y
(n

or
m

al
iz

ed
)

cache size (MB)

S-QRC-Freq
S-QRC-CA

D-QRC-LRU
D-QRC-LFU

D-QRC-CA

0.70

0.75

0.80

0.85

0.90

0.95

1.00

8 32 128 512 1024

av
er

ag
e

qu
er

y
la

te
nc

y
(n

or
m

al
iz

ed
)

cache size (MB)

S-QRC-Freq
S-QRC-CA
D-QRC-LRU
D-QRC-LFU
D-QRC-CA

(c) Query latency on HDD – Sogou (d) Query latency on HDD – ClueWeb

Fig. 12. [Web Server] Effectiveness of query result caching policies on SSD-based search engine architec-
tures

Figure 12 shows the query latency of five selected query result caching policies10:
(1) D-QRC-LRU, (2) D-QRC-LFU, (3) D-QRC-CA, (4) S-QRC-Freq, and (5) S-QRC-CA.
We see that, if one policy is more effective than the other in terms of query latency on
HDD, the corresponding query latency is also shorter than the other on SSD.

5. CACHE DESIGN OF SSD-BASED SEARCH ENGINE ARCHITECTURE
The previous section points out that SSD indeed brings certain impact to search engine
caching. In this section, we aim to shed some light on how to adapt the search engine
architecture to best embrace SSD. We first identify the latency bottleneck of an SSD-
based search engine architecture (Section 5.1). Based on that result, we explore other
possible cache types to mitigate that bottleneck (Section 5.2). Finally, we give empirical
memory allocation suggestions to those cache types (Section 5.3).

10 In this study, we exclude the results of D-QRC-FB and S-QRC-FreqStab. We exclude the result of D-QRC-
FB because its effectiveness heavily relies on the tuning of the various parameter values (e.g., the number
of intervals of each dimension). We exclude the result of S-QRC-FreqStab because its effectiveness is the
same as S-QRC-Freq when the query log cannot be split into intervals, where each interval spans weeks or
months.

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: October 2014.

A:20 J. Wang et al.

5.1. List Intersection — The Latency Bottleneck in SSD-based Search Engine
We aim to identify the latency bottleneck of an SSD-based search engine. Figure 13
shows the time breakdown of query processing in our sandbox infrastructure with all
caches enabled. The cache sizes follow Table IV in order to attain typical hit ratio found
in real search engines. From Figure 13, we clearly see that posting list intersection in
the index server is the primary bottleneck in SSD-based search engines. The other
time dominating steps, listed in decreasing order, are: ranking the results in the index
server, snippet generation in the document server, fetching the posting list from disk in
the index sever, and retrieving the document from disk in the document server. Other
steps such as data transfer among servers through the network incur negligible cost.

Posting list intersection
(54.1%)

Ranking
(22.4%)

Snippet generation
(10.5%)

Posting list access
(9.7%)

Document access
(3.2%)

Others
(0.1%)

Sogou data

Posting list intersection
(46.2%)

Ranking
(24.3%)

Snippet generation
(13.8%)

Posting list access
(10%)

Document access
(5.5%)

Others
(0.2%)

ClueWeb data

(a) on SSD – Sogou (b) on SSD – ClueWeb

Fig. 13. Time break down of each component in an SSD-based search engine with QRC, PLC, DC, and SC
enabled

5.2. Cache Type for List Intersection Saving
Having identified posting list intersection in the index server as the major bottleneck
in an SSD-based search engine, we aim to explore alternate cache types that can be
introduced to the index server in order to mitigate the bottleneck. In this regard, we
consider two cache types, namely, full-term-ranking-cache [Altingovde et al. 2011] and
two-term-intersection-cache [Long and Suel 2005], in addition to the standard posting
list cache, to be put in the index server.

The full-term-ranking-cache (FTRC) aims to reduce the entire query processing step
within the index server, including (i) fetching posting lists from disk, (ii) computing the
list intersection (the new bottleneck), and (iii) ranking and finding the top-k relevant
documents. As such, it takes the whole query q as the key and the top-k document ids
as the cache values. The corresponding caching policy of FTRC in [Altingovde et al.
2011] is LRU. FTRC can be deployed in the web servers, too. When doing so, a hit
in a web server’s FTRC can further eliminate the cost of merging individual ranking
results from multiple index servers. In this paper, however, we follow an industrial
setting that we found in a local search engine and put FTRC in the index server.

The two-term-intersection-cache (TTIC) aims to reduce the posting list intersection
time. For a query q with terms t1, t2, ..., tn, it regards every two-term 〈ti, tj〉 of q as
the cache key and the intersection of ti’s posting list PLi and tj ’s posting list PLj as
the cache value. The corresponding caching policy of TTIC in [Long and Suel 2005] is

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: October 2014.

Cache Design of SSD-based Search Engine Architectures: An Experimental Study A:21

called “Landlord” [Cao and Irani 1997]. Its idea is to favor the recently accessed items,
while also taking into account the access latency and the size of an item. Specifically,
whenever a cache item I is inserted to the cache, a weight is assigned to it. The weight
wI of I is computed as (cI/sI)+A, where cI is the access latency of item I, sI is the size
of I, A is an aging factor (initially set as 0) that would be increased along with the time.
When eviction takes place, the item with the smallest weight wmin is chosen and the
value of A is updated as wmin. Whenever a cache item is accessed, its corresponding
weight is recalculated using the updated value of A.

Table V lists the cache benefit, memory footprint, and cache locality (the α value
in power-law distribution) of FTRC, TTIC, and PLC on the Sogou data. In terms of
cache benefit, i.e., reduction of query processing time, FTRC is the highest whilst the
standard PLC is the lowest. FTRC also has the lowest memory footprint whist the
standard PLC has the highest. However, the cache locality of FTRC is the worst be-
cause its cache items are query specific. TTIC is the middle ground between FTRC and
PLC. We see from Table V that there is no absolute winner in our SSD-based architec-
ture. Same conclusion is observed from the ClueWeb data. Therefore, we suggest all
three to be integrated in an SSD-based search engine architecture.

Table V. Cache benefit, memory footprint, and cache locality of FTRC, TTIC, and PLC

FTRC TTIC PLC

Cache benefit
(query time
reduction)

list access (I/O time) 25ms 13ms 6.5ms
intersection (CPU time) 25ms 18.7ms –

ranking (CPU time) 9ms – –∑
59ms (Good) 31.7ms (Median) 6.5ms (Low)

Memory footprint 40 bytes (Low) 44,985 bytes (Median) 266,658 bytes (Large)
Cache locality α = 0.57 (Low) α = 1.03 (Median) α = 1.48 (Good)

5.3. Cache Memory Allocation in Index Server
In this section, we carry out a study to empirically identify the optimal memory allo-
cation to the three different cache types FTRC, TTIC, and PLC in the index servers.
The goal is to give some insights on how to best leverage them to mitigate the latency
bottleneck in an SSD-based search engine architecture.

Figure 14(a) shows the average query latency on Sogou data, when we vary the
memory allocation among FTRC, TTIC and PLC. Figure 14(b) is another view of Fig-
ure 14(a) that shows the cache benefit measured in terms of the reduction of query
processing time under different memory allocation. From the figures, we observe the
optimal memory allocation FTRC : TTIC : PLC is 40%:20%:40%. Under such allocation,
it improves the performance by 69.9%, comparing with the original SSD-architecture
with PLC only.

Figures 14(c) and (d) respectively show the average query latency and benefit on
ClueWeb data under different memory allocation for FTRC, TTIC and PLC. We observe
that, the optimal performance is achieved when FTRC : TTIC : PLC is 20%:60%:20%,
an improvement of 66.7% comparing with the original SSD-architecture with PLC only.

6. RELATED STUDIES
SSD is expected to gradually replace HDD as the primary permanent storage media in
both consumer computing and enterprise computing. Large-scale enterprise comput-
ing architectures such as Facebook11, MySpace12, Windows Azure13 have incorporated

11http://www.facebook.com/note.php?note id=388112370932
12http://www.fusionio.com/case-studies/myspace-case-study.pdf
13http://www.storagelook.com/microsoft-azure-ocz-ssds

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: October 2014.

A:22 J. Wang et al.

(a) Query latency – Sogou (b) Cache benefit – Sogou

(c) Query latency – ClueWeb (d) Cache benefit – ClueWeb

Fig. 14. Varying memory allocation between full-term ranking cache, two-term intersection cache and post-
ing list cache, in index server

SSD in their system infrastructure. This trend is mainly attributed to SSD’s outstand-
ing performance, small energy footprint, and increasing capacity. This has led to a
number of studies that aim to better understand the impacts of SSD on different com-
puter systems.

The discussion of the impact of SSD on computer systems had started as early as in
1995 [Kawaguchi et al. 1995], in which an SSD-aware file system was proposed. Later
on, more SSD-aware file systems have been designed, e.g., JFFS14, YAFFS15. Read op-
erations in those file systems are fast because of the use of SSD. A log-structure file
organization is then used to alleviate the intrinsic slow random write problem in SSD.
After that, the discussion has extended to other components in computer systems. For
example, [Park et al. 2006] studied the impact of SSD on buffer management in gen-
eral computer systems. In that work, they developed a new caching policy. Specifically,
a list of clean pages and a list of dirty pages are maintained. During page eviction,
pages from the clean list are evicted first. This policy prefers dirty pages to be in the
cache, which aims to reduce the number of expensive write operations in SSD. In [Sax-
ena and Swift 2009], the authors studied the impact of SSD on page swapping. The
goal is to optimize the page swap operations between RAM and SSD. To achieve that,
expensive random writes operations are buffered so as to turn individual random write
operations into groups of (cheaper) sequential writes.

14http://sourceware.org/jffs2
15http://www.yaffs.net

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: October 2014.

Cache Design of SSD-based Search Engine Architectures: An Experimental Study A:23

The discussion of the impact of SSD on database systems, had started as early as
in 2007. In [Lee and Moon 2007], the authors presented a new database design to,
again, mitigate the slow random write problems of SSD. The methodology is to buffer
data pages and then flush them to the log through sequential writes. Since then, SSD
has become an active topic in database research. For example, the impact of SSD on
join operations was first studied in [Shah et al. 2008]. In that work, a new hash-join
implementation was proposed. It exploits the property of fast random read on SSD to
fetch only the join attributes from the join tables so that the join can be carried out
using much fewer memory. Later on, a few more SSD-aware index structures have
been developed [Agrawal et al. 2009; Li et al. 2010]. They share the same goal — to
reduce the expensive random writes triggered by update, insert, and delete operations.
In [Agrawal et al. 2009], a RAM buffer is used to buffer the updates to a B-tree in
order to amortize the update cost. In [Li et al. 2010], random writes are restricted
to the top level of B-tree. Insertions are inserted to the top level first. The top level
is merged with the next level through sequential writes. As such, random writes are
always limited to a certain area of SSD. The benefit is that such “dense” random writes
could be more efficient than “sparse” random writes that span the whole disk [Nath
and Gibbons 2008]. The recent trend of SSD-aware data structures is to exploit the
internal parallelism in SSD by issuing multiple I/Os simultaneously. For example, a
parallel B-Tree was designed for SSD such that a batch of queries can be answered
efficiently [Roh et al. 2011].

Baidu first announced their SSD-based search engine infrastructure in 2010 [Ma
2010], but they did not investigate the impact of SSD on their cache management. In
[Huang and Xia 2011], a RAM-SSD-HDD search engine architecture was discussed.
The key issue there was to select a subset of posting lists to be stored in SSD and the
problem was solved as an optimization problem. In [Li et al. 2012], that issue was fur-
ther discussed, in the context of incremental update the SSD-resident posting list in
such architecture. In [Li et al. 2012], a RAM-SSD search engine architecture was dis-
cussed. That work focused on how to update the posting lists in SSD efficiently when
new documents are collected. This article however focuses on cache management in
such an SSD-based search engine architecture. Works that study the optimal cache al-
location ratio between different types of caches (e.g., [Baeza-Yates and Jonassen 2012;
Ozcan et al. 2011b]) on traditional HDD-based search engines are orthogonal to this
paper.

7. CONCLUSIONS
In this article, we first present the results of a large-scale experimental study that
evaluates the impact of SSD on the effectiveness of various caching policies, on all
types of cache found in a typical search engine architecture. In addition, we present
an empirical study that gives the preliminary direction to optimize SSD-based search
engine.

This article contributes the following messages to our community:

(1) The previous known best caching policy in the index servers, S-PLC-FreqSize
[Baeza-Yates et al. 2007b; 2008], has the worst effectiveness in terms of query la-
tency in our SSD-based search engine evaluation platform. Instead, all the other
policies are better than S-PLC-FreqSize in terms of query latency but no clear win-
ner is found.

(2) While previous work claims that document caching is very effective and the tech-
nique is able to significantly reduce the time of the snippet generation process in the
document servers [Turpin et al. 2007], we show that snippet caching is even more
effective than document caching in SSD-based search engines. Therefore, snippet

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: October 2014.

A:24 J. Wang et al.

caching should have a higher priority of using the cache memory of the document
servers in an SSD-based search engine deployment.

(3) While SSD can improve the disk access latency of all servers in web search engines,
it has no significant impact on the cache management in web servers. Thus, dur-
ing the transition from an HDD-based architecture to an SSD-based architecture,
there is no need to revise the corresponding query result caching policies in the web
servers.

(4) Posting list intersection is the bottleneck of SSD-based search engine. In addition
to the standard posting list cache (PLC) in the index server, full-term ranking cache
(FTRC) and two-term intersection cache (TTIC) can also be exploited to improve the
whole stack of query processing in SSD-based search engines. Preliminary empirical
results suggest a memory allocation of 40% : 20% : 40% for FTRC : TTIC : PLC on
Sogou data, and 20% : 60% : 20% on the ClueWeb data.

ACKNOWLEDGMENTS
This work is partially supported by the Research Grants Council of Hong Kong (GRF
PolyU 525009, 521012, 520413, 530212), NSFC of China (60903028, 61070014), Key
Projects in the Tianjin Science & Technology Pillar Program (11ZCKFGX01100).

REFERENCES
Devesh Agrawal, Deepak Ganesan, Ramesh Sitaraman, Yanlei Diao, and Shashi Singh. 2009. Lazy-adaptive

tree: an optimized index structure for flash devices. Proceedings of the VLDB Endowment (PVLDB) 2, 1
(2009), 361–372.

Nitin Agrawal, Vijayan Prabhakaran, Ted Wobber, John D. Davis, Mark Manasse, and Rina Panigrahy. 2008.
Design tradeoffs for SSD performance. In Proceedings of the USENIX Conference on Annual Technical
Conference (ATC). 57–70.

Ismail Sengor Altingovde, Rifat Ozcan, B. Barla Cambazoglu, and Özgür Ulusoy. 2011. Second chance: a hy-
brid approach for dynamic result caching in search engines. In Proceedings of the European Conference
on Advances in Information Retrieval (ECIR). 510–516.

Ismail Sengor Altingovde, Rifat Ozcan, and Özgür Ulusoy. 2009. A cost-aware strategy for query result
caching in web search engines. In Proceedings of the European Conference on Advances in Information
Retrieval (ECIR). 628–636.

Ricardo Baeza-Yates, Carlos Castillo, Flavio Junqueira, Vassilis Plachouras, and Fabrizio Silvestri. 2007a.
Challenges on distributed web retrieval. In Proceedings of the International Conference on Data Engi-
neering (ICDE). 6–20.

Ricardo Baeza-Yates, Aristides Gionis, Flavio Junqueira, Vanessa Murdock, Vassilis Plachouras, and Fab-
rizio Silvestri. 2007b. The impact of caching on search engines. In Proceedings of the ACM Conference
on Research and Development in Information Retrieval (SIGIR). 183–190.

Ricardo Baeza-Yates, Aristides Gionis, Flavio P. Junqueira, Vanessa Murdock, Vassilis Plachouras, and Fab-
rizio Silvestri. 2008. Design trade-offs for search engine caching. ACM Transactions on the Web (TWEB)
2, 4 (2008), 1–28.

Ricardo Baeza-Yates and Simon Jonassen. 2012. Modeling static caching in web search engines. In Proceed-
ings of the European Conference on Advances in Information Retrieval (ECIR). 436–446.

Ricardo Baeza-Yates and Felipe Saint-Jean. 2003. A three level search engine index based in query log distri-
bution. In Proceedings of the International Symposium on String Processing and Information Retrieval
(SPIRE). 56–65.

Luiz André Barroso, Jeffrey Dean, and Urs Hölzle. 2003. Web search for a planet: the google cluster archi-
tecture. IEEE Micro Magazine 23, 2 (2003), 22–28.

Laszlo A. Belady. 1966. A study of replacement algorithms for a virtual-storage computer. IBM Systems
Journal 5, 2 (1966), 78–101.

Andrei Z. Broder, David Carmel, Michael Herscovici, Aya Soffer, and Jason Zien. 2003. Efficient query eval-
uation using a two-level retrieval process. In Proceedings of the International Conference on Information
and Knowledge Management (CIKM). 426–434.

Pei Cao and Sandy Irani. 1997. Cost-aware WWW proxy caching algorithms. In Proceedings of the USENIX
Symposium on Internet Technologies and Systems.

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: October 2014.

Cache Design of SSD-based Search Engine Architectures: An Experimental Study A:25

Diego Ceccarelli, Claudio Lucchese, Salvatore Orlando, Raffaele Perego, and Fabrizio Silvestri. 2011.
Caching query-biased snippets for efficient retrieval. In Proceedings of the International Conference
on Extending Database Technology (EDBT). 93–104.

Feng Chen, David A. Koufaty, and Xiaodong Zhang. 2009. Understanding intrinsic characteristics and sys-
tem implications of flash memory based solid state drives. In Proceedings of the International Conference
On Measurement and Modeling of Computer Systems (SIGMETRICS). 181–192.

Shimin Chen, Phillip B. Gibbons, and Suman Nath. 2011. Rethinking database algorithms for phase change
memory. In Proceedings of the International Conference on Innovative Data Systems Research (CIDR).
21–31.

Jeffrey Dean. 2009. Challenges in building large-scale information retrieval systems: invited talk. In Pro-
ceedings of the International Conference on Web Search and Data Mining (WSDM).

Biplob Debnath, Sudipta Sengupta, and Jin Li. 2010. FlashStore: high throughput persistent key-value
store. Proceedings of the VLDB Endowment (PVLDB) 3, 1–2 (2010), 1414–1425.

Klaus Elhardt and Rudolf Bayer. 1984. A database cache for high performance and fast restart in database
systems. ACM Transactions on Database Systems (TODS) 9, 4 (1984), 503–525.

Tiziano Fagni, Raffaele Perego, Fabrizio Silvestri, and Salvatore Orlando. 2006. Boosting the performance
of web search engines: caching and prefetching query results by exploiting historical usage data. ACM
Transactions on Information Systems (TOIS) 24, 1 (2006), 51–78.

Brad Fitzpatrick. 2009. Memcached – a distributed memory object caching system. http://memcached.org/.
(2009).

Eran Gal and Sivan Toledo. 2005. Algorithms and data structures for flash memories. ACM Computing
Surveys (CSUR) 37, 2 (2005), 138–163.

Qingqing Gan and Torsten Suel. 2009. Improved techniques for result caching in web search engines. In
Proceedings of the International Conference on World Wide Web (WWW). 431–440.

Goetz Graefe. 2009. The five-minute rule 20 years later (and how flash memory changes the rules). Commu-
nications of the ACM (CACM) 52, 7 (2009), 48–59.

Jim Gray. 2006. Tape is dead, disk is tape, flash is disk, ram locality is king. http://research.microsoft.com/
en-us/um/people/gray/talks/Flash is Good.ppt. (2006).

Ari Geir Hauksson and Sverrir Smundsson. 2007. Data storage technologies. http://olafurandri.com/nyti/
papers2007/DST.pdf. (2007).

Enric Herrero, José González, and Ramon Canal. 2008. Distributed cooperative caching. In Proceedings of
the International Conference on Parallel Architectures and Compilation Techniques (PACT). 134–143.

Bojun Huang and Zenglin Xia. 2011. Allocating inverted index into flash memory for search engines. In
Proceedings of the International Conference on World Wide Web (WWW). 61–62.

Song Jiang and Xiaodong Zhang. 2002. LIRS: an efficient low inter-reference recency set replacement policy
to improve buffer cache performance. In Proceedings of the International Conference On Measurement
and Modeling of Computer Systems (SIGMETRICS). 31–42.

Atsuo Kawaguchi, Shingo Nishioka, and Hiroshi Motoda. 1995. A flash-memory based file system. In Pro-
ceedings of the USENIX Conference on Annual Technical Conference (ATC). 155–164.

Zsolt Kerekes. 2009. Storage market outlook to 2015. http://www.storagesearch.com/5year-2009.html.
(2009).

Sang-Won Lee and Bongki Moon. 2007. Design of flash-based DBMS: an in-page logging approach. In Pro-
ceedings of the ACM Conference on Management of Data (SIGMOD). 55–66.

Sang-Won Lee, Bongki Moon, Chanik Park, Jae-Myung Kim, and Sang-Woo Kim. 2008. A case for flash
memory SSD in enterprise database applications. In Proceedings of the ACM Conference on Management
of Data (SIGMOD). 1075–1086.

Ruixuan Li, Xuefan Chen, Chengzhou Li, Xiwu Gu, and Kunmei Wen. 2012. Efficient online index mainte-
nance for SSD-based information retrieval systems. In Proceedings of the International Conference on
High Performance Computing and Communication (HPCC). 262–269.

Ruixuan Li, Chengzhou Li, Weijun Xiao, Hai Jin, Heng He, Xiwu Gu, Kunmei Wen, and Zhiyong Xu. 2012.
An efficient SSD-based hybrid storage architecture for large-scale search engines. In Proceedings of the
International Conference on Parallel Processing (ICPP). 450–459.

Yinan Li, Bingsheng He, Robin Jun Yang, Qiong Luo, and Ke Yi. 2010. Tree indexing on solid state drives.
Proceedings of the VLDB Endowment (PVLDB) 3, 1–2 (2010), 1195–1206.

Xiaohui Long and Torsten Suel. 2005. Three-level caching for efficient query processing in large web search
engines. In Proceedings of the International Conference on World Wide Web (WWW). 257–266.

Ruyue Ma. 2010. Baidu distributed database. In Proceedings of the System Architect Conference China
(SACC).

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: October 2014.

A:26 J. Wang et al.

Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schtze. 2008. Introduction to Information Re-
trieval. Cambridge University Press.

Mauricio Marin, Veronica Gil-Costa, and Carlos Gomez-Pantoja. 2010. New caching techniques for web
search engines. In Proceedings of the ACM International Symposium on High Performance Distributed
Computing (HPDC). 215–226.

Evangelos P. Markatos. 2001. On caching search engine query results. Computer Communications 24, 2
(2001), 137–143.

Dushyanth Narayanan, Eno Thereska, Austin Donnelly, Sameh Elnikety, and Antony Rowstron. 2009. Mi-
grating server storage to SSDs: analysis of tradeoffs. In Proceedings of the ACM European Conference
on Computer Systems (EuroSys). 145–158.

Suman Nath and Phillip B. Gibbons. 2008. Online maintenance of very large random samples on flash
storage. Proceedings of the VLDB Endowment (PVLDB) 1, 1 (2008), 970–983.

Rifat Ozcan, Ismail Sengor Altingovde, B. Barla Cambazoglu, Flavio P. Junqueira, and Özgür Ulusoy. 2011b.
A five-level static cache architecture for web search engines. Information Processing & Management
(IPM) 48, 5 (2011), 828–840.

Rifat Ozcan, Ismail Sengor Altingovde, and Özgür Ulusoy. 2008. Static query result caching revisited. In
Proceedings of the International Conference on World Wide Web (WWW). 1169–1170.

Rifat Ozcan, Ismail Sengor Altingovde, and Özgür Ulusoy. 2011a. Cost-aware strategies for query result
caching in web search engines. ACM Transactions on the Web (TWEB) 5, 2 (2011), 1–25.

Seon-yeong Park, Dawoon Jung, Jeong-uk Kang, Jin-soo Kim, and Joonwon Lee. 2006. CFLRU: a replace-
ment algorithm for flash memory. In Proceedings of the International Conference on Compilers, Archi-
tecture and Synthesis for Embedded Systems (CASES). 234–241.

Stefan Podlipnig and Laszlo Böszörmenyi. 2003. A survey of Web cache replacement strategies. ACM Com-
puting Surveys (CSUR) 35, 4 (2003), 374–398.

Hongchan Roh, Sanghyun Park, Sungho Kim, Mincheol Shin, and Sang-Won Lee. 2011. B+-tree index op-
timization by exploiting internal parallelism of flash-based solid state drives. Proceedings of the VLDB
Endowment (PVLDB) 5, 4 (2011), 286–297.

Paricia Correia Saraiva, Edleno Silva de Moura, Novio Ziviani, Wagner Meira, Rodrigo Fonseca, and
Berthier Riberio-Neto. 2001. Rank-preserving two-level caching for scalable search engines. In Pro-
ceedings of the ACM Conference on Research and Development in Information Retrieval (SIGIR). 51–58.

Mohit Saxena and Michael M. Swift. 2009. FlashVM: revisiting the virtual memory hierarchy. In Proceedings
of the International Conference on Hot Topics in Operating Systems (HotOS).

Falk Scholer, Hugh E. Williams, John Yiannis, and Justin Zobel. 2002. Compression of inverted indexes For
fast query evaluation. In Proceedings of the ACM Conference on Research and Development in Informa-
tion Retrieval (SIGIR). 222–229.

Euiseong Seo, Seon Yeong Park, and Bhuvan Urgaonkar. 2008. Empirical analysis on energy efficiency
of flash-based SSDs. In Proceedings of the International Conference on Power Aware Computing and
Systems (HotPower).

Mehul A. Shah, Stavros Harizopoulos, Janet L. Wiener, and Goetz Graefe. 2008. Fast scans and joins using
flash drives. In Proceedings of the International Workshop on Data management on New Hardware
(DaMoN). 17–24.

Flexstar Technology. 2012. Flexstar SSD test market analysis. http://info.flexstar.com/Portals/161365/docs/
SSD Testing Market Analysis.pdf. (2012).

Anastasios Tombros and Mark Sanderson. 1998. Advantages of query biased summaries in information
retrieval. In Proceedings of the ACM Conference on Research and Development in Information Retrieval
(SIGIR). 2–10.

Andrew Trotman. 2003. Compressing Inverted Files. Inf. Retr. 6, 1 (2003), 5–19.
Dimitris Tsirogiannis, Stavros Harizopoulos, Mehul A. Shah, Janet L. Wiener, and Goetz Graefe. 2009.

Query processing techniques for solid state drives. In Proceedings of the ACM Conference on Manage-
ment of Data (SIGMOD). 59–72.

Andrew Turpin, Yohannes Tsegay, David Hawking, and Hugh E. Williams. 2007. Fast generation of result
snippets in web search. In Proceedings of the ACM Conference on Research and Development in Infor-
mation Retrieval (SIGIR). 127–134.

Howard Turtle and James Flood. 1995. Query evaluation: strategies and optimizations. Information Pro-
cessing & Management (IPM) 31, 6 (1995), 831–850.

Jianguo Wang, Eric Lo, Man Lung Yiu, Jiancong Tong, Gang Wang, and Xiaoguang Liu. 2013. The impact of
solid state drive on search engine cache management. In Proceedings of the ACM Conference on Research
and Development in Information Retrieval (SIGIR). 693–702.

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: October 2014.

Cache Design of SSD-based Search Engine Architectures: An Experimental Study A:27

William Webber and Alistair Moffat. 2005. In search of reliable retrieval experiments. In Proceedings of the
Australasian Document Computing Symposium (ADCS). 26–33.

Jiangong Zhang, Xiaohui Long, and Torsten Suel. 2008. Performance of compressed inverted list caching in
search engines. In Proceedings of the International Conference on World Wide Web (WWW). 387–396.

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: October 2014.

